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1 Introduction

Integrability plays a key role in the study of AdS/CFT correspondence [1–3] between Type

IIB superstring theory on the AdS5 × S5 background and the maximally supersymmetric

Yang-Mills gauge theory in four dimensions (see [4] for a review). The former superstring

theory is described by the Metsaev-Tseytlin action [5]. This action is the sum of two terms:

a kinetic one and an exact Wess-Zumino-like one. The value of the coefficient in front of the

Wess-Zumino term is fixed by requiring invariance under κ-symmetry. There is a very nice

interplay between κ-symmetry and integrability. Indeed, the value of the aforementioned

coefficient which guaranties κ-symmetry also ensures integrability. This means that the

equations of motion admit a zero-curvature formulation in terms of a Lax pair [6] (see [7]

for a review).

Recall that κ-symmetry is a fermionic gauge invariance. It has been shown in [8–10]

that it is possible to deform the AdS5 × S5 superstring while maintaining both prop-

erties of integrability and invariance under a local fermionic symmetry. The σ-model

constructed in [8] has been dubbed η-deformation. The one constructed in [9] is some-

times also designated as η-deformation in the literature. These theories are also called

inhomogeneous/homogeneous Yang-Baxter deformations because their definitions involve

a R-matrix, which is a solution of an inhomogeneous/homogeneous equation respectively.

The latter equations are the modified classical Yang-Baxter equation and the classical

Yang-Baxter equation respectively. The deformation proposed in [10] has been called λ-

deformation of the AdS5×S5 superstring. The actions which have been put forward in [8, 9]

are deformations of the Metsaev-Tseytlin action while the action associated with the λ-

deformation [10] appears as a deformation of the non-abelian T-dual of the AdS5 × S5
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superstring σ-model. Inhomogeneous Yang-Baxter deformations are related [11–14] by

Poisson-Lie T-duality [15, 16] and analytic continuation to λ-deformations. Such defor-

mations generalise techniques applied to the principal chiral model and symmetric space

σ-models [17–21]. These deformations, some further generalisation as well as lower dimen-

sional cases have been thoroughly explored in many articles (see references for instance in

the thesis [22] and the reviews [23, 24]).

It has been shown recently that the actions of the η- and λ-deformations can be put on

the Green-Schwarz form and that their fermionic local symmetry corresponds to standard

κ-symmetry [25]. On a more general and fundamental level, a full understanding of these

models from a supergravity perspective has required to revisit and underpin precisely the

relationship between κ-symmetry and supergravity. This has been achieved a short while

ago [26] and may be summarised as follows. Conditions to have classical κ-symmetry of

Green-Schwarz σ-model are not equivalent1 to Type IIB supergravity equations but to

the generalisation of these equations which has been derived in [26, 28]. An equivalent

statement is that classical κ-symmetry does not imply two-dimensional Weyl invariance

for the σ-model but only scale invariance.

The generalized supergravity equations comprise a Killing vector field K and or-

dinary Type IIB supergravity equations are recovered whenever K vanishes. For in-

stance, the background associated with the λ-deformation has no isometry. This explains

why the λ-deformation defines generically [25] a Type IIB supergravity background (see

also [29–31] and [32, 33]). On the contrary, the Arutyunov-Borsato-Frolov (ABF) back-

ground [22, 34, 35], which corresponds to the η-deformation in [8], is a solution of the

generalized supergravity equations [28]. A general discussion, including the case of homo-

geneous Yang-Baxter deformations, and examples of the latter may be found in [25] and

in [36–39] respectively.

The presence of a Killing vector field plays an important role. Indeed, solutions of

generalized Type II supergravity are related by formal T-duality to ordinary supergravity

solutions. This may be illustrated by two examples [28]. Consider firstly the Hoare-Tseytlin

(HT) Type IIB background described in [40]. It consists of a metric G̃, a (imaginary) 5-

form F̃5 and a dilaton φ̃. The metric and the product F̃5 = eφ̃F̃5 are invariant under a

U(1)6 isometry. However, the dilaton contains a linear non-isometric term, which breaks

four of these isometries. Applying a formal T-duality in all isometric directions on G̃ and

F̃5 leads [40] to the ABF background. The second example is simpler and explains the

mechanism at work. We reproduce it from [28]. Consider the equations

R̃mn + 2∇̃m∇̃nφ̃ = 0 , and R̃+ 4 ∇̃2φ̃− 4∂mφ̃∂mφ̃ = 0 , (1.1)

for a metric and dilaton of the form

d̃s
2
= e2a(x)[dỹ +Aµ(x)dx

µ]2 + gµν(x)dx
µdxν and φ̃(ỹ, x) = −cỹ + f(x),

with c a constant. The metric has an isometry which is broken by the linear term in the

dilaton. Applying T-duality to the metric leads to the metric and B-field:

ds2 = e−2a(x)dy2 + gµν(x)dx
µdxν and B = Aµ(x) dy ∧ dxµ. (1.2)

1See also [27] for a related discussion in the pure spinor formulation.
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Introduce then the vector X = K+Z, where the non-zero components of the Killing vector

K and Z are Ky = c e−2a(x) and Zµ = ∂µ(f − a)− BµyK
y. Then, equations (1.1) become

for X and the metric and the field strength H of the B-field in (1.2)

Rmn +∇mXn +∇nXm = 0, and R− 1

12
H2

mnp + 4∇mXm − 4XmXm = 0. (1.3)

When c vanishes, K vanishes as well. Then Xm = Zm = ∂m(f − a) ≡ ∂mφ and therefore

equations (1.3) generalise equations (1.1).

The generalized IIB equations from [28] may be obtained by applying an analogous

generalized T-duality to the full field equations of IIA supergravity again with non-isometric

linear dilaton. This suggests that they should have a natural place in the manifestly

duality covariant formulation of maximal supergravities — the so-called exceptional field

theories (ExFT) [41–43]. These give a U-duality covariant unified description of IIA and IIB

supergravity on a formally enhanced exceptional space-time. According to the solution of

the section constraint which selects the physical coordinates, their field equations reproduce

the standard IIA and the IIB field equations, respectively. We will show in this article,

that also the generalized IIB supergravity equations are straightforwardly obtained from

exceptional field theory upon choosing a particular solution of the section constraint.

Our framework for this article is the E6(6) covariant exceptional field theory

from [41, 42], most adapted to the 5 + 5 split of the IIB coordinates for the undeformed

AdS5 × S5 background. In E6(6) ExFT, the AdS5 coordinates {xµ} remain external coor-

dinates while the 5 coordinates {ya} describing the S5-geometry of the undeformed back-

ground, are internal and formally embedded into 27 coordinates {Y M} transforming in

the fundamental representation of the group E6(6). Dependence of all fields on the 27

coordinates is heavily constrained by the section constraint stating that

dKMN∂M ⊗ ∂N ≡ 0 , (1.4)

whenever the derivatives act on the various fields of the theory. Here, dKMN denotes the

cubic invariant tensor of E6(6). The field content of this ExFT is given in terms of E6(6)

covariant fields, most notably a group-valued symmetric 27×27 matrix MMN parametriz-

ing the coset space E6(6)/USp(8) . The type IIB theory is recovered upon breaking E6(6)

down to its subgroup SL(5)× SL(2)×GL(1)IIB, such that

27 −→ (5, 1)+4 + (5′, 2)+1 + (10, 1)−2 + (1, 2)−5 ,{
Y M

}
−→ {ya , ỹaα , ỹab , ỹα} , a = 1, . . . , 5 , α = ± . (1.5)

Restricting the dependence of all fields to the 5 coordinates {ya} of highest grading under

the GL(1)IIB provides a solution to (1.4). Decomposing the matrix MMN into its various

blocks according to (1.5) allows to identify the explicit dictionary to the various components

of the IB fields [44]. The field equations of ExFT in this case reproduce the equations of

standard IIB supergravity.

We will show in this article that generalized IIB supergravity equations are obtained

upon choosing a different solution of the section condition. Recall that among the ingre-

dients of the generalized equations features a Killing vector field Ka which after splitting
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{ya} = {yi, y∗}, (i = 1, . . . , 4), we choose along the fixed direction Ka = δa∗ , such that

∂∗Φ = 0 for all fields of the theory. In this case, the section constraint (1.4) admits a

different (and inequivalent) solution in which we restrict the dependence of all fields to

the subset {yi, ỹ∗+}, i.e. allow for an additional dependence on the coordinate ỹ∗+. We

will show that upon imposing a particular dependence on ỹ∗+ (in terms of a generalized

Scherk-Schwarz reduction ansatz), the field equations of exceptional field theory precisely

reproduce the generalized IIB supergravity equations.

We should stress that the existence of an inequivalent solution to the section constraint

does not come as a surprise but this choice of coordinates is equivalent (after rotation) to

selecting the IIA coordinates ỹa+ in (1.5), in which case ExFT reproduces the standard

IIA theory. This precisely amounts to the fact that generalized IIB supergravity can be

obtained via T-duality from a sector of IIA supergravity. Since the framework of excep-

tional field theory is manifestly duality covariant, we do not have to go through this duality

explicitly but can simply absorb its effect into a rotation of the extended coordinates. Eval-

uating ExFT according to the IIB dictionary however in the new coordinates {yi, ỹ∗+} with

proper Scherk-Schwarz ansatz in ỹ∗+ then directly yields the generalized IIB supergravity

equations.

The rest of the article is organized as follows: in section 2 we collect the generalized

IIB supergravity equations. In section 3 we start with a brief review of the relevant E6(6)

exceptional field theory and present the generalized Scherk-Schwarz ansatz that governs

the ỹ∗+-dependence of the fields. We work out the ExFT field equations with this ansatz

and show that they yield the generalized IIB supergravity equations.

While we were writing up these results, Sakatani, Uehara, and Yoshida submitted the

interesting paper [45] to the archive which in a similar spirit relates the NS-NS truncation

of the generalized type IIB supergravity equations to the O(d, d) covariant double field

theory [46–49].

2 Generalized IIB supergravity

2.1 Generalized field equations and Bianchi identities

We recall in this section the bosonic generalized IIB supergravity equations which have

been derived in [28]. Their fermionic completion has been found in [26]. The equations are

expressed in string frame. The equations for the metric Gmn and the B-field Bmn+ are

Rmn − 1

4
HmpqHn

pq − Tmn +∇mXn +∇nXm = 0, (2.1a)

1

2
∇pHpmn +

1

2
FpFpmn +

1

12
FmnpqrFpqr −XpHpmn − ∂mXn + ∂nXm = 0, (2.1b)

R− 1

12
H2

mnp + 4∇mXm − 4XmXm = 0 , (2.1c)

where ∇m denotes the space-time covariant derivative, Rmn the Ricci tensor, R the Ricci

scalar and Hmnp = 3 ∂[mBnp] + the field strength of the NS-NS B-field. The R-R fields

enter via the currents Fm1···mn and contribute to the stress tensor in (2.1a) via

Tmn =
1

2
FmFn+

1

4
FmpqFn

pq+
1

4× 4!
FmpqrsFn

pqrs− 1

4
Gmn

(
FpFp+

1

6
FpqrFpqr

)
. (2.1d)
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The equations (2.1a)–(2.1c) are based on the existence of a Killing vector fieldK and an ad-

ditional vector field Z with KmZm = 0, which enter the field equations in the combination

X ≡ K + Z. The vector field Z satisfies the Bianchi type equations

∂mZn − ∂nZm +KpHpmn = 0 . (2.2)

The ordinary type IIB equations are recovered in the limit where K = 0 such that Z can

be integrated to the dilaton field Zm = ∂mφ .

In the R-R sector, the generalized dynamical equations for the field strengths Fm1···mn

are given by

∇mFm − ZmFm − 1

6
HmnpFmnp = 0, KmFm = 0, (2.3a)

∇pFpmn − ZpFpmn − 1

6
HpqrFmnpqr − (K ∧ F1)mn = 0, (2.3b)

∇rFrmnpq − ZrFrmnpq +
1

36
εmnpqrstuvwH

rstFuvw − (K ∧ F3)mnpq = 0, (2.3c)

while their modified Bianchi identities can be cast into the compact form

dF2n+1 − Z ∧ F2n+1 +H3 ∧ F2n−1 = ⋆ (K ∧ ⋆F2n+3) . (2.4)

The Bianchi identities extend to the dual field strengths −F7 ≡ ⋆F3 and F9 ≡ ⋆F1.

Furthermore, the selfduality property Frmnpq = ⋆Frmnpq of the five form continues to hold

in the modified theory, relating its Bianchi identity and field equation. In the following,

for simplicity of the formulas, we will often choose coordinates such that the Killing vector

field points in a given direction Km = δm∗ .

2.2 Solution of the Bianchi identities

It has been noted in [28] that equation (2.2) for the new vector Zm may be interpreted as

a modified “dilaton Bianchi identity” and locally integrated into

Zm = ∂mφ+KpBpm+ = ∂mφ−Bm∗+ . (2.5)

We will in the following stay in this picture and understand the combination ∂mφ−Bm∗+

as a derivative Dmφ on the dilaton that is covariantized in a suitable sense. As a related

observation, one may straightforwardly check that the modified Bianchi identities (2.4)

satisfied by the R-R field strengths allow for an explicit integration into F = eφ F with

Fm = ∂mχ+Bm∗+ χ+Bm∗− ≡ Dmχ ,

Fpmn = 3 ∂[pBmn]− +
3

2
B[p|∗+|Bmn]− − 3

2
B[p|∗−|Bmn] + + Cpmn∗ + χHpmn ,

Fmnpqr = 5 ∂[mCnpqr] + 5B[m|∗+|Cnpqr] − 15B[mn |+|∂pBqr]−

−15B[mn |+|Bp|∗+|Bqr]− + 15B[mn |−|∂pBqr] + + Cmnpqr∗+ ,

Fmnpqrst = 7 ∂[mCnpqrst] + + 7B[m∗+Cnpqrst] + + 35C[mnpqHrst]

−105B[mn|+|Bpq| −|Hrst] + Cmnpqrst∗ . (2.6)
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All the terms, carrying indices ‘∗‘ represent the deformations from the standard IIB ex-

pressions. Again, in the following we will assign them a natural interpretation as the con-

nection terms of covariantized derivatives, non-abelian field strengths and the Stückelberg

type couplings among p-forms. These additional couplings precisely match the structure

of general nine-dimensional gauged supergravities [50, 51] (recall that due to the existence

of a Killing vector field, we are effectively describing a nine-dimensional theory). More

precisely, equations (2.6) can be viewed as resulting from a gauging of nine-dimensional

maximal supergravity in which a linear combination of the Cartan subgroup of the SL(2)IIB
and the trombone symmetry which scales every field according to its Weyl weight has been

gauged. The component Bm∗+ of the ten-dimensional NS-NS two-form serves as a gauge

field.2 An important consequence is the following. According to (2.5), the dilaton φ is

charged under the new local gauge symmetry. Translation to the Einstein frame via

Gst
mn = eφ/2GE

mn , (2.7)

thus implies that the metric in the Einstein frame is also charged. Translation of the

Einstein field equations (2.1a) into the Einstein frame thus induces field equations which

feature a covariantized Ricci tensor in the sense that all derivatives in its definition are

replaced by properly covariantized ones. In particular, the Riemann tensor is calculated as

curvature of the connection

Γ̂mn
p ≡ 1

2
Gpq (DmGnq +DnGmq −DqGmn) , DpGmn ≡ ∂pGmn +

1

2
Bp∗+Gmn . (2.8)

This is the generic structure of supergravities in which the trombone symmetry is

gauged [52]. Upon transition to the Einstein frame, we may also regroup the field equations

for NS-NS and R-R two-form (2.1b) and (2.3b) into the manifestly SL(2) covariant form

Dp (F
pmnαmαβ)−

1

6
Fmnpqr Fpqr

α εαβ = Jmn
β , (2.9)

with the SL(2) doublet Fmnp± = {Hmnp, Fmnp − χHmnp}, and the dilaton/axion matrix

mαβ parametrized as

mαβ =

(
eφ −eφχ

−eφχ eφχ2 + e−φ

)
. (2.10)

The current on the r.h.s. of (2.9) is given by the SL(2) doublet

Jmn
± =

{
2 e2φK [mFn] , −4 e2φ∇[mKn] − 2χ e2φK [mFn]

}
, (2.11)

in terms of the Killing vector field Km and the current Fm = Dmχ . We will in the

following recover the non-abelian field-strengths (2.6) from a particular Scherk-Schwarz

ansatz in exceptional field theory.

2To be precise, also a nilpotent generator of SL(2)IIB is gauged with the component Bm∗− serving as

the associated gauge field.
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3 Exceptional field theory

3.1 E6(6) exceptional field theory

In this section, we give a brief review of the exceptional field theory associated with the

group E6(6) into which we will in the following embed the generalized IIB supergravity

equations. We refer to [42, 44, 53] for details of the theory. The bosonic field content of

E6(6) exceptional field theory reflects the field content of maximal D = 5 supergravity, and

is given by

{
gµν , MMN , Aµ

M , Bµν M

}
, (3.1)

with indices µ, ν = 0, . . . , 4, and M = 1, . . . , 27. The symmetric matrices gµν and MMN

define the external and internal metrics, respectively, the latter parametrizing the coset

space E6(6)/USp(8) . In addition to their dependence on the five external coordinates

{xµ}, the fields (3.1) formally depend on 27 internal coordinates {Y M} transforming in

the fundamental representation of E6(6). The latter dependence is strongly restricted by

the E6(6) covariant section condition [54, 55] (on any two fields or gauge parameters A,B)

dKMN ∂M∂NA = 0 , dKMN ∂MA∂NB = 0 , (3.2)

with dKMN denoting the totally symmetric cubic invariant of E6(6). The constraints (3.2)

admit two inequivalent solutions, in which the fields depend on a subset of six or five of

the internal coordinates. Upon implementing one of these solutions, the field equations

of exceptional field theory reproduce full D = 11 supergravity and ten-dimensional IIB

supergravity, respectively.

The field equations of exceptional field theory are most compactly obtained from vari-

ation of a Lagrangian

√
|g|−1 LExFT = R̂+

1

24
gµν DµMMN DνMMN − 1

4
Fµν

MFµν N MMN

+
√
|g|−1 Ltop − Vpot . (3.3)

The first term formally takes the same form as the five-dimensional Einstein-Hilbert term,

where in the definition of the Ricci scalar R̂ all external derivatives are covariantized w.r.t.

the action of internal diffeomorphisms (under which the external metric transforms as a

weighted scalar)

∂µgνρ −→ Dµgνρ ≡ ∂µgνρ −Aµ
M∂Mgνρ −

2

3
∂MAµ

M gνρ . (3.4)

The second term in (3.3) is a gauged coset space sigma-model E6(6)/USp(8) with derivatives

Dµ ≡ ∂µ−LAµ covariantized under the action of generalized internal diffeomorphisms [55]

LΛMMN = ΛK∂KMMN + 2 ∂(MΛKMN)K − 10 ∂KΛL dKPRdRL(MMN)P

+
2

3
∂PΛ

P MMN . (3.5)
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The third term in (3.3) describes a Yang-Mills type kinetic term for the 27 gauge vectors

Aµ
M whose non-abelian structure again is induced by the structure of internal diffeomor-

phisms

Fµν
M = 2 ∂[µAν]

M − 2A[µ
K∂KAν]

M + 10 dMKRdNLR A[µ
N ∂KAν]

L

+ 10 dMNK ∂KBµν N . (3.6)

The Stückelberg-type coupling to the 27 two-forms Bµν N induces a modification of the

Bianchi identities as

3D[µFνρ]
M = 10 dMNK ∂KHµνρN , (3.7)

with the 3-form field strength HµνρN defined by this equation (up to terms that vanish

under projection with dMNK ∂K). The term Ltop in (3.3) refers to a Chern-Simons-type

topological term which is such that the field equations obtained by varying the full La-

grangian w.r.t. the two-forms Bµν M give rise to the first order duality equations

dMNK∂K

(√
|g|MNLFµνL +

1

6

√
10 εµνρστ HρστN

)
= 0 , (3.8)

relating the field strengths of vector fields and two-forms. Finally, the last term in (3.3)

is the ‘scalar potential’ that involves only internal derivatives ∂M whose explicit form can

be found in [42]. Its form is uniquely determined by invariance under internal generalized

diffeomorphisms.

3.2 Section constraints and IIA/IIB/generalized supergravity

The section condition (3.2) is solved by restricting the internal coordinate dependence of

all fields to properly chosen subsets of coordinates. Breaking E6(6) down to its subgroup

SL(5)× SL(2)×GL(1)IIB according to

27 −→ (5, 1)+4 + (5′, 2)+1 + (10, 1)−2 + (1, 2)−5 ,{
Y M

}
−→ {ya , ỹaα , ỹab , ỹα} , a = 1, . . . , 5 , α = ± , (3.9)

and restricting all fields to depend only on the 5 coordinates {ya} of highest grading under

GL(1)IIB solves the conditions (3.2). The ExFT field equations derived from (3.3) then

reproduce the IIB theory after decomposing the ExFT fields (3.1) according to (3.9) and

properly translating the various blocks into the various components of the IIB fields [44].

In particular, the scalar matrix MMN decomposes into

MKM =




Mac Ma
cβ Ma,cd Ma

β

Maα
c Maα,cβ Maα

cd Maα,β

Mab,c Mab
cβ Mab,cd Mab

β

Mα
c Mα,cβ Mα

cd Mαβ


 , (3.10)

where the explicit form of the blocks is obtained by evaluating the matrix MMN =

VM
AVN

A from a vielbein VM
A given by the product of matrix exponentials

VIIB ≡ exp
[
εabcde cabcd t(+4) e

]
exp

[
bab

α t(+2)
ab
α

]
V5 V2 exp [Φ tIIB] , (3.11)

– 8 –
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with the relevant e6(6) generators tIIB, t(+2)
ab
α , t(+4) a and their coefficients originating from

the IIB metric, two-form and four-form, respectively. The matrices V5, V2 represent the

SL(5)×SL(2) factor of the vielbein, related to the internal metric and the IIB dilaton/axion

matrix, respectively. Similarly, vectors and two-forms are decomposed as (3.9)

{
Aµ

M
}
−→ {Aµ

a , Aµ aα , Aµ
ab , Aµ α} ,

{Bµν M} −→ {Bµν a , Bµν
aα , Bµν ab , Bµν α} . (3.12)

In contrast, the IIA theory is recovered, if the physical coordinates are identified with

the {ỹa+} in the decomposition (3.9) (which explicitly breaks the SL(2) factor), the ExFT

fields are decomposed accordingly and translated into the IIA fields. E.g. in this case, the

proper parametrization of the matrix MMN = VM
AVN

A is obtained via a vielbein VM
A

VIIA ≡ exp
[
ϕ t(+5)

]
exp

[
cabc t

abc
(+3)

]
exp

[
bab t

ab
(+2)

]
exp

[
ca t

a
(+1)

]
V5 exp [φ t0 +Φ tIIA] ,

(3.13)

with the coefficients originating from the IIA metric, dilaton, and p-forms, respectively.

In this paper we choose yet a different solution of the section constraint. First, we

impose the existence of a Killing vector field in the IIB theory and accordingly split the

coordinates {ya} = {yi, y∗}, (i = 1, . . . , 4), such that ∂∗Φ = 0 for all fields of the theory.

Next, we relax the IIB solution, by allowing fields to depend on the 5 coordinates

{yi, ỹ∗+} , i = 1, . . . , 4 , (3.14)

such that the section condition (3.2) is still satisfied. In the following, we will evaluate

ExFT in the IIB parametrization (3.10) however imposing a particular additional ỹ∗+-

dependence according to a simple Scherk-Schwarz ansatz which will trigger the generalized

IIB equations. It is important to note that the choice of coordinates (3.14) is equivalent

(after rotation of the 27 coordinates) to selecting the IIA coordinates ỹa+ in (3.9). Applying

the same rotation to the IIA parametrization of ExFT fields such as (3.13) we would

simply recover the IIA theory. This is a manifestation of the fact that the generalized IIB

supergravity equations can be obtained via T-duality from a sector of IIA supergravity.

Since the framework of exceptional field theory is manifestly duality covariant, we can

simply absorb the effect of this duality into a rotation of the extended coordinates. We

will thus evaluate exceptional field theory in its IIB parametrization (3.10) however in

coordinates (3.14) and with a proper Scherk-Schwarz ansatz in ỹ∗+ in order to obtain

directly the generalized IIB equations.

3.3 Scherk-Schwarz ansatz

Following the previous discussion, and having chosen physical coordinates according

to (3.14) we now impose on the ExFT fields (3.1) a specific ỹ∗+-dependence, such that

in particular the total ỹ∗+-dependence consistently factors out from all the equations of

– 9 –



J
H
E
P
0
3
(
2
0
1
7
)
1
0
0

motion. This is achieved by a Scherk-Schwarz ansatz [56]

MMN = UM
K(ỹ)UN

L(ỹ)MKL(x
µ, yi) ,

gµν = ρ−2(ỹ) gµν(x
µ, yi) ,

Aµ
M = ρ−1(ỹ)Aµ

N (xµ, yi) (U−1)N
M (ỹ) ,

Bµν M = ρ−2(ỹ)UM
N (ỹ)Bµν N (xµ, yi) , (3.15)

where the ỹ∗+-dependence of all fields is carried by an E6(6)-valued twist matrix UN
L and

a scalar factor ρ . For simplicity of the notation, here and in the following we also use the

notation ỹ ≡ ỹ∗+.
3

The relevant Scherk-Schwarz ansatz for generalized IIB supergravity is based on a twist

matrix UM
N living in an

GL(1) ⊂ SL(2)diag ⊂ SL(2)× SL(2) ⊂ SL(2)× SL(6) ⊂ E6(6) , (3.16)

subgroup of the full duality group E6(6) . More precisely, upon decomposing

E6(6) → SL(2)× SL(6) ,

27 −→ (1, 15) + (2, 6′) ,
{
Y M

}
−→

{
Y âb̂, Ỹâα

}
, (3.17)

an (SL(2)× SL(6))-valued matrix U takes the form

UM
N =

(
Uâ

[ĉUb̂
d̂] 0

0 (U−1)â
ĉUα

β

)
, (3.18)

and we choose the matrix factors as

Uα
β =

(
U+

+ 0

0 U−
−

)
=

(
ρ(ỹ) 0

0 ρ−1(ỹ)

)
,

Uâ
b̂ =



Ui

j 0 0

0 U∗
∗ 0

0 0 U0
0


 =



δi

j 0 0

0 ρ(ỹ) 0

0 0 ρ−1(ỹ)


 , (3.19)

with scale factor given by a linear function ρ(ỹ) = ỹ+ c . In order to check the effect of the

Scherk-Schwarz ansatz (3.15) with (3.19) on the field equations of exceptional field theory,

we consider the current

(XM )N
K ≡ ρ−1 (U−1)M

P (U−1)N
Q ∂PUQ

K , (3.20)

3Note that the ansatz (3.15) is slightly more general than the ones studied in [56] in that the fields

multiplying the twist matrices on the r.h.s. do not only depend on the external coordinates xµ but also on

part of the internal coordinates yi. In this sense, the ansatz (3.15) resembles the embedding of deformations

of ExFT studied in [57] (and in [58] in the context of double field theory), although here all fields and twist

matrices respect the section constraint, so we remain within the original framework.
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which encodes the combinations of the twist matrix and its derivatives that explicitly enter

the field equations. With the explicit form of (3.19), this current lives in the algebra

sl(2)⊕ sl(6) with its only non-vanishing components given by

(X ∗+)α
β =

(
1 0

0 −1

)
, (X ∗+)â

b̂ =



04×4 0 0

0 1 0

0 0 −1


 , (3.21)

all constant, ensuring that the ỹ-dependence factors out from all equations of motion.4

We have thus presented a consistent Scherk-Schwarz ansatz on the ExFT fields which

moreover satisfies the section condition. Upon explicitly evaluating the field equations,

the non-trivial ỹ dependence of the twist matrix induces a deformation of the original IB

equations of motion. We shall work this out in the next section.

3.4 Induced deformation

In this section we will illustrate with several examples how the Scherk-Schwarz ansatz (3.15)

induces a deformation of the resulting field equations which precisely coincides with the

deformation of the IIB field equations and Bianchi identities discussed in section 2 above.

Covariant derivatives in ExFT carry vector fields Aµ
M and internal derivatives ∂M . Under

(SL(2)× SL(6)), the coordinates (3.14) are embedded in the Y M as {Y i0, Ỹ∗+}, cf. (3.17).
With the ansatz (3.15), the relevant couplings then are obtained from

Aµ
i0∂i0 = ρ−1ρAµ

i0∂i0 , Aµ∗+∂
∗+ = ρ−1ρ2Aµ∗+∂

∗+ . (3.22)

Both operators give rise to additional ỹ-independent couplings. Let us e.g. consider the

covariant derivative on the external metric (3.4). With the Scherk-Schwarz ansatz (3.15),

we obtain via (3.22)

Dµgνρ = ρ−2(ỹ)

(
∂µgνρ − 2Aµ

i0∂i0gνρ −
4

3
∂0iAµ

0i gνρ +
4

3
Aµ∗+gνρ

)
. (3.23)

The first three terms on the r.h.s. correspond to the standard ExFT result and upon

translation into the IIB fields contribute to the standard IIB field equations [44]. We will

thus employ the notation

Dµgνρ = ρ−2(ỹ)

(
D̊µgνρ +

4

3
Aµ∗+gνρ

)
. (3.24)

The last term captures the effect of the Scherk-Schwarz twist matrix and shows that the IIB

space-time metric acquires non-trivial covariant derivatives which is precisely in accordance

with our discussion above regarding the charged IIB metric (2.8) after transition to the

4Strictly speaking, for consistency of the Scherk-Schwarz ansatz a weaker condition is sufficient: only

the projection of (3.20) onto the 27 ⊕ 351 representation of E6(6) appears in the field equations and is

required to be constant. With (3.21) this is automatically guaranteed.
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Einstein frame.5 The Riemann tensor whose contraction appears in the Einstein field

equations will thus correspond to the curvature of the modified connection (2.8) as in the

generalized IIB equations.

In a similar way, we can work out the ExFT field strengths (3.6) under the

Scherk-Schwarz ansatz (3.15). As a general feature of the Scherk-Schwarz ansatz with

consistent twist matrices, the ỹ-dependence of these field strengths consistently factors

out according to

Fµν
M (x, Y ) = ρ−1(ỹ)(U−1)N

M (ỹ)Fµν
M (x, y) , (3.26)

where

Fµν
M (x, y) ≡ F̊µν

NM +XKL
M

(
A[µ

KAν]
L − 2 dKLN Bµν N

)
, (3.27)

describes a deformation of the standard ExFT field strength F̊µν
M by non-abelian terms

carrying the generic structure of five-dimensional gauged supergravity [59] encoded in

an embedding tensor XMN
K living in the 351 + 27 representation of E6(6) . Within the

Scherk-Schwarz ansatz, the embedding tensor is obtained from projecting (3.20) onto the

relevant E6(6) representations. Again, the form of (3.27) resembles the deformations of

ExFT studied in [57], although here it simply results from a Scherk-Schwarz ansatz within

the original ExFT. Structurewise, the new couplings (3.27) resemble those introduced

in (2.6) in order to account for the deformed Bianchi identities in generalized IIB

supergravity. In the rest of this paper, we will make the agreement precise using the

explicit dictionary between ExFT and IIB fields [44].

Working out (3.6), it follows that the twist matrix (3.18)–(3.19) induces an embedding

tensor

XMN
K = (X̃M )N

K +
2

3
δM

∗+ δN
K , (3.28)

in (3.27). Upon contraction with a gauge parameter ΛM it identifies the gauged generators

within e6(6)⊕Rtromb. The second term in (3.28) refers to the gauging of the trombone sym-

metry under which the ExFT fields
{
gµν ,MMN ,Aµ

M ,Bµν M

}
scale with weight {2, 0, 1, 2},

respectively, whose effect we have already observed in (3.24). The first term in (3.28) iden-

tifies the gauged generators within e6(6), combining the diagonal generators

(
ΛMX̃M

)
sl(2)

=

(
1
2 Λ∗+ 0

−Λ∗− −1
2 Λ∗+

)
,

(
ΛM X̃M

)
sl(6)

=




1
6 Λ∗+ I4 0 0

0 1
6 Λ∗+ 0

0 Λ0+ −5
6 Λ∗+


 , (3.29)

5To be precise, after identification Aµ∗+ = Bµ∗+, the factor 4/3 in (3.24) comes via the standard 5 + 5

Kaluza-Klein decomposition

Gmn =

(

(det gab)
−1/3 gµν + . . . Aµ

bgab

gabAµ
b gab

)

, (3.25)

of the IIB metric.
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within sl(2)⊕ sl(6) with the off-diagonal generators

(ΛM X̃M )∗+,ij = (ΛM X̃M )i+,j∗ = −Λij ,

(ΛMX̃M )ij,0− = (ΛM X̃M )0i,j− = −1

2
ε∗ijkl Λ

kl , (3.30)

in e6(6)\ (sl(6) ⊕ sl(2)). The Stückelberg-type couplings in (3.27) to the two-forms Bµν M

are read off from (3.29), (3.30) together with the explicit form of dMNP in the de-

composition (3.9), see [44]. The explicit result for the various components of the field

strengths (3.27) is the following

Fµν a+ = F̊µν i+ ,

Fµν a− = F̊µν a− +A[µ ∗+Aν] a− −A[µ ∗−Aν] a+ +
√
2 B̃µν a∗ ,

Fµν abc = F̊µν abc + 2A[µ∗+Aν]abc +
3

2
√
2
εabcd∗ B̃µν

d− ,

Fµν+ = F̊µν+ + 2A[µ ∗+Aν] + , (3.31)

with the redefined two-forms

B̃µν ab ≡
√
10Bµν ab +A[µ

cAν] abc ,

B̃µν
kα ≡

√
10Bµν

aα + εαβ A[µ
aAν]β +

√
2

6
εαβ εabcdeA[µ|bβ|Aν]cde . (3.32)

Comparing the deformed field strengths (3.31) to the field strengths (2.6) solving the

Bianchi identities of generalized IIB supergravity, we find precise agreement upon iden-

tifying the ExFT components with the IIB field strengths (the precise dictionary between

fields has been given in [44] and in particular takes care of the
√
2 factors that arise in the

ExFT expressions (3.31)).

Of course, the field strengths (3.31) only represent part of the full IIB field strengths,

in which two of the ten-dimensional indices are chosen to be external. The remaining IIB

components will appear among other ExFT fields. E.g. let us consider the three-form field

strength HµνρM defined by (3.7). Evaluating this definition with the above Scherk-Schwarz

ansatz in particular yields the components

Hµνρ− = H̊µνρ− +
√
2Oµνρ ,

Hµνρ ∗a = ˚̃Hµνρ ∗i + 3A[µ| ∗+|B̃νρ] ∗a +
3
√
2

2
A[µ| ∗+|Aν| ∗−|Aρ] a+ − ∂aOµνρ . (3.33)

The second and third term of Hµνρ ∗i reproduce the corresponding deformation terms

in (2.6). The term Oµνρ in (3.33) denotes the undetermined contribution in the field

strength which vanishes under the projection dKMN∂N in (3.7). In the undeformed IIB

theory, this term is already present in Hµνρ ∗i . It arises as an integration constant in the

ExFT field equations and is identified with a component of the IIB four-form according to

√
2Oµνρ = Cµνρ∗ +

3

2
B[µ|∗+|Bνρ]− − 3

2
B[µ|∗−|Bνρ] + , (3.34)
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in order to reconstruct the selfdual IIB five-form field strength from ExFT. In the deformed

case we are considering here, the same Oµνρ arises as part of Hµνρ− in (3.33) where it

precisely acounts for the deformation of the IIB three-form field strength Fµνρ, see (2.6).

Again we thus find complete agreement.

In a similar way, the deformed scalar currents MMKDµMKN with the block decompo-

sition (3.10) and parametrization (3.11) can be matched to the corresponding components

of (2.6) in which one of the ten-dimensional indices is chosen to be external. Thus all the

building blocks of the ExFT Lagrangian (3.3) exhibit precisely the deformations of their

IIB counterparts (2.6). Since equations (2.6) were derived as solution of the deformed

IIB Bianchi identities, it follows that after imposing the Scherk-Schwarz ansatz (3.15), the

ExFT fields satisfy the deformed IIB Bianchi identities. Moreover, most of the general-

ized IIB field equations are obtained by covariantization of the standard IIB equations, i.e.

by replacing the IIB field strengths by their deformed expressions (2.6). This is true for

the Einstein field equations (upon taking into account the charged metric in the Einstein

frame, cf. (2.8)) and the self-duality equation Frmnpq = ⋆Frmnpq for the five-form field

strength. Upon using the explicit dictionary between ExFT fields and IIB fields [44] these

equations thus follow from the ExFT dynamics after imposing the Scherk-Schwarz ansatz.

The two-form field equations (2.9) in generalized IIB supergravity on the other hand are

not only covariantized via (2.6) but also acquire a source term Jmn
β . In ExFT, the anal-

ogous term descends from variation of the Lagrangian (3.3) w.r.t. the gauge fields which

upon implementing the Scherk-Schwarz ansatz gives rise to additional source terms from

the Einstein-Hilbert term and the scalar kinetic term.

4 Conclusions

In this paper, we have shown how the equations of generalized IIB supergravity found in [28]

can naturally be obtained from exceptional field theory upon imposing a simple Scherk-

Schwarz type ansatz on all the fields that captures their non-isometric behavior in the IIA

theory. The Scherk-Schwarz ansatz satisfies the consistency equations [56] and moreover

the section constraints (3.2) and induces a deformation of the standard IIB supergravity

equations. We have verified explicitly for most of their components that the deformed ExFT

fields coincide with the deformed IIB field strengths (2.6) which have been determined by

solving the deformed IIB Bianchi identities. The Scherk-Schwarz ansatz straightforwardly

extends to the fermionic extension of ExFT [53]. It should thus also be possible to reproduce

from exceptional field theory the fermionic completion of the generalized IIB equations that

has been worked out in [26]. We should stress that although exceptional field theory admits

a Lagrangian formulation (3.3) this does not allow to conclude the existence of an action

underlying the generalized IIB equations, since the Scherk-Schwarz ansatz (3.15) is imposed

on the level of the field equations and not on the action. The appearance of a trombone

gauging (3.28) in the ExFT formulation is in fact a sign that the resulting field equations

cannot be obtained from an action [52].

We have in this article embedded the generalized IIB equations into E6(6) ExFT. In

principle, the same construction can be repeated for any of the exceptional field theories
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upon an appropriate decomposition of the IIB coordinates into external and internal co-

ordinates. If one is merely interested in reproducing the generalized IIB equations from a

covariant framework, the most efficient framework is the SL(2) ExFT from [60]. In this

case, 9-dimensional covariance is kept manifest throughout the construction and other than

splitting off the 10th coordinate y∗, we avoid the split into internal {yi} and external {xµ}
coordinates. Here, we have given the embedding into E6(6) ExFT since it is this formu-

lation which most naturally carries the AdS5 × S5 background in the undeformed case.

In particular, in E6(6) ExFT it follows from a Scherk-Schwarz reduction ansatz that the

fluctuations around the AdS5 × S5 background give rise to a consistent truncation of IIB

supergravity to a five-dimensional maximal supergravity theory [56, 61]. It will be very

interesting to check if similarly the ABF background allows for a compact formulation

within E6(6) ExFT, combining the Scherk-Schwarz ansatz (3.19) with a deformation of

the Scherk-Schwarz twist underlying the S5 geometry and an xµ-dependent solution of a

five-dimensional supergravity. In particular, this would allow to address the question of

consistent truncations around the ABF background and be of particular interest in view

of possible holographic interpretations of the deformation. We hope to come back to these

questions in the near future.
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