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1 Introduction

The celebrated AdS/CFT correspondence continues to be a source of exciting new results

in both gauge and string theory, with the best studied example being the AdS5/CFT4

duality between four-dimensional N = 4 superconformal Yang-Mills theory(SYM) and

Type IIB superstring theory on AdS5 × S5 [1]. There are also other AdS/CFT exam-

ples [2, 3] with field theories being in lower dimensions and integrability properties dis-

covered on both sides. One of these is the AdS4/CFT3 duality proposed in [4], which

relates three-dimensional N = 6 super Chern-Simons theory and type IIA string theory
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on AdS4 × CP3. The integrable structure on both sides in this gauge/string duality was

first studied in [5]–[9]. Similarly to N = 4 SYM [10, 11], a complete description of pla-

nar anomalous dimensions of infinitely long operators has been investigated by means of

the Asymptotic Bethe Ansatz(ABA) equations [12]. To solve the spectral problem for

single-trace operators with finite length, finite size effects must be computed. The com-

plete solution to AdS5/CFT4 spectral problem is encoded in the TBA/Y-system [13]–[15],

which has an equivalent but simpler form — the Quantum Spectral Curve(QSC) [16]. In

AdS4/CFT3, the TBA/Y-system was constructed in [17, 18] and recently reduced to a QSC

in [19]. One of the very impressive results is the computation of the triple wrapping cor-

rections in ABJM theory [20] using the QSC method. Nevertheless, the good old Y-system

is still efficient for computing leading wrapping corrections.

Integrability gives us some hopes to solve exactly highly non-trivial quantum field the-

ories. However, such theories are quite rare and integrable structure usually only appears

in the large N limit. Notice that the integrable structures in AdS/CFT correspondence first

appear in theories with a large amount of supersymmetries. It would be very interesting

to see how far one can go by reducing the supersymmetries of the original theory while

keeping integrable structure at the same time. For AdS5/CFT4, people have explored a

lot through at least three approaches including the addition of flavors [21]–[23], marginal

deformations [24]–[27] and orbifolding [28]–[33]. For more information on these topics

see reviews [34, 35] and references therein. Some wrapping effects in β- and γ-deformed

SYM theories were computed using Lüscher method and/or Y-system in [36]–[39]. In

three-dimensional case, similar aspects have been less studied. In [40], integrability of

planar β-deformed ABJM theories was established at two-loop order in the scalar sector.1

Recently, integrability of orbifold ABJM theories was studied in details in [42].

The γ-deformation of N = 4 SYM theory are very special among classically marginal

deformations in the sense that it preserves the integrable structure and can be implemented

elegantly on both sides of gauge/string duality. On the gauge theory side, the deforma-

tion can be expressed through a non-commutative star product for each interaction term

in the Lagrangian. On its dual string theory side, it can be constructed by T-duality-

shift-T-duality (TsT) transformations [43, 44]. Marginal deformations of Bagger-Lambert-

Gustavsson theory [49]–[53] were studied in [54]. Similar deformations were also studied

on the gravity side in [55]. These deformations were reviewed in [57]. The γ-deformed

ABJM theories and their gravity duals were studied in [41]. Some classical string solutions

in these deformed backgrounds of type IIA string theory have been studied in [45]–[48].

The integrability of γ-deformed ABJM theory in [41] in the scalar sector at two-loop

level can be proved in a similar way as it was done for β-deformed theory [40]. In this

paper we make the very natural assumption that the planar γ-deformed ABJM theory

is integrable for all the sectors and to all loop orders, and compute the twist matrix as

in [26]. Then the proposal of asymptotic Bethe equations is straightforward to get. We

investigate the duality properties which have been derived in [42] carefully. We find they

are all satisfied nicely as they should. Thanks to these duality properties, a more general

1Integrability of a γ-deformation different from the ones in [41] was also studied in [40].
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Fields Y 1 Y 2 Y 3 Y 4 ψ†1 ψ†2 ψ†3 ψ†4

Q1
f

1
2 −1

2 0 0 1
2 −1

2 0 0

Q2
f 0 0 1

2 −1
2 0 0 1

2 −1
2

Q3
f

1
2

1
2 −1

2 −1
2

1
2

1
2 −1

2 −1
2

Table 1. Charges of fields under three U(1) generators of SU(4)R.

twisted generating functional method is proposed. To match the twisted ABA equations, a

modified asymptotic large L solution of Y-system is presented. Various applications have

been made in the sl(2)-like sector. Since the AdS4/CFT3 Y-system have been proposed

in [13] and refined in [17] (see also [18]), the investigation of its application for the non-

symmetric solutions YJ 6= YI have not been made in the weak coupling region. For the

β-deformed ABJM theory, first few attempts have been made for some simple states.

The plan of the paper is the following. In section 2, we briefly discuss the basic

properties of γ-deformed ABJM theory, and the twist matrix is derived. In section 3, we

present the asymptotic Bethe ansatz for γ-deformed ABJM theory. In section 4, the twisted

Y-system is proposed. Finally, in section 5 and 6 some applications are investigated.

2 The γ-deformation of ABJM theory

The three-parameter deformation of ABJM theory can be performed by replacing all the or-

dinary products fg of two fields f and g in the Lagrangian by the following non-commuting

star product,

f ∗ g = eiπQf×Qgfg = eiπQ
i
fCijQ

j
gfg. (2.1)

We parameterize the anti-symmetric phase matrix C by three deformation parameters

γ1, γ2, γ3 as

C =

 0 −γ3 +γ2

+γ3 0 −γ1

−γ2 +γ1 0

 . (2.2)

The U(1)3 charges of the fundamental fields are given in the table 1. The gravity dual

of γ-deformed ABJM theory is the type IIA string theory on γ-deformed background

AdS4 × CP3
γ , which is equivalent to the same theory on undeformed background but with

twisted boundary conditions2

φi(2π)− φi(0) = 2π(mi − εijkγjJk), m1,m2,m3 +
m1 +m2

2
∈ Z. (2.3)

2Such relation was first obtained for type IIB string theory on AdS5 × S5
γ in [44].
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Here the φi’s are three angles on CP3 and Ji are the corresponding angular momentum.

We parameterize the CP3 by embedding it inside C4 as

Y 1 = cos ξ cos
θ1

2
ei(+φ1+φ3)/2,

Y 2 = cos ξ sin
θ1

2
ei(−φ1+φ3)/2,

Y 3 = sin ξ cos
θ2

2
ei(+φ2−φ3)/2,

Y 4 = sin ξ sin
θ2

2
ei(−φ2−φ3)/2. (2.4)

This explains the charges in table 1.

We must point out that the choice of the three linearly independent U(1) Cartan

generators of SU(4)R has some degrees of freedom. Our choice of these three charges are

the same as the one in [41], since the three TsT transformations used there is exactly based

on φ1, φ2, φ3 directions. Our choice is not the same as the one in [56]. However the three

generators in the later paper are simply linear combinations of the generators we used here,

and the two sets of deformation parameters are also related by linear transformation. So

these two choices are in fact equivalent. The three U(1) charges we choose are related

to the Dynkin labels [p1, q, p2] of SU(4) by J1 ≡ Jφ1 = Q1
f = p1

2 , J2 ≡ Jφ2 = Q2
f = p2

2 ,

J3 ≡ Jφ3 = Q3
f = q + p1+p2

2 .

2.1 The su(4) sector

The Bethe ansatz equations of γ-deformed theories are the same as the ones for the un-

deformed theory except for adding some phases. In order to obtain the appropriate twist

phases in the su(4) sector, using the same notation as in [26], we introduce the B matrix.

When permuting two scalars Y i and Y j , we pick up a phase

Y i ∗ Y j = e2πiBijY j ∗ Y i. (2.5)

In the basis (Y 1, Y 2, Y 3, Y 4), using the charges of the fundamental fields listed in table 1,

the B matrix turns out to be

B =
1

4


0 2γ2 γ1 − γ2 − γ3 −γ1 − γ2 + γ3

−2γ2 0 γ1 + γ2 + γ3 −γ1 + γ2 − γ3

−γ1 + γ2 + γ3 −γ1 − γ2 − γ3 0 2γ1

γ1 + γ2 − γ3 γ1 − γ2 + γ3 −2γ1 0

 . (2.6)

su(4) is a rank 3 algebra, and there are three types of excitations in this sector. We denote

the three creation operators by B3,B4,B4̄. Their actions are

B3 : Y 2 → Y 3,B4 : Y 1 → Y 2,B4̄ : Y 3 → Y 4. (2.7)
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Since our vacuum is chosen as Tr(Y 1Y †4 )L, we now should consider the twist matrix in the

basis (Y 1Y †4 |Y
†

2 Y
3, Y †1 Y

2, Y †3 Y
4). The twist matrix turns out to be

A =


0 γ1 − γ2 γ2 − 1

2γ3 −γ1 + 1
2γ3

−γ1 + γ2 0 −γ2 − 1
2γ3 γ1 + 1

2γ3

−γ2 + 1
2γ3 γ2 + 1

2γ3 0 −γ3

γ1 − 1
2γ3 −γ1 − 1

2γ3 γ3 0

 . (2.8)

The twist phases appearing in Bethe equations are simply given by 2π(AK)i, where

K = (L|K3,K4,K4̄). This result is consistent with appendix A, where direct computa-

tions through a deformed R-matrix were performed. For γ1 = γ2 = 0, γ3 = −β, this comes

back to the result in [40] for β-deformed case.3

2.2 The full OSp(6|4) sector

2.2.1 The distinguished basis

From the above example, we know the crucial point is to find out the action of the creation

operators. The full OSp(6|4) sector contains five types of excitations u1, . . . , u4̄, and there

are five corresponding creation operators B1, . . . ,B4̄. In the distinguished grading, the

actions of these creation operators on the fundamental fields can be found as

B1 : ψI+ → ψI−, B2 : Y †1 → ψ†2+, B3 : Y 2 → Y 3, B4 : Y 1 → Y 2, B4̄ : Y 3 → Y 4. (2.9)

Then we find the twist matrix in the basis (Y 1Y †4 |1, Y 1ψ†2+, Y †2 Y
3, Y †1 Y

2, Y †3 Y
4) as

A′ =
1

2



0 0 γ2 − γ1 2γ1 − 2γ2 2γ2 − γ3 γ3 − 2γ1

0 0 0 0 0 0

γ1 − γ2 0 0 γ1 − γ2 2γ2 −2γ1

2γ2 − 2γ1 0 γ2 − γ1 0 −2γ2 − γ3 2γ1 + γ3

γ3 − 2γ2 0 −2γ2 2γ2 + γ3 0 −2γ3

2γ1 − γ3 0 2γ1 −2γ1 − γ3 2γ3 0


. (2.10)

Actually if we use a different parametrization of the C matrix

C =

 0 δ1 + 2δ2 + δ3 −δ1

−δ1 − 2δ2 − δ3 0 δ3

δ1 −δ3 0

 , (2.11)

we can obtain the A′ matrix more directly. Introducing the charges

q1 = (0|0, 1,−2, 1, 1) ,

q2 = (1|0, 0, 1,−2, 0) ,

q3 = (1|0, 0, 1, 0,−2) , (2.12)

the twist matrix can be obtained directly as

A′ =
1

2
δ1(qT1 q2 − qT2 q1) +

1

2
δ2(qT2 q3 − qT3 q2) +

1

2
δ3(qT3 q1 − qT1 q3). (2.13)

3We denote the real deformation parameter in β-deformed theory as β. Notice in some previous work

including [40], it was denoted as γ to stress that it is real.
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2.2.2 The η = −1 grading

In the following sections, we mainly work in the η = −1 grading. Since it is the grading

that makes easier to write the Bethe equations for the sl(2) sector, it can be called sl(2)-

favored grading, or sl(2) grading for shortness sake, throughout the rest of the paper. In

appendix B we give the result on the the η = +1 grading (also called su(2)-favored or su(2)

grading for shortness sake). In the sl(2) grading, the actions of the creation operators read

B1 : Y 3 → ψ4−, Y 4 → ψ3−, Y †1 → ψ†2−, Y †2 → ψ†1−,

B2 : Y 2 → Y 3, ψ3± → ψ2±,

B3 : ψ†1+ → Y †3 , ψ4+ → Y 2, ψ†3+ → Y †1 , ψ2+ → Y 4,

B4 : Y 1 → ψ4+, Y 4 → ψ1+, Y †2 → ψ†3+, Y †3 → ψ†2+,

B4̄ : Y 2 → ψ3+, Y 3 → ψ2+, Y †1 → ψ†4+, Y †4 → ψ†1+. (2.14)

The twist matrix is

A =
1

2



0 γ2 − γ1 2(γ1 − γ2) γ2 − γ1 γ1 + γ2 − γ3 −γ1 − γ2 + γ3

γ1 − γ2 0 γ1 − γ2 γ2 − γ1 γ1 + γ2 −γ1 − γ2

2(γ2 − γ1) γ2 − γ1 0 γ1 − γ2 −γ1 − γ2 − γ3 γ1 + γ2 + γ3

γ1 − γ2 γ1 − γ2 γ2 − γ1 0 γ3 −γ3

−γ1 − γ2 + γ3 −γ1 − γ2 γ1 + γ2 + γ3 −γ3 0 0

γ1 + γ2 − γ3 γ1 + γ2 −γ1 − γ2 − γ3 γ3 0 0


.

(2.15)

In this case the three charges are found to be

q1 = (0|1,−2, 1, 0, 0),

q2 = (1|0, 1,−1,−1, 1),

q3 = (1|0, 1,−1, 1,−1), (2.16)

and the twist matrix expressed in terms of δ’s is

A =
1

2



0 δ3−δ1 2δ1−2δ3 δ3−δ1 2δ2 −2δ2

δ1−δ3 0 δ1−δ3 δ3−δ1 −δ1−δ3 δ1+δ3

2δ3−2δ1 δ3−δ1 0 δ1−δ3 2δ1+2δ2+2δ3 −2δ1−2δ2−2δ3

δ1−δ3 δ1−δ3 δ3−δ1 0 −δ1−2δ2−δ3 δ1+2δ2+δ3

−2δ2 δ1+δ3 −2δ1−2δ2−2δ3 δ1+2δ2+δ3 0 0

2δ2 −δ1−δ3 2δ1+2δ2+2δ3 −δ1−2δ2−δ3 0 0


.

(2.17)

2.3 Duality properties

In this section we investigate the duality properties of the twist charges appearing in

the Bethe ansatz equations, which were derived in detail in [42]. In that paper a series

of relations between twist charges was obtained for orbifold ABJM theories due to the

dynamical and fermionic duality. For γ-deformation of ABJM theory, the case is similar,
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at least at the level of the Bethe ansatz equations. It turns out that all the relations are

nicely satisfied.

Let’s consider them carefully. The first important relation in γ-deformed ABJM theory

takes the form

(AK)3 = (AK)1 − (AK)0 (2.18)

for the sl(2) grading, and

(ÃK̃)3 = (ÃK̃)1 + (ÃK̃)0 (2.19)

for the su(2) grading. Here we used a tilde to denote the variables in the su(2) grading.

Here and in the following K = (L|K1,K2,K3,K4,K4̄); K̃ and K ′ are defined in analogous

way for the su(2) and distinguished gradings, respectively. See appendix B for its explicit

expression. Relations (2.18), (2.19) are due to the dynamic duality property, which is

essential for all loop Bethe ansatz equations. They are satisfied in the two gradings sepa-

rately. They are actually relations linking elements of the twist matrix since the excitation

numbers in both sides of these equations are the same.

The remaining relations are

(ÃK̃)4 + (ÃK̃)3 = (AK)4, (ÃK̃)4̄ + (ÃK̃)3 = (AK)4̄. (2.20)

(ÃK̃)0 − 2(ÃK̃)3 = (ÃK̃)2 − (AK)2. (2.21)

(AK)0 − 2(ÃK̃)3 = (ÃK̃)2 − (AK)2. (2.22)

(ÃK̃)1 + (AK)1 = 0. (2.23)

(ÃK̃)3 + (AK)3 = 0. (2.24)

They are essential for the equivalence of the two different gradings and are all satisfied

if we take the change of both twist matrix and excitation numbers into account when we

switch from one grading to the other. Recall that the excitation numbers are related as4

K̃1 = K2 −K1,

K̃3 = K2 +K4 +K4̄ −K3,

K̃i = Ki, i = 2, 4, 4̄. (2.25)

The distinguished grading can not be used for all loop ABAs, so we will not discuss

dynamical duality in this grading. However this grading can be used at two loop order.

This grading is related to the su(2) grading by fermionic duality. The relations among

excitation numbers are

K̃1 = K ′3 −K ′2,
K̃2 = K ′1 +K ′3 −K ′2,
K̃3 = K ′3,

K̃4 = K ′4,

K̃4̄ = K ′4̄. (2.26)

4Notice that in the undeformed ABJM theory, generically the non-trivial relations among the excitation

numbers are K̃1 = K2 − K1 − 1, K̃3 = K2 + K4 + K4̄ − K3 − 1. As we stated in the main text, for

generically deformed theory with non-trivial phases for the 1st and the 3rd Bethe equations, the two −1’s

will disappear. This can be seen by comparing the two proofs for fermionic duality in [12] and [42].
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Here we used a prime to denote the variables in the distinguished grading. From the

fermionic duality, we obtain the following relations

(ÃK̃)1 = −(A′K′)1 − (A′K′)2,

(ÃK̃)2 = (A′K′)1,

(ÃK̃)3 = (A′K′)2 + (A′K′)3,

(ÃK̃)4 = (A′K′)4,

(ÃK̃)4̄ = (A′K′)4̄. (2.27)

It is not hard to confirm that all these relations are valid.

3 Asymptotic Bethe ansatz

Having obtained the twist matrix, it is straightforward to write down the asymptotic Bethe

ansatz equation. We will mainly work in the sl(2) favored grading. Let’s first introduce

some notation useful in the following. First we define the Zhukovski variable x through

x+
1

x
=

u

h(λ)
, (3.1)

where h(λ) is the so-called interpolating function [58]–[60] which plays the role of effective

coupling in the Bethe ansatz and TBA. Unlike theN = 4 SYM, it has nontrivial dependence

on λ. It has the following behavior at weak coupling [61]–[63],

h(λ) = λ− π2

3
λ3 +O(λ5), (3.2)

and strong coupling [64]–[67],

h(λ) =

√
λ

2
− log 2

2π
− 1

48
√

2λ
+O

((
1√
λ

)2
)
. (3.3)

Recently its exact form has been conjectured in [68] by comparing the quantum spectral

curve method [19] and supersymmetric localization. The “physical” and “mirror” branch

of the function x(u) are defined as

xph(u) =
1

2

(
u

h
+

√
u

h
− 2

√
u

h
+ 2

)
, xmir(u) =

1

2

(
u

h
+ i

√
4− u2

h2

)
. (3.4)

In this section we will use x(u) to mean xph(u). The energy and momentum for a single

Bethe root u4 and u4̄ are given by

ε =
1

2
+ h(λ)

(
i

x+
− i

x−

)
, p =

1

i
log

x+

x−
, (3.5)

and the total momentum corresponding to the first conserved charge Q1 is

Q1 =

K4∑
j=1

p(u4,j) +

K4̄∑
j=1

p(u4̄,j). (3.6)
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Using the notation of [38], the Bethe equations have the form

e−2πi(AK)1 = eiQ1
Q−2 B

(+)

Q+
2 B

(−)

∣∣∣∣
u1,k

,

e−2πi(AK)2 = −Q
++
2 Q−1 Q

−
3

Q−−2 Q+
1 Q

+
3

∣∣∣∣
u2,k

,

e−2πi(AK)3 =
Q−2 R

(+)

Q+
2 R

(−)

∣∣∣∣
u3,k

,

e−2πi(AK)4

(
x+

4,k

x−4,k

)L
=
B+

1 R
+
3 B

(+)+
4 R

(−)−
4̄

B−1 R
−
3 B

(−)−
4 R

(+)+

4̄

K4∏
j=1

x+
4,j

x−4,j

S

∣∣∣∣
u4,k

,

e−2πi(AK)4̄

(
x+

4̄,k

x−
4̄,k

)L
=
B+

1 R
+
3 B

(+)+

4̄
R

(−)−
4

B−1 R
−
3 B

(−)−
4̄

R
(+)+
4

K4̄∏
j=1

x+
4̄,j

x−
4̄,j

S

∣∣∣∣
u4̄,k

, (3.7)

where various functions above are defined as:5

R
(±)
l =

Kl∏
j=1

(
x(u)− x∓l,j

)
, Rl =

Kl∏
j=1

(x(u)− xl,j) ,

B
(±)
l =

Kl∏
j=1

(
1

x(u)
− x∓l,j

)
, Bl =

Kl∏
j=1

(
1

x(u)
− xl,j

)
,

Ql =

Kl∏
j=1

(u− ul,j) , Sl =

Kl∏
j=1

σBES (x(u), xl,j) , (3.8)

and the functions with no index mean a product of type-4 and type-4̄ ones: R = R4R4̄,

B = B4B4̄, S = S4S4̄. We have used the general notation

f [±a] ≡ f(u± ia/2), f± ≡ f(u± i/2), f±± ≡ f(u± i). (3.9)

The Bethe roots must additionally be constrained by the momentum condition

K4∏
j=1

x+
4,j

x−4,j

K4̄∏
j=1

x+
4̄,j

x−
4̄,j

= e−2πi(AK)0 ⇔ Q1 = 2πm− 2π(AK)0, (3.10)

where m is an integer. The anomalous dimension of the single-trace operator is given by

E = h(λ)

 K4∑
j=1

(
i

x+
4,j

− i

x−4,j

)
+

K4̄∑
j=1

(
i

x+
4̄,j

− i

x−
4̄,j

) . (3.11)

5Here we use the same definitions as [38], which are slightly different from [17]. This explains the right

hand side of our ABA eqs. (3.7)are slightly different from [17].
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Figure 1. The AdS4/CFT3 Y-system. As shown in the figure, we have considered the most generic

case when the two black node Y-functions are not equal to each other. We denote them as YIa and

YJa
in the main body.

4 The γ-deformed AdS4/CFT3 Y-system

In this section, we briefly review some basic facts about the AdS4/CFT3 Y-system, for a

thorough treatment see [17, 18]. The exact spectral information of the AdS/CFT corre-

spondence could be computed through Y-functions which are constrained by the Y-system

equations. Because we twist our theory, the TBA equations are slightly changed by adding

some appropriate chemical potentials. However the Y-system is the same as the one for

the untwisted theory. The equations of a generic Y-system basically have the form

Y +
MY

−
M =

∏
H(1 + YH)∏
V (1 + 1/YV )

, (4.1)

where Y ±M = YM (u± i/2) and the index H(V ) represent the nodes nearest to the M node

in the horizontal(vertical) direction in the figure 1. The explicit expressions of AdS4/CFT3

Y-system equations have some unusual form, however they are not relevant here. Once the

Y-functions are found, the exact energy of a state can be expressed by

E =

K4∑
j=1

εph
1 (u4,j) +

K4̄∑
j=1

εph
1 (u4̄,j) + δE , δE =

∞∑
a=1

∫ ∞
−∞

du

2πi

∂εmir
a (u)

∂u
log(1+Y mir

Ia )(1+Y mir
Ja ),

(4.2)

where the rapidities u4,j and u4̄,j are fixed by the exact Bethe ansatz equations

Y ph
J1

(u4,j) = −1 , Y ph
I1

(u4̄,j) = −1 . (4.3)

εn is the asymptotic energy of a physical n-magnon bound state when evaluated in the

physical kinematics and defines the asymptotic momenta of mirror bound states when

evaluated in the mirror kinematics:

εn(u) =
n

2
+ h(λ)

(
i

x[+n]
− i

x[−n]

)
. (4.4)
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The index ‘ph’ and ‘mir’ labeled on functions εa(u), YIa(u) and YJa(u) in eq. (4.2) and

eq. (4.3) are evaluated at physical and mirror kinematics defined in eq. (3.4) respectively.

Eq. (4.4) is valid for both physical and mirror kinematics.

4.1 The twisted generating functional

Our asymptotic Bethe ansatz equations can be derived from the twisted AdS4/CFT3

Y-system. Inspired by [38], we propose a twisted generating functional W which generates

an infinite set of transfer matrix eigenvalues of symmetric and anti-symmetric irreducible

representations T1,s, Ta,1 as

W =

∞∑
s=0

T
[1−s]
1,s Ds , W−1 =

∞∑
a=1

(−1)aT
[1−a]
a,1 Da , (4.5)

where D = e−i∂u . The generating functional we propose in the sl(2) favored grading is

W =

(
1− τ1

B(+)+Q−1 R
(+)−

B(−)+Q+
1 R

(−)−D

)
1(

1− τ2
Q−1 Q

++
2 R(+)−

Q+
1 Q2R(−)− D

) 1(
1− 1

τ2

Q−−2 Q+
3 R

(+)−

Q2Q
−
3 R

(−)− D
)

×
(

1− 1

τ1

Q+
3

Q−3
D

)
. (4.6)

Then we find

T1,1 =
R(+)−

R(−)−

[
τ2
Q−1 Q

++
2

Q+
1 Q2

− τ1
B(+)+Q−1
B(−)+Q+

1

+
1

τ2

Q−−2 Q+
3

Q2Q
−
3

− 1

τ1

Q+
3 R

(−)−

Q−3 R
(+)−

]
. (4.7)

The analyticity of T1,1 at zeros of the denominators will give the asymptotic Bethe equations

for u1, u2, u3

τ1

τ2

B(+)Q−2
B(−)Q+

2

∣∣∣∣
u1,k

= 1 , τ2
2

Q++
2 Q−1 Q

−
3

Q−−2 Q+
1 Q

+
3

∣∣∣∣
u2,k

= −1 ,
τ1

τ2

Q−2 R
(+)

Q+
2 R

(−)

∣∣∣∣
u3,k

= 1 . (4.8)

We see that if we identify the twists τ1, τ2 as

τ1 = ei
π
2

((δ1−δ3)(K1−2K2+K3)−δ2(2K4−2K4̄)),

τ2 = ei
π
2

((δ3−δ1)(2L+K1−K3)+(δ1+δ2+δ3)(2K4−2K4̄)),
(4.9)

we find exactly our Bethe equations for u1, u2, u3 in the sl(2) grading. Notice that the

consistence of the first and the third equations in (4.8) is guaranteed by eq. (2.18), which

also plays an important role for the validity of the dynamical duality transformation.

4.2 Consistency checks

In this section we perform some consistency checks along the lines of [32, 33]. We calculate

the twists appearing in the total momentum and the twisted generating functional through

the twisted boundary condition of fields eq. (2.3). In order to do this, we had better to
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rewrite the twist matrix A in terms of the three conserved angular momentum instead of

the excitation numbers. In the sl(2) grading, we have

J1 =
p1

2
=

1

2
(L−K4 +K4̄ +K2 −K3),

J2 =
p2

2
=

1

2
(L+K4 −K4̄ +K2 −K3),

J3 = q +
p1 + p2

2
= L+K1 −K2. (4.10)

Notice that for the sl(2) grading, the relation between [p1, q, p2] and the Dynkin labels

rj , j = 1, · · · , 4, 4̄ of OSp(6|4) is(see appendix B in [69] for more information)

p1 = r3 + r4,

q = r2,

p2 = r3 + r4̄. (4.11)

The total momentum of the spin chain reads

P = 2πm− 2π(AK)0 = 2πm− π(γ1(2J2 − J3) + γ2(J3 − 2J1) + γ3(J1 − J2)). (4.12)

Since we choose the vacuum as Tr(Y 1Y †4 )L, the twisted boundary condition for the com-

bined fields Y 1Y †4 gives the total momentum

Y 1Y †4 (2π) = Y 1Y †4 (0)ei(δφ3+
δφ1+δφ2

2
) = eiP (4.13)

as we expected. Here and in the following, δφi = −2πεijkγjJk. Let us make some comments

on these phases τ1, τ2, whose origin has a very nice explanation. In literature [32, 33], the

transfer matrix seems to have only one non-trivial phase for γ-deformed AdS5/CFT4. But

we have two here. What is the problem? In fact, if we notice that τ1 can be expressed

using x±4,j and x±
4̄,j

τ1 = e−πi(AK)0 =

K4∏
j=1

√√√√x+
4,j

x−4,j

K4̄∏
j=1

√√√√x+
4̄,j

x−
4̄,j

, (4.14)

there is only one apparent phase τ2 left to be explained. The global symmetry OSp(6|4)

of AdS4/CFT3 breaks down to centrally extended SU(2|2) after we choose the vacuum.

We can insert some integrable twist G ∈ SU(2)r × SU(2)G ⊂ SU(2|2) into the transfer

matrix [33]. Consider a group element of the form

G = diag(eiϕ1 , e−iϕ1 , eiϕ2 , e−iϕ2) ∈ SU(2)r × SU(2)G (4.15)

For the γ-deformation, we set ϕ1 = 0 since there are no deformations in the AdS4 part

of the string theory background. Then only eiϕ2 is relevant and this is consistent with

that diag(eiϕ2 , e−iϕ2) ∈ SU(2)G is the unbroken part of SU(4)R. The SU(2)G transforms

Y 2 → Y 3 or Y †3 → Y †2 . This suggests us to consider the twisted boundary condition of the

combined fields

Y †2 Y
3(2π) = Y †2 Y

3(0)ei(
δφ1+δφ2

2
−δφ3) ≡ Y †2 Y

3(0)eiψ (4.16)
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After rewriting τ2 in terms of the three conserved angular momentum J1, J2, J3 as

τ2 = ei(
π
2

(−γ1(2J2+J3)+γ2(2J1+J3)+γ3(J1−J2))), (4.17)

we find the relation

τ2 = e−iϕ2 = e−i
ψ
2 , (4.18)

which confirms our proposal.

4.3 The asymptotic solution

The Bethe equations for momentum-carrying u4, u4̄ can be found from the exact Bethe

equations (4.3). The asymptotic large L solutions of the black nodes are given by [17]

YJa '

(
x[−a]

x[+a]

)L
Ta,1

a−1
2∏

n=−a−1
2

Φ
θEna
4 (u+ in)Φ

θOna
4̄

(u+ in) , (4.19)

YIa '

(
x[−a]

x[+a]

)L
Ta,1

a−1
2∏

n=−a−1
2

Φ
θOna
4 (u+ in)Φ

θEna
4̄

(u+ in) , (4.20)

where θEna is 0 for even and 1 for odd factors in the product,

θEna ≡

{
1, n+ a−1

2 is even

0, n+ a−1
2 is odd

(4.21)

and θOna ≡ 1 − θEna. To match the ABA equations for u4 and u4̄, we have to deform the

asymptotic solutions of the two black node Y-functions by the phases τ0 and τ0̄, respectively.

Φ4(u)=
B

(+)+
4 R

(−)−
4̄

B+
1 B
−
3

B
(−)−
4 R

(+)+

4̄
B−1 B

+
3

K4∏
j=1

x+
4,j

x−4,j

Sτ0 , Φ4̄(u)=
B

(+)+

4̄
R

(−)−
4 B+

1 B
−
3

B
(−)−
4̄

R
(+)+
4 B−1 B

+
3

K4̄∏
j=1

x+
4̄,j

x−
4̄,j

Sτ0̄ ,

(4.22)

where

τ0 = ei(
3π
2
δ1(K1−2K2+K3)−πδ2(2L+2K2−2K3+K4−K4̄)+π

2
δ3(K1−2K2+K3)),

τ0̄ = ei(−
π
2
δ1(K1−2K2+K3)+πδ2(2L+2K2−2K3−K4+K4̄)− 3π

2
δ3(K1−2K2+K3)).

(4.23)

5 Applications to sl(2)-like sector

In this section we will apply our proposals and results discussed in the previous sections

to the sl(2)-like sector. The Y-functions simplify a lot in this sector, where we only excite

symmetrically the same number of moment carrying roots u4 and u4̄: u4,j = u4̄,j . This

leads to YJa = YIa ≡ Ya,0, so τ0 = τ0̄ and then δ2 = 0. We then have (AK)0 = 0, τ1 = 1

and generically δ1 6= δ3. From this, we know that the two loop Bethe ansatz equations

for the twist operators is the same as the ones in the undeformed theory. The solutions of
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these equations have been studied in [39, 71, 72]. The deformation affects the results only

through τ2 which appears in Ta,1. The exact energy can be expressed as

E = 2

K4∑
j=1

εph
1 (u4,j) + δE, δE = 2

∞∑
a=1

∫ ∞
−∞

du

2πi

∂εmir
a

∂u
log(1 + Y mir

a,0 ) . (5.1)

In this case, the only non-trivial Baxter polynomial is Q4 = Q4̄ =
∏K4
j=1(u − u4,j). Then

the twisted generating functional W−1 simplifies as

∞∑
a=0

(−1)aT
[1−a]
a,1 Da = (5.2)

(1−D)−1

1−τ2

(
R

(+)−
4

R
(−)−
4

)2

D

1− 1

τ2

(
R

(+)−
4

R
(−)−
4

)2

D

1−

(
B

(+)+
4 R

(+)−
4

B
(−)+
4 R

(−)−
4

)2

D

−1

.

The asymptotics of the Ya,0 functions are then given by

Ya,0(u) '

(
x[−a]

x[+a]

)L
Φa(u)Ta,1(u), (5.3)

where the scalar factor Φa is

Φa(u) =

a−1
2∏

k=−a−1
2

Φ(u+ ik) , Φ(u) =
B

(+)+
4 R

(−)−
4

B
(−)−
4 R

(+)+
4

S2
4

K4∏
j=1

x+
4,j

x−4,j

 . (5.4)

Finally, the leading wrapping corrections at weak coupling is

δELO ' −
∞∑
a=1

∫
du

π
Y mir
a,0 (u) . (5.5)

To compute the leading wrapping effect, in eq. (5.5) all we need is to find the large-volume

asymptotics of Ya,0 functions evaluated in mirror dynamics. Here we give some useful

formulas:

Dispersion. The universal factor (x[−a]/x[+a])L, which is also called kinematic factor in

literature, evaluated in the mirror dynamics is[
4h2(λ)

a2 + 4u2

]L
. (5.6)

Twisted Ta,s. After some computations, one finds the following compact formula for Ta,1,6

Tmir
a,1 ' 4 sin2 π(δ1 − δ3)L

2
(−1)a

a−1∑
p=−a+1

∆p=2

(
Q

[p]
4

Q
[1−a]
4

)2

. (5.7)

6This result and the one just below are valid when the Bethe roots are symmetric with respect to the

origin. This condition is valid for all cases considered in this section.
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Fused scalar factor. To compute the fused scalar factor, one should be careful on the

dressing phase, which is evaluated in the mirror-physical kinematics and has different weak

coupling expansion from the physical-physical kinematics [70]. Taking this into account,

we find7

Φmir
a '

[
Q+

4 (0)
]2 Q

[1−a]
4

Q
[−1−a]
4 Q

[a−1]
4 Q

[a+1]
4

. (5.8)

The asymptotic Bethe equations for states in the sl(2) sector (with twist L and exci-

tations N) read (
x+
k

x−k

)L
= −

N∏
j 6=k

uk − uj + i

uk − uj − i

(
x−k − x

+
j

x+
k − x

−
j

)2

σ2
BES, (5.9)

where we denote u4,j(= u4̄,j) as uj . Anomalous dimensions of twist operators will be

expanded in power of h(λ) as

∆L,N = L+N +
∑
l≥1

γ
(l)
L,Nh

l(λ). (5.10)

5.1 Two-loop wrapping corrections to twist-1 operators

The twist-1 operators in ABJM theory have also been discussed in [39, 71, 72]. In the

undeformed ABJM theory, wrapping corrections appear at four-loop. But in our case, the

wrapping effect appears at two-loop. The leading order Bethe ansatz equations are

uk + i
2

uk − i
2

= −
N∏
j 6=k

uk − uj − i
uk − uj + i

, k, j = 1, . . . , N (5.11)

It can be written in the very efficient Baxter function formalism(
u+

i

2

)
Q(u+ i)−

(
u− i

2

)
Q(u− i) = i(2N + 1)Q(u), (5.12)

where Q(u) is the Baxter polynomial

Q(u) = N
N∏
k=1

(u− uk). (5.13)

The solution of the Baxter equation (5.11) is [39, 71, 72]

Q(u) = 2F1

(
−N, iu+ 1

2

1
; 2

)
. (5.14)

Inserting it in the Y-system equations for wrapping effects, we obtain the simple result

δELO = (−1)N
4

2N + 1
h2(λ) sin2 π(δ1 − δ3)

2
. (5.15)

7We thank Fedor Levkovich-Maslyuk for having clarified this point to us.
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5.2 Four-loop wrapping corrections to twist-2 operators

After some manipulation, it turns out that the two loop Bethe equations for twist-2 oper-

ators is equivalent to the following leading order Baxter equation [39, 71, 72]

(
u+

i

2

)2

Q(u+ i)−
(
u− i

2

)2

Q(u− i) = i(2N + 2)uQ(u), (5.16)

and its solution is known for even N [39, 72]

Q(u) = 3F2

(
−N

2 , iu+ 1
2 ,−iu+ 1

2

1, 1
; 1

)
. (5.17)

The leading wrapping correction appears at four loops.

δELO = 4 sin2(π(δ1 − δ3))γ
(4)
2,Nh

4(λ). (5.18)

The Y-system provides the following result for the first 10 values

γ
(4)
2,2 = −1

3
+

7π2

45
,

γ
(4)
2,4 = −11

36
+

11π2

105
,

γ
(4)
2,6 = − 29

108
+

3607π2

45045
,

γ
(4)
2,8 = −1543

6480
+

30001π2

459459
,

γ
(4)
2,10 = − 647

3024
+

161π2

2907
,

γ
(4)
2,12 = − 24509

126000
+

3843467π2

79676025
,

γ
(4)
2,14 = − 4252817

23814000
+

22835561π2

533216475
,

γ
(4)
2,16 = − 8247539

49896000
+

251177003π2

6511704225
,

γ
(4)
2,18 = − 225956701

1466942400
+

5079358441π2

144559833795
,

γ
(4)
2,20 = − 8258864171

57210753600
+

44175747151π2

1367758427445
. (5.19)

However a closed formula has not been found.

As it is evident in eq. (5.18), for δ1 = δ3 but not necessarily zero (and δ2 = 0 as we are

in the sl(2)-like sector), the four-loop wrapping corrections due to deformation disappear

for twist-2 operators. A similar discussion is also suitable for twist-1 operators.
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6 β-deformation

β-deformation of ABJM theory corresponds to choose the three parameters as (0, δ2, 0),

and 2δ2 = −γ3 ≡ β, γ1 = γ2 = 0. As discussed in [41], in this case the theory preserves

N = 2 supersymmetry.

In this case, due to the fact that the phases in the scalar factor do not vanish, the two

black node Y-functions are different. The leading wrapping corrections are expressed by

δELO ' −
∞∑
a=1

∫ ∞
−∞

du

2π
(Y mir

Ja + Y mir
Ia ) . (6.1)

6.1 One-particle state

In this section, we will discuss the leading wrapping of a single magnon state in β-deformed

theory. We consider the state with only one type-4 excitation K4 = 1. The unique mo-

mentum carrying root u4 must satisfy the following Bethe equation and cyclicity condition(
x+

4

x−4

)L
= e−πiLβ ,

x+
4

x−4
= e−πiβ . (6.2)

A solution is easily obtained

u4 = −1

2
cot

(
πβ

2

)
− 2 sin(πβ)h2(λ) + · · · . (6.3)

The twisted generating functional reads

∞∑
a=0

(−1)aT
[1−a]
a,1 Da = (6.4)

(1−eiπβ/2D)−1

(
1−e−iπβ/2R

(+)−
4

R
(−)−
4

D

)(
1−eiπβ/2R

(+)−
4

R
(−)−
4

D

)(
1−e−iπβ/2B

(+)+
4 R

(+)−
4

B
(−)+
4 R

(−)−
4

D

)−1

.

After some manipulations, we find the formula

Tmir
a,1 ' (−1)a

16h2eiπ(a+1)β/2a(a2 + 4u2 − csc2(πβ/2)) sin3(πβ/2)

(a2 + 4u2)(i− ia+ cot(πβ/2) + 2u)
. (6.5)

In this case τ0 = e−πi(2L+1)β/2, τ0̄ = eπi(2L−1)β/2, and working carefully with these phases

we find

Φmir
Ja '


e−iπ(a+1)β/2(i−ia+cot(πβ/2)+2u)

sin(πβ/2)(−ia−i+cot(πβ/2)+2u)(ia+i+cot(πβ/2)+2u) a is even,

e−iπβ(a+2L+1)/2(i−ia+cot(πβ/2)+2u)
sin(πβ/2)(−ia−i+cot(πβ/2)+2u)(ia−i+cot(πβ/2)+2u) a is odd.

(6.6)

Φmir
Ia '


e−iπ(a+1)β/2

sin(πβ/2)(ia−i+cot(πβ/2)+2u) a is even,

e−iπβ(a−2L+1)/2

sin(πβ/2)(ia+i+cot(πβ/2)+2u) a is odd.

(6.7)
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Despite the annoying phases appearing in the T-functions and the fused scalar factors, the

sums of the gauge invariant Y-functions are real when the two black nodes are combined.

Their structures are totally different for a even or odd. When a is an even number

Y mir
Ja

+ Y mir
Ia
' (6.8)

h2L+222L+6a(a2+4u2−csc2(πβ/2)) sin4(πβ/2)

(a2+4u2)L+1

2+a2+4u2−(a2+4u2) cos(πβ)+4u sin(πβ)

yay−a
,

and for odd a

Y mir
Ja

+ Y mir
Ia
' −h

2L+222L+7a(a2 + 4u2 − csc2(πβ/2)) sin4(πβ/2)

(a2 + 4u2)L+1
× (6.9)

((a2+4u2) sin2(πβ/2)+cos(πβ)+2u sin(πβ)) cos(πLβ)+(2−2u cos(πβ)+sin(πβ)) sin(πLβ)

yay−a
,

where

ya = 2 + a2 + 2a+ 4u2 − (a2 + 2a+ 4u2) cos(πβ) + 4u sin(πβ). (6.10)

If we take β = 1, these expressions simplify considerably. The summation cannot be done

directly, because the even term and the odd term have different expressions. However, since

the series is absolutely convergent, we can add the even term and odd term separately.

Plugging eqs. (6.8), (6.9) and (6.10) into eq. (6.1) and summing the even and odd terms

together, we get the following leading wrapping corrections at h2L+2.

δEβ=1
L=1/h

4 = −8ζ2,

δEβ=1
L=2/h

6 = −16(2ζ2 − 3ζ4),

δEβ=1
L=3/h

8 = 136ζ4 − 155ζ6,

δEβ=1
L=4/h

10 = −4(56ζ4 + 75ζ6 − 140ζ8). (6.11)

In the computations above, we found all the odd powers of π are canceled out.

6.2 A simple case of two particle state

In this subsection, we compute the wrapping effect for the operator with L = K4 = K4̄ = 1

and other K’s being zero. At lowest order, the β-deformed Bethe equations read

u4 + i
2

u4 − i
2

= e−πiβ
u4 − u4̄ − i
u4 − u4̄ + i

,

u4̄ + i
2

u4̄ − i
2

= eπiβ
u4̄ − u4 − i
u4̄ − u4 + i

, (6.12)

and the momentum conservation equation is not deformed

u4 + i
2

u4 − i
2

u4̄ + i
2

u4̄ − i
2

= 1 . (6.13)

Their root is easily found to be u4 = ∆, u4̄ = −∆ with ∆ = 1
2 tan πβ

4 .8 In this case,

we have two kinds of Baxter polynomial. Q4(u) = u − ∆, Q4̄(u) = u + ∆ and define

8There is another root with ∆ = − 1
2

cot πβ
4

. This solution will not be considered here since it will go to

infinity when β → 0.
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Q = Q4Q4̄. Since τ1 = τ2 = 1, τ0 = e−πiβ , τ0̄ = eπiβ , the deformation does not appear in

the T -functions. It only affects the fused scalar factors.

Φmir
Ja '


Q+

4 (0)Q+
4̄

(0)Q
[1−a]
4

Q
[a+1]
4 Q

[−a−1]
4 Q

[a−1]

4̄

a is even,

[Q+
4̄

(0)]3Q
[1−a]
4

Q+
4 (0)Q

[a−1]
4 Q

[−a−1]
4 Q

[a+1]

4̄

a is odd.
(6.14)

Φmir
Ia '


Q+

4 (0)Q+
4̄

(0)Q
[1−a]

4̄

Q
[a+1]

4̄
Q

[−a−1]

4̄
Q

[a−1]
4

a is even,

[Q+
4 (0)]3Q

[1−a]

4̄

Q+
4̄

(0)Q
[a−1]

4̄
Q

[−a−1]

4̄
Q

[a+1]
4

a is odd.
(6.15)

The T -functions are the same as the ones in the undeformed theory

Tmir
a,1 ' i c h2(λ)

(−1)a+1

Q[1−a]

a∑
p=−a
∆p=2

Q[−1−p] −Q[1−p]

u− i
2p

∣∣∣∣∣
Q[−a−1],Q[a+1]→0

, (6.16)

where

c = i(logQ)′|u=i/2
u=−i/2 . (6.17)

For an even a

Y mir
Ja + Y mir

Ia '
256h4a

(
a2 − 4∆2 + 4u2 − 1

)
(a2 + 4u2)2

×

×

(
a4+8a2∆2+8a2u2−2a2+

(
4∆2+1

)2
+16u4−32∆2u2+8u2

)
ỹaỹ−a

, (6.18)

and for an odd a

Y mir
Ja + Y mir

Ia '
−256h4a(a2 − 4∆2 + 4u2 − 1)

(a2 + 4u2)2(1 + 4∆2)2

num

ỹaỹ−a
, (6.19)

where the numerator is

num = 16a4∆4 − 24a4∆2 + a4 + 128a2∆6 + 32a2∆4 − 8a2∆2

+ 128a2∆4u2 − 192a2∆2u2 + 8a2u2 − 2a2 + 256∆8 + 256∆6 + 96∆4 + 16∆2

+ 256∆4u4−384∆2u4+16u4−512∆6u2−128∆4u2+32∆2u2+8u2+1, (6.20)

and

ỹa = a4+4a3+8a2∆2+8a2u2+6a2+16a∆2+16au2+4a+16∆4+8∆2+16u4−32∆2u2+8u2+1.

(6.21)

Plugging eq. (6.18) and eq. (6.19) into the formula for the energy correction eq. (6.1),

integrating on u and summing the results, we find

δELO =
8h4(λ)(12− π2(1 + 4∆2))

3(1 + 4∆2)2
. (6.22)
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Taking the deformation parameter β → 0, which means ∆→ 0, we get that,

δELO = h4(λ)(32− 16ζ(2)). (6.23)

This result is the same as one for the operator with L = 2, K̃4 = K̃4̄ = 1, η = 1 in the

undeformed ABJM theory [13, 62] (this operator is in the irreducible representation 20 of

SU(4)). In fact, this operator and the operator we started with are linked by two steps.

First we add to the L = 2, K̃4 = K̃4̄ = 1 operator an u3 root at zero in the su(2) grading

and change L from L = 2 to L = 1 [71]. Then we perform the fermionic duality to describe

the operator with L = K4 = K4̄ = 1 in the sl(2) grading (notice here we are in the

undeformed theory, so K3 = K̃4 + K̃4̄ − K̃3 − 1 = 0).

7 Conclusions

In this paper we have assumed the integrability of planar γ-deformed ABJM theory at all

loop order based on the algebraic Bethe ansatz at two loop in the planar scalar sector, and

proposed the asymptotic Bethe ansatz equations via a similar treatment in γ-deformed

N = 4 SYM [26]. Duality properties of the twist charges have been investigated, which

are essential for the twisted Bethe equations. Utilising the Y-system techniques, we com-

pute the leading wrapping corrections for various operators. Some important results of

β-deformed theory are obtained, which should be checked through a direct Feynman di-

agram computation as in [73, 74] for β-deformed SYM. There are strong evidence that

planar ABJ theory [75] is integrable as well [76, 77], [61]–[63]. As suggested in [78], then

the results obtained in this paper on wrapping corrections are also valid for the same quan-

tities in γ-deformed ABJ theory once having replaced h(λ) by the function h(λ1, λ2) given

in [78]. It will be also interesting to find the S-matrix of the spin chain for γ-deformed

ABJM theory based on the studies in [79]–[81] and to study the integrability of IIA string

theory on AdS4 × CP 3
γ on the basis of [7]–[9], [82, 83].
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A Algebraic Bethe Ansatz

The proof of integrability of planar γ-deformed ABJM theory in the scalar sector at two

loop level is almost the same as the one for β-deformed theory in [40], the only difference

is that now we need to use the star product defined in eq. (2.1). So here we only list the

Hamiltonian from the Feynman diagram computations,

H̃ = λ2
2L∑
i=1

(
I− P̃i,i+2 +

1

2
Pi,i+2Ki,i+1 +

1

2
Pi,i+2Ki+1,i+2

)
, (A.1)

where(
P̃i,i+2

)IiIi+1Ii+2

JiJi+1Ji+2

≡ exp(−2πi(QY Ji ×QY Ji+1 +QY Ji+1 ×QY Ji+2 +QY Ji+2 ×QY Ji ))

× (Pi,i+2)
IiIi+1Ii+2

JiJi+1Ji+2
, (A.2)

and the R matrices,

R̃44(u)IJKL = f IJKL (uI + P)IJKL , (A.3)

R̃44̄(u)IJKL = (f IJKL)−1 (−(u+ 2)I + K)IJKL , (A.4)

R̃4̄4(u)IJKL = (f IJKL)−1 (−(u+ 2)I + K)IJKL , (A.5)

R̃4̄4̄(u)IJKL = f IJKL (uI + P)IJKL , (A.6)

and the definition of f IJKL is

f IJKL = exp(iπ(QY J ×QY I −QY K ×QY L)). (A.7)

The obtained Bethe ansatz equations are

exp
(

2πiQ̃×(QY 1−QY 2)
)(u4,k+ i

2

u4,k− i
2

)L
=

K4∏
j=1

j 6=k

u4,k − u4,j + i

u4,k − u4,j − i

K3∏
j=1

u4,k − u3,j − i
2

u4,k − u3,j + i
2

, (A.8)

exp
(

2πiQ̃×(QY 2−QY 3)
)

=

K4∏
j=1

u3,k−u4,j− i
2

u3,k−u4,j+
i
2

K4̄∏
j=1

u3,k−u4̄,j− i
2

u3,k−u4̄,j+
i
2

K3∏
j=1

j 6=k

u3,k−u3,j+i

u3,k−u4,j−i
, (A.9)

exp
(

2πiQ̃×(QY 3−QY 4)
)(u4̄,k+ i

2

u4̄,k− i
2

)L
=

K4̄∏
j=1

j 6=k

u4̄,k−u4̄,j+i

u4̄,k−u4̄,j−i

K3∏
j=1

u4̄,k−u3,j− i
2

u4̄,k−u3,j+
i
2

. (A.10)

Here we have defined

Q̃ ≡ (L−K4)QY 1 + (K4 −K3)QY 2 + (K3 −K4̄)QY 3 + (K4̄ − L)QY 4 . (A.11)

The zero momentum condition is

exp
(

2πiQ̃× (QY 4 −QY 1)
)

=

K4∏
j=1

u4,j + i
2

u4,j − i
2

K4̄∏
j=1

u4̄,j + i
2

u4̄,j − i
2

. (A.12)
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Fields Y 1 Y 2 Y 3 Y 4 ψ†1 ψ†2 ψ†3 ψ†4

Q1
f

1
2 −1

2 0 0 1
2 −1

2 0 0

Q2
f 0 0 1

2 −1
2 0 0 1

2 −1
2

Q3
f

1
2

1
2 −1

2 −1
2

1
2

1
2 −1

2 −1
2

Q4
f

1
2

1
2

1
2

1
2 −1

2 −1
2 −1

2 −1
2

Table 2. Charges of fields under four U(1) generators.

These equations can be written as

e2πi(AK)j

(
uj,k + i

2Vj

uj,k − i
2Vj

)L
=

∏
j′=3,4,4̄

Kj′∏
k′=1

(j′,k′) 6=(j,k)

uj,k − uj′,k′ + i
2Mj,j′

uj,k − uj′,k′ + i
2Mj,j′

, (A.13)

with j = 3, 4, 4̄ and

e2πi(AK)0 =
∏

j=3,4,4̄

Kj∏
k=1

uj,k + i
2Vj

uj,k − i
2Vj

. (A.14)

Here we used the Cartan matrix of SO(6),

Mjj′ =

 2 −1 −1

−1 2 0

−1 0 2

 , (A.15)

and the Dynkin labels Vj = (0, 1, 1). Since we are studying the scalar sector at two-

loop level, flipping the signs of γ1, γ2, γ3 simultaneously just maps the Hamiltonian to its

transpose matrix. Then this will not change the eigenvalues of the Hamiltonian. So the

result here is consistent with the one in the main part of this paper.

In fact, we can further use the U(1)b symmetry of ABJM theory as the fourth U(1)

symmetry and construct a six-parameter deformation with the C matrix being

C =


0 −γ3 +γ2 α1

+γ3 0 −γ1 α2

−γ2 +γ1 0 α3

−α1 −α2 −α3 0

 . (A.16)

Now the charges are listed in table 2. Notice that if we choose γ1 = γ2 = α3 = 0, this will

go back to the three-parameter deformation considered in [40]. Using the fact that the four

scalars share the same fourth charge, it is not hard to find that α1, α2, α3 will not enter

the phase of the Hamiltonian (eq. (A.1)) in the scalar sector at two loop order.
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B The su(2) grading

In the appendix, we briefly discuss some relevant formulas in su(2) grading. The twist

matrix is

Ã =
1

2



0 δ1 − δ3 0 δ1 − δ3 −δ1 + 2δ2 + δ3 −δ1 − 2δ2 + δ3

δ3 − δ1 0 0 δ3 − δ1 2δ1 −2δ3

0 0 0 0 0 0

δ3 − δ1 δ1 − δ3 0 0 δ1 + 2δ2 + δ3 −δ1 − 2δ2 − δ3

δ1 − 2δ2 − δ3 −2δ1 0 −δ1 − 2δ2 − δ3 0 2δ1 + 4δ2 + 2δ3

δ1 + 2δ2 − δ3 2δ3 0 δ1 + 2δ2 + δ3 −2δ1 − 4δ2 − 2δ3 0


.

(B.1)

In this case, the twist matrix still have the form (2.13), but with the three different charges

q1 = (0| − 1, 0,−1, 1, 1),

q2 = (1|0, 0, 1,−2, 0),

q3 = (1|0, 0, 1, 0,−2). (B.2)

Here we propose the following twisted generating functional

Wsu(2) =
1

1− 1
τ̃1

B(−)−Q+
1 R

(−)+

B(+)−Q−1 R
(−)−D

(
1− 1

τ̃2

Q+
1 Q
−−
2 R(−)+

Q−1 Q2R(+)+
D

)(
1− τ̃2

Q++
2 Q−3 R

(−)+

Q2Q
+
3 R

(+)+
D

)

× 1

1− τ̃1
Q−3
Q+

3

D
. (B.3)

The cancellation of potential poles in the Ta,s functions gives the following Bethe equations

1 =
τ̃2

τ̃1

Q+
2 B

(−)

Q−2 B
(+)

∣∣∣∣
u=u1,k

, −1 =
1

(τ̃2)2

Q+
1 Q
−−
2 Q+

3

Q−1 Q
++
2 Q−3

∣∣∣∣
u=u2,k

, 1 =
τ̃2

τ̃1

Q+
2 R

(−)

Q−2 R
(+)

∣∣∣∣
u=u3,k

. (B.4)

We choose

τ̃1 = e−πi((δ3−δ1)L+(δ1−δ3)K̃1+(δ1+2δ2+δ3)(K̃4−K̃4̄)) , τ̃2 = 1 (B.5)

to match the Bethe equations for u1, u2, u3 in this grading. The scalar factors should

behave as

Φ̃4(u) =
Q++

4 B+
3 B
−
1

Q−−4 B−3 B
+
1

Sτ̃0 , Φ̃4̄(u) =
Q++

4̄
B+

3 B
−
1

Q−−
4̄
B−3 B

+
1

Sτ̃0̄ , (B.6)

where

τ̃0 = eπi(−2δ2L−(δ1+δ3)K̃1−(δ1+2δ2+δ3)(K̃3−K4−K4̄)) ,

τ̃0̄ = eπi(2δ2L+(δ1+δ3)K̃1+(δ1+2δ2+δ3)(K̃3−K4−K4̄)) . (B.7)

– 23 –



J
H
E
P
0
3
(
2
0
1
7
)
1
3
3

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J.

Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

[2] A. Babichenko, B. Stefanski Jr. and K. Zarembo, Integrability and the AdS3/CFT2
correspondence, JHEP 03 (2010) 058 [arXiv:0912.1723] [INSPIRE].

[3] T. Klose, Review of AdS/CFT Integrability, Chapter IV.3: N = 6 Chern-Simons and Strings

on AdS4 × CP 3, Lett. Math. Phys. 99 (2012) 401 [arXiv:1012.3999] [INSPIRE].

[4] O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal

Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091

[arXiv:0806.1218] [INSPIRE].

[5] J.A. Minahan and K. Zarembo, The Bethe ansatz for superconformal Chern-Simons, JHEP

09 (2008) 040 [arXiv:0806.3951] [INSPIRE].

[6] D. Bak and S.-J. Rey, Integrable Spin Chain in Superconformal Chern-Simons Theory, JHEP

10 (2008) 053 [arXiv:0807.2063] [INSPIRE].

[7] G. Arutyunov and S. Frolov, Superstrings on AdS4 × CP 3 as a Coset σ-model, JHEP 09

(2008) 129 [arXiv:0806.4940] [INSPIRE].

[8] B. Stefanski Jr., Green-Schwarz action for Type IIA strings on AdS4 × CP 3, Nucl. Phys. B

808 (2009) 80 [arXiv:0806.4948] [INSPIRE].

[9] D. Sorokin and L. Wulff, Evidence for the classical integrability of the complete AdS4 × CP 3

superstring, JHEP 11 (2010) 143 [arXiv:1009.3498] [INSPIRE].

[10] N. Beisert and M. Staudacher, Long-range PSU(2, 2|4) Bethe Ansatze for gauge theory and

strings, Nucl. Phys. B 727 (2005) 1 [hep-th/0504190] [INSPIRE].

[11] N. Beisert, B. Eden and M. Staudacher, Transcendentality and Crossing, J. Stat. Mech.

0701 (2007) P01021 [hep-th/0610251] [INSPIRE].

[12] N. Gromov and P. Vieira, The all loop AdS4/CFT3 Bethe ansatz, JHEP 01 (2009) 016

[arXiv:0807.0777] [INSPIRE].

[13] N. Gromov, V. Kazakov and P. Vieira, Exact Spectrum of Anomalous Dimensions of Planar

N = 4 Supersymmetric Yang-Mills Theory, Phys. Rev. Lett. 103 (2009) 131601

[arXiv:0901.3753] [INSPIRE].

[14] D. Bombardelli, D. Fioravanti and R. Tateo, Thermodynamic Bethe Ansatz for planar

AdS/CFT: A proposal, J. Phys. A 42 (2009) 375401 [arXiv:0902.3930] [INSPIRE].

[15] G. Arutyunov and S. Frolov, Thermodynamic Bethe Ansatz for the AdS5 × S5 Mirror Model,

JHEP 05 (2009) 068 [arXiv:0903.0141] [INSPIRE].

[16] N. Gromov, V. Kazakov, S. Leurent and D. Volin, Quantum Spectral Curve for Planar N = 4

super-Yang-Mills Theory, Phys. Rev. Lett. 112 (2014) 011602 [arXiv:1305.1939] [INSPIRE].

[17] N. Gromov and F. Levkovich-Maslyuk, Y-system, TBA and Quasi-Classical strings in

AdS4 × CP 3, JHEP 06 (2010) 088 [arXiv:0912.4911] [INSPIRE].

– 24 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1023/A:1026654312961
https://arxiv.org/abs/hep-th/9711200
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711200
http://dx.doi.org/10.1007/JHEP03(2010)058
https://arxiv.org/abs/0912.1723
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.1723
http://dx.doi.org/10.1007/s11005-011-0520-y
https://arxiv.org/abs/1012.3999
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.3999
http://dx.doi.org/10.1088/1126-6708/2008/10/091
https://arxiv.org/abs/0806.1218
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.1218
http://dx.doi.org/10.1088/1126-6708/2008/09/040
http://dx.doi.org/10.1088/1126-6708/2008/09/040
https://arxiv.org/abs/0806.3951
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.3951
http://dx.doi.org/10.1088/1126-6708/2008/10/053
http://dx.doi.org/10.1088/1126-6708/2008/10/053
https://arxiv.org/abs/0807.2063
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.2063
http://dx.doi.org/10.1088/1126-6708/2008/09/129
http://dx.doi.org/10.1088/1126-6708/2008/09/129
https://arxiv.org/abs/0806.4940
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.4940
http://dx.doi.org/10.1016/j.nuclphysb.2008.09.015
http://dx.doi.org/10.1016/j.nuclphysb.2008.09.015
https://arxiv.org/abs/0806.4948
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.4948
http://dx.doi.org/10.1007/JHEP11(2010)143
https://arxiv.org/abs/1009.3498
http://inspirehep.net/search?p=find+EPRINT+arXiv:1009.3498
http://dx.doi.org/10.1016/j.nuclphysb.2005.06.038
https://arxiv.org/abs/hep-th/0504190
http://inspirehep.net/search?p=find+EPRINT+hep-th/0504190
http://dx.doi.org/10.1088/1742-5468/2007/01/P01021
http://dx.doi.org/10.1088/1742-5468/2007/01/P01021
https://arxiv.org/abs/hep-th/0610251
http://inspirehep.net/search?p=find+EPRINT+hep-th/0610251
http://dx.doi.org/10.1088/1126-6708/2009/01/016
https://arxiv.org/abs/0807.0777
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.0777
http://dx.doi.org/10.1103/PhysRevLett.103.131601
https://arxiv.org/abs/0901.3753
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.3753
http://dx.doi.org/10.1088/1751-8113/42/37/375401
https://arxiv.org/abs/0902.3930
http://inspirehep.net/search?p=find+EPRINT+arXiv:0902.3930
http://dx.doi.org/10.1088/1126-6708/2009/05/068
https://arxiv.org/abs/0903.0141
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.0141
http://dx.doi.org/10.1103/PhysRevLett.112.011602
https://arxiv.org/abs/1305.1939
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.1939
http://dx.doi.org/10.1007/JHEP06(2010)088
https://arxiv.org/abs/0912.4911
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.4911


J
H
E
P
0
3
(
2
0
1
7
)
1
3
3

[18] D. Bombardelli, D. Fioravanti and R. Tateo, TBA and Y-system for planar AdS4/CFT3,

Nucl. Phys. B 834 (2010) 543 [arXiv:0912.4715] [INSPIRE].
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