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1 Introduction

In this paper, we approach the study of asymptotic (infrared) transformations using the

concepts of local quantum physics. Since the meaning of local observables is poorly under-

stood in quantum gravity, we focus instead on quantum electrodynamics. Although the

theory is well understood, quantisation on spatial slices and its variants seem inadequate

for a satisfactory conceptual basis when one explores the limit of low energy photons. A

spacetime approach to quantisation is therefore suggested, and we will follow it. Low en-

ergy theorems have recently attracted much attention in connection with the problem of

black hole information loss [1–8].

The focus in this paper is on the covariant formulation of Gauss law and infrared effects.

For these reasons we concentrate first on the free Maxwell equations. That bring out the

results of interest to us. Following the work of Peierls in 1952 [9], we introduce commutators

for smeared fields, defining the algebra A of electromagnetic observables. The Maxwell

equations are formulated as quantum constraints. They are defined by operators G(η)

depending on test functions ηµ vanishing at infinity. They are the spacetime analogues of

the Gauss law operator ∇iEi for the electric field Ei in canonical quantisation, and generate

spacetime dependent gauge transformations. They are first class in the sense of Dirac [10]

and vanish on the domain D(A) of A. Following the terminology of the canonical approach,

we call the gauge group they generate on exponentiation as G∞0 [11], where the superscript

indicates that η vanishes at infinity and the subscript indicates that the group is connected
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to the identity. The global analysis of gauge constraints in QED with test functions has

been previously considered by several authors in the canonical formalism [12, 13].

Infrared effects are captured allowing test functions ζ which do not vanish at spatial

infinity. That leads to operators Q(ζ), which are also constructed from the equations of

motion. When ζ vanishes at infinity, Q(ζ) becomes G(ζ). The group that Q(ζ) generate

on exponentiation is called G0.

The operators Q(ζ) need not vanish on D(A) if ζ does not vanish at infinity [11]. The

group G∞0 is normal in G0. It is the quotient group G0/G∞0 that acts on D(A) effectively,

since G∞0 acts as identity. But it is also the case that Q(ζ) commutes with elements of

A so that G0D(A) ⊆ D(A). The representation of G0/G∞0 on D(A) is an invariant of the

representation of A on D(A) and defines a superselection sector.

The Lie algebra of G0/G∞0 consists of real functions ζ̃ on S2 and is an abelian group. The

S2 emerges from the infrared cutoff, blowing up the tip of the light cone in momentum space:

ζ̃(k̂) = lim
k→0

ζ̃(k0, k k̂).

The group is isomorphic to the Sky group G0/G∞0 introduced by one of us (APB) and

Vaidya in [14], but in the latter the sphere arises from blowing up spatial infinity.

We then consider gauge invariance, Ward identities and low energy theorems. Since

Q(ζ) and G(η) generate gauge transformations and hence commute with all observables,

they commute also with the S-matrix S. This is the familiar statement that S is gauge

invariant. But in contrast to the usual treatments, we have the operator realisation of

spacetime gauge transformations. That is important: if these operators do not exist, the

proof of the gauge invariance of QED will not be complete.

As is well-known, from the gauge invariance of the S-matrix, Ward identities follow.

But we can also deduce low energy theorems therefrom. Thus if ζ̃(k̂) = 1, [Q(ζ), S] = 0

gives charge conservation, while other choices of ζ̃(k̂) lead to other low energy theorems.

We do not use Lorentz invariance to deduce charge conservation [cf. [15]] since because of

infrared effects, the Lorentz group is spontaneously broken in QED: it cannot be unitarily

implemented [16–19].

Incidentally, since charge conservation comes from the behaviour of QED as the pho-

ton frequency goes to zero, i.e. at large distances, it is appropriate to call it as a low

energy theorem.

The BMS group first arose as an asymptotic group in the analysis of asymptotically

flat gravity. It was later understood as the group which acts on the null infinities J ± of the

conformally compactified Minkowski space M4. We argue that it acts as automorphisms

on G0/G∞0 , but not on G0 or G∞0 separately. Further this action is non-trivial and changes

the eigenvalues of Q(ζ). In that manner the BMS group action changes the superselection

sector. By definition, then it is spontaneously broken. This result, as mentioned above, is

known for its Lorentz subgroup, but is here also extended to supertranslations.

Low energy theorems involving photon were already present in the work of Low [20]

and Gell- Mann and Goldberger [21], they are described in [22, Chaps. 7 and 11]. They

proved that the zero energy total cross section in Compton effect is exactly given by the
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Thompson formula. This work was generalised by Singh [23] to obtain subleading terms

in the photon frequency. These results are based on analyticity and are non-perturbative,

being valid in the Standard Model. and beyond. Later there appeared many low energy

theorems from the Goldstone modes of chiral symmetry breaking and applied to pion

scattering amplitudes (see [24–26] and references therein). These theorems in contrast to

the above work in photons, were only approximate as they treated the pions as particles

of zero mass.

2 Equations of motion as the covariant gauss law

In this section we will argue that the equations of motion of electrodynamics can be inter-

preted as constraints. We restrict ourselves to free electromagnetism until section 4.

2.1 Smearing

The observables we should consider are the quantum connections A, but it is necessary to

“smear” them with appropriate test functions. We will do this following Roepstorff [16],

the algebra of electromagnetic observables is taken to be generated by quantum connections

Aµ smeared with test functions fµ, which are real, smooth, vanishing at infinity and obey

the Lorentz gauge condition ∂µf
µ = 0, i.e.

A(f) =

∫
d4x fµ(x)Aµ(x); fµ ∈ C∞0 (R4); ∂µf

µ = 0. (2.1)

Notice that the elements A are gauge invariant because of the transversal character of the

test functions. This can be made more explicit by pointing our that any transverse test

function fµ can be rewritten as fµ = ∂νf
µν(η) where fµν(η) = ∂µην − ∂νηµ, ηµ being any

transverse (∂µη
µ = 0) solution of the equation � ηµ = fµ. In such a case by integrating by

parts we have

A(f) =

∫
d4x fµ(x)Aµ(x) =

∫
d4x ∂ν(x)fµν(η)(x)Aµ(x) =

1

2

∫
d4x fµν(η)(x)Fµν(A)(x),

which obviously is gauge invariant. Usually test functions are taken to be of compact

support. For the purposes of this paper this requirement is too drastic. We certainly need

the functions to vanish at infinity, but the useful requirement is in reality on the behaviour

of the Fourier transform for small momenta. We define, for kµkµ = 0 (on the mass shell):

f̃µ(k) =

∫
d4x fµ(x) e−ik·x. (2.2)

Let us introduce the space C of functions which satisfy the following constraints:

f̃µ(k), ∂i1 · · · ∂in ∂µf̃µ(k), n = 1, 2, 3, . . . (2.3)

are all finite as k→ 0. Hence in particular

lim
k→0

k · f̃(k) = 0 (2.4)

lim
k→0

∂i1 · · · ∂in k · f̃(k) < ∞, for n = 1, 2, 3, . . . (2.5)
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Compact support functions belong to C, but the space contains also functions which do

not vanish fast for x→∞, and therefore are not of compact support. We require fµ ∈ C.
For us the space C will play the role usually played by compact support functions.

Upon quantization, Aµ has the mode expansion

Aµ(x) =

∫
dµ(k)[aµ(k)e−ik·x + aµ(k)†eik·x]. (2.6)

with k0 =
√
k2 = |k| and the usual invariant measure is

dµ(k) =
d3k

(2π)32k0
. (2.7)

With standard commutation relations for aµ and a†µ, A(f) acts on the Fock space F defined

as the Hilbert space completion of the multiphoton space of states

F =
∞⊕
n=0

sH⊗n. (2.8)

where theH⊗n are generated by the action of n creation operators aµ(k)† and the s indicates

symmetrized states. To see the action of A(f), one notes that it depends on∫
dµ(k) f̃µ(k)aµ(k), (2.9)

and its adjoint ∫
dµ(k) f̃µ(k)∗a†µ(k). (2.10)

The commutator [A(f), A(g)] for two such test functions f and g is

[A(f), A(g)] =

∫
d4x

∫
d4y fµ(x)D(x− y)gµ(y), (2.11)

where D is the causal Pauli-Jordan function

D(x− y) =

∫
dµ(k)[e−ik·(x−y) − eik·(x−y)] (2.12)

The causal function D satisfies the wave equation

�D(x) = 0. (2.13)

The unitary operators W (f) = eiA(f) generate a Weyl algebra W. From the mathe-

matical point of view, it would be better to work with W. But we choose to work with

A(f) which is better known in physics. Notice that the domain of the algebra A in the

Fock space F representation is smaller than that of W which is the the full Fock space.

We next consider the equations of motion. Classically they are

∂λFλµ(A) = 0, with Fλµ(A) = ∂λAµ − ∂µAλ. (2.14)
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We must smear the corresponding operator with test functions ηµ ∈ C∞0 (R4) and transfer

derivatives to η to get a sensible quantum operator, or even a sensible generator of canonical

transformations. Otherwise distributions like D, or worse, will occur in commutators or

Poisson brackets.

Towards this end, let us consider Fµν(η) = ∂µην − ∂νηµ in (2.1) for a test function

ηµ ∈ C, and the smearing of the equation of motion,

G(η) =

∫
d4x ∂λFλµ(η)Aµ, ηµ ∈ C∞0 (R4). (2.15)

The test function for Aµ that appears in (2.15) is not ηµ, but ∂λFλµ(η) that fullfils (2.1)

and the Fourier transform condition (2.3).

The following properties of G(η) may be noted:

a) For classical fields Aµ, partial integration gives

G(η) =

∫
d4x ηµ∂λFλµ(A), (2.16)

which is zero by equations of motion. Hence in quantum physics, we can set it as a

constraint on the domain D(A) of A.

G(η)|ψ〉 = 0 if |ψ〉 ∈ D(A). (2.17)

b) Consistency demands that G(η) are first class constraints. That is the case, for

we have

[G(η1), G(η2)] =

∫
d4x d4y ∂λFλµ(η1)(x)D(x− y)∂ρFµρ (η2)(y) = 0, (2.18)

for any pair η1,µ, η2,µ ∈ C∞0 (R4). Here

∂λFλµ(ηa) = � ηa,µ − ∂µ(∂λ ηa,λ) a = 1, 2. (2.19)

The � term vanishes after partial integration and use of �D = 0 as in (2.13). The

∂µ term vanishes after partial integration and use of ∂µD(x − y) = −D(x − y)∂µ,

Fρµ(η2) being anti-symmetric.

c) Consistency also demands that AD(A) ⊆ D(A) or that A are first class vari-

ables. That is also the case. We show that in two steps. The first demonstrates

that G(η) generates gauge transformations. From there follows the second result,

[G(η), A(f)] = 0. Indeed

[G(η), Aµ(x)] =

∫
d4y ∂λFλµ(η)(y)D(y − x)= −∂µ

∫
d4y (∂ληλ)(y)D(y − x)

:= i∂µΘ(x). (2.20)

because the box term again vanishes by (2.13). So G(η) is the generator of a gauge

transformation.
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This establishes the connection between the equations of motion and the constraints. We

see that the role of the smearing functions, and of their infrared behaviour, is fundamental.

The role of smearing test functions for a global analysis of gauge constraints has been

analysed in the canonical formalism by several authors [12, 13].

Usually deviations from classical equations of motion can appear in quantum field

theory due to anomalies. In the present case since there is no anomaly in the gauge

symmetry, the preservation of canonical Gauss law constraint and general covariance imply

the absence of anomalies for all Maxwell equations.

We can now verify (2.17) trivially in D(A) in the Fock space representation. Use (2.9)

and (2.2) to write

Aµ(x) =

∫
dµ(k)[aµ(k)e−ik·x + aµ(k)†eik·x], k2 = 0, k0 > 0, (2.21)

with the constraint

kµaµ(k)|ψ〉 = 0, (2.22)

which we can assume by the gauge invariance of (2.1) and (2.16). Thus, for any Fock state

|ψ〉 ∈ F , we find that

G(η)|ψ〉 =

∫
d4x ∂λFλµ(η)(x)Aµ(x)|ψ〉

=−
∫
dµ(k)

[
[k2η̃µ(k)− kµ k · η̃(k)]aµ(k) + [k2η̃µ(k)∗ − kµ k · η̃(k)∗]a†µ(k)

]
|ψ〉

=0. (2.23)

where

η̃µ(k) =

∫
d4x ηµ(x) e−ik·x, (2.24)

and k0 =
√
k2. The group generated by G(η) is denoted by G∞0 . It acts trivially in F .

Remark: with hindsight we have here just verified that the Fock space of physical states

F is in the kernel of G(η). This is crucial for the interpretation of the equations of motion

as constraints.

One characteristic operator of Fock space F is the number operator

N =

∫
dµ(k)N(k), (2.25)

where

N(k) = aµ(k)†aµ(k). (2.26)

The domain of N is given by the states |ψ〉 ∈F such that

〈ψ|N2|ψ〉 <∞.

This domain is a subset of the larger set of states where N has finite expectation values,

i.e. 〈ψ|N |ψ〉 <∞. Because of the constraint (2.22) N is a positive operator in F .

– 6 –
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2.2 Vacua and coherent states

Let us now consider the coherent state defined by

|f〉 = eiA(f)|0〉, (2.27)

with f ∈ C and

(f, f) :=

∫
dµ(k)f̃µ(k)∗f̃µ(k) <∞, (2.28)

i.e. |f〉 ∈F . It is easy to show that (f, f) ≥ 0. This is a consequence of the transversal and

small k properties of f . Indeed, since ∂µfµ = 0, kµf̃µ = 0, and since k0 =
√
k2 it follows

that f̃∗µ f̃
µ > 0 unless fµ = 0 or f̃µ(k) = kµφ̃(k). In the latter case fµ = ∂µφ, but by the

transversality condition �φ = 0, which since φ is compactly supported implies that φ = 0

and, thus, fµ = 0.

Also

〈f |Aµ(x)|f〉 = −i
∫
d4y fµ(y)D(y − x)

= −i
∫
dµ(k) [f̃µ(k) eik·x − f̃µ(k)∗ e−ik·x]. (2.29)

Thus from the mode expansion of Aµ in (2.6), we see that

〈f |aµ(k)|f〉 = if̃µ(k)∗. (2.30)

Hence

0 ≤ 〈f |N |f〉 = (f, f) <∞. (2.31)

We now remove the requirement that f ∈ C and vanishes at infinity in x, replacing

eiA(f) by eiA(g) in (2.27) where g is a transverse, but not vanishing at infinity, function

of C∞(R4) with

lim
ε→0

∫
k0>ε

dµ(k)g(k0,k)∗g(k0,k) =∞ . (2.32)

We assume that g(k0,k) is O(1/k0) for k0 going to 0, so that the divergence is at worst

logarithmic. Then the expectation value of N in the state |g〉 diverges: it has an infinite

number of infrared photons,

〈g|N |g〉 = lim
ε→0
〈g|
∫
k0≥ε

dµ(k)N(k)|g〉 =∞. (2.33)

while its energy

E = lim
ε→0

∫
k0≥ε

dµ(k)k0g(k0,k)∗g(k0,k) (2.34)

can remain finite.

The state |g〉 built by applying exp(iA(g) on the vacuum, generates a state which does

not belong to the domain of the number operator N . As is known [18, 27–31] and we shall

later see in section 5, infrared dressing does not leave invariant the domain of the number

operator in Fock space.
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3 The superselection algebra

Suppose next that we replace the test functions ηµ in G(η) by ζµ which need not vanish at

infinity, and therefore does not belong to C. This defines a new class of operators, analogs

of the G’s, which we will indicate with a different symbol, to stress the difference:

Q(ζ) =

∫
d4x ∂λFλµ(ζ)(x)Aµ(x) . (3.1)

They reduce to G(η) if ζµ = ηµ belongs to C: Q(η) = G(η). But in general Q(ζ) 6= G(ζ) if

ζ is not in C, and, thus, Q(ζ) need not vanish on D(A).

The operators Q(ζ) commute with both G(η) and A(f) as before since both η and f

belong to C, letting us do the needed partial integrations:

[Q(ζ), G(η)] = [Q(ζ), A(f)] = 0 . (3.2)

So the irreducible representations of A(f) where G(η) vanishes can be labelled by the

irreducible representations of Q(ζ): the latter are superselected.

The Q(ζ) generates on exponentiation the group G0. Its subgroup G∞0 is normal in G0,

commuting with all elements of G0. Further G∞0 acts as identity on D(A). Hence the group

classifying superselection sectors is G0/G∞0 .

We now comment briefly on the asymptotics of ηµ and ζµ .

Remarks on asymptotics. The large x behaviour of ηµ and ζµ controls the behaviour

of η̃µ(k) and ζ̃µ(k) as k0 → 0. We now explain this point.

Since ζ is not of compact support the behaviour of its Fourier transform ζ̃(k) near

the origin is different, it may diverge at the origin and we shall later see that (2.4) can be

replaced by

k · ζ̃(k) −−−→
k→0

ζ̃(k̂)

|k|σ
with σ ≤ 2, (3.3)

where k̂ = k/|k|. This conclusion is reached by requiring that Q(ζ) acts without divergent

terms on the infrared dressed charged states. When

lim
k→0

k · ζ̃(k) 6= 0, (3.4)

ζµ cannot have compact support as shown by the derivation of (2.4) (2.5).

Since G∞0 has elements with the properties (2.4), (2.5), we can say that

Q(ζ(1))−Q(ζ(2)) = G(ζ(1) − ζ(2))

if

ζ̃(1) − ζ̃(2) ∈ C

Since

G(ζ(1) − ζ(2))D(A) = {0}. (3.5)

we can identify all such ζ’s differing by an η as k → 0. The conclusion is that in view

of (3.3) elements of G0/G∞0 are characterised by functions on S2 and the index σ.

– 8 –
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For fixed σ the group G0/G∞0 is thus isomorphic to the gauge group of maps from S2

to U(1).

G0/G∞0 = Maps(S2,U(1)). (3.6)

A natural question to ask is whether G0/G∞0 is abelian or not. The answer depends on

the commutator [Q(ζ1), Q(ζ2)]. We find from (2.29) after changing η1 to ζ1

[Q(ζ1), Q(ζ2)] =

∫
dµ(k)

[(
kµk · ζ̃1(k)

)(
kµk · ζ̃2(−k)

)
+
(
kµk · ζ̃∗1 (k)

)(
kµk · ζ̃∗2 (−k)

)]
.

(3.7)

For σ < 1 the coefficient integral of k · k converges in the infrared because the measure is

dµ(k) = d|k|dθdφ|k| sin θ/(2π)3. As k · k = 0, [Q(ζ1), Q(ζ2)] = 0 if both ζ1 and ζ2 have the

same σ < 1. The integral is also zero if ζ̃ is odd in k. Otherwise, or if σ > 1, the integral

diverges. The divergence for σ = 1 of the above integral is logarithmic. There may be a

regularisation to get a finite answer even if ζ̃ is constant. We can treat pairs ζ̃1,ζ̃2 with

different σ in the same manner. In the divergent cases Q’s do not form a Lie algebra. Such

domain problems may not spoil physics.

4 Gauge invariance and Ward identities

A concise statement of gauge invariance and Ward identities as formulated in textbooks is

the following: let SI be the interaction representation S-matrix in QED:

SI = T exp i

∫
d4xAµJ

µ. (4.1)

Here Jµ is a conserved current.1 Then SI is invariant under the gauge transformation

Aµ → Aµ + ∂µΘ (4.2)

so that

SI = TSI exp i

∫
d4xJµ∂µΘ. (4.3)

The matrix elements of (4.3) between the initial and final states are also gauge invariant.

Expanding (4.3) in powers of the coupling constant and taking its matrix elements,

one gets Ward identities order by order.

This treatment is not satisfactory for our purposes. The first point is that the operator

implementing (4.2) in the whole spacetime (and not just as at constant time, as in the

A0 = 0 gauge) is not shown.

The more serious problem is that the initial and final states are considered to have

a finite number of photons. But because of infrared effects, it is known that this is not

to be the case. Below we focus on just this infrared part of SI , and outline the approach

of Roepstorff [16], which is supported by a considerable literature (cf. [17, 27]) and refer-

ences therein. Specially interesting is the approach of Gervais-Zwanziger [32] which uses a

covariant formalism in momentum space quite close to the one developed in this paper.

1We are now going beyond free QED to a slightly more general case.
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Infrared dressing of initial state. Consider the initial state with one particle2 and no

photons,

|0〉γ |p, e〉, (4.4)

where |0〉γ is the photon Fock vacuum and |p, e〉 the state of a charged particle of momentum

p and charge e. One has to take into account the fact that charged particles radiate. If HI

is the interaction Hamiltonian, the in state is

T exp

{
i

∫ 0

−∞
dx0HI

}
|0〉γ |p, e〉, (4.5)

so that this radiation has accumulated for an infinite period of time. We want to approxi-

mate the effect of this HI due to vanishingly small photon frequency k0.

The infrared model. The current Jµ for the infrared model is that of a charged particle

of charge e, mass m and constant momentum pµ. Thus in the current

Jµ(k) = e

∫
dτ ˙ζµ δ4(x− ζ(τ)), (4.6)

of classical electromagnetism, we set

ζµ(τ) =
pµ

m
τ (4.7)

Thus the change of particle momentum due to the back reaction to photon emission is

neglected in the approximation of interest of large m/k0 � 1. Substituting (4.7) in (4.6),

we get the current

Jµ(k) = e

∫
dτ

pµ

m
δ4
(
x− p

m
τ
)
, (4.8)

and the interaction Hamiltonian

HI(x0) = exp

∫
d3xJµ(x)Aµ(x). (4.9)

The infrared in state is then easily calculated [14]:

|p, e; γ〉in = T exp

{
i

∫ 0

−∞
dx0HI(x0)

}
|0〉γ |p, e〉, (4.10)

Here the time ordering is not needed in the right hand side, since the commutator

[HI(x0), HI(x
′
0)] is a multiple of identity.

We can write (4.10) in an elegant from

|p, e; γ〉in = exp

{
ie

∫ 0

−∞
dτ

pµ

m
Aµ (τp/m)

}
|0〉γ |p, e〉, (4.11)

The exponential is just the Wilson line integral along the particle trajectory. A gen-

eralization of the same approximation for non-abelian gauge theories gives some hints on

the quark confinement mechanism [33, 34].

2A simple modification of what follows also covers the case of several charged particles. The results

depend only on the total momentum and total charge of the multiparticle system.
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Gauge properties of infrared dressed state. By gauge invariance is meant invari-

ance of (4.8) under G(η), while the response under Q(ζ) defines its superselection sectors.

Therefore we have to show that

eiG(η)|p, e; γ〉in = |p, e; γ〉in. (4.12)

Now

eiG(η)|p, e; γ〉in =

[
eiG(η) exp

{
−i
∫ 0

−∞
dx0

∫
d3xJµ(x)Aµ(x)

}
e−iG(η)

]
eiG(η)|0〉γ |p, e〉

(4.13)

The factor within the brackets is

exp

{
−i
∫ 0

−∞
dx0

∫
d3xJµ(x)∂µΘ(x)

}
(4.14)

which becomes after integration by parts

exp

{
−i
∫
x0=0

d3xJ0(x)Θ(x)

}
= e−ieΘ(0), (4.15)

since (4.8)

J0(0,x) = e δ3(x) (4.16)

and Θ→ 0 as x0 →∞.

Thus since the charged particle is at spatial origin at time 0, the gauge transform of

|p, e; γ〉in is

eiG(η)|p, e; γ〉in = e−ieΘ(0)eiG(η)|0〉γ |p, e〉. (4.17)

The first factor in (4.17) comes from gauge transforming Aµ. But for a charge particle at

origin, the Gauss law has the additional term proportional to J0 = e δ3(x), as in (∂iEi +

eδ3(x))|·〉 = 0. This is to be smeared with Θ(0,x) to get its contibution to G(η). Thus the

state |p, e; γ〉in is fully gauge invariant.

5 The superselection operator Q(ζ) and charge conservation

The superselection rules are associated with very large distances and very low frequen-

cies. We can thus choose ζ to vanish at x0 = 0 so that Q(ζ) transforms only the Dirac-

Wilson line.

Before discussing charge conservation and Ward identities let us discuss the behaviour

of the nonvanishing k · ζ̃(k) as k0 → 0. That implies that the test function ζ /∈ C.
Let us isolate the angular part and consider the infrared limit

k · ζ̃(k) −−−→
k0→0

ζ̃(k̂)

kσ0
ζ̃(k̂) 6= 0. (5.1)

Different values of σ show different behaviours, with σ = 2 a separating value, the most

interesting case.
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Expressing the invariant measure (2.7) as

dµ(k) =
k0dk

0dΩk̂

(2π)3
, (5.2)

we can see that the integral (2.20) expressing ∂µΘ:

i∂µΘ = [Q(ζ), Aµ(x)] = −∂µ
∫
d4y(∂λζλ)(y)D(y − x)

= −
∫
dµ(k)

[
kµk · ζ̃(k)eik·x + kµk · ζ̃(−k)e−ik·x

]
(5.3)

exists if σ < 2. For σ = 2 the integral exists and is well defined, but the would be function

Θ, obtained by removing kµ from (5.3) diverges. The gauge transformation is therefore

given by a closed, but not exact form. It would be interesting to study the cohomology of

this limiting case, but this is beyond the scope of this paper.

Likewise the infrared dressed in state (4.11) is a state with non-trivial response to Q(ζ),

which depends on the value of σ. This means these dressed states have values different

from zero for the superselection operators Q(ζ). We can calculate

eiQ(ζ)|p, e; γ〉in (5.4)

as in (4.12), noting that

eiQ(ζ)|0〉γ |p, e〉 = |0〉γ |p, e〉 (5.5)

we get

eiQ(ζ)|p, e; γ〉in = exp

{
−ie

∫ 0

∞
dx0

∫
d3xJµ(x)∂µΘ(x)

}
|p, e; γ〉in (5.6)

= exp

{
ie

∫
dµ(k)

(
k · ζ̃(k)− k · ζ̃(−k)

)}
|p, e; γ〉in. (5.7)

As ζ̃ vanishes fast as k0 → ∞, we have to examine only the k0 → 0 limit. Thus, the one-

particle dressed states have non-zero values for the superselection operators Q(ζ̃). Again

the case σ < 2 poses no problems, as in this case Q(ζ) is finite. Instead for σ = 2 the

exponent of (5.7) diverges, unless ζ̃ is odd in k. In this case |p, e; γ〉in is not in the domain

of Q(ζ).

We can conclude that the superselection sectors are labelled by σ, (with σ ≤ 2) and

the functions ζ̃(k̂) on S2. In the case σ = 2 the functions ζ̃(k̂) must be odd.

Some remarks are in order.

The photon momentum k0 for k0 > 0 lies on a light cone V+ with the tip k0 = 0

removed. The infrared features we have encountered are all concerned with the limit

k0 → 0. If the tip k0 = 0 of the light cone is regarded as just a point, and we denote by V +

the light cone with the tip, any smooth function σ on V + will have a constant limit σ(0)

as k0 → 0. But in our case kσ0 k · ζ̃(k) need not be a constant as k0 → 0 since it approaches

ζ̃(0,k). This direction-dependent limit can be accommodated by attaching a sphere S2 to

V + and not a point. We have blown up the point to a sphere. This procedure is common

in mathematics.
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In an earlier work [14] where the Sky group was introduced, spatial infinity was blown

up to a sphere to define this group. Here instead, we get the dual blow-up of the origin in

momentum space. For fixed σ < 1 both groups are isomorphic. But σ ≥ 1 requires more

discussion (See the discussion of eq. (3.7)). The Sky group for QED is abelian being the

group of maps from S2 to U(1) with natural multiplication

eiσi ∈ Sky; eiσ1eiσ2 := ei(σ1+σ2) (5.8)

6 Charge conservation and low energy theorems

Charge conservation follows directly from the infrared part in the action of eiQ(ζ) on

|p, e; γ〉in. We have [35]

eiQ(ζ)|p, e; γ〉in = exp

{
−ie

∫ 0

−∞
dτ
pµ

m
Aµ(τp/m)

}
× exp

{
−ie

∫ 0

−∞
dτ
pµ

m
∂µΘ(τp/m)

}
|p, e; γ〉. (6.1)

Thus the eigenvalue of eiQ(ζ) on |p, e; γ〉in is

exp

{
−ie
∫ 0

−∞
dτ

∫
dµ(k)d4y

p · k
m

[
∂λζλ(y) e−ik·(y−τp/m) + ∂λζλ(y)∗ eik·(y−τp/m)

]}
= exp

{
−ie

∫
dµ(k) lim

ε→0

[
p · k

p · k − iε
k · ζ̃(k)− p · k

p · k + iε
k · ζ̃(k)∗

]}
= exp

{
−ie

∫
dµ(k)

[
k · ζ̃(k)− k · ζ̃(k)∗

]}
. (6.2)

The integral multiplying e is independent of p. Thus for N charged particles of charge ei, e

gets replaced by the total charge q =
∑N

i=1 ei. But iQ(ζ) is superselected. Hence its value

in the in state and out state are the same, so that charge is conserved.

Unlike traditional treatments like [26], our treatment does not invoke the fact that

Aµ is not a true vector, nor any reference to Lorentz invariance. The diagrams summed

in the infrared dressing operator in (4.11) are the sum of over all photon number of the

diagrams Weinberg considers. It is the tree approximation to the Feynman diagrams with

fixed charge as photon momenta go to zero.

We now remark on going beyond the tree approximation, which is also necessary to

get amplitudes which can measure ∂µΛ. Its presence in (6.2) is such that ζ̃µ-dependence

factors out.

The gauge transformation (2.15) (with η → ζ) shifts JµAµ, which for electron field ψ

is the shift of iψγµψAµ to iψγµψ∂µΘ. This gives a shift of photon creation and annihila-

tion operators

a†µ(k) → a†µ(k)− ikµk · ζ̃(−k),

aµ(k) → aµ(k) + ikµk · ζ̃(k). (6.3)

Thus if we consider tree diagrams with N electrons and photons emitted with varying

momenta, when an electron line changes momentum from p to p′, the vertex involved will
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carry the factor γ · (p− p′)(p− p′) · ζ̃(p− p′). Since varying electron momenta will occur,

the ζ will not factor out and the response of in state to eiQ(ζ) will be non-trivial.

But this eigenvalue cannot change as Q(ζ) is superselected. That should give identities

for scattering amplitudes involving photon momenta k, k′, · · · . Such a calculation is beyond

the scope of this paper.

7 The BMS group

The Bondi-Metzner-Sachs group was introduced during the study of classical gravitational

radiation [36, 37]. It acts on null infinity J +. We explain its action to the extent we

require. See also [38].

The four-dimensional conformal group SO(4, 2) does not act on Minkowski space M4.

It acts only on the Dirac-Weyl compactification M4 of M4. Consider the six dimensional

space M4,2 with topology R6, coordinates (ξ0, ξ1, . . . , ξ4, ξ5) = (ξµ, ξ4, ξ5) and metric

(ξ|ξ) = ξ2
0 −

3∑
i=1

ξ2
i − ξ2

4 + ξ2
6 . (7.1)

We can write this metric as

ξµξµ − (ξ4 + ξ5)(ξ4 − ξ5). (7.2)

The null cone in M4,2 is

V = {ξ : ξµξµ − (ξ4 + ξ5)(ξ4 − ξ5) = 0} (7.3)

Let us consider VP, the projective space associated with V :

VP = {[ξ] : [ξ] = [λξ] ; ξ ∈ V, λ 6= 0} (7.4)

VP is a four-dimensional space.

Let

ξ4 =
γ

2

(
1 +

ξ ◦ ξ
γ2

)
, ξ5 =

γ

2

(
1− ξ ◦ ξ

γ2

)
, ξ ◦ ξ := ξµξµ. (7.5)

Then ξ ∈ VP.
If γ 6= 0

[ξ] =

[
ξ

γ
,

1

2

(
1 +

ξ

γ
◦ ξ
γ

)
,

1

2

(
1− ξ

γ
◦ ξ
γ

)]
(7.6)

where on L.H.S., ξ is ξµ.

Setting

xµ =
ξµ

γ
, γ 6= 0,

we see that the interior of VP with γ 6= 0 is the Minkowski space:

γ0 6= 0 : [ξ] =

[
x,

1

2
(1 + x · x),

1

2
(1− x · x)

]
. (7.7)

But if γ = 0, ξ4 + ξ5 = 0 and

ξ = (ξµ, ξ4,−ξ4), ξµξµ = 0. (7.8)
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Thus if ξ4 6= 0, [ξ] spans a light cone for each sign of ξ0/ξ4:

ξ4 6= 0 : [ξ] = [ξµ/ξ4, 1,−1]. (7.9)

Let us call this space as J . We can regard ξ4 = 0 as its tip.It has the topology of S2.

It is obtained by blowing up the origin ξµ = 0. The BMS group acts on J . For convenience

let us set ξµ/ξ4 = Nµ and distinguish N0 ≷ 0,

J ± =
{
N,N ◦N = 0;N0 ≷ 0,

}
. (7.10)

The BMS group acts on J ±. We focus on J +. With N0 > 0, we can write

N = (N0, N0N), N ·N = 1. (7.11)

Thus,

J ± = R× S2 (7.12)

with coordinates

(N0,N). (7.13)

The BMS group consists of a pair (α,Λ), where α is a real function on S2,

α : S2 → R. (7.14)

and Λ is a Lorentz transformation:

Λ ∈ L↑+. (7.15)

The action of (α,Λ) on (N0,N) is

(α,Λ)(N0,N) = (N0 + α(Λ ◦N),Λ ◦N), (7.16)

where Λ ◦N denotes the action of L↑+ on S2 as conformal transformation.

Let α→ Λ∗α be the usual pull-back action of L↑+ on α

Λ∗α(N) = α(Λ ◦N). (7.17)

Then (7.16) shows that the BMS group is the semi-direct product of L↑+ with super-

translations α. The composition law for the latter is addition of functions so that it is

abelian. We find

(α1,Λ1)(α2,Λ2) = (α1 + Λ∗1α2,Λ1Λ2). (7.18)

The subalgebra where α has just angular momenta 0 and 1,

α(N) = a0 + a ·N; aµ ∈ R4. (7.19)

gives the Poincaré group.

Away from J +

In quantum theory, it is important to realize the BMS group as operators on the

quantum Hilbert space. In our case, the latter carries a non-trivial representation of QED

including infrared effects.
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We can approach the problem by extending the action of J + to all of M4. With that

in hand, we can transform test functions and perhaps find operators to implement these

transformations.

But the BMS group acts only on J +. But the BMS group acts only on J +. There

are many ways to extend its action to M4.

We now suggest that the BMS group does act on G0/G∞0 , but not on G0 or G∞0 sep-

arately. The reason is as follows. Let us characterise elements of G∞0 as in (2.4), but

dropping (2.5). It is convenient to do so, and the results are unaffected.

The action of the BMS group on the leading asymptotic terms (3.3) is fixed. Hence

if (α,Λ), (α,Λ)′ are two such actions of this group on ζ̃µ which however coincide on the

asymptotic terms, then

(α,Λ) k · ζ̃(k)− (α,Λ)′ k · ζ̃(k) −−−→
k→0

0 (7.20)

Thus,

Q((α,Λ) ζ)−Q((α,Λ)′ ζ) = G((α,Λ) ζ − (α,Λ)′ ζ ′) (7.21)

is a generator of G∞0 , and vanishes on quantum states.

All possible extensions of (α,Λ) from boundary to bulk act in the same manner

on G0/G∞0 .

Thus

BMS acts on the superselection algebra

The asymptotic BMS symmetry (7.16) also acts on the asymptotic values of the gauge

fields and their gauge transformations. In particular, consider (5.3) which give the gauge

transformation of Q(ζ) and hence defines G0. Substituting

u = x0 − r , (7.22)

we get

e±ik·x = e±i[k
0(u+r)−k0 r k̂·x̂]. (7.23)

The BMS group transforms the values of the exponentials and hence the asymptotic

values of ∂µΘ to a new function (α,Λ) ∂µΘ = ∂µΘ′ for all Lorentz gauge transformations Λ.

BMS group is spontaneously broken

The transformation of ∂µΘ to ∂µΘ′ by supertranslations or boosts is generically non-

trivial and changes it at infinity. Thus this action is non-trivial on G0/G∞0 and changes

the superselection sector. The exception is the rotation subgroup which acts trivially Q(ζ)

because dµ(k) is a rotationally invariant measure.

Hence, the BMS group is spontaneously broken to its rotation subgroup.

– 16 –



J
H
E
P
0
3
(
2
0
1
7
)
1
3
6

8 Conclusions

We have shown that equations of motion can be considered as constraints in field theory.

This interpretation allows us to define a covariant version of Gauss law. Using the Peierls’

formulation of quantization, we analysed the physics effects of the infrared behaviour of

QED. In particular we have shown that the infrared dressed one-particle states induce a

spontaneous symmetry breaking of some space-time symmetries like Lorentz transforma-

tions because they change the charged superselection sector.

The same analysis affects the role of other asymptotic symmetry groups such as BMS

which act on the boundaries of spacetime. However, because gauge invariance under local

gauge transformation are preserved by the covariant Gauss law constraints, Ward identities

of the S-matrix under G∞0 still hold which permits us to generalize the standard results to

deduce to charge conservation and low energy theorems.

A crucial observation is that the proof of such results does not requires Lorentz

invariance.

Acknowledgments

This article is based upon work from COST Action MP1405 QSPACE, supported by COST

(European Cooperation in Science and Technology). M. Asorey work has been partially

supported by the Spanish MINECO/FEDER grant FPA2015-65745-P and DGA-FSE grant

2015-E24/2. F.L. is supported by INFN, I.S.’s GEOSYMQFT and received partial support

by CUR Generalitat de Catalunya under projects FPA2013-46570 and 2014 SGR 104,

MDM-2014-0369 of ICCUB (Unidad de Excelencia ‘ Maria de Maeztu’). G. Marmo would

like to acknowledge the support provided by the Banco de Santander-UCIIIM “Chairs of

Excellence” Programme 2016-2017.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] A. Strominger, On BMS invariance of gravitational scattering, JHEP 07 (2014) 152

[arXiv:1312.2229] [INSPIRE].

[2] D. Kapec, M. Pate and A. Strominger, New symmetries of QED, arXiv:1506.02906

[INSPIRE].

[3] M. Campiglia and A. Laddha, Asymptotic symmetries of QED and Weinberg’s soft photon

theorem, JHEP 07 (2015) 115 [arXiv:1505.05346] [INSPIRE].

[4] S.W. Hawking, M.J. Perry and A. Strominger, Soft hair on black holes, Phys. Rev. Lett. 116

(2016) 231301 [arXiv:1601.00921] [INSPIRE].
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