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ABSTRACT: We probe a slice of the massive winding sector of bosonic string theory from
toroidal compactifications of Double Field Theory (DFT). This string subsector corre-
sponds to states containing one left and one right moving oscillators. We perform a gener-
alized Kaluza Klein compactification of DFT on generic 2n-dimensional toroidal constant
backgrounds and show that, up to third order in fluctuations, the theory coincides with the
corresponding effective theory of the bosonic string compactified on n-dimensional toroidal
constant backgrounds, obtained from three-point amplitudes. The comparison between
both theories is facilitated by noticing that generalized diffeomorphisms in DFT allow to
fix generalized harmonic gauge conditions that help in identifying the physical degrees of
freedom. These conditions manifest as conformal anomaly cancellation requirements on the
string theory side. The explicit expression for the gauge invariant effective action contain-
ing the physical massless sector (gravity+antisymmetric+gauge+ scalar fields) coupled to
towers of generalized Kaluza Klein massive states (corresponding to compact momentum
and winding modes) is found. The action acquires a very compact form when written in
terms of fields carrying O(n,n) indices, and is explicitly T-duality invariant. The global
algebra associated to the generalized Kaluza Klein compactification is discussed.
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Introduction

Many amazing properties and symmetries of string theory can be tracked down to the

extended nature of the strings. In particular, the presence of an antisymmetric tensor B,

in the spectrum is expected because, being one dimensional, the string directly couples

to it. Actually, a distinctive feature of all string theories is that, besides the metric g,

the gravitational sector also includes the Kalb-Ramond field Bj; and a scalar dilaton ¢,
with extended
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where H[w;\ = 8[;1305\]. The occurrence of this universal gravitational sector is ultimately
due to the fact that NS-NS massless fields are constructed from the tensor product of one
left and one right moving oscillators, transforming in the fundamental representation of
the D-dimensional Lorentz group SO(1,D — 1), and hence accounting for the degrees of
freedom of gp5, By and ¢ according to the decomposition

D2=<D(D2H)—1>@D(Dzl)@1. (1.2)

If the space is compact, the closed string can wind around non-contractible cycles,
leading to the so-called winding states. Again, from the world sheet point of view, these
states are created by vertex operators involving both coordinates associated with momen-
tum excitations and dual coordinates associated with winding excitations or, equivalently,
left and right moving coordinates.

The presence of winding and momentum modes underlies T-duality, a genuine stringy
feature, which manifests itself by connecting the physics of strings defined on geometrically
very different backgrounds and give rise to enhanced gauge symmetries at specific points of
the compact space. Indeed, T-duality implies that n-dimensional toroidal backgrounds of
closed string theory related by the non-compact group O(n,n,Z) are physically equivalent.
This duality appears as a continuous global O(n,n, R) symmetry in the Kaluza-Klein (KK)
toroidal compactification of the corresponding low energy effective gravity theory (1.1), if
only the massless modes are kept. Once the massive KK modes are taken into account,
the continuous symmetry is broken.

Double Field Theory (DFT) aims at incorporating these stringy features, and in par-
ticular information about winding, into a field theory [1-7]. Inspired by string compact-
ification on tori, DFT is formulated on a doubled configuration space, with coordinates
XM = (Zjs x/), where new coordinates Zj, conjugate to windings, are added to the stan-
dard coordinates z*, conjugate to momenta. Here M =0,...,2D—1and i =0,---,D—1.
A manifestly O(D, D) invariant action is then constructed on the doubled space, in which
the global O(D, D) symmetry is linearly realized. An interesting feature of DFT is that
the metric gz, and antisymmetric tensor Bj, fields can be incorporated into a unique field,
the so-called generalized metric, transforming as a tensor of the O(D, D) group.

DFT has local invariances that are well defined only if consistency constraints are sat-
isfied. A solution to these constraints is the so called section condition, which effectively
leads to the elimination of half of the coordinates. Under this solution and in the frame
in which the fields do not depend on Z;, the DFT action reduces to (1.1) and the gen-
eralized infinitesimal transformations reduce to the standard diffeomorphisms and gauge
transformations of By that leave (1.1) invariant.

Even if the original motivation is lost when choosing the section condition, DFT still
provides an interesting tool for understanding underlying symmetries of string theory. In
particular, it shares the basic features of Generalized Complex Geometry [8-11] (both
frameworks are based on an ordinary, undoubled, manifold) and the 2D-dimensional tan-
gent bundle of the doubled space is an extension of the D-dimensional tangent-bundle of
ordinary spacetime by its cotangent bundle, with B, parametrizing the structure of the



fibration. Actually, some distinctive ingredients of string theory, like o/ corrections, have
been recently incorporated in these formulations [12-15].

Other solutions to the constraint equations are provided by generalized Scherk-Schwarz
compactifications [16-18]. It is worth noticing that Scherk-Schwarz compactifications of
DFT give rise to all the gaugings of gauged supergravity theories (not obtainable from
compactifications of low energy effective supergravities) allowing for a geometric inter-
pretation of all of them [19], albeit in a double space. In this framework, the doubled
coordinates enter in a very particular way through the twist matrix, which gives rise to the
constant gaugings.

While winding modes are essential for T-duality, they are not truly present and their
role is not evident in these approaches. Clearly, to probe the winding sector requires to
relax the section condition. Moreover, in toroidal string compactifications, winding states
are massive for generic tori. Therefore, understanding the role of winding modes implies
facing the massive sector of the theory and consequently dealing with an infinite number
of physical states, with different spins and mass scales. However, at specific points of
the compact space, some winding states become massless and an effective theory contai-
ning only massless states and enhanced gauge symmetry emerges. This scenario appears
particularly suitable to identify the explicit part played by windings and a DFT descrip-
tion of the massless winding sector of bosonic string theory compactified on a circle was
suggested in [20].

In the present work we propose a way to probe a slice of the massive winding sector
of bosonic string theory in an organized fashion. Namely, we consider compactifications

of DFT on generic double tori.!

The generalized dilaton and metric fields of DFT con-
tain bosonic string states constructed with one left and one right moving oscillators, and
therefore we concentrate on this sector of the string spectrum. Even if the bosonic string
is ill defined, due to the presence of tachyons, we will use it as a reference since string
computations are simpler to deal with. However, for the sector we are interested in here,
similar reasoning would apply for the heterotic or Type IIB string theories.

The comparison between DFT and string theory is done by expanding the generalized
fields around a generic toroidal background with constant dilaton and two-form field.? We
then expand the DFT action up to third order in fluctuations around the constant back-
ground and contrast the result with the corresponding string theory three point amplitudes.

As a first outcome of the calculations, we find that both the DFT and string spectra
containing Kaluza-Klein (KK) momenta and windings coincide as long as a “level match-
ing” constraint (LMC) is imposed on the mode expansion of the DFT fields. Furthermore,
we show that the compactified DFT action (up to this order in fluctuations) is invariant
under generalized gauge transformations generated by a generalized Lie derivative, if the
LMC is imposed. This gauge invariance allows to choose a generalized harmonic gauge
which provides a convenient “gauge fixing”, as it imposes conditions on massless and mas-
sive states that can be easily identified with conformal anomaly cancellation conditions on

!See [21] for previous work on this subject.
2Expansions around generic backgrounds have been performed in [22].



the vertex operators creating these states in string theory. Using these conditions, we then
show that cubic vertices in the DFT action can be reproduced by three point amplitudes
in string theory. Actually, DFT appears to provide a straightforward way of organizing
these amplitudes in an effective T-duality invariant field theory. We obtain an explicit
expression for the gauge invariant effective action containing the physical massless sec-
tor (gravity+antisymmetrict+gauge+scalar fields) coupled to towers of generalized Kaluza
Klein (GKK) massive states (corresponding to compact momentum and winding modes).

The article is organized as follows. In section 2 we present some basic introduction to
DFT. We write the DFT action in a generalized Einstein frame and fix the gauge freedom
in terms of generalized harmonic coordinates. In section 3 we perform the expansion of
the generalized fields in fluctuations around a constant generic background, we discuss the
gauge fixing conditions and carry out a GKK decomposition of the fields. In section 4
we consider the mode expansion of the fields on a double torus with constant background
fields. We identify massless and massive states and examine the generalized harmonic gauge
equations to distinguish physical states and Goldstone like states. The analysis of the cubic
interaction terms in the effective action and the identification of unbroken symmetries is also
performed. Finally the resulting gauge invariant action in d lower dimensions is presented.
Section 5 is devoted to string theory amplitudes on toroidal backgrounds. The equivalence
between conformal anomaly cancellation conditions on the string vertex operators and the
generalized harmonic gauge conditions on the DFT fields is determined. We compute three
point string scattering amplitudes of massless and massive states and show the complete
agreement with the expansions in DFT. The comparison involves a huge number of terms
and so it is performed with the help of a computer (cadabra program [23]). The simple
example of circle compactification is worked out explicitly and the manifestly T-duality
invariant effective action is also presented. A discussion on the limitations and possible
extensions of this work and a brief outlook are contained in the concluding remarks in
section 6.

2 Double Field Theory basics

In this section we briefly review some of the basic features of DFT that are needed in our
discussion.
The theory is defined on a double space with coordinates XM = (%, 2), defined in the
fundamental representation of O(D, D). Here M =0,--- ;2D —1and f=0,---,D — 1.
The generalized tensors transform under generalized diffeomorphisms as

LyWMN — yPa,wM-N o (gMyp — opVMYWPN o (0VVp — ap V) IWMP
(2.1)

I = (;’ ﬁ) (22)

is invariant under the above generalized transformations. It can be decomposed into

The natural SO(D, D) metric

a positive-definite and a negative-definite metric, 7|~ ,» acting on each of the two D-



dimensional orthogonal subspaces of the doubled space £ = Cy @& C_, that are generated
by the coordinates X} = 2/ + Z;. Making use of 7|q R positive-definite metric can be
defined on F

-1 -1
O (S e A A § 2
with
Hapn” 2 How = npn - (24)
Under O(D, D) transformations hx”, X — hX and the fields change as

Haun(X) = haPhn CHpo(hX),  d(X) — d(hX) (2.5)

Upper and lower indices are lowered and raised with naas and its inverse T]MN , Te-

spectively.
It is sometimes useful to express the metric Han in terms of a vielbein

B
Haw = B m Sas EOy EAwr—<gzl)a (2:6)
where gup = €% sap by,
5% 0
Sap = 2.7
AB ( 0 Sab> (2.7)
and sg is the D dimensional Minkowski metric. A, B,--- indices are lowered and raised
with the flat SO(D, D) metric defined as
nas = ExM v Eg™ (2.8)

and its inverse, respectively, which numerically coincide with (2.2).

Since the Minkowski metric is invariant under Lorentz O(1, D — 1) transformations,

the metric S 45 is invariant under double transformations O(1,D — 1) x O(D — 1,1) and

as a result the generalized metric H parametrizes the coset
O(D, D)

O(1,D-1)x0O(D-1,1)"

(2.9)

From the transformation law (2.1), the generalized metric transforms as
LyHan = VEOpHmn + (0mVF = 0PV Hpn + (OnVT = 0PV ) Hup.  (2.10)

In terms of H oy, and keeping up to two derivatives, the action of DFT in the 2D-

dimensional space E can be expressed as®
1
Gprr

S = /d%d% e 2 R(H,d), (2.11)

3In the original frame formulation of DFT by Siegel [1, 2] the action includes extra terms that are not
contained in (2.11). Up to total derivatives those can be recast as [18]
1
Gprr

AS =

/dedeﬁeimi |:%(SA37?7AB)T]PQ 8MEA7:E)MEBQ+48Md6Md—45‘M8Md .

In the appendix we show that these terms vanish once the level matching condition described below, is
imposed, and therefore we do not consider them in this work.



where the generalized Ricci scalar is given by [4]
R = AHMN o 0nd — OmONHMN — AHMN 9 1dOnd + 40 HMN Oprd

1 1
+ gHMN OMH O Hicr — §HMN OMH FOcH s | (2.12)

the generalized dilaton
e M =72 /g (2.13)

is an O(D, D) scalar and Gppr will be defined below.*
Comparison with string theory, as we re-discuss in more detail below, requires the level
matching condition (LMC)
oM. =(N=N)---, (2.14)

where N and N are the left and right oscillator numbers of the string and the dots stand
for fields or gauge parameters. Given that g, B and ¢ correspond to N = N = 1, we
would expect N — N = 0. However, in a compact space this difference could be a non-
vanishing integer. Even though this is a key ingredient of symmetry enhancing at certain
compactification radii (see [20]), we will only consider states satisfying N — N = 0 in
the main body of this article. Introducing the 2D-dimensional momentum vector PM =
(]5[‘, Pp), generated by the partial derivatives —i(éﬂ, 0p) acting on the corresponding field,
the constraint reads

IP||? = PMPy =0 (2.15)

for Haqn and d. In general, this constraint is not sufficient to ensure consistency. For
instance, the product of fields generically does not satisfy it and the generalized transfor-
mations (2.1) fail to close.

This failure can be expected from string theory. Namely, many other terms (actually
infinite) are expected to complete the effective action, containing higher derivatives but
also higher spin fields. Hopefully, in the full action variations could compensate among
different terms and the algebra would close. But in the truncated theory involving only
massless fields with N = N = 1 in the non compact case, consistency constraints are
necessary. One solution of these constraints is the so-called section condition

opm---0M... =0, (2.16)

where the dots stand for products of fields or gauge parameters. It implies that half of
the coordinates drop from the theory. These coordinates can be chosen to be the dual
coordinates Z;. This choice is named gravity frame since in this case the action (2.11)
simply reduces to eq. (1.1) when Haqy is parametrized as in (2.3) and Gppr = 2k [ dPz.

The section condition is sufficient to satisfy the closure constraints, but there are more
general solutions [18, 25] when there is a compact sector. It is important to stress that (2.11)
describes more physical degrees of freedom than the standard D-dimensional action (1.1)
for g, B and ¢. Indeed, by introducing coordinates Z;, and their corresponding partial
derivatives 9%, fields can carry momentum along these directions and the backgrounds can

4The overall constant Gprr was introduced in [24].



® | Hie | e | EAMm | Sas | nas
Ag -2 -2 -1 0 0

Table 1. Conformal weights of the various tensors that appear in DFT.

also depend on these coordinates. Such dependence is not an artifact of DFT: backgrounds
with non-trivial dependence on the coordinates ## cannot be described in terms of D-
dimensional gravity, but are however expected to be consistent solutions of string theory. In
particular, such backgrounds lead upon compactification to fully consistent effective gauged
gravities with momenta along the internal coordinates associated to winding excitations.
DFT contains more degrees of freedom than D-dimensional gravity, and in particular,
it allows to compute observables and describe settings that cannot be accounted for in
standard D-dimensional theories.

In what follows we will compactify DFT on generic tori with constant background
fields and fluctuations around them. The constraints to be used will be extracted from
comparison with string theory results. In our computations, the section condition must be
imposed in the spacetime sector but only the LMC constraint is required in the toroidal
compact space. This appears to be consistent if fluctuations are considered only up to
third order. When going to higher orders, the failure of the gauge algebra to close should
be interpreted as an indication that new degrees of freedom must be included. A brief
discussion on this issue is offered in the concluding remarks.

2.1 Einstein frame and harmonic coordinates

The generalized metric Hn defined in (2.3) contains the g and B fields, and the gener-
alized dilaton d involves ¢. We can combine both d and Hn into a single generalized
Einstein-frame metric H v with non-zero determinant. For that aim, we perform a Weyl
transformation

7'2/\4/\/:6297'[/\4/\/, (2.17)

under which a tensor with conformal weight Ag transforms as
d=e e g, (2.18)

We list the conformal weights of the tensors introduced in the previous section in table 1.
Making use of these transformations, one can easily check that

R = e® | R — 200 HMV o — 2HMV 9,002 — (2 + DYHMN 00 Q000

- 1~ - -
+ 8HMNV 9, Q0Nd — i’H;C[,HMN IMH Lo (2.19)

Taking © = d and integrating by parts, we can express (2.11) in the Einstein frame as

1

S p—
GprT

/dedDaE R(H,d), (2.20)



where

.~ - 1 - - - -
R(H,d) = (2 — DYHMN o dond — §HK5”HMN OMH L Ond + OppONHMN
1~ - - 1 - - .
+ §’HMN OMH LN Hyc, — §%MN OMH EOH N . (2.21)

This action (2.20) behaves similarly to the more familiar Einstein-Hilbert action in
many aspects. In particular, the equations of motion are greatly simplified by taking
a harmonic coordinate condition to fix the gauge freedom under generalized diffeomor-
phisms. This can be achieved by requiring the coordinates X® to be solutions of the
Laplacian equation

om (N o) XR =0 = oMY =0, (2.22)
which amounts to the gauge fixing condition®
MMMV —21MNod =0, (2.23)

when written in terms of the metric Haqn and the scalar d. Alternatively this equation
can be expressed as

1 1
omd = §HMN6RHNR = —EHNRﬁanMN- (2.24)

Making use of these conditions and integrating by parts, the action (2.11) can be expressed

in harmonic coordinates in a particularly compact form
1
Gprr

1 1
S = / dPzdP s e 2 [SHMN OMH O H i, — §HMN MM o H |, (2.25)

or, in Einstein-like frame,

Sppr = / dPxdPz (;#MN OMH LN Hicr — %#MN OMHF Lo H o

GpFT
+ (2- D)HMV 8Md8Nd> : (2.26)

It is also interesting to express the gauge fixing condition in terms of g, B and ¢. For
standard D-dimensional gravity backgrounds with p# = 0, one may easily check that its
components reduce to

Oy (\/—g gﬂﬁe_%) =0, (2.27)
g o, B 5p = 0.
In particular, for vanishing dilaton ¢ = 0, the first equation is the usual harmonic gauge

fixing condition of General Relativity. More generally, for generic DFT backgrounds, the
gauge fixing conditions for B, g and ¢ read

(D —2 29 (6 -2
0 (V=g9¢ ) =0 (V=94 B s e *) =0, (2.28)
5” (\/ —q gﬂl;e*%) = —672(;59619 (819 — Bﬁj\é)‘) Bﬂ(} =0.
5Tt can be shown that, in terms of the generalized connection of [1, 2, 26], this is equivalent to requiring

HMPFMPQ =0.




3 Perturbative DFT

The physical content of a quantum field theory can be recast in terms of its S-matrix
elements, that are usually computed perturbatively. In the particular case of General Rel-
ativity, perturbative computations are however specially complex due to the huge number
of vertices, rendering most of the brute force computations of scattering amplitudes infea-
sible. Fortunately, the field theory limit of Kawai-Lewellen-Tye (KLT) relations [27] allows
to express gravity amplitudes in terms of two copies of gluon amplitudes, which are much
simpler to compute. In particular, starting from gluon amplitudes and using KLT relations,
it has been possible to construct a Lagrangian for gravity [28]. The resulting Lagrangian is
particularly simple and is related to the usual Einstein-Hilbert action by non-linear redefi-
nitions and gauge fixing similar to those used in [29]. Moreover graviton spacetime indices
can be split into two types (left and right), in such a way that contractions do not mix
indices of different type.

KLT relations originate from the fact that the integrand of a closed string amplitude
involves two open string components, corresponding to left and right movers. It is then
natural to expect that this hidden simplification of gravity amplitudes also holds in DFT.
Indeed, this is already manifest in the extreme simplicity of the Lagrangian (2.25). To be
more specific, let us split Hn into background Han and quantum fluctuations h MN s

Haw =Hun +hay,  d=d+d. (3.1)

For simplicity, we consider Hn and d to be constant. Due to the presence of two
metrics, namely Han and naps, (3.1) can be inverted in two different ways: by making

MN

use of 7 or by using the geometric series for matrices. We thus obtain for the inverse

HMN :gMNJr FMN _ g MN FMN ;LMP RPN _ ;LMQ;LQfD ;LPN+ . (32)

where we have introduced the short-hand notation AM = ﬁMNA Ny Ay = Hm VAN and
it is useful to note that, up to first order,

PN = MPNQ o = —ﬂMPﬁNgiLgp = MV (3.3)
The single field RN = nMPnMQinQ therefore encodes an infinite set of operators when
expressed in terms of the background metric H iz -
on WV M P MNG M
Note also that by construction H™~ Hyg = 07"g, however A"V hyg # 6 o. In-

stead, one may easily check the following relation
iLMNiL/\/Q = - (hMQ + hMQ) . (3.4)

For comparison with string theory results, it proves convenient to look at fluctuations
in the so-called modified Einstein frame, namely the Einstein frame discussed above with
—2d

the vacuum value of the generalized dilaton e extracted out.® Thus, the generalized

metric is, up to first order

Haan = Haan + haan = Haan + (b + 2dH an) - (3.5)

5In what follows Einstein frame means modified Einstein frame.




3.1 Expansion of DFT in fluctuations

Following the discussion above, by using (3.5) we expand the DFT harmonic gauge fixed
action (2.26) into background and quantum fluctuations. We get, up to third order in

fluctuations,

1 =MN 2 2 MN A A
Lorr = gH OMP N — (D —2)H Opdond (3.6)

1z 2 2 12 2 2 2 ~ ~
- §hMNaMh’“a,chM + ghMNaMh’“ath — (D = 2)A"MNondord .

Recall that in terms of fields, the fluctuations hy = B(I)MN + B(Q)MN + ... contain
contributions from higher orders. In particular, terms quadratic in haqn could give third
order interaction terms. However, this is not the case. Actually, integrating by parts
the term %’HMNﬁM}Nz’(%ﬁNﬁ(l)KE, one gets the equations of motion (see (4.8) below), and
so this cubic term vanishes on shell. The same conclusion holds for the second term.
Therefore, the third order terms in the action involve only the first E)rder ﬂpctuations of
the generalized fields, and we finally have the Lagrangian (3.6) with hicr = iL(l)]CE.

Before compactification, in a flat background

_ L2
Hun = <770 ) 7 (3.7)
Niw

and to first order in fluctuations, gzs = 1uo + hjo, Bas = bps, we have

. NN S 2 17
=357 7 ) = 5y 77h . (3.8)
i Mo 9%k fi2
Then from the second order terms in fluctuations and imposing the strong constraint
in the gravity frame (namely, dropping the dependence on the Z; coordinates), we recover

the quadratic terms in the action (1.1) in the de Donder gauge [30, 32]. Actually, in the

string frame we get

T s DN 8 T WA 4 S N DO S
S_M/d ve [aa< P28 ) 07 (M2 28 )~ L0 (s 4,007 (40| (3.9)

Transforming this action into momentum space, we obtain the propagators for h, b and é

Dt € mapos
nvspo 4 ] p2 5
Db. .. = e Napos — Nasop
nvspo 4 p2 s
N 2R _gq’g
D2¢7 2’/ = 46 3
p

The first lesson to be drawn from this calculation is that the strong constraint must
be imposed on the space-time coordinates in order to recover ordinary gravity theories,
as expected.

~10 -



3.2 Generalized Kaluza-Klein compactification

The generalized Kaluza-Klein (GKK) decomposition of the generalized metric reads

ghv —gMPc,, —ghP An,
Hunv=| —9"Pcou G + ANuMNpAPl, + o9 Cov MNPAPH + Anpg™con |5 (3.10)
=97 Amp Mup APy + Anipg? cou Mun + Anp9?’ Ano
where now the M, N indices split into spacetime p, v, - - - indices taking the values 0, - - - , d—
1, and internal doubled indices M, N,--- = 1,--- ,2(D — d). We have introduced the

combination ¢, = by, + %Aﬁf Any, Al]LV denote the vectors and M is the scalar matrix
defined below.

In terms of components, the constant generalized background metric reads now

n* 0 0
Hmnv=] 0 nu O , (3.11)
0 0 Muyn
with
_ Gmn —G"™P By,
Myn = , (3.12)
(BmpGp” Gmn — BmpquBqn>
where m,n,---=1,--- , D — d. The fluctuations up to first order are
) Ah’é”) Ah’é)y Ah’é) N —hH P, —pP Ay,
haymv = | hayy hw by | = =0 b MupATu| . (3.13)
]A”L(l')jM iL(l)Mz/ il(l)MN _UVPAMp MMPAPI/ hyun
The matrix hysn encoding the scalar field content reads
sy = ( —Gnkhlelm —Gnkbkm—i-GnkhksGSlBlm
—BnSGSZhlkam+banlm hnm—banlkBkm—l—BnkaSherrbBbm—Bnkalblm

(3.14)
where h,;, by, are the scalar fields derived from the higher dimensional graviton and anti-
symmetric fields, respectively.

From the definition of the generalized dilaton (2.13) and recalling that d = d + d,
we have

e 2 = ¢72%0\/detG (3.15)
d=¢—~h",. (3.16)
In Einstein frame, the only fluctuations that are modified are
;LMV = (b + 2d77w) = iLM”?
= (=h™ 4 2d ™) = —hH
haan = (hasw + 2d Masn) = s - (3.17)

The harmonic gauge conditions in the Einstein frame (8M7-[ Mmn = 0) become, in terms
of fluctuations,

aMflM/\/ = (%EWN + aL}:lL/\/ =0, (3.18)

- 11 -



where we have used the strong constraint in the spacetime sector. Therefore, when speci-
fying values for the index N, we have

&Azuy + aN;LNV =0— 8,Jz’“’ + 8NANV =0, (3'19)
bk, + AN, =0 — 9b,, —i(PMA), =0, (3.20)
BN + MY =0 — O“Aﬁ[ — i(PMAM)N =0. (3.21)

We will discuss the link between this set of equations and the vanishing of conformal
anomalies in string theory in section (5) below.

4 Toroidal compactification

We consider the mode expansion of fields on an internal 2n-dimensional double torus with
constant background (metric, dilaton and antisymmetric fields) turned on. It corresponds
to a compactification on 2(D — d) = 2n circles, which are generically non-orthogonal since
the background metric is in general non-diagonal.”

The internal coordinates Y™ = (§,,,%™) have periodicity

where R(™) and R(m) =a R(m)_1 denote the radii of the m-th cycle and its dual, respec-
tively. The internal momenta are encoded in the O(n,n) vector Py of components

- Ny W
Py = (PmaIPn-l-m) = (vap ) = (R(m)’ R()) , (4.2)

n, and w™ being the integer momentum and winding numbers.

On the torus background, the non-trivial identifications (4.1) are only preserved by
O(n, n) transformations with integer-valued matrix entries. Thus, the O(n, n,R) symmetry
is broken to the discrete O(n,n,Z) group.

The mode expansion of the generalized metric would be H(z,Y) = # + h(x,Y) with

h(z,Y) = Z’E(P) (z)ePmY™ (4.3)
P

where the dependence on the dual space time coordinates Z, has been dropped. The
expansion of the component fields is

. M
G (2,Y) =y + Z'hg? (gu)e’[PMY , (4.4)
P
b (2, Y) = Y bE) (2) e (4.5)
P

and similarly for ci(ac, Y), gauge parameters, etc.

The sum over P involves, in principle, all integer values of momenta and windings
(N, w™). Possible constraints are indicated with a prime on the sum. Also, since all the
fields we are dealing with are real, we require H(~F) (z) = H®) (z)*.

"Here we consider dimensionful internal coordinates whereas the metric is dimensionless. Alternatively,
we could absorb the dimensions in the metric just by redefining Grn — émnR“”)R(").
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Remember that we have dropped the field dependence on dual space-time coordinates,
or in DFT words, we have imposed the strong constraint in order to stay in the gravity
frame. This means that there will be a ﬁ overall factor in the action, where k is now the

gravitational constant in d + 2n dimensions. In terms of the DFT coupling above it would
formally read 517 = 7~ [ d%.

2K2 GpFT
Due to the contributions from both, a circle and its dual, the usual R dependent volume

factor of dimensional reduction is not present here, and instead an o’ factor is left, namely

>y = 11 L | (A p———— 4.

Furthermore, we use that

/ A2yt Eat QoYY — g2y 4 Q) (4.7)
since O%Ri eryéi = 1. We will see below that the dependence on radii shows up when
vector fields are redefined in order to have integer U(1) charges. Also a scaling factor

—2d

appears through the expectation value of the generalized dilaton e containing both the

determinant of the background metric G and dilaton ¢ fields.

4.1 Quadratic terms and masses

We first concentrate on the quadratic terms in the action. Inserting the GKK expansion
in the first line of the Lagrangian (3.6), we obtain

1 5 ——MN 5o
51(3212,11 = 2—,%3 Z'/ddzv [d(x)(P)(ﬁual‘ — Py M IP’N)d(;E)( P)
P

12 N [y
- @) (@,0" - Py M PR (2)] (4.8)

where we have redefined d — (D — 2)'/2d, and by using (3.15),

2k2 2K2

The equations of motion read

(auaﬂ - PMMMNPN) ) () = 0 (auaﬂ - PMHMNPN) d® (z) =0.  (4.10)

Interestingly enough, these expressions not only reproduce the propagators for the
gravity multiplet® but they also contain the propagators for GKK states. In particular, we
can identify the mass squared of the GKK (IP) modes® as

M? = k2 =Py M NPy = PMPy, . (4.11)

8 A careful discussion about physical degrees of freedom is presented in next section.
9Here the dot refers to contractions with the internal metric M.
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This is exactly the mass squared of string states on generic toroidal backgrounds for
N + N —2 =0. We expect this condition is satisfied since we started with N = N = 1.
However, the string states also satisfy the LMC, namely

1 _
§IP>MIP’M =N-N=0. (4.12)

Therefore, it appears that in order to recover the string theory results, we must consider
the following constrained GKK expansion

Bz, Y) =3 b (2)ePa ™ 5(p2) (4.13)
P

and similarly for d(z,Y).

Let us look at the transformation of the compactified action under the generalized
diffemorphisms (2.1). From the discussion above, we know that this variation should be
proportional to terms that vanish if the strong constraint 9p®0” = 0 is imposed. Moreover,
since the space-time part already satisfies it, the transformation must be proportional to
dp ® OF = 0, where now P labels the internal compact coordinates. Since the variation
is proportional to the gauge parameter, it can be written as dp&yJPM, with JPM a
product of generalized metric and dilaton fields with a 97 derivative acting on one of
them. By mode expanding the generalized fields, these derivatives lead to a Q%QJ’P factor
times a 62"(>", Q%) requiring total momentum conservation. If up to third order terms in
fluctuations are kept in the action, momentum conservation and level matching (@i2 =0
for each field (including &) leads to Q' - @/ = 0 and we conclude that the action, up to
this order, is invariant under generalized diffeomorphisms.

4.2 Physical degrees of freedom

The mass formula (4.11) is generic and does not allow us to isolate physical states. For
instance, BS\HP“ () seems to denote 2(D — d) massive vector states. However, we know that
some of these vectors must be absorbed by the gravitational and two-form fields to become
massive. Actually, the harmonic gauge condition allows to identify the physical degrees of
freedom. In order to see this, first recall the expected physical fields in lower dimensions.
A symmetric massless two-tensor in D dimensions has (D — 2)(D — 1)/2 degrees of

freedom.'® With n compact dimensions, we can write
1 1 1
§(D—2)(D—1) = i(D—n—Q)(D—n—1)+n(D—n—2)+§n(n+1) or
1 1 1
5(D—2)(D—1) = §(D—n—1)(D—n)+(n—1)(D—n—1)+§n(n—1)

Starting with the metric in D dimensions, decomposing the indices into D —n spacetime and
n internal indices, for massless states (corresponding to zero modes in the KK expansion) we
would have 3(D—n—2)(D—n—1) d.o.f. for g,,, n vectors g,m, leading to n(D—n—2) d.o.f.

10WWe count here the degree of freedom of the trace, associated to the dilaton field. We discuss the splitting
of traceless and trace parts below, in order to compare with string theory results.
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and %n(n+1) scalars g,n, consistent with the first equation. On the other hand, if the states
are massive, we must decompose them as in the second equation, corresponding to a massive
symmetric two-tensor, n — 1 massive vectors and %n(n —1) scalars. We can understand this
combination by interpreting that a scalar is eaten by a massless vector to become massive,
leaving $n(n+1)—n = $n(n—1) scalars and n massive vectors with (D —n—1) degrees of
freedom. However, one of these vectors is eaten by the massless graviton to become massive,
leaving a massive two-tensor with (D—n—2)(D—n—1)+(D—n—1) = $(D—n—1)(D—n)
d.o.f., and n — 1 massive vectors.

A similar computation can be done for the antisymmetric tensor. Namely, a massless

two-tensor with 3(D — 2)(D — 3) d.o.f. can be decomposed as

%(D—Q)(D—3) _ %(D—n—2)(D—n—3)+n(D—n—2) +%n(n— 1) (4.14)
1 1 1

5(D—2)(D—3):§(D—n—1)(D—n—2)+(n—l)(D—n—1)+§(n—2)(n—1).
The first equation leads to the familiar KK decomposition in terms of a massless two-tensor
by, n massless vectors b, and %n(n — 1) massless scalars by,,. For the massive case, a
massless antisymmetric tensor eats a massless vector, leaving a massive antisymmetric
tensor with 3(D —n—2)(D—n—3)+ (D —-n—2) = £(D—n—1)(D —n —2) dof.
The n — 1 massless vectors left eat n — 1 scalars to become n — 1 massive vectors, leaving
sn(n—1) — (n—1) = 3(n — 2)(n — 1) massive scalars.

On the whole, a massive GKK level is characterized by the generalized momentum P,
with P? = 0, and it contains a spin two symmetric tensor (which can be decomposed into
a traceless tensor + trace), an antisymmetric tensor, 2(n — 1) vectors and n(n — 1) scalars,
all mass degenerate with mass M? = PMP. Note that a non-equivalent level P’ = hP will
have the same mass if h is an O(n,n) transformation, namely h is a duality transformation.
Recall that, in the n = 1 double circle case no extra massive vectors or scalars are present.

In (both spacetime and internal) momentum space, the generalized harmonic gauge
conditions (3.21) for the modes fzsa)jv(k) read

kR (k) + (IP%@’))N (k) = k* [hf}j\)f (k) — %ku (sz(P))N (k)] —0, (4.15)

where we have used that —k? = M? is the (squared) mass of the states as given in (4.11).
This is an indication that there is a physical massive field

21P) 1y _ 7 (P) 1 2P
Bt () = B (k) = 5k (Ph( )>N(/€) T
(where ... indicate possible terms vanishing when contracted with k*) or equivalently
@)y 5 Lo (Ph®
B (@) = hie (@) + i<, (]P’h )N(:c),

satisfying 8“;119:} (x) = 0. The field combinations (IP’iZL(P) )& play the role of eaten Goldstone

fields to provide the physical degrees of freedom. Let us analyze them in terms of component
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fields. Using (3.13), (4.15) can be decomposed into graviton, antisymmetric tensor and
vector field polarization tensors as

~ 1 ]
ot [h}}? (k) =~k <IP’ A® (k))y —0,

) N _
ot [b(P)W (k) + <75k (]P M- AP (k:)) —0, (4.16)

>

_ _ \N
ot [ASP)N(IC)—]\;Q@ (]P-M- (P)(k:)-/\/l) ~0.

Gravitons. The first equation in (4.16) can be recast as

ot {59“;) . # [ku (IP’-A(P)> +ky (P-A), + kykﬂﬁ (P-M-E(P).M-IP)} } ~0,

where we have used the third equation in (4.16). Thus, we have an effective symmetric
tensor with polarization h;g) satisfying

e
kh5) (k) =0, (4.17)
where

WD (k) = hD) — b [k: (p-a®) +h (P A®) - kohurrg (B M5 M -P)
(4.18)

is constructed from the original graviton polarization tensor, one vector field (P- A), and
a scalar field P- M - h - M - P, as expected from the above counting of degrees of freedom.

Antisymmetric tensor. We can proceed similarly with the antisymmetric field.
Namely, the second equation in (4.16) can be rewritten as

Kt {b‘P)W+ . [ku (P- M- A®)) —k, (- M- A®)

o ]}+A;2kyk” (P-ﬂ. A(]P’)> —0,

v 7

I

and using the third equation in (4.16), the last term reads

ot (P-ﬂ. AUP)) =P -M-1®.p. (4.19)
o
However, this term vanishes at first order,'! and then we are left with an effective anti-
symmetric polarization
BE = b2

il M-A®Y M- A®)

= [1@“ (]P’ M- A )V k, (]P’ M- A )J , (4.21)
where the original polarization bg,) “eats” a vector (P - M - A(P)),,, in agreement with the
discussion above.

"1n fact, this can be easily seen by rewriting the condition P? = 0. Namely
P* = PY My E Mg PP =PV (MIVIN + iLMN) VK (MKL + BKL) P* (4.20)
=P+ 2P M-h-P+0(F)

and, therefore P- M- h-P = 0.
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Vectors. The third equation (4.16) directly tells us that there are massive vector polari-
zations 1 N
AN (k) = APN (k) + 5k (P- M2 M)+ (4.22)

satisfying k”A:,(P)N =0.
Thus, from the 2n original vectors A,(LP , the combination PP - Aﬁp) is eaten by the

graviton and the combination P- M - Aﬂp) is eaten by the b,(},i) field to become massive, and

we are left with 2n — 2 vectors. These vectors become massive by absorbing 2n — 2 scalars

from the n? original Bg\?}\/ One more scalar (the combination P - M - h(F) . M - P) is eaten

)N

by the graviton, so finally we are left with n? — (2n — 2) — 1 = (n — 1)? scalars.

Notice that the vector eaten by the graviton should be different from the one eaten
by bgi). Indeed, this appears to be the case. If P- A®) gelects some combination, then
P- M- A® selects an independent one. Actually, M acts effectively by changing lower to
upper indices (see (3.3)).

The physical states found above should be interpreted from the generalized gauge
transformations. Starting with generic states, there should be a choice of gauge param-
eters ¢M = (fﬂ,gu,AM ) such that, by performing a generalized transformation of the
form (2.1), unphysical states are gauged away. Let us show that this is indeed the case.
The generalized diffeomorphisms (2.10), in terms of component fields and up to first order
in fluctuations, read

Ochuw = 0,630 + 0, M
Sebuw = Ouby — D€y,
S AN = 9, AN 4 M Mot — 9V,
Sehan = MarpOnAY + Mpno AT — MarpdP Ay — MpndF Ay .

In terms of GKK modes, the gauge transformed fields will be

WE =hE) + 6chE) = hE) + ik (4.27)
b = bE) + 0eb(E) = bE) + ik, &)

AN = ABN 1 AN = ABN il AON 1 iy (MP)NEEA —ipNe®)
Btk = Wi +0ehSy = i (MAS) ) v+ (MARY) oy =i (MP) ,, AR —i (MP) AT

In order to fix the gauge parameters, we first impose the conditions

P-A® =0, (4.28)
P-M-AF =0, (4.29)

as it should, since the first equation corresponds to the combination eaten by the mas-
sive graviton and the second one to the combination eaten by the antisymmetric tensor
b,(AIP;). These conditions fix the form of Ag),f(ﬁb))‘ up to a coefficient and 59”. By also
requiring that

P-M-B®.M-P=0, (4.30)
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since this is the scalar absorbed by the graviton, this coefficient is fixed. Finally, the gauge
transformations required to gauge away the non-physical fields read

1

N :iﬁnw [(P-ASP)> k“zM? (P.H.B(P) .M-IP)] )

A®N _ ]\;2 [(P M- M)N 2M2 (MP) P'M'h(P)-M-P} : (4.31)

By noticing that M-P-A®N = 0 and P-A®N = —ﬁ]}”-ﬂ‘ﬁm) - M-P, and using the
LMC (P? = 0), it is easy to check that (4.29) and (4.30) are satisfied. By replacing these
gauge parameters in (4.27), we obtain the explicit expressions in terms of the old fields.
The resulting physical fields hlﬁb), b;g)) are the ones given in (4.18) and (4.21), respectively.

Also,

Ptk == (P MR Py

M
+%(MP)M [P M- b )N_2]1W2 (MP) P M- 2D M- P+ M & N
and
ABN _ 4N L (]P’ M- h® M>N
M o #MQ
_J\;(MP)N[(P‘ASP’) —%k‘u (P,M.;;(P).M.p)] (4.32)
1 N wi P
R (IP’-M-A( >)

Interestingly enough, since in the harmonic gauge
P)N . i® o\
ko A®) :—(P-M-hU.M) : (4.33)

then the physical vectors satisfy
k- AN =, (4.34)

Moreover, it can also be checked that the physical fields A’gP)N,Bgf),bgf),ﬁﬁ}v are

invariant under generic linearized diffeomorphisms d.e) = (5&(@),5&?),5/\1\4@»)) as given
n (4.27). This is due to the fact that these combinations correspond to physical fields.
The situation is analogous in electromagnetism where the electric and magnetic fields are
a gauge invariant combination. Here A’ ;(LP)N, Bﬁ), bﬁf), ﬁﬁ}v would be the physical combi-
nations for the internal symmetries (symmetries associated to (55(0) must still be fixed).
Finally let us discuss the splitting of the symmetric tensor into a traceless part and
a trace contribution. Of course the splitting can be performed just by adding and sub-
tracting the trace. Let us consider a trace contribution of the form hd)(lp) = hl)\)‘(P)(k)eﬁy(k)
with e,w( ) = fa(P) (N + kux,(,P) + k,,x,(ip)) where we have used the freedom of including
a diffeomorphism parameter x, and fy is a numerical factor (different for massive and
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massless states). The parameters x, are chosen such that k“eﬁy(kz) = 0. For the mass-
less modes, this leads to the requirement kux(o)“ = —1, whereas for massive modes with

M? =P-M-P, we find X,(LP) =3 Alp k. Therefore, the polarization tensor for the traceless

symmetric graviton is

7'G(P _ (P 7 1u(P

with f; = ﬁ for the massless modes and fy = ﬁ for the massive ones.
However, we still have the freedom to fix the trace 2”*y. A convenient choice is T'r’(fl’ ) =
WAy = 46, where ¢ is the dilaton field, which amounts to setting d = 0 (see (3.15)).
Actually, in order to compare with string theory results, it proves useful to redefine
the dilaton as ¢ ®) = \/F;0®), and therefore the dilaton polarization becomes

et (6) = V/Ta () (s + iux® + koxP) - (4.36)

It is normalized as €' (P) - €' (P) = 1 and also €' (P) - ¢“(P) = 0, by construction.

We notice that the choice d = 0 eliminates the last d dependent term from the La-
grangian (3.6). However the dilaton part is now included in the previous terms due to the
splitting iL;w = B;ﬁ + iL;f,),

Finally, the cubic order Lagrangian to be considered is

12 2 2 12 2 2
Lppr = =5 KN OMB iy + SN 0pah™Foxchic (4.37)

where only the physical fields identified above must be considered.

Recall that, even if diffeomorphisms have been used in order to fix the physical degrees
of freedom, the expression of the action in the harmonic gauge can still be used since these
transformations, up to first order in the fields and on shell, do preserve the gauge. More
explicitly, O HME changes as O HME — I HME + 0¢ (GM”HME), where from (2.10)
we read that

8¢ (OMHME) = OpEpmOT HME — 200 0pEMHEP — 20p0pE“HMP
+ 20MOMEPHET + 2000 Ep HMT .

Since the gauge parameters éM are already first order in the fields, we obtain (using LMC)
d¢ (OMHME) = —2HFP 9pome™ — 2HMP Op0pE” + 205 (HMPopmép) (4.38)

The second term vanishes due to the e.o.m (see (4.8)) and it can be easily checked that
OmEM and HMNVOpEpq are identically zero for the €M parameters found above. Thus,
the harmonic gauge does not completely fix the gauge freedom, and we can still use the
remaining symmetries to gauge away the Goldstone bosons.

4.3 Unbroken symmetries

The fact that physical fields can be defined by absorbing “Goldstone like fields” is associated
to the spontaneous symmetry breaking by the background. This issue has been extensively
discussed in the literature about KK compactification (see for instance [33-38]).
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Actually, most of the generalized diffeomorphisms are spontaneously broken by the
choice of vacuum, namely

<g;u/> = Nuv,
(A1) = (b)) = 0,
(Hun) = Mun .

In fact, only the zero modes 5581) (x) parametrize the local symmetries, whereas the
transformations associated to non-zero modes fﬁ) are spontaneously broken.'? Thus, for
instance, the generalized internal diffeomorphism parameter A (z) becomes the U(1),,
gauge parameter, under which the physical fields transform as

ot = AMongh
AN = AMay AN 4 dAM
4.39
8b = AMoyb + %AM ANdAyy (4.39)

SMuyn = A 0pMuy

where these equations must be understood as holding for all GKK modes. Recall that
O AN = 0, ie. the gauge parameters do not depend on the internal coordinates, and
dA s = 0 for massive modes. For massless modes A0 the usual gauge transformations
are obtained. The gauge transformation of the two-form field b is particularly interesting
since it involves the vector bosons and, for massless fields, it gives rise to the familiar Chern
Simons three-form. Actually, there exist two simple covariant combinations of fields under
the above gauge transformations, namely

H= (d—AM/\aM)b+1AMA (d— AN Now) Aur,
. 2 (4.40)
By = 0yb+ §AN/\3MAN,

where H and Bj; are spacetime three-form and two-form, respectively. We will see that
fields in the Lagrangian do group into these combinations.
4.4 Cubic terms and effective action

Once the physical states have been identified, we proceed to consider the third order ac-
tion'? (4.37). By splitting the indices of the fluctuations into spacetime and internal com-

12The algebra of diffeomorphisms is discussed in the appendix.
13 A Kaluza-Klein inspired rewritting of the strongly constrained double field theory action was performed
in [21].
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ponents, the Lagrangian containing only physical fields, reads

£ =~ Hyu H™ 4 1 D,00pDo0" s — 3D Dog™ o
—iMMNF%FN”V + ég““DNMMND“MMN
+iMMN(9MgW8Ng“” - %MMNaPAff gAY g MTQ 4 éMPQapMMNaQMMN
_iMMNBM,uVBNpUgMngJ - %MMNBM;J,VFNpO'gMngJ
+%MMN8MA5DUMNP9W - %MMNapAMMD,,MNPgW - %OMAIJYONAM,,gW
—%MMNaMMPQapMNQ + %MMNMPQGMAPanANVgW : (4.41)

where we have included cubic interactions plus some higher order terms required by space-
time diffeomorphism and gauge invariances.
Here

M M _ M N M _ M M N M N M
FM = Dy, AM = g, A) — ANoy Al = 9,AY — 9,4% — Aoy Al + Aoy Al

1 M
Hywp = Dibug) = 5 AL Dy A u

= Dybup + Dubpy + Dpbpy — =(AY Dy Apns + AV Dy Auns + AY Dy Aunr)

1
2
1
+3 (AMD,Aun + A DyApns + AY Dy Ay
1
By = Omby + §AaaMAN,,}
1 1

= Onbuy + §Aff O AN, — 5AJVV O AN, (4.42)

and the derivatives are
Dy =0, — A on . (4.43)

Recall that g, = N + hyw, Mun = Mun + haw, ete.

The Lagrangian (4.41) has a rather compact expression due to the explicit O(n,n)
invariant setting. The fields here depend on both space time and internal coordinates and
must still be mode expanded in generalized momenta, according to (4.13). Modes corre-
spond to physical fields, in terms of which the contributions acquire a more familiar shape.
Recall that, when acting on the field mode (P), —idy; — Py is just the charge operator.

The action contains both kinetic and cubic interaction terms of massless and massive
fields. Covariant derivatives and Chern-Simons terms in the antisymmetric tensor field
strength appear as usual. For instance, the derivative D, in (4.43) leads, when mode
expanded and acting on a generic field <I>(P)(w), to the covariant derivative

D, @®) (z) = (9, — iADM Py ) 2B (), (4.44)

where P is the electric charge with respect to the U(1)y, gauge field ALO)M.
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m

We know from (4.2) that fields charged under (A,(Lo)m, fl?(?%) carry charge (32, f;"(—)
m)

and therefore, in order to have integer charge, field redefinitions

AQm — RUm) A1Om (4.45)

1
493
of the field strength squared term in the d-dimensional Lagrangian, we see that the corre-

must be performed. Therefore, by using the standard definition — for the coefficient

sponding gauge and gravitational coupling constants are

1(m)2 2’*?5 ~12 2"95 3 2,2d (4.47)

9q = W, Jd(m) = %7

Recall that, since the generalized dilaton is O(n,n) invariant, kg is invariant, as ex-
pected.

The massless modes in the first line of (4.41) give rise to the extended Hilbert-Einstein
action (1.1), now in d dimensions. The second line contains Abelian field strength kinetic
terms —iﬂMNF;Sg)MF(O)NW = —iF,S?,)MFﬁ)W as well as kinetic terms for the scalars.
The third line has the massive terms for gravitons, vectors and scalars. For instance, the
term for the vector bosons leads to

1— - 1 . .
— M APMATON g PMP = —§AS};\)4AZ(7P)M9WPM]P’M, (4.48)

with M? = PMP = IP’MIP’M the mass of the vector, etc.

We present the full expanded expression in the case of circle compactification
in (5.22) below.

Let us stress that the action (4.41) is an effective gauge invariant action. The mass-
less sector contains gravity+Kalb-Ramond field+ vector bosons + scalars, coupled to the
corresponding towers of massive fields associated to KK momenta as well as windings.
Propagators, Feynman rules, etc. which are necessary for field amplitudes computations
can be explicitly obtained. It provides a generalization of previous constructions (see for
instance [39, 40]) where KK compactifications of gravity were considered, in diverse phe-
nomenological proposals.

For comparison with string theory amplitudes we will be interested in the on
shell action.

5 String theory amplitudes

In this section we consider string theory with constant toroidal backgrounds G, and B,,,
for the metric and antisymmetric tensor, respectively. We analyze the vertex operators
creating physical states, discuss the computation of their three-point functions and contrast
with the results obtained in the previous sections from DFT. We restrict to states with
left and right moving oscillator numbers N = N = 1. The vertex operators creating these
states are analyzed in two different ways:
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On the one hand, we show that a combination of different vertex operators (associated
to vectors, two-tensors or scalars) is needed in order to cancel conformal anomalies. These
combinations can be identified with the expressions determined by the generalized harmonic
gauge choice on the DFT side and correspond to a worldsheet manifestation of a built-in
string Higgs mechanism.

On the other hand, consistency requirements on the full vertex operator, once the
harmonic gauge was chosen, fix the physical polarizations and it is with these operators,
corresponding to physical degrees of freedom, that all scattering amplitudes are computed.

5.1 Conformal anomalies and DFT harmonic condition

It is known that the cancellation of conformal anomalies at the string world sheet level
manifests as gauge symmetry requirements on the target space fields. This is indeed the
case here. The different vertex operators corresponding to two-tensor, vector and scalar
fields will generically have anomalous OPEs (Operator Product Expansions) with the world
sheet stress energy tensor. For massless fields, the cancellation of anomalous terms leads
to the familiar gauge conditions k”efy(k) =0, k“eﬁ/[ (k) = 0, etc. for the polarization
tensors of gravitons, vectors, etc. These correspond to equations (4.16) for zero genera-
lized momentum.

For massive fields, a combination of the different vertex operators must be considered,
such that the sum of the different anomalous contributions cancel. This is, indeed, a
world sheet manifestation of the Higgs mechanism. The conditions for cancellation of the
anomalous terms can be written in an O(n,n) language and can be shown to coincide with
the harmonic gauge conditions found in DFT.

The vertex operators we are interested in are, up to normalizations,

VG — G(k: kZL,kZR) aXanU ik-X+ikp Y+ikr'Y :

pa
VAR — E%p(k kr, R) IXPIY % e ik-X+iky Y +ikpY )
VAL — G(Il/p(k kLa R) oY@ Xp ik-X+iky Y +ikpY :
Vqﬁ — (k kL7kR) oy Yb ik-X+iky Y +ikrY . (5.1)

The label G generically denotes a symmetric traceless, antisymmetric or trace polariza-
tion, A, A refer to vectors and ¢ to scalars. Here d = 05,0 = 9, and Y = Y (2),Y = Y (%)
denote left and right moving coordinates. It is convenient to use coordinates Y* = ¢,,°Y™
with tangent space indices a, b, .. ., defined in terms of the vielbein e,* (6% = e,,%¢"™"e,?)
since they have the standard OPEs. Namely, the propagators read

/

(XP(2,2)X" (w, ) = — 50" Infz —wl?,
o a
(Y2)Y(w)) = —5ab5ln(z —w), (Y2)Y (@) = =6 —In(z — ).
The vertex operator momenta are

kar, = 6amme 5 kor = 6amme7 (52)

~ 93 -



where
P ="+ g™ (pn — BurB®), P ="+ g™ (pn — Burd") .

The stress energy tensor is

T(z) = —é(mw L OXH(2)OX"(2) : +0up : OVU()OV(2) 1)

and similarly for the right moving one. The OPEs are

Mo 1 Ve o e S
T (21) VG (22) = Z (kQ + k%) +1 ZT — 21@ |:: kpﬁgo.aXU 6zk Xikp Yikp Y :] +...,
L 1 %12 12
[/ IRY% / _ . . I
T (z1)Va, = % (kz + k%) +1 sz - 22';L3 [: kier,0X° etk XFikL Ytikp Y :} +...,
L 1 12 “12
—a, 7 VA ) a/ _ o _
T (z1)Va, = T (k:2 + k%) +1 ZTR —2i 5 [: kPeR,0Y " etk XFRLY +hrY :} +...,
L 1 *12 12
_a/ b V . a/ — 1., . . . ._
T (21) V¢) - Z (]{72 + k%) + 1 de — 2@473 |:: k%(babayb elk Xtikp Y +ikpY :i| 4+ ...
L 1212 212
Since k% = —k?, the vertex operators have the correct conformal weight h = 1 (and
similarly h = 1), however, there are cubic anomalies which suggest that the physical

fields should be created from combinations of these operators. Consider then the vertex
associated with the massive graviton

V=aVg+ Vs, +vVa, + Vs, (5.3)
with constant a, 3,7,9. From the OPE with 7" and T, the anomaly cancellation condi-
tions are

akle o + Bkiel, =0, akPeps + VkReR, =0,
0k} dap + ’ye%okg =0, k% bpa + ’yk:pe%p =0 (5.4)

Choosing 2o = v = 3, the sum of the first two equations leads to
KPS, + K era + khera = k€S + P Emo + 9™ Prémo = KR +P- AP =0, (5.5)
where we have defined
€mo = €Lmo + €ERmos €mo + Bmn€y = €Lmo — €Rmo » (5.6)
and we have made the identifications
AR, = (AR, AD™) = @), ey =R, (5.7)

Therefore, (5.5) is nothing but the first harmonic gauge condition in (3.21) in momen-
tum space.
On the other hand, by subtracting the first two equations in (5.4), we obtain

krer, — krer = ﬁmfma + gmn(pn + Bnkﬁk)(gma + Bmpeg) =0,
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which can be written as
P-M- A, =0, (5.8)

as found in (4.29).
The other two equations involving the scalars lead to

S(K Srn + kfsdmn) + vk (€1 + €F) = 269" (Pn + Bukh" ) bmn + vk - €0 =0,
5(kzl¢mn - %d)mn) - 7k~(€mL - EmR) = 25ﬁm¢mn - '}/k' : (gn + By - El) =0,

which can be shown to coincide with the third equation of the harmonic gauge condi-
tions in (3.21) when choosing 6 = %’y and establishing the identification with DFT scalar
fields (3.14)

¢mn + ¢nm _ ilmn’
¢mn _ ¢nm — pmn, (59)

Thus, the physical vertex operator for the massive graviton is
1 1
V = B Vo + Va, +VAR+§V¢. (5.10)

The effective symmetric polarization tensor can be shown to coincide with (4.18).

Similar steps can be followed for the Kalb-Ramond field and the second equation
in (3.21) is obtained.

In the next section we introduce the physical vertex operators used in the computation
of scattering amplitudes. The anomaly free conditions on the polarizations coincide with
those of the physical fields redefined through the use of the harmonic gauge condition.

5.2 Physical vertex operators on the torus

In the same way that we found the anomaly free combinations of vertex operators (or
equivalently, the harmonic gauge conditions), we can impose that each one of the vertex
operators (5.1) be anomaly free. This would give the conditions to be satisfied by the
physical polarizations, that now we distinguish with a prime. Note that this procedure will
give identically zero polarizations for massive vectors and scalars in the case of only one
compact dimension, thus confirming that there are no such degrees of freedom on a circle
compactification.
The anomaly cancellation conditions for vectors are

k%e'Lap =0, k%e’ﬁp =0, (5.11)
kPef, =0, kPeR, =0.
The first two equations can be combined as
k:%elLap + k:%e}%p =0 oras kiefp - kﬁe/ﬁp =0, (5.12)
which are equivalent to /
P-A,=0,
P-M-A,=0, (5.13)
MALP =0.
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Namely, the conditions found in (4.29) after gauge fixing. In the same way, for scalars
we find
=0, khe?=0, (5.14)

which can be expressed in terms of ﬁ;mb and b, as the following two conditions

—p"h, 4 B B GFob,, 4 pm G by, =0,

’ k ~/ k~/ (5’15)
—p" by + D" Bk G hgy, + PG by, = 0.
These coincide with the DFT condition (see 4.30)
P-M-h-M=0, (5.16)
which represents the Goldstone boson absorbed by the massive vectors.
For the tensors h;w and b;“, we get the usual transverse gauge conditions
kR, =0,
., w (5.17)
kb, =0.
Finally, the dilaton vertex can be written as
Vy = ¢l 0XHOXV ek (5.18)
with
621/ =V /d (77,u1/ + kuky + k‘,,k:#) ) (5.19)

as found in (4.36) by identifying k, = X,(,O) for the massless case and k, = X,(,]P) for mas-

sive dilatons.
Thus, we have obtained the requirements that physical polarizations must satisfy.
Notice that the two approaches to deal with vertex operators provide different informa-
tion on the theory: the first one displays a built in Higgs mechanism exhibiting the Gold-
stone bosons. The second one deals with the physical degrees of freedom once the gauge was
chosen. Of course, one can obtain the latter using the former, as was shown in the previous
section. We will use physical polarization tensors to compute scattering amplitudes.

5.3 Three-point interaction terms

In this section we consider three point functions of the massless and massive string states
created by the vertex operators described above. The resulting amplitudes are then com-
pared with the DFT action (4.37), evaluated on shell. We sketch the computation here
and provide some details for the circle case in the appendix.

For the sake of clarity we first concentrate on the circle compactification. This case is
particularly simple since neither physical massive vectors nor massive scalars are present.
The string S-matrix three-point amplitudes are presented in (B). When mode expand-
ing (4.37) and by using the identifications (5.7) and (5.9) between string polarization ten-
sors and DFT fields polarizations, complete agreement is achieved if we further identify

1

— (5.20)
2/1(21

Tge =

where g, is the closed string coupling.
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The effective U(1) x U(1) gauge invariant action, containing massless as well as massive
states with these S-matrix elements, can be written down. By including terms required
from gauge invariance and diffeomorphism invariance, this action reads

1
S=-— /lex\/—gC (5.21)

2K5
with
L=R- 12H3Vp aucpaﬂ@

. 1 1. -
— fFWF’“’ - ZF’“’FW + §FWF’“‘”<I) - iFWF‘“’CID
Z (D h*( )pPp ) _ 2D, h (n)pl/h(n) P 4 m? h*( ) () V)

n

(NN TN
Il
-

(ppgzgmpp;;(w)w_27)“,;;[(;0)@%( VB0 2 o () ) v )

I\D:"—‘
ﬁMg

1

1 2, My ()2 = w) 2, My i (w)2
6’ uup| ‘bm/‘ + Z ’Huup| + 7|buu ’

w=1

NE

_l’_

n=1
+i;R2<\h(”\2+lb )@ —Z;ZQ(WPW P e

—ZZ (h*m QI n)u) 2 ZZ (h*w)b(w i ,;g;)g;(ww) e

nﬁéO
1 1
+ Z (4D“hggl)pyh(n2)pah(m)lw 2h£7;1)puh(n2)1)”h(n3)pv>
n1+n2+n3=0
w; 70 1 - ~ ~ 1- ~ ~
+ Z <4Duh/(}gl)7),,h(w2)p"h(w3)‘“’ _ 2h£zip)1)puhl(jgz)pvh(ws)pa>
w1 +w2+w3z=0
n3#0 1
+ Z (41)“55)7;1)1)”()(?12)pﬂh(%)ﬁw _ Dﬂb(nl)ﬂl’pyb((;lbjz)h(ms) up
n1+n2+n3z=0

1 n ng)ov n
_ §b( 1)Pﬂpub( 2) Dyh203)>

w3 #0
S (ipug%npyg;wz)poﬁ(wswu_Duz)(wl)aupyggzz)g(ws)up

w1 +w2+w3z=0

1~ - -
. 2b(w1)puzD#b(wz)aurDyh%B)) (5.22)

where ® denotes the massless scalar; h,(fL) and iNz,(fﬁ) the modes of the massive graviton
with momentum n and winding w respectively; b,(ﬁ,) and b,(zﬁ) the modes of the massive

antisymmetric tensor with momentum n and winding w respectively.
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We have introduced the following definitions

vufpa = aufpa - Pz‘uf)\cr - Fgufpdv

1
Fi\w = 59)\0 (augau + 8#90’1/ - ajguz/) )
Fu = VA, —V,A,, (5.23)

Dy =V, —iAugn — iA,duw
H,p = Dyubyp + Dpbuy + Dby, .

Here indices are raised with the inverse of the metric tensor g,,,,, ¢ is the charge opera-
tor, complex conjugation is denoted with * and, under charge conjugation, the momentum
or winding change sign i.e h("* = (=),

The kinetic terms of the symmetric massive states produce the known Fierz Pauli
Lagrangian [31, 32], and the T-duality symmetry R <+ R,n < w is manifest. This action
coincides with (4.41) when specified for the circle case.

5.4 Strings vs DFT on generic tori

Generalizing the results obtained for the circle to generic tori is formally straightforward.
However, the number of terms involved is much bigger. The massless sector contains,
besides the graviton, dilaton, antisymmetric and scalar fields, the 2n gauge fields asso-
ciated to U(1)"™ x U(1)". The massive sector includes now, generically, massive vectors
and scalars. The comparison of DFT cubic interactions contained in the mode expansion
of (4.37) with three point scattering amplitudes computed using the vertex operators (5.1)
is now performed with the help of the symbolic algebra computer program XCadabra [23].
Our algorithm compares three point scattering amplitudes of string states and DFT cubic
interaction terms by systematic use of momentum conservation and on shell conditions.!*

As an example of the calculated quantities, we present the result of the scattering
amplitude between one antisymmetric tensor b, (with momentum ki ,, and charges pip,
and w!'™), one vector A’L”M (with momentum ks, and charges pa,, and w?™) and one
antisymmetric scalar by,, (with momentum k3, and charges p3,, and w3™).

In the DFT action there is only one place where the interaction vertex can be

found, namely
1

— WaMbwapANJMM Ngnegre., (5.24)
d
Splitting the double internal indices, in order to exhibit the explicit contributions of b,y
and h,,, scalars, one can collect the required interactions and compute the three point
amplitude. The result is

1
o2 (B)€Lum (k2) G™™ b () [koyw'™ — G¥* (ks)kaup1s + BaG*F (k3)kayw''] |

d

where €,,, €rum and b, are the polarizations of the two-form, the left vector and the

scalar, respectively. The same result is obtained in string theory if we choose % = Tge.

4The program is available upon request to the authors.
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6 Conclusions and outlook

Double Field Theory was originally motivated by toroidal compactifications and a double
set of coordinates was proposed as conjugate variables of compact momenta and windings.
However, a specific realization of momentum and winding modes, which generically requires
dealing with massive states, was lacking.

In this work we have dealt with massless and massive states of DFT compactifications
on generic double tori (in presence of constant background fields) and compared them
with a slice of the massless and massive states of bosonic string theory compactified on a
torus. The slice considered corresponds to states with excitation numbers N = N = 1,
namely, a subsector of the bosonic string arising from states containing one left and one
right moving oscillators.

We found complete agreement between the spectra of both DFT and string theory
when a level matching constraint is imposed on the DF'T side. Moreover, by expanding the
generalized fields of DFT at first order in fluctuations around the constant background,
the resulting third order action agrees with the effective action arising from three-point
scattering amplitudes in string theory. For n dimensional tori and d space-time dimensions
the obtained action corresponds to a gauge theory with G, = U(1)” x U(1)" Abelian
gauge group coupled to gravity. The computations involve both KK and winding modes,
named here GKK modes, and therefore the action contains an infinite number of charged
massive fields.

It is worth emphasizing that DFT provides a concise and manifestly O(n,n) realiza-
tion of this effective string theory action. Moreover, on a 2n-dimensional double torus
background, the global O(n,n,R) symmetry of DFT is broken to O(n,n,Z), the discrete
T-duality group of the full string theory.

As is well known, physical states in string theory are selected by ensuring cancellation
of conformal anomalies in the world sheet. We found that the DFT manifestation of
these requirements is the invariance under generalized diffeomorphisms. By using such
invariance, we have shown that a generalized harmonic gauge condition can be chosen,
and established a correspondence with conditions derived from string theory. Interestingly
enough, this gauge choice allows to identify the different Goldstone modes that are absorbed
to generate physical fields. Besides the gravity multiplet and massless vectors associated to
the compactified gravitational and antisymmetric fields, physical massive fields correspond
to massive symmetric and antisymmetric tensors, vectors and scalars charged under the
G, gauge group. The charges, corresponding to momentum and winding numbers, are
simply encoded in the generalized DF'T momenta P. Generalizing known results in KK
compactifications, we found the infinite global symmetry algebra associated to infinite local
generalized parameters. In particular, it contains a finite Poincaré xSO(1,2)" x SO(1,2)"
subalgebra and massive states should organize in its (infinite dimensional) representations.

Of course the effective action reproducing the three-point amplitudes of these physical
massless and massive string states is not a low energy effective action since all possible
massive levels are involved. The action provides an organized truncation of string theory.
However this truncation is incomplete since it contains states with masses of the order
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or higher than those of string states with N and/or N # 1 that were not included here.
Indeed, we know from string theory that new fields involving higher spins (associated
with N and/or N # 1) appear in the spectrum and play a crucial role in higher point-
amplitudes. In DFT language, higher order O(n,n) generalized tensors, incorporating
these missing string degrees of freedom, are expected.

We also know that a gauge symmetry enhancing, associated to the presence of windings,
occurs in string theory at self dual points. This enhancing involves states with N — N # 0
(e.g. NN = 0,41) and for this reason it cannot be seen in our construction. In [20], a
DFT description of gauge enhancing in circle compactification at self dual radius Ry was
provided. There, it is shown that enhancing from U(1) x U(1) to SU(2) x SU(2) requires
a dependence of the fields on the internal coordinates y,y associated to a double circle,
as we indeed have here. But it also requires an extension of the tangent space, leading
to an O(d + 1+ 2,d + 1 + 2) structure, that accommodates the extra massless vector
fields associated to winding modes. The computation was performed at R = R = Ry
by keeping only massless states, and it could be extended to R — R = Rpe by keeping
small masses. If we tried to generalize in this direction the procedure described in the
previous sections, namely by including states with N, N = 0, +1 and keeping GKK massive
modes, we would immediately run into trouble. Since the gauge group is enhanced, now
the massive states (massive gravitons, two-forms, vectors and scalars) must transform
under SU(2) x SU(2). However, there are not enough states, for a given mass, to fill up
these representations. This is again an indication that new fields are needed. Actually, a
string theory analysis, for instance by considering the OPE of SU(2) currents with massive
gravitons (with N = N = 1), shows that for masses M? = 2ma/, gravitons organize into
(2,2),(3,3),...(m + 1,m + 1) representations. In order to fill up these representations,
higher spin fields are required, which are not contained in the present version of DFT.
Again, the presence of higher order tensors is claimed for, now from gauge invariance.

Massive particles with spin larger than 2 would also be needed if higher powers of
momentum were considered. Actually, the three-point functions presented in the appendix
contain higher powers of momentum that we have not included since they go beyond the
aim of this paper. However, these higher order terms lead to higher derivative contribu-
tions to the effective action which would of course be necessary if quantum corrections
were considered. In particular, the inclusion of higher order terms in curvature invariants
is known to demand the addition of massive tensors in order to fix the short-distance vio-
lations of causality [41], and the Regge behavior required for the resolution of the causality
problem [42] also calls for higher order tensors in DFT.

Certainly, the effective theory we have constructed does not work as a fundamental
theory. Nevertheless, despite the absence of essential ingredients for full consistency, it
might be appealing by itself. It encodes an effective gauge invariant theory with a massless
sector containing gravity, antisymmetric tensor plus gauge bosons and scalars coupled to
towers of GKK massive modes. It is interesting to notice that, even if a given field has
a zero mode, it spreads out into towers of momenta and windings. The simplest case
of a non-zero graviton mass is an interesting theoretical possibility since it was not until
recently that a consistent non-linear theory of massive gravity could be constructed [43].
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Even in this simple toroidal scenario it could be interesting to look at possible phe-
nomenological consequences and to explore them in more detail. This aspect is beyond
the scope of the present work but let us signal some new features that could be worth
exploring. Many scenarios including KK excitations have been proposed in the literature
for different physical models. These proposals deserve being reconsidered in this GKK
scenario including windings as well as other fields. On the one hand new fields, associated
to antisymmetric tensor and dilaton, can be present. Also a new energy scale is built in.
In fact, even at the circle level two different energy scales Axk = 1/R and Ayindings = 1/ R
appear now which can lead to relevant physical consequences.

For instance, the type of models proposed in [39] in the large extra dimensions scenario
of [44, 45] appear to be drastically modified. There, toroidal bulk KK gravity modes were
coupled to Standard Model fields with radii Axx S Mstring ~ T'eV. However now, besides
the fact that other fields are present, the Ayindings €nergy scale will also be present. Leaving
aside stringy gauge symmetry enhancing, R = R self dual point situations, where both
windings and KK modes contribute on the same footing, are also possible.

KK universal scenarios for dark matter [46] have been extensively discussed. The con-
sistent incorporation of massive antisymmetric tensors coupled to Einstein gravity plus
other massless and massive fields could be also appealing in this context (see for exam-
ple [47-49]). More complex situations, that would require generalizations of this simpler
toroidal case, provide attractive candidates for dark matter [50, 51]. Phenomenology of
massive KK gravitons at the LHC was recently discussed in [52], composite Higgs models
associated to bulk KK modes have been considered in [53], etc.

The ideas developed here could in principle be extended to GKK reductions in which
the starting theory has non Abelian gauge fields already in higher dimensions (e.g. the
heterotic string). These are just plausible roads of research that call for careful study.
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A Extra terms in the DFT action

In the original frame formulation of DFT by Siegel [1, 2|. the action contains extra terms
that are not contained in (2.11). Up to total derivatives those can be recast as [18]

AS = / d?PX e B(SAB—nAB)nPQ8MEAP8MEBQ+48Md8Md—48M8Md . (A)

Here we show that these terms vanish once the level matching condition (2.15) is imposed.
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To show the vanishing of the term proportional to S ;5 we consider the following inte-

gral
I = /dQDX oMoy <e*2anQHpQ) = /de oMo (6*2d77PQSABEAPEBQ) =0.
(A.2)
A little of algebra, making use of the property H anP Q =0, shows that
=2 / PP X PG - <8MEAP8M EBo + EApay oM E%) . (A3)

Similarly, for the term in (A.1) proportional to 1355 we consider the integral
IQ_/CZQDX Moy (efzananQ> —/dZDX oMoy (e*anPQnABEApEBQ) =0, (A4)
that can be recast as

Iy =2 / d?P X e=20Q (—nPQaMaMd + napOu B pOMEP o + 14 BEAPQM(?MEBQ> :

(A.5)
Finally, for the term proportional to dy;d0™ d, we consider the integral

I3 = / d*PX oMope =2 / d*PX e (200 d0™d — 0y 0Md) = 0. (A.6)
From I, Is and I3, we can therefore express AS as
1 _ _
AS = / d?PX e~ [—2(5 a5 —napn’ @ EApoy oM EP o — (24 D)oyoMd| . (A7)

And therefore, transforming into momentum space and imposing the level-matching con-
dition (2.15), we get AS = 0.

B String computations

The results of three-point scattering amplitudes in bosonic string theory are presented here
for the case of one compact dimension on a circle of radius R. They are computed with the
vertex operators defined in (5.1). We first collect the amplitudes involving only massless
states and then the ones containing at least one massive state. We use a shorthand notation
with h,b, ¢, A, A denoting graviton, antisymmetric tensor, scalar and vector fields. Recall
that no massive vectors or scalars appear in the circle compactification and the massive
fields are only h and b. Dots indicate contractions with Minkowski space-time metric 7,,,.

3-point amplitudes for massless states
1
(@Ph) = —(mge) 5 DL (k1 - €' ky) (B.1)
1
(hhh) = —(7rgc)§ <(k2 et €l k) b (ks €€l ) 4 (kg el €l €l k)

1 1 1
— §(k3 . 6}1’ . kg)Tr(egeg) — 5(1{3 . eg . kl)TT(e’fegL) — 5(1{:1 €3 - kg)TT(G?GQ))
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) = (7gc)®(ky - €1) (k1 - €2)

A(I)> = —(7rgc)<I>(k2 . 61)(]431 . 62)
) = (79c) ((61 ceo)(ky - € k) + (ky - € ea)(er ko) + (ko - € €1)(en -
) = (mge) (k1 - - e2)(er - k) + (k- € e1)(e2 R))

(bbh) = (Trgc)% (;Tr(el{ ) (ky € ko) 4+ (ky o€ €€l k) 4 (ko€ e

3-point amplitudes with at least one massive state

k1)>

k>)

(hhA) = (rge) 55 (k1 - e)Tr(el - ) + (es - e - - ko) = (e €l - €5 - )

(1) = (r90) "% (b - ) Tr(eh - )+ (e e - k) — (ca e )

1
(hh®) = (ﬁgc)Q(I)Tr(e? ceMkipkig

1
(bb®) = —(ﬂ'gc)?I)Tr(el{ e kiLkir

(bbA) = —(ﬂ'gc)% ((63 . kil)TT(ﬁl{ . 68) + (ko - el{ . eg e3) — (k- eg . 61{ . 63))

(bbA) = —(mg.) 22 ((63 k) Tr(€) -eg)+(k2-e§.63.63)—(1f1-eg-e§-63))

(hbA) = (mgc) (* (- e} - €5 - 63)+Z;§(€3 e - kl))

’62’;@

(hbA) = (mg.) < (ky- €l éb - e3) + %(63 et eh k:1)>
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where kj, =

C Algebra of diffeomorphisms

Following the discussion in [33-37], we can associate a global infinite parameter algebra

to the infinite modes ¢PM)(z) of the GKK expansion of the parameters o

f local trans-

formations, in much the same way as a global Poincaré algebra is associated to general

coordinate transformations. From
0= SO e,
M

with P = (p, L), we restrict to
gp(M) (z) = a?M) 4 ,(Mp v

§H0) (2) = 1O,

)

where a?™) wMr CLM) are constants. The corresponding generators are

A,SM) _ iez‘MfYap’
MA(LIXH) = e Y(:cu&, — 2,0,)
Q(LM) — ieMYy,
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It is easy to check that these operators generate an algebra that corresponds to the
direct generalization of the algebra found in [33]. Namely,

VIR NS | = i g NS g NG — 1, N — o N5

pv " Mo
(2280, PIO] = i [ P — gy, )]
_P(M)7PISN)_ — 0

[Q(LM)’ MM — —Np MY
(oM pM] — _N; P(M+N)

M)ijgN)- — N Q(M+N)+M Q(MH—N (C.7)

We see that the zero modes lead to the d dimensional Poincaré algebra. Also, from
the last equation we notice that, for L = .5

[ (LM)7 (LN)] = (Mg — NL)Q(LMJFN)a (C.8)

which is a Virasoro algebra (with no central charge) for each value of L =1,...2n.

For the case of the circle we would have M = (m;, mg) = (m,m) with m =0 or m =0
due to LMC.

Notice that if we choose M = (m,0) and N = (n,0) with m,n = £1,0. Then
QgM) = Qgﬂ),Qg and P( ) M;(W), g) close a Poincaré®SO(1,2) algebra. In the same
way, exchanging 1 <> 2, namely, windings with momenta, another SO(1,2) algebra is ob-
tained. Thus, finally the original Poincaré algebra is enlarged to Poincaré ®SO(1,2)2. Tt
was shown in [38] that, in the circle case in field theory, the massive KK states organize
into an infinite dimensional (non-unitary) R representation of SO(1,2). In DFT on the
circle, windings and momenta are decoupled, so massive KK momenta states will fill up
the infinite dimensional representation of the first algebra whereas windings will organize
in a similar representation of the second one, namely (R, 1) + (1, R).

In the generic case we can proceed in the same way by choosing the GKK momenta
at the position L, M = 0, +1 with all other components vanishing. In this case we would
have Poincaré ®SO(1,2)?". Since massive states with M? =P - M - P mix windings and
momenta the analysis of representations is more involved and we will not perform it in the
present work.

Even if the above algebra is a symmetry of the original Lagrangian, it is broken to
Poincaré xU(1)™ x U(1)™ by the vacuum (4.3). This can be easily verified by inserting the
mode expansions (C.1) to compute the transformations of the fields g, , Ai\f ybuw, Hy v and
by requiring the vacuum (4.3) to be invariant under these transformations. ¢PM) with
M # 0 correspond to broken generators associated to Goldstone bosons.
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