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1 Introduction

Coherent neutrino-nucleus scattering (CνNS) [1–3] is a tree level process that is predicted

by the Standard Model, but has not yet been observed. While being conceptually highly in-

teresting and allowing measurements of electroweak observables at low momentum transfer,

the process is also of phenomenological importance for future dark matter direct detection

experiments [4]. Moreover, it holds the potential to probe new neutrino physics [5–8],

which is the main focus of this paper.

In CνNS, low energy neutrinos interact with the protons and neutrons in the nuclei

coherently, which significantly enhances the cross section. While large fluxes of neutrinos

are available from nuclear research or commercial reactors, the recoil energy of the nuclei is

difficult to detect since it is very low. However, prompted partly by developments in dark

matter direct detection experiments, modern low-threshold detectors make the detection of

CνNS technically feasible [9, 10]. Combined with smart shielding techniques, high-rate and

low-background experiments are possible.1 Future CνNS experiments may thus provide

1See, for instance, refs. [11–15] for recent studies.
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precision test of neutrino interactions in the Standard Model and strong constraints on

new physics related to neutrinos.

In this paper, we will study the sensitivities of CνNS on possible new neutrino inter-

actions, mainly assuming Germanium detectors with sub-keV threshold, detecting reactor

antineutrinos. For illustration, we will assume values of the experimental parameters within

reach of current technology.2 To make our study applicable to various new physics models,

we will adopt a model-independent approach, only considering the low energy effective op-

erators of neutrinos and quarks. This includes not only the widely-discussed conventional

Non-Standard Interactions (NSI) [16] which are in (chiral) vector form, but also more ex-

otic interactions that could be in scalar or tensor form. What distinguishes this paper from

previous studies of the potential implications of coherent scattering [5–8, 17], is the inclu-

sion of such exotic interactions, and a comparative study on how different experimental

details (such as energy threshold or neutrino flux uncertainty) influence the sensitivity on

new physics.

The paper is organized as follows. We start by introducing CνNS in the Standard

Model in section 2. Then we study the effect of new physics on CνNS, based on effective

operators of neutrinos and quarks, which can be divided into two cases, the conventional

NSI in section 3 and exotic neutral currents in section 4. In section 5, we consider a bench-

mark setup for a CνNS experiment and perform χ2-fit on parameters from the Standard

Model, NSI and exotic neutral currents to study the sensitivities of such an experiment

on them. We conclude in section 6. Details on the calculation of the cross section with

both spin-0 and spin-1/2 nuclei are delegated to appendix A and B. Some useful relations

connecting the fundamental coupling constants of exotic neutral currents to the effective

parameters in CνNS are given in appendix C.

2 Coherent neutrino-nucleus scattering in the Standard Model

2.1 Cross section

In the Standard Model (SM), the Neutral Current (NC) interaction enables low energy

neutrinos with Eν <∼ 50 MeV (corresponding to length scales of >∼ 10−14 m) to interact

coherently with protons and neutrons in a nucleus, which significantly enhances the cross

section for a large nucleus. For a nucleus at rest with Z protons and N neutrons, the

coherent cross section [1, 2, 8] (see appendix A) is given by

dσ

dT
=
σSM

0

M

(
1− T

Tmax

)
, (2.1)

where σSM
0 is defined as

σSM
0 ≡

G2
F

[
N − (1− 4s2

W )Z
]2
F 2(q2)M2

4π
. (2.2)

2See e.g. https://indico.mpp.mpg.de/event/3121/session/3/contribution/18/material/slides/0.pdf for

details.
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Here GF , sW = sin θW , and M are the Fermi constant, the Weinberg angle, and the mass

of the nucleus, respectively. Since at low energies s2
W ≈ 0.238 [18], we have N−(1−4s2

W )Z

≈ N − 0.045Z, which implies that the cross section is dominated by the neutron number;

F (q2) is the form factor of the nucleus and its coherent limit (q2 → 0) is 1. For higher

energies, due to loss of coherence, it will be smaller than 1 (for a recent quantitative study,

see ref. [13]). The recoil energy T of the nucleus has a maximal value Tmax, determined by

the initial neutrino energy Eν and the nucleus mass M :

Tmax(Eν) =
2E2

ν

M + 2Eν
. (2.3)

For new physics beyond the SM, both eq. (2.1) and eq. (2.2) could be modified but eq. (2.3)

still holds since it is determined purely from relativistic kinematics.

Eq. (2.2) was derived under the assumption that the nucleus is a spin-0 particle [1]

(see also appendix A of this paper). However, this is not always true because a nucleus

with odd A = N+Z is a fermion, examples are 73Ge or 131Xe. In appendix B, we calculate

the simplest non-zero case, spin-1/2. It turns out that the difference is small, given by

dσ

dT

∣∣∣∣
spin= 1

2

=
dσ

dT

∣∣∣∣
spin=0

+
σSM

0

M

T 2

2E2
ν

. (2.4)

Thus, the only difference is a term proportional to T 2/E2
ν , which is usually negligible in

the coherence scattering process. In principle the nucleus could also be some higher spin

particle but based on eq. (2.4) it is reasonable to deduce that the difference should be

suppressed for a large nucleus.

2.2 Detection

Note that the recoil energy T is the only measurable effect of coherent neutrino scattering.

Depending on the type of detectors, the method to measure T is very different. We will

focus here on Germanium detectors which measure the ionization energy I, which is a

fraction of the deposited recoil energy T . The fraction is defined as the quenching factor

Q = I/T , typically within 0.15 to 0.3 for sub-keV recoil energies (see e.g. figures 5 and 7

in ref. [19]). The quenching factor at sub-keV energies is not well known due to lack of

experimental data. In typical models like the one proposed by Lindhard et al. [20], the

recoil energy depends on Q, so I = TQ(T ) would be a (not necessarily linear) function

of T . However, no matter what the exact form of the function I(T ) would be, once I

is measured, it can be converted to T , provided that this function has been theoretically

calculated [19] or experimentally measured.3 We assume that the quenching factor can be

measured precisely in the future, and thus use the recoil energy T rather than the ionization

energy I. All the results in our paper can be simply converted from the T -dependence to

the I-dependence, provided that the function I(T ) is determined.

3One approach to measure the quenching factor is to use neutron scattering, as performed in the

CDEX-TEXONO collaboration above keV energies. For more details see https://wwwgerda.mpp.mpg.de/

symp/20 Ruan.pdf. In the future sub-keV measurements will be performed.
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Figure 1. A typical reactor neutrino flux Φ, reduced ν − N scattering cross section σ̄ and their

product. Units are arbitrary.

Generally for all types of detectors there is a detection threshold on T , denoted as Tth.

Therefore, for a given Eν the recoil energy T of detected events should be within the range

Tth ≤ T ≤ Tmax and the measurable reduced total cross section is

σ̄(Tth, Eν) ≡
Tmax∫
Tth

dσ

dT
dT = σSM

0

(Tmax − Tth) 2

2MTmax
. (2.5)

Due to the threshold Tth, low energy neutrinos are impossible to detect if their energies

are lower than

Eν,th =
1

2

(√
2MTth + T 2

th + Tth

)
≈
√
M

2
Tth . (2.6)

For example, if Tth = 0.1 keV [12] then neutrinos should have Eν > Eν,th ≈ 2 MeV in

order to be detected in a Ge detector. On the other hand, if we consider reactor neutrinos,

the flux decreases exponentially at high energy. Therefore there is a limited range of Eν
for detection. To illustrate this, we plot in figure 1 the reduced cross section σ̄ [given

by eq. (2.5)], a typical reactor neutrino flux Φ and their product Φσ̄, which is essentially

proportional to the event rate. As figure 1 shows, the product Φσ̄ is small at both low

(2 MeV) and high (8 MeV) energies.

From the above discussion it is clear that the total event number decreases drastically

when the detection threshold Tth is increased. To show this, we compute the total event

numbers with different detection thresholds, plotted in figure 2, where one can see that

the event number drops by 2 orders of magnitude if Tth rises from 0.1 keV to 0.8 keV.

Therefore lowering the detection threshold is very crucial in order to obtain large event

numbers. For this plot we have assumed a 100 kg Ge detector located 10 m away from a 1

GW (thermal power) reactor and taking data for five years. For the neutrino flux Φ(Eν),

we have taken the spectrum from a recent theoretical calculation in ref. [21], normalized to

1.7 × 1013 cm−2 s−1 (corresponding to 10 m distance from the reactor). Those values will

serve as benchmark for our assumed future experiment, and can be used as a definition of

our assumed “exposure” of

exposure = 5 kg · yr ·GW ·m−2 . (2.7)

– 4 –
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Figure 2. Total number of events compared with background (1 cpd = 1 day−1 kg−1 keV−1). The

total number decreases significantly when the detection threshold increases. We assume a 100 kg

Ge detector located 10 m away from a reactor with 1 GW thermal power, taking data for five years.

For zero threshold, the total number of events is 3.8× 107.

In figure 2 we also show the effect of an assumed constant background of 1 cpd and 3 cpd

(1 cpd = 1 day−1 kg−1 keV−1). The background may come from various sources, such as

the intrinsic radioactivity of the material in the detector, ambient radioactivity near the

nuclear reactor or cosmic rays. Estimation of the background is very much involved and

depends significantly on the details of the detector. The GEMMA experiment [22] states a

background level of about 2 cpd and the TEXONO collaboration is aiming at developing a

Ge detector with a background of 1 cpd [10]. Note however that the mentioned background

numbers apply to somewhat different energy scales and different background sources. Tak-

ing into account the low background levels that various double beta decay and dark matter

direct detection exeriments have reached, plus noting the developements on active shielding

at shallow depth [23], we estimate that such low background rates can be achieved.

In reality, not only the total event number but also the distribution of events will be

measured, giving us a spectrum with respect to the recoil energy T . The spectrum provides

more information than the total event number. The advantage to exploit the spectrum is

that it is not influenced strongly by many uncertainties such as the flux normalization, the

distance and fiducial mass of the detector, the form factor, etc. All those effects can be

described roughly by an overall factor that enhances/reduces the total event number.

If the events are conservatively counted in many T -bins, the i-th bin with width ∆T

starting from Ti, then the expectation of the event number Ni in the i-th bin is

Ni = ∆tNGe
σSM

0

M

∫ Ti+∆T

Ti

dT

∫ 8 MeV

0
dEνΦ(Eν)fSM(T,Eν) . (2.8)

Here NGe is the number of Ge nuclei4 in the detector and ∆t is the running time of

detection, taken as 5 years. The neutrino flux Φ(Eν) has been taken from [21], and the

4Natural Germanium consists of 70Ge (20.52%), 72Ge (27.45%), 73Ge (7.76%), 74Ge (36.52%) and 76Ge

(7.75%). Here we take A = 72.6 in average. Note that spin-dependent axial couplings in the Standard

Model lead to smaller coherence factors depending on the spin of the nucleus, not on N or Z as the vector

interaction that gives the leading contribution, see appendix B. This will be a permille effect, see [17].
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Figure 3. Expectation of event numbers in a 100 kg Ge detector running for 5 years, assuming a

total flux of reactor neutrinos of 1.7×1013 cm−2 s−1. The background (black) is assumed to be 3 cpd.

dimensionless function fSM(T,Eν) is defined as [see eq. (2.1)]

fSM(T,Eν) =

{
1− T

Tmax(Eν) forT ≤ Tmax

0 forT > Tmax

. (2.9)

Note that when new physics beyond the SM is involved, one only needs to modify σSM
0

in eq. (2.8) and 1 − T
Tmax(Eν) in eq. (2.9) according to the new physics. Taking the flux

from ref. [21] and setting the background at constant 3 cpd, the event numbers computed

according to eq. (2.8) are presented in figure 3 as a function of T .

We should mention here that the calculation of the reactor neutrino flux is very com-

plicated. Though a lot of effort was spent to calculate the flux in the literature (see

e.g. [21, 24–27] and references therein), so far a very precise result is lacking, especially for

neutrino energies below 2 MeV where the error could be large as 7%. The best understood

range is from 2 MeV to 6 MeV, but still with 3% error. Recently, measurements from the

RENO [28, 29], Daya Bay [30] and Double Chooz [31] experiments showed disagreement

with the theoretical calculation around 5 MeV, the infamous 5 MeV bump. Its observa-

tion implies that we might have not fully understood the reactor neutrino flux. A particle

physics origin of the bump seems very unlikely. In the next few years, both the theoreti-

cal understanding and experimental measurement will be significantly improved [32–34] so

that the flux will be known more precisely and also the issue of the 5 MeV bump will be

resolved once our assumed future CνNS experiment is running. Anyway, the sensitivities

of coherent ν−N scattering on new physics depend very little on the presence of the bump.

A quantitative study on the influence of the 5 MeV bump is presented below.

3 Non-Standard Interactions in coherent ν −N scattering

Coherent ν−N scattering could provide very strong constraints on neutrino Non-Standard

Interactions (NSI). Those have been widely studied in the literature but so far the exper-

imental constraints on some of its parameters are still very poor (see the reviews [16]

and [35]), especially the couplings of neutrinos to quarks.

– 6 –
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In this work, only the neutrino-quark sector of NSI is relevant. The Lagrangian is

L ⊃ GF√
2

∑
q=u,d

ναγ
µ(1− γ5)νβ

[
εqVαβqγ

µq + εqAαβqγ
µγ5q

]
, (3.1)

where α, β are the three flavors of neutrinos, and εqVαβ , εqAαβ are the non-standard vector

and axial-vector coupling constants, respectively. Interpreting the NSI terms in analogy to

Fermi theory implies that the various ε are given by

ε ≈
g2
X

g2

M2
W

M2
X

, (3.2)

i.e. are related to new interactions mediated (for ε ∼ 0.1) by TeV-scale particles with mass

MX (gX denotes a new coupling constant). In neutrino oscillation experiments long-range

forces have a similar effect as matter-induced NSIs [36]. We note that such light mediators

could strongly affect the shape of the spectrum under study here, and thus distinguish

both possibilities.

When the NSI Lagrangian (3.1) is added to the SM, the CνNS differential cross section

is changed only by an overall factor. For the SM, the differential cross section is given in

eq. (2.1) which is proportional to σSM
0 given by eq. (2.2). For the NSI, following the calcu-

lation in appendix A, it is straightforward to obtain the result, which is simply replacing

σSM
0 with σNSI

0 , given by

σNSI
0 =

G2
FQ

2
NSIF

2(q2)M2

4π
. (3.3)

Here the modified weak charge QNSI is defined as

Q2
NSI ≡ 4

[
N

(
−1

2
+ εuVee + 2εdVee

)
+ Z

(
1

2
− 2s2

W + 2εuVee + εdVee

)]2

+ 4
∑
α=µ,τ

[
N(εuVαe + 2εdVαe ) + Z(2εuVαe + εdVαe )

]2
. (3.4)

Setting the ε to zero gives back the result from eq. (2.2). The axial vector couplings εqAαβ in

eq. (3.1) do not appear in eq. (3.4) because of parity symmetry being present in large nuclei

(see the discussion in appendix A). The cross section only depends on the vector couplings

εqVαβ , which for simplicity will be denoted by εqαβ henceforth. Even though this removes a

lot of parameters, we are still confronted with a six-dimensional parameter space,

−→ε ≡ (εuee, ε
d
ee, ε

u
µe, ε

d
µe, ε

u
τe, ε

d
τe) . (3.5)

So far the best constraints [16] on εqαe (α = e, τ) come from CHARM νe(νe)N inelastic

scattering [37]. The 3σ-limits are

−1.2 < εuee < 0.8, (3.6)

−0.7 < εdee < 1.4, (3.7)

−1.0 < εuτe < 1.0, (3.8)

−1.0 < εdτe < 1.0, (3.9)

– 7 –
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assuming that for each bound only the corresponding coupling is non-zero. As one can see,

these bounds are typically of order one. For the µ flavor, the best constraints are from

µ−Ti→ e−Ti [16, 38],

|εueµ|, |εdeµ| < 1.4× 10−3, (3σ). (3.10)

This bound comes from a 1-loop diagram including the four fermion vertex of |εqeµ|. As a

consequence, the result depends on the scale Λ of the underlying UV complete model (recall

that NSI in eq. (3.1) are non-renormalizable). In ref. [16] it is assumed ln(Λ/mW ) ≈ 1 to

obtain this bound.

To understand how NSI affect CνNS, we study the dependence of σNSI
0 on the six

parameters in eq. (3.5) with several plots in figure 4. Each plot displays the ratio σNSI
0 /σSM

0

as a function of two ε in eq. (3.5), while the other four ε are set to zero. Note that eq. (3.4)

is symmetric under exchange of µ and τ , thus we combine plots for εqµe and εqτe since for

coherent ν −N scattering they have the same effect.

From the top two panels in figure 4 one can see that there is one direction (the green

line) in which σNSI
0 /σSM

0 is always equal to 1, approximately at εuαe ≈ −εdαe. Under the

approximation that N/Z ≈ 1 one can immediately derive this relation from eq. (3.4). It

implies that CνNS does not have any sensitivity on NSI parameters along this direction,

which has already been discussed in refs. [5, 9]. In the other panels, the direction with

σNSI
0 /σSM

0 = 1 also exists but in the form of a curve rather than a straight line. Therefore,

degeneracies are present, which in case the NSI actually exist would need to be broken by

other experiments, most notably neutrino oscillation experiments.

Figure 4 also shows that the ratio σNSI
0 /σSM

0 could significantly deviate from 1. Even

for small values of ε in the range (−0.1, 0.1), σNSI
0 could vanish (σNSI

0 /σSM
0 = 0) or rise to

twice the SM value (σNSI
0 /σSM

0 = 2). Therefore once coherent ν−N scattering is observed,

it will provide a significant constraint on NSI parameters. Besides, among the six plots in

figure 4, only the top right one does not include σNSI
0 /σSM

0 < 1, which implies that if the

measured cross section is lower than the SM value, then εuee or εdee have to be non-zero in

order to explain the deficit by NSI. A statistical analysis of the sensitivity on NSI will be

performed in section 5.

4 Exotic neutral currents in coherent ν −N scattering

Apart from the NSI which only couple neutrinos to quarks in (chiral) vector form, more

“exotic” new interactions could be present. There are five types of possible interactions,

scalar (S), pseudo-scalar (P ), vector (V ), axial-vector (A), and tensor (T ) interactions:5

L ⊃ GF√
2

∑
a=S,P,V,A,T

ν Γaν
[
qΓa(C(q)

a +D
(q)
a iγ5)q

]
, (4.1)

5To make the following calculation more compact, we assume that the SM neutral current interaction is

included in eq. (4.1) rather than adding eq. (4.1) to the SM Lagrangian. As a consequence, in the SM C
(q)
a

and D
(q)
a are non-zero.

– 8 –
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Figure 4. The effect of NSI parameters on the cross section ratio σNSI
0 /σSM

0 . The lower four plots

are similar, because a large nucleus is almost symmetric with respect to u↔ d.

where q stands for u and d quarks and

Γa =

{
I, iγ5, γµ, γµγ5, σµν ≡ i

2
[γµ, γν ]

}
. (4.2)

In analogy to eq. (3.2), the C
(q)
a and D

(q)
a are expected to be of order (g2

X/g
2) (M2

W /M
2
X),

with new exchange particles MX and coupling constants gX . The coefficients C
(q)
a and D

(q)
a

in eq. (4.1) are dimensionless and in principle can be complex numbers. However if the inter-
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action term is not self-conjugate, it would be added by its complex conjugate, which is pro-

portional to νΓaν
[
qΓa(C

(q)∗
a +D

(q)∗
a iγ5)q

]
for a=S, P, T and νΓaν

[
qΓa(C

(q)∗
a −D(q)∗

a iγ5)q
]

for a = V, A. Since C
(q)∗
a +C

(q)
a , D

(q)
a +D

(q)∗
a and i(D

(q)
a −D

(q)∗
a ) are real numbers, without

loss of generality we can take C
(q)
a and

D(q)
a ≡

{
D

(q)
a (a = S, P, T )

iD
(q)
a (a = V, A)

(4.3)

as real numbers. We will assume for simplicity that C
(u)
a = C

(d)
a and D

(u)
a = D

(d)
a . This

still leaves us with 10 free parameters.

A subtle issue related to σµν and σµνγ5 should be clarified here. When the tensor νσµνν

is coupled to qσµνq, there are two possibilities, νσµννqσµνq and εµνρσνσµννqσρσq. On the

other hand, there could be new interactions such as νσµνγ5νqσµνq and νσµνγ5νqσµνγ
5q,

which seem not to be included in eq. (4.1). But due to the identity

σµνiγ5 = −1

2
σρσε

µνρσ (4.4)

all these new possibilities can be transformed into the tensor form appearing in eq. (4.1):

νσµνγ5νqσµνq =
i

2
εµνρσνσρσνqσµνγ

5q = νσµννqσµνγ
5q . (4.5)

Since the coherent nature of the scattering requires low energy, we can treat the nucleus

in the coherent scattering as a point-like particle. Depending on the spin of the nucleus,

it can be described by a scalar field, a Dirac field or even higher spin fields. As we have

shown in eq. (2.4), for low energy scattering the difference of treating the nucleus as a

spin-0 or spin-1/2 particle is negligible, and in fact identical to order (T/Eν)2. In the

following calculation we will treat the nucleus as a spin-1/2 particle since for automatic

calculation implemented by packages (we use both FeynCalc [39, 40] and Package-X [41])

it is technically simpler than the scalar treatment. Consequently, the effective Lagrangian

of neutrino-nucleus interactions has the same form as eq. (4.1) with q replaced by the Dirac

field ψN of the nucleus, i.e.

L ⊃ GF√
2

∑
a=S,P,V,A,T

νΓaν
[
ψNΓa(Ca +Daiγ

5)ψN
]
. (4.6)

Note that to define the effective couplings of ψN to ν, here we use (Ca, Da) which should be

related to the more fundamental couplings (C
(q)
a , D

(q)
a ). Since the relations are lengthy and

also involve form factors, we present them in appendix C. From now on, we will consider

Ca and Da as parameters of interest, and will present results in terms of those. We are

not aware of literature limits on the parameters, which would have been obtained from

past neutrino-nucleon scattering experiments. Since the event numbers in our benchmark

experiment are much larger than in such experiments, the sensitivities we will derive later

would surely be orders of magnitude better.

– 10 –



J
H
E
P
0
3
(
2
0
1
7
)
0
9
7

From eq. (4.6), we can write down the scattering amplitude,

iMs′sr′r = −iGF√
2
vs(p1)PRΓavs(k1)ur

′
(k2)Γa(Ca +Daiγ

5)ur(p2) . (4.7)

Note that for general interactions, the coherent cross sections of νN and νN are different

[in the SM coherent νN and νN cross sections are the same due to the approximate parity

symmetry in nuclei, see comments after eq. (B.3)]. Since we are studying the coherent

scattering of reactor neutrinos, only right-handed antineutrinos are considered. Therefore

we have attached a PR = (1 + γ5)/2 projection to the initial neutrino state vs(p1), so that

the trace technology applies,

|M|2 =
∑
ss′

1

2

∑
rr′

|Ms′sr′r|2 . (4.8)

The result is given by

dσ

dT
=
GF

2M

4π
N2

[
ξ2
S

MT

2Eν2

+ ξ2
V

(
1− T

Tmax

)
− 2ξV ξA

T

Eν
+ ξ2

A

(
1− T

Tmax
+
MT

Eν2

)
+ ξ2

T

(
1− T

Tmax
+
MT

4Eν2

)
−R T

Eν
+O

(
T 2

E2
ν

)]
, (4.9)

where

ξ2
S =

1

N2
(C2

S+D2
P ), ξ2

T =
8

N2

(
C2
T +D2

T

)
, ξV =

1

N
(CV−DA), ξA =

1

N
(CA−DV ) (4.10)

and

R ≡ 2

N2
(CPCT − CSCT +DTDP −DTDS) . (4.11)

As we can see, the cross section only depends on 5 parameters,
−→
ξ ≡ (ξS , ξV , ξA, ξT , R),

compared to the 10 parameters in eq. (4.6).

The first three lines of eq. (4.9) come from scalar and pseudo-scalar, vector and axial

vector, and tensor interactions respectively while the R term is an interference term of the

(pseudo-) scalar and tensor interactions. Despite that ξS contains both scalar and pseudo-

scalar contributions, for simplicity we will refer to ξ2
S as the scalar interaction of neutrinos

with nuclei. In the same way, though the vector couplings (CV , DV ) and the axial vector

couplings (CA, DA) all appear in (ξV , ξA), we still call ξ2
V and ξ2

A the vector and axial

interactions, respectively.

Comparing eq. (4.9) to eq. (2.1), we obtain the SM values of these parameters,

−→
ξ SM ≡ (0, 1− (1− 4s2

W )Z/N, 0, 0, 0) ≈ (0, 0.962, 0, 0, 0) , (4.12)

where the number 0.962 is computed for Germanium, i.e. by taking N = 40.6, Z = 32 and

s2
W = 0.238.
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Figure 5. Effect of exotic neutral currents near the threshold. We plot dσ
dT as a function of Eν

according to eq. (4.9) with fixed threshold Tth = 0.2 keV, corresponding to Eν >∼ 2.7 MeV for

neutrinos. At Eν = 2.7 MeV, T = Tmax and the cross section (2.1) in the SM vanishes. For exotic

neutral currents the cross section (4.9) does not vanish for T = Tmax. The parameters are
−→
ξ =

−→
ξ SM

for the blue curve and
−→
ξ = (0.4, 1, 0.1, 0.1, 0) for the red curve.

There are some noteworthy comments to make from eq. (4.9):

• There is no interference term of (axial) vector interactions with other interactions.

But the vector interaction interferes with the axial interaction.

• The energy dependence of the ξ2
V term is the same as that in the SM [cf. eqs. (2.1)

and (2.3)]. Hence, new vector interactions will not distort the recoil energy spectrum.

• The other terms (i.e. scalar, axial, tensor interaction terms and two interference

terms) have different energy dependence. If any distortion on the recoil energy spec-

trum would be observed, then these new interactions could be the explanation.

• For vector interactions, dσ
dT is zero at Tmax(Eν) [defined in eq. (2.3)] but it could be

non-zero if other types of interactions exist. This is shown in figure 5 where at the

threshold the cross section is seen to be zero (blue curve) for the SM but non-zero

(red curve) if other types of exotic neutral currents exist.

• Introducing exotic neutral currents (except for vector interactions) can not reduce

the cross section since the sum of the other terms besides the ξ2
V term in eq. (4.9) is

always above zero. So if the observed events are less than the expectation from the

SM, one should consider modifications only limited to the vector sector rather than

introducing scalar or tensor interactions.

The various modifications we have discussed so far (NSI, exotic neutral currents and

the 5 MeV bump) can influence the event numbers. In figure 6 we illustrate this for three

examples. A feature of NSI is that they could result in a significant deficit (excess is also

possible) of the event number, whereas exotic neutral currents only lead to an excess if ξV
is fixed at its SM value. In principle exotic neutral currents could also lead to a deficit

by lowering ξV , but this is indistinguishable from the NSI case. The 5 MeV bump in the

neutrino flux also leads to an excess, but is not very significant. Here we take the size of
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Figure 6. Event excess/deficit due to several possible modifications. The pink color is for deficit

and dark blue for excess.
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Figure 7. Distortion of the spectrum due to exotic neutral currents and the 5 MeV bump. The

red, black and blue curves correspond to scalar, axial vector and tensor interactions in addition to

the SM. The green curve is produced by including the 5 MeV bump in the neutrino flux, taken

from ref. [34].

the 5 MeV bump from a recent fit in ref. [34] (given by its figure 2). The excess in the 0.10–

0.15 keV bin is only about 1%, which can be easily hidden in the systematic uncertainties.

As mentioned before, since other experiments will collect with different reactor types a

large amount of event numbers around the 5 MeV bump, it is very likely that before a

highly sensitive Ge detector with very small systematic uncertainties is running, the 5 MeV

bump problem will be solved (both in theory and experiment).

Another important difference is that the above three cases have very different effects

on the distortion of the spectrum. NSI will not lead to any distortion at all since it only

changes the overall factor in the differential cross section while the other two cases, exotic

neutral currents and the 5 MeV bump, lead to different distortions. In figure 7 we show

variations of the event ratio N/N0 as a function of T in several situations, where N0 is the

event number expected from for the SM and N includes new interactions or the 5 MeV

bump. For exotic neutral currents, we plot three examples to illustrate the effects from

scalar, axial vector and tensor interactions with ξS = 0.18, ξA = 0.12 and ξT = 0.20

respectively. All the other parameters, if not mentioned, have been set to the SM values

given by eq. (4.12). As one can see, for exotic neutral currents the ratios increase with T

but the slopes are different. Scalar interactions would produce the strongest distortion on
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the spectrum followed by axial vector and then tensor. The 5 MeV bump also generates an

increasing ratio with respect to T below 0.45 keV. However, the ratio drops down at higher

energies and finally reaches 1. The reason is that neutrinos at 5 MeV will only contribute

to the events below 0.7 keV [cf. eq. (2.3)]. Thus in the range close to but less than 0.7 keV,

the events from the 5 MeV bump should quickly decrease. If all neutrinos in the bump

only had energies exactly at 5 MeV, then the contribution should completely vanish above

0.7 keV. However, taking the width of the bump into consideration, the actual limit is a

little higher than 0.7 keV.

5 Sensitivities from a χ2-fit

In this section, we will adopt χ2-fit to study the sensitivities of such our assumed future ex-

periment. For convenience, let us state again our assumed exposure of 5 kg · yr ·GW ·m−2

from eq. (2.7), corresponding e.g. to a 100 kg Germanium detector running for 5 years,

located at a distance of 10 m from a reactor with 1 GW thermal power, normalized to a

total flux of 1.7 × 1013 cm−2 s−1. We will assume different thresholds of T = 0.1, 0.2 or

0.4 keV, and a constant background of 3 cpd = 3 day−1 kg−1 keV−1.

5.1 Statistical treatment

Because the event number in each bin is very large, and thus almost in a Gaussian distri-

bution, we can take the following χ2-function

χ2(ξ, a) =
a2

σ2
a

+
∑
T bins

[(1 + a)Ni(ξ)−N0
i ]2

σ2
stat,i + σ2

sys,i

, (5.1)

where ξ denotes generally the parameters of interest, e.g. εqαβ for the NSI case or (ξS , ξV ,

ξA, T , R) for exotic neutral currents. The event numbers in each bin as expected in the

SM are denoted as N0
i . The statistical uncertainty σstat,i and the systematic uncertainty

σsys,i of the event number in the i-th bin are given by

σstat,i =
√
Ni +Nbkg, i , σsys,i = σf (Ni +Nbkg, i) . (5.2)

Here the background Nbkg, i is set at 3 cpd (1 cpd = 1 day−1 kg−1 keV−1). We assume that

σsys,i is proportional to the event number with a coefficient σf . Many systematic uncer-

tainties simply change the total event number without leading to strong distortions of the

spectrum, e.g. the uncertainties from the evaluation of the total flux of neutrinos, nuclear

fuel supply, detection efficiency, fiducial mass of the detector, distance and geometry correc-

tions, etc. To describe this part of systematic uncertainties, we introduce a normalization

factor a with a small uncertainty σa, while the other systematic uncertainties remain in

σsys,i. Of course in a more realistic study one should parametrize specifically the effect of

every systematic uncertainty, some of which can not be described by this approach. For

the current stage, we simply adopt eq. (5.1) for our sensitivity study, which nevertheless

should provide realistic results.
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Figure 8. Sensitivity on the cross section ratio σ0/σ
SM
0 . The blue solid, black solid and blue

dashed curves are generated with a conservative configuration (σa, σf , Tth) = (5%, 3%, 0.4 keV),

an intermediate configuration (σa, σf , Tth) = (2%, 1%, 0.2 keV) and an optimistic configuration

(σa, σf , Tth) = (0.5%, 0.1%, 0.1 keV), respectively.

It is sometimes useful to know the value of a at the minimum of χ2 analytically, which is

amin =

∑
i(N

0
i −Ni)Ni/(σ

2
stat,i + σ2

sys,i)

σ−2
a +

∑
iN

2
i /(σ

2
stat,i + σ2

sys,i)
. (5.3)

One can use eq. (5.3) to marginalize a and obtain the χ2-function that we are actually

interested in,

χ2(ξ) ≡ χ2(ξ, amin) . (5.4)

If coherent ν−N scattering has been successfully detected, the first task is to compare

the measured total cross section σ0 with the SM prediction σSM
0 in eqs. (2.1) and (2.2). The

ratio σ0/σ
SM
0 indicates any deviation from the SM. One can compute the above χ2-function

to estimate the sensitivity on this ratio (ξ in this case simply stands for σ0). The result is

shown in figure 8, where we have assumed three different configurations:

(i) conservative configuration: (σa, σf , Tth) = (5%, 3%, 0.4 keV).

(ii) intermediate configuration: (σa, σf , Tth) = (2%, 1%, 0.2 keV).

(iii) optimistic configuration: (σa, σf , Tth) = (0.5%, 0.1%, 0.1 keV).

Even in the conservative configuration, the experiment can measure σ0/σ
SM
0 with good

precision, 0.862 < σ0/σ
SM
0 < 1.187 at 3σ. In the intermediate case, 0.942<σ0/σ

SM
0 <1.065,

while for the optimistic case 0.985 < σ0/σ
SM
0 < 1.015, all at 3σ. As it turns out, the

improvement in sensitivity on new physics parameters between the conservative and in-

termediate configuration is about a factor of two. Roughly another factor of two can be

gained when going from the intermediate configuration to the somewhat overly optimistic

one. The choices we made for the various configurations should therefore give a feeling on

the final sensitivity of such experiments.
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Figure 9. Sensitivity on the electroweak mixing angle sin2 θW . The central value (red line) is the

literature value of 0.238 and the blue solid and dashed curves denote 3σ-bounds in the conservative

and optimistic configuration, respectively.

5.2 Low energy determination of the Weinberg angle

The measurement of σ0 can also be converted into a measurement of the electroweak angle

sin2 θW according to eq. (2.2), which would provide important complementary insight into

electroweak precision observables at low energies. In figure 9 we show the sensitivity of this

experiment on sin2 θW , assuming its SM value at low scale of 0.238 (red line). The blue

curves represent 3σ-bounds, solid for a conservative configuration (σa, σf ) = (5%, 3%) and

dashed for a optimistic one (σa, σf ) = (0.5%, 0.1%). From figure 9 we can see that in the

conservative configuration sin2 θW is expected to be measured, depending on the threshold,

to a good precision between 10% and 20%, while in the optimistic configuration, this would

be improved roughly by an order of magnitude. For a threshold of 0.1 keV, the precision at

3σ is ±0.0022, or about 1%, to be compared with the dedicated P2 experiment [42], which

aims at a 1σ precision of 0.13%.

5.3 Non-Standard Interactions

The effect of the conventional NSI, as we have discussed in section 3, is merely a correction

on the overall factor σSM
0 . The dependence of σNSI

0 on various ε parameters has been studied

in section 3 and was displayed in figure 4. We will study here the sensitivities of each ε

individually, assuming that all others are zero. The sensitivities on the NSI parameters

in both the conservative and optimistic configurations are presented in figure 10. The left

panel is for εqee with q = u or d. The right panel is for εqαe with α = µ or τ , the cases

are indistinguishable. The left panel of figure 10 shows that the CνNS experiment in the

conservative configuration could constrain εqee to order 10−2, much better than the current

best bounds given in eqs. (3.6) and (3.7), which are typically of order 1. If one takes the

optimistic configuration, then the constraint would reach the order of 10−3. The constraints
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Figure 10. Sensitivities on the conventional NSI parameters (3σ). The solid and dashed curves

are generated for a conservative and optimistic configuration, respectively.

on εqµe and εqτe, however, are relatively weaker, about 0.07 to 0.10 (0.02 to 0.03) for the

conservative (optimistic) configuration. This can be easily understood from the form of

QNSI in eq. (3.4). For the τ -channel, this is still a significant improvement compared to

the current bound in eqs. (3.8) and (3.9) while for the µ-channel, the current known bound

is already very strong [see eq. (3.10)]; therefore, even if we take the optimistic estimation,

the constraint would not exceed the known bound.

To summarize the comparison discussed above, we plot those bounds in figure 11.

The blue and dark blue bars shows the 3σ bounds from our assumed CνNS experiment

with conservative and optimistic configuration, respectively. The light blue bars represent

the best known bounds from the review [16], see eqs. (3.6) and (3.10). We also add the

expected bounds [43] from the future long-baseline neutrino experiment DUNE in the

plot. The sensitivity of DUNE on NSI is based on the modified matter effect of neutrino

oscillations caused by NSI parameters. The parameter set constrained by DUNE is actually

εαβ ≡
∑

f=u,d,e

εqαβ
nf
ne
≈ 3εuαβ + 3εdαβ + εeαβ , (5.5)

where nf is the number density of the corresponding fermion f . Their relative density ratio

(nu : nd : ne) is approximately (3 : 3 : 1) in the Earth crust. Focusing on one parameter at

a time, the limits on εαβ from ref. [43] can be translated into limits on εqαβ . This serves to

compare the sensitivities and is displayed in figure 11. Even the conservative configuration

improves the bounds on εu,dτe and εu,dee considerably beyond current limits and future DUNE

sensitivities. The limits obtainable in our benchmark experiment are summarized in table 1.

5.4 Exotic neutral currents

Next we shall study the sensitivity on the exotic neutral currents discussed in section 4.

The cross section (4.9) only depends on 5 effective parameters (ξS , ξV , ξA, ξT , R), and we

will perform a χ2-fit on those. Similar to the NSI analysis, we will focus on one type of

exotic interactions at a time. However, in our parametrization ξV is necessarily non-zero

as it includes the SM contribution. So each time we take two non-zero parameters in the

fit. One is ξV and the other one is from exotic couplings. We also take R to zero since

– 17 –



J
H
E
P
0
3
(
2
0
1
7
)
0
9
7

Figure 11. NSI sensitivities compared with the latest known bounds and the expected constraints

from DUNE [43]. The label “latest bound” indicates the known constraints from ref. [16]. “ν-Ge,

opti.” and “ν-Ge, cons.” are estimated sensitivities of our assumed 100 kg Ge detector running for

5 years with optimistic and conservative configurations, respectively.

εuee εdee εuµe εdµe εuτe εdτe

Conservative 1.7× 10−2 1.5× 10−2 8.1× 10−2 7.5× 10−2 8.1× 10−2 7.5× 10−2

Intermediate 6.0× 10−3 5.5× 10−3 4.8× 10−2 4.4× 10−2 4.8× 10−2 4.4× 10−2

Optimistic 1.4× 10−3 1.3× 10−3 2.3× 10−2 2.1× 10−2 2.3× 10−2 2.1× 10−2

Latest bound [16] 0.8 0.7 1.4× 10−3 1.4× 10−3 1.0 1.0

DUNE [43] 0.8 0.8 0.04 0.04 0.2 0.2

Table 1. 3σ-bounds on NSI parameters.

non-zero R would stem from the interference of scalar and tensor interactions, i.e., would

require the coexistence of two new interactions. Therefore we only consider three cases,

(ξS , ξV ), (ξA, ξV ), and (ξT , ξV ).

The result is given in figure 12 with both the conservative (left panels) and optimistic

(right panels) configurations taken. In the conservative configuration, the sensitivity on

ξV is correlated with the other parameters. For example, if ξT = 0 then ξV would be only

allowed to stay in the regime 0.88 < ξV < 1.06 at 99.7% confidence level; if there is a

sizable contribution from the tensor interaction with, say, ξT = 0.42 then ξV is allowed

to significantly deviate from the SM value, going down to 0.68. The correlation could be

avoided if the systematic uncertainties and the threshold are improved to the optimistic

configuration, as is shown in the right panels of figure 12. The qualitative explanation

is that for large systematic uncertainties, the sensitivity will mainly depend on the total

event number while the constraint from the spectrum information is not significant. In this

case the tensor interaction will mimic the vector interaction in the signal, since they both

contribute to the total event number. If the systematic uncertainties are small enough so

that the spectrum is also measured to good accuracy, then the spectrum information could
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Figure 12. Sensitivity on the exotic neutral currents. The green and black contours correspond

to 99.7% and 90% exclusion bounds. Left (right) panels are generated under the conservative

(optimistic) configuration.
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ξS ξV ξA ξT

Conservative 0.21 (0.893, 1.048) 0.14 0.25

Intermediate 0.11 (0.934, 0.993) 7.8× 10−2 0.14

Optimistic 4.4× 10−2 (0.955, 0.970) 3.1× 10−2 5.9× 10−2

Table 2. 3σ-bounds on exotic neutral current parameters, see eq. (4.9). The SM value of ξV is 0.962.

distinguish the contribution of the tensor interaction from the vector interaction. The same

argument also applies for the other two cases (ξS , ξV ) and (ξA, ξV ). Therefore in future

CνNS experiments reducing the systematic uncertainties is very important to distinguish

signals from new exotic interactions and the SM interaction. The limits obtainable in our

benchmark experiment are summarized in table 2.

6 Conclusion

Future coherent neutrino-nucleus scattering experiments will provide exciting new data

to test Standard Model and new neutrino physics to unprecedented accuracy. We have

assumed here a future experiment with a low threshold (down to 0.1 keV nuclear recoil)

Germanium detector, with experimental benchmark numbers of 500 kg × years × GW

reactor neutrinos and a baseline of 10 m. We firmly believe that such a setup is achievable

within the next decade, and it will provide event numbers of the order of 105. Constraints

on neutrino non-standard interactions and exotic neutral current interactions were evalu-

ated. The expected sensitivities were shown to reach percent and permille level when com-

pared to Fermi interaction, significantly better than expected constraints from oscillation

experiments. We have demonstrated that such comparably compact coherent scattering

experiments open a new window into exciting physics and should be pursued actively.
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A Cross section calculation of coherent ν−N scattering in the Standard

Model

In the SM, the neutral current (NC) is

JµNC = 2
∑
f

gfLfLγ
µfL + gfRfRγ

µfR (A.1)

=
∑
f

fγµ(gfV − g
f
Aγ

5)f , (A.2)
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where f stands for all elementary fermions in the SM and fL,R are their left/right-handed

components,

fL =
1− γ5

2
f , fR =

1 + γ5

2
f . (A.3)

Here gfL,R are determined by the quantum numbers of the corresponding fermions under

SU(2)L ×U(1)Y :

gνL =
1

2
, gνR = 0, geL = −1

2
+ s2

W , geR = s2
W . (A.4)

guL =
1

2
− 2

3
s2
W , guR = −2

3
s2
W , gdL = −1

2
+

1

3
s2
W , gdR =

1

3
s2
W . (A.5)

The vector/axial couplings gfV,A are defined as

gfV = gfL + gfR , g
f
A = gfL − g

f
R . (A.6)

At low energies the effective NC interaction is

LNC =
GF√

2
JµNCJNCµ , (A.7)

therefore the amplitude of the coherent ν −N scattering is

iM(ν +N → ν +N) = −i
√

2GF 〈N(k2)|JµNC|N(p2)〉〈ν(k1)|JNCµ|ν(p1)〉 , (A.8)

where p1, k1, p2, k2 are the momenta of the initial neutrino, final neutrino, initial nucleus

and final nucleus, respectively.

The matrix element 〈N(k2)|JµNC|N(p2)〉 only depends on the quark sector in JµNC since

the nucleus is a bound state of many u and d quarks. So we have

〈N |JµNC|N〉 = guL〈N |uLγµuL|N〉+ guR〈N |uRγµuR|N〉
+ gdL〈N |dLγµdL|N〉+ gdR〈N |dRγµdR|N〉 . (A.9)

Assuming that the nucleus does not violate parity, we have

〈N |uLγµuL|N〉 = 〈N |uRγµuR|N〉, 〈N |dLγµdL|N〉 = 〈N |dRγµdR|N〉. (A.10)

Note that generally |N〉 does not have to respect parity symmetry. For example, if the

whole nucleus is a spin-1/2 fermion then it is impossible for |N〉 to be invariant under the

parity transformation which would flip the orientation of the spin. Even if the nucleus is a

spin-0 particle, for the u quarks the number of spin-up could be different from the number

of spin-down.6 However, for a nucleus with a large mass number A, it contains many u

and d quarks so that statistically we expect that they form a large object (the nucleus)

that approximately respects parity.

6Besides, the distribution of protons and neutrons in a nucleus is not spherical, though it tends to be

more spherical with increasing atomic number.
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Another relation we will use is

〈N |uγµu|N〉
〈N |dγµd|N〉

=
2Z +N

2N + Z
, (A.11)

where N is the number of neutrons and Z the number of protons in the nucleus. Note

that in a nucleus with N neutrons and Z protons, the numbers of u and d quarks are

2Z + N and 2N + Z respectively. Their ratio must be identical to the ratio of the above

matrix elements if all the quarks are free particles. Since the strong interaction can not

distinguish u quarks and d quarks, we assume that this relation holds for the bound quarks

in the nucleus as well.

From eq. (A.11) we can write down

〈N |uγµu|N〉 = (2Z +N)fµ, 〈N |dγµd|N〉 = (2N + Z)fµ , (A.12)

where fµ can be determined by the electromagnetic property of the nucleus. Let us first

consider the electromagnetic current

JµEM =
2

3
uγµu+

−1

3
dγµd . (A.13)

From the Feynman rules of a complex scalar field with a gauged U(1) symmetry we know

that the interaction vertex of the gauge boson with the scalar field should be proportional

to (p2 + k2)µ. Therefore we have

〈N(k2)|JµEM|N(p2)〉 = (p2 + k2)µQnuclF (q2) , (A.14)

where Qnucl = Z is the electric charge of the nucleus and qµ is the momentum transfer,

defined as qµ ≡ kµ2 − p
µ
2 . From eqs. (A.12), (A.13) and (A.14), we obtain the form of fµ:

fµ = (p2 + k2)µF (q2) . (A.15)

For very soft photons (q2 → 0) in the electromagnetic interaction, the nucleus radius rnucl is

much smaller than the electromagnetic wavelength so that it can be treated as a point-like

particle, with electric charge Qnucl. Therefore for a very soft momentum transfer we have

F (q2 � 1/r2
nucl) ≈ 1 . (A.16)

With eqs. (A.10), (A.12) and (A.15), eq. (A.9) can now be written as

〈N(k2)|JµNC|N(p2)〉 = F (q2)(p2 + k2)µ
[
(2Z +N)guV + (2N + Z)gdV

]
= F (q2)(p2 + k2)µ

[
ZgpV +NgnV

]
, (A.17)

where

gpV =
1

2
− 2s2

W gnV = −1

2
. (A.18)

Some references [9, 15] define the weak charge QW which is

QW = −2(ZgpV +NgnV ) = N − (1− 4s2
W )Z . (A.19)
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Now we can continue the evaluation of eq. (A.8)

iMss′(ν+N → ν+N) = i

√
2

2
GFQWF (q2)gνL(p2 + k2)µvs(p1)γµ(1− γ5)vs

′
(k1) , (A.20)

where s and s′ are the helicities of the initial neutrino and final neutrino, both left-handed.

When computing |iM|2 we can also use the trace technology since the right-handed case

should vanish due to the V −A coupling of neutrinos in eq. (A.20),

|iM|2 =
∑
ss′

|iMss′ |2 . (A.21)

One can evaluate it immediately:7

|iM|2 = 32G2
FQ

2
WF

2(gνL)2M2E2
ν

(
1− T

Eν
− MT

2E2
ν

)
, (A.22)

where M is the nucleus mass and Eν the neutrino energy; T is the recoil energy of the

nucleus, which can be related to cθ ≡ cos θ, where θ is defined as the scattering angle

between the momenta of the initial neutrino and final nucleus,

T =
2ME2

νc
2
θ

(M + Eν)2 − E2
νc

2
θ

. (A.23)

For a given value of Eν , the maximal recoil energy Tmax is reached at θ = 0:

Tmax(Eν) =
2E2

ν

M + 2Eν
. (A.24)

In the form factor F (q2), q2 is needed, which can be expressed in terms of T as q2 = −2MT .

The differential cross section in the laboratory frame is

dσ

dcθ
=
|M|2

8π

cθ(Eν +M)2[
(M + Eν)2 − E2

νc
2
θ

]2 , (A.25)

or
dσ

dT
=

|M|2

32πME2
ν

. (A.26)

With the result in eq. (A.22) we have

dσ

dT
=
G2
F (2gνLQW )2F 2(q2)

4π
M

(
1− T

Eν
− MT

2E2
ν

)
. (A.27)

We have finally arrived at the expression of the SM cross section in eqs. (2.1)–(2.3).

Finally, considering that Eν � M , many expressions can be simplified under this

approximation. From eqs. (A.23) and (A.24) we have

T ≈ Tmaxc
2
θ (A.28)

and

1− T

Eν
− MT

2E2
ν

≈ sin2 θ +O
(
E2
ν

M2

)
, (A.29)

which gives
dσ

dT
≈ σSM

0

M
sin2 θ . (A.30)

7Some kinetic relations are needed in the calculation, including q2 = 2MT and p1 · q = −p2 · q = q2/2.

The former is from p2 · k2 = M(M + T ) and the latter is from the on-shell conditions of k1 and k2.
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B What if N is a spin-1/2 or spin-1 particle?

We may ask whether non-zero spins have a significant effect on the calculation presented

above or not. An intuitive estimation is that it should be only a weak effect. The reason

is that a large nucleus contains many spin-1/2 fermions, i.e. protons and neutrons. They

form the nucleus in which the proton and neutron spins almost cancel. If one proton flips

its spin, the nucleus spin would be changed e.g. from 0 to 1. Since we expect that the

coherent ν −N scattering is insensitive to the status of a single proton inside the nucleus,

we suspect that there should be no significant difference between zero and non-zero spins,

as long as the non-zero spin is not very high.

For a spin-1/2 nucleus, eq. (A.17) is modified to

〈N(k2, r
′)|JµNC|N(p2, r)〉 = F (q2)ur

′
(k2)γµur(p2)

[
ZgpV +NgnV

]
, (B.1)

where ur
′
(k2) and ur(p2) denote the finial and initial states of the Dirac particle, i.e., the

spin-1/2 nucleus. Then eq. (A.20) is changed to

iMr′rss′(ν+N → ν+N) = i

√
2

2
GFQWF (q2)gνL

[
ur

′
(k2)γµur(p2)

][
us

′
(k1)γµ(1−γ5)us(p1)

]
.

(B.2)

The above amplitude is for neutrinos while for antineutrinos it should be

iMr′rss′(ν+N → ν+N) = i

√
2

2
GFQWF (q2)gνL

[
ur

′
(k2)γµur(p2)

][
vs(p1)γµ(1−γ5)vs

′
(k1)

]
.

(B.3)

Eq. (B.2) and eq. (B.3) essentially give the same |M|2 and thus the same cross section,

as one can check by direct computation. The reason is due to the assumption that the

interaction of the nucleus with the Z boson is parity-conserved. If there is axial current

in eq. (B.1), i.e., a γµγ5 between ur
′
(k2) and ur(p2) then the νN and νN cross sections

would be different.

After evaluating the traces of the Dirac matrices in the amplitude, we get

|M|2 =
∑
ss′

1

2

∑
rr′

|iMr′rss′ |2 = 32G2
FQ

2
WF

2(gνL)2M2E2
ν

(
1− T

Eν
− MT

2E2
ν

+
T 2

2E2
ν

)
, (B.4)

and then

dσ

dT

∣∣∣∣
spin-1/2

=
G2
F (2gνLQW )2F 2(q2)

4π
M

(
1− T

Eν
− MT

2E2
ν

+
T 2

2E2
ν

)
. (B.5)

This is the result for a spin-0 nucleus plus small negligible corrections, see eq. (2.4).

C Relations of (Ca, Da) with (C(q)
a , D

(q)

a )

In section 4 when discussing exotic neutral currents we defined the nucleus couplings

(Ca, Da) and the quark couplings (C
(q)
a , D

(q)
a ). In this appendix we will derive the re-

lations of (Ca, Da) to (C
(q)
a , D

(q)
a ) by comparing the scattering amplitudes.
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Starting from the fundamental Lagrangian (4.1), we can write down the amplitude

iMs′sr′r = −iGF√
2
vs

′
(p1)PRΓavs(k1)〈Γa〉r′rN , (C.1)

where

〈Γa〉r′rN ≡ 〈N(k2, r
′)|
∑
q=u,d

qΓa(C(q)
a +D

(q)
a iγ5)q|N(p2, r)〉 . (C.2)

To compute the amplitude we need to know 〈N |qΓaq|N〉. Similar to eq. (A.11), here we

also assume that
〈N |uΓau|N〉
〈N |dΓad|N〉

=
nu
nd

, (C.3)

which enables us to define

F a ≡ 〈N |uΓau|N〉
nu

=
〈N |dΓad|N〉

nd
. (C.4)

For instance, generalizing eq. (B.1), a scalar interaction of down quarks 〈N |dd|N〉, can

result in a term uu or uγ5u, where u is a Dirac spinor. Both terms come with a form

factor, and we have neglected terms involving momenta. This implies that

FS = fSSu
r′(k2)ΓSur(p2) + fSPu

r′(k2)ΓPur(p2) . (C.5)

In analogy, we can write the other terms as

FP = fPSu
r′(k2)ΓPur(p2) + fPPu

r′(k2)ΓSur(p2) , (C.6)

F V = fV V u
r′(k2)ΓV ur(p2) + fV Au

r′(k2)ΓAur(p2) , (C.7)

FA = fAV u
r′(k2)ΓAur(p2) + fAAu

r′(k2)ΓV ur(p2) , (C.8)

F T = fTu
r′(k2)ΓTur(p2) + fT ′ur

′
(k2)ΓT (iγ5)ur(p2) , (C.9)

where all the f are form factors. We will not address the calculation of form factors in this

paper, see refs. [44, 45] and references therein.

From the definition (C.4), we can express 〈Γa〉N in terms of F a:

〈ΓS〉N =
∑
q=u,d

nq(C
(q)
S FS +D

(q)
S FP ) , (C.10)

〈ΓP 〉N =
∑
q=u,d

nq(C
(q)
P FP −D(q)

P FS) , (C.11)

〈ΓV 〉N =
∑
q=u,d

nq(C
(q)
V F V + iD

(q)
V FA) , (C.12)

〈ΓA〉N =
∑
q=u,d

nq(C
(q)
A FA + iD

(q)
A F V ) , (C.13)

〈ΓT 〉µνN =
∑
q=u,d

nq

[
C

(q)
T (F T )µν − 1

2
εµνρσD

(q)
T (F T )ρσ

]
. (C.14)
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We have suppressed the spin indices (r, r′, . . .) and Lorentz indices (µ, ν, . . .) in the above

relations except for eq. (C.14) where we need the Lorentz indices to explicitly express

the relation.

By writing the amplitude (C.1) in terms of (C
(q)
a , D

(q)
a ) and the form factors, and

comparing it with eq. (4.7), we obtain(
CS , DS

)
=
∑
q=u,d

nq

(
C

(q)
S fSS +D

(q)
S fPP , C

(q)
S fSP +D

(q)
S fPS

)
, (C.15)

(
CP , DP

)
=
∑
q=u,d

nq

(
C

(q)
P fPS −D

(q)
S fSP , −C(q)

P fPP +D
(q)
P fSS

)
, (C.16)

(
CV , iDV

)
=
∑
q=u,d

nq

(
C

(q)
V fV V + iD

(q)
V fAA, C

(q)
V fV A + iD

(q)
V fAV

)
, (C.17)

(
CA, iDA

)
=
∑
q=u,d

nq

(
C

(q)
A fAV + iD

(q)
A fV A, C

(q)
A fAA + iD

(q)
A fV V

)
, (C.18)

(
CT , DT

)
=
∑
q=u,d

nq

(
C

(q)
T fT −D

(q)
T fT ′ , C

(q)
T fT ′ +D

(q)
T fT

)
. (C.19)

These are the relations that connect the nucleus couplings (Ca, Da) and the quark couplings

(C
(q)
a , D

(q)
a ).
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