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alized Kaluza Klein compactification of DFT on generic 2n-dimensional toroidal constant

backgrounds and show that, up to third order in fluctuations, the theory coincides with the

corresponding effective theory of the bosonic string compactified on n-dimensional toroidal

constant backgrounds, obtained from three-point amplitudes. The comparison between

both theories is facilitated by noticing that generalized diffeomorphisms in DFT allow to

fix generalized harmonic gauge conditions that help in identifying the physical degrees of

freedom. These conditions manifest as conformal anomaly cancellation requirements on the

string theory side. The explicit expression for the gauge invariant effective action contain-

ing the physical massless sector (gravity+antisymmetric+gauge+ scalar fields) coupled to

towers of generalized Kaluza Klein massive states (corresponding to compact momentum

and winding modes) is found. The action acquires a very compact form when written in

terms of fields carrying O(n, n) indices, and is explicitly T-duality invariant. The global

algebra associated to the generalized Kaluza Klein compactification is discussed.
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1 Introduction

Many amazing properties and symmetries of string theory can be tracked down to the

extended nature of the strings. In particular, the presence of an antisymmetric tensor Bµ̂ν̂
in the spectrum is expected because, being one dimensional, the string directly couples

to it. Actually, a distinctive feature of all string theories is that, besides the metric gµ̂ν̂ ,

the gravitational sector also includes the Kalb-Ramond field Bµ̂ν̂ and a scalar dilaton φ,

with extended

S =
1

2κ2

∫
dDx
√
−g e−2φ

(
R+ 4∂µ̂φ∂

µ̂φ− 1

12
Hµ̂ν̂λ̂H

µ̂ν̂λ̂

)
, (1.1)
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where Hµ̂ν̂λ̂ ≡ ∂[µ̂Bν̂λ̂]. The occurrence of this universal gravitational sector is ultimately

due to the fact that NS-NS massless fields are constructed from the tensor product of one

left and one right moving oscillators, transforming in the fundamental representation of

the D-dimensional Lorentz group SO(1, D − 1), and hence accounting for the degrees of

freedom of gµ̂ν̂ , Bµ̂ν̂ and φ according to the decomposition

D2 =

(
D(D + 1)

2
− 1

)
⊕ D(D − 1)

2
⊕ 1 . (1.2)

If the space is compact, the closed string can wind around non-contractible cycles,

leading to the so-called winding states. Again, from the world sheet point of view, these

states are created by vertex operators involving both coordinates associated with momen-

tum excitations and dual coordinates associated with winding excitations or, equivalently,

left and right moving coordinates.

The presence of winding and momentum modes underlies T-duality, a genuine stringy

feature, which manifests itself by connecting the physics of strings defined on geometrically

very different backgrounds and give rise to enhanced gauge symmetries at specific points of

the compact space. Indeed, T-duality implies that n-dimensional toroidal backgrounds of

closed string theory related by the non-compact group O(n, n,Z) are physically equivalent.

This duality appears as a continuous global O(n, n,R) symmetry in the Kaluza-Klein (KK)

toroidal compactification of the corresponding low energy effective gravity theory (1.1), if

only the massless modes are kept. Once the massive KK modes are taken into account,

the continuous symmetry is broken.

Double Field Theory (DFT) aims at incorporating these stringy features, and in par-

ticular information about winding, into a field theory [1–7]. Inspired by string compact-

ification on tori, DFT is formulated on a doubled configuration space, with coordinates

XM = (x̃µ̂, x
µ̂), where new coordinates x̃µ̂, conjugate to windings, are added to the stan-

dard coordinates xµ̂, conjugate to momenta. HereM = 0, . . . , 2D−1 and µ̂ = 0, · · · , D−1.

A manifestly O(D,D) invariant action is then constructed on the doubled space, in which

the global O(D,D) symmetry is linearly realized. An interesting feature of DFT is that

the metric gµ̂ν̂ and antisymmetric tensor Bµ̂ν̂ fields can be incorporated into a unique field,

the so-called generalized metric, transforming as a tensor of the O(D,D) group.

DFT has local invariances that are well defined only if consistency constraints are sat-

isfied. A solution to these constraints is the so called section condition, which effectively

leads to the elimination of half of the coordinates. Under this solution and in the frame

in which the fields do not depend on x̃µ̂, the DFT action reduces to (1.1) and the gen-

eralized infinitesimal transformations reduce to the standard diffeomorphisms and gauge

transformations of Bµ̂ν̂ that leave (1.1) invariant.

Even if the original motivation is lost when choosing the section condition, DFT still

provides an interesting tool for understanding underlying symmetries of string theory. In

particular, it shares the basic features of Generalized Complex Geometry [8–11] (both

frameworks are based on an ordinary, undoubled, manifold) and the 2D-dimensional tan-

gent bundle of the doubled space is an extension of the D-dimensional tangent-bundle of

ordinary spacetime by its cotangent bundle, with Bµ̂ν̂ parametrizing the structure of the
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fibration. Actually, some distinctive ingredients of string theory, like α′ corrections, have

been recently incorporated in these formulations [12–15].

Other solutions to the constraint equations are provided by generalized Scherk-Schwarz

compactifications [16–18]. It is worth noticing that Scherk-Schwarz compactifications of

DFT give rise to all the gaugings of gauged supergravity theories (not obtainable from

compactifications of low energy effective supergravities) allowing for a geometric inter-

pretation of all of them [19], albeit in a double space. In this framework, the doubled

coordinates enter in a very particular way through the twist matrix, which gives rise to the

constant gaugings.

While winding modes are essential for T-duality, they are not truly present and their

role is not evident in these approaches. Clearly, to probe the winding sector requires to

relax the section condition. Moreover, in toroidal string compactifications, winding states

are massive for generic tori. Therefore, understanding the role of winding modes implies

facing the massive sector of the theory and consequently dealing with an infinite number

of physical states, with different spins and mass scales. However, at specific points of

the compact space, some winding states become massless and an effective theory contai-

ning only massless states and enhanced gauge symmetry emerges. This scenario appears

particularly suitable to identify the explicit part played by windings and a DFT descrip-

tion of the massless winding sector of bosonic string theory compactified on a circle was

suggested in [20].

In the present work we propose a way to probe a slice of the massive winding sector

of bosonic string theory in an organized fashion. Namely, we consider compactifications

of DFT on generic double tori.1 The generalized dilaton and metric fields of DFT con-

tain bosonic string states constructed with one left and one right moving oscillators, and

therefore we concentrate on this sector of the string spectrum. Even if the bosonic string

is ill defined, due to the presence of tachyons, we will use it as a reference since string

computations are simpler to deal with. However, for the sector we are interested in here,

similar reasoning would apply for the heterotic or Type IIB string theories.

The comparison between DFT and string theory is done by expanding the generalized

fields around a generic toroidal background with constant dilaton and two-form field.2 We

then expand the DFT action up to third order in fluctuations around the constant back-

ground and contrast the result with the corresponding string theory three point amplitudes.

As a first outcome of the calculations, we find that both the DFT and string spectra

containing Kaluza-Klein (KK) momenta and windings coincide as long as a “level match-

ing” constraint (LMC) is imposed on the mode expansion of the DFT fields. Furthermore,

we show that the compactified DFT action (up to this order in fluctuations) is invariant

under generalized gauge transformations generated by a generalized Lie derivative, if the

LMC is imposed. This gauge invariance allows to choose a generalized harmonic gauge

which provides a convenient “gauge fixing”, as it imposes conditions on massless and mas-

sive states that can be easily identified with conformal anomaly cancellation conditions on

1See [21] for previous work on this subject.
2Expansions around generic backgrounds have been performed in [22].
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the vertex operators creating these states in string theory. Using these conditions, we then

show that cubic vertices in the DFT action can be reproduced by three point amplitudes

in string theory. Actually, DFT appears to provide a straightforward way of organizing

these amplitudes in an effective T-duality invariant field theory. We obtain an explicit

expression for the gauge invariant effective action containing the physical massless sec-

tor (gravity+antisymmetric+gauge+scalar fields) coupled to towers of generalized Kaluza

Klein (GKK) massive states (corresponding to compact momentum and winding modes).

The article is organized as follows. In section 2 we present some basic introduction to

DFT. We write the DFT action in a generalized Einstein frame and fix the gauge freedom

in terms of generalized harmonic coordinates. In section 3 we perform the expansion of

the generalized fields in fluctuations around a constant generic background, we discuss the

gauge fixing conditions and carry out a GKK decomposition of the fields. In section 4

we consider the mode expansion of the fields on a double torus with constant background

fields. We identify massless and massive states and examine the generalized harmonic gauge

equations to distinguish physical states and Goldstone like states. The analysis of the cubic

interaction terms in the effective action and the identification of unbroken symmetries is also

performed. Finally the resulting gauge invariant action in d lower dimensions is presented.

Section 5 is devoted to string theory amplitudes on toroidal backgrounds. The equivalence

between conformal anomaly cancellation conditions on the string vertex operators and the

generalized harmonic gauge conditions on the DFT fields is determined. We compute three

point string scattering amplitudes of massless and massive states and show the complete

agreement with the expansions in DFT. The comparison involves a huge number of terms

and so it is performed with the help of a computer (cadabra program [23]). The simple

example of circle compactification is worked out explicitly and the manifestly T-duality

invariant effective action is also presented. A discussion on the limitations and possible

extensions of this work and a brief outlook are contained in the concluding remarks in

section 6.

2 Double Field Theory basics

In this section we briefly review some of the basic features of DFT that are needed in our

discussion.

The theory is defined on a double space with coordinates XM = (x̃µ̂, x
µ̂), defined in the

fundamental representation of O(D,D). Here M = 0, · · · , 2D − 1 and µ̂ = 0, · · · , D − 1.

The generalized tensors transform under generalized diffeomorphisms as

LVWM···N = V P∂PW
M···N + (∂MVP − ∂PVM)WP···N + · · ·+ (∂NVP − ∂PV N )WM···P .

(2.1)

The natural SO(D,D) metric

ηMN =

(
0 I
I 0

)
(2.2)

is invariant under the above generalized transformations. It can be decomposed into

a positive-definite and a negative-definite metric, η|C± , acting on each of the two D-
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dimensional orthogonal subspaces of the doubled space E = C+ ⊕ C−, that are generated

by the coordinates XM± = xµ̂ ± x̃µ̂. Making use of η|C± , a positive-definite metric can be

defined on E

HMN =
(
η|C+

− η|C−
)
MN

=

(
g−1 −g−1B

B g−1 g −B g−1B

)
, (2.3)

with

HMP ηPQHQN = ηMN . (2.4)

Under O(D,D) transformations hM
P , X→ hX and the fields change as

HMN (X)→ hM
PhN

QHPQ(hX), d(X)→ d(hX) (2.5)

Upper and lower indices are lowered and raised with ηMN and its inverse ηMN , re-

spectively.

It is sometimes useful to express the metric HMN in terms of a vielbein

HMN = EAM SAB E
B
N , EAM =

(
e eB

0 e−1

)
, (2.6)

where gµ̂ν̂ = eaµ̂ sab e
b
ν̂ ,

SAB =

(
sab 0

0 sab

)
(2.7)

and sab is the D dimensional Minkowski metric. A,B, · · · indices are lowered and raised

with the flat SO(D,D) metric defined as

ηAB = EA
M ηMN EB

N (2.8)

and its inverse, respectively, which numerically coincide with (2.2).

Since the Minkowski metric is invariant under Lorentz O(1, D − 1) transformations,

the metric SAB is invariant under double transformations O(1, D − 1) × O(D − 1, 1) and

as a result the generalized metric H parametrizes the coset

O(D,D)

O(1, D − 1)×O(D − 1, 1)
. (2.9)

From the transformation law (2.1), the generalized metric transforms as

LVHMN = V P∂PHMN + (∂MV
P − ∂PVM)HPN + (∂NV

P − ∂PVN )HMP . (2.10)

In terms of HMN , and keeping up to two derivatives, the action of DFT in the 2D-

dimensional space E can be expressed as3

S =
1

GDFT

∫
dDxdDx̃ e−2dR(H, d) , (2.11)

3In the original frame formulation of DFT by Siegel [1, 2] the action includes extra terms that are not

contained in (2.11). Up to total derivatives those can be recast as [18]

∆S =
1

GDFT

∫
dDxdDx̃ e−2d

[
1

2
(SAB − ηAB)ηPQ ∂ME

A
P∂
MEBQ + 4∂Md∂

Md− 4∂M∂
Md

]
.

In the appendix we show that these terms vanish once the level matching condition described below, is

imposed, and therefore we do not consider them in this work.
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where the generalized Ricci scalar is given by [4]

R = 4HMN∂M∂Nd− ∂M∂NHMN − 4HMN∂Md∂Nd+ 4∂MHMN∂Nd

+
1

8
HMN∂MHKL∂NHKL −

1

2
HMN∂MHKL∂KHNL , (2.12)

the generalized dilaton

e−2d = e−2φ√−g (2.13)

is an O(D,D) scalar and GDFT will be defined below.4

Comparison with string theory, as we re-discuss in more detail below, requires the level

matching condition (LMC)

∂M∂
M · · · = (N − N̄) · · · , (2.14)

where N and N̄ are the left and right oscillator numbers of the string and the dots stand

for fields or gauge parameters. Given that g,B and φ correspond to N = N̄ = 1, we

would expect N − N̄ = 0. However, in a compact space this difference could be a non-

vanishing integer. Even though this is a key ingredient of symmetry enhancing at certain

compactification radii (see [20]), we will only consider states satisfying N − N̄ = 0 in

the main body of this article. Introducing the 2D-dimensional momentum vector PM =

(p̃µ̂, pµ̂), generated by the partial derivatives −i(∂̃µ̂, ∂µ̂) acting on the corresponding field,

the constraint reads

||P||2 ≡ PMPM = 0 (2.15)

for HMN and d. In general, this constraint is not sufficient to ensure consistency. For

instance, the product of fields generically does not satisfy it and the generalized transfor-

mations (2.1) fail to close.

This failure can be expected from string theory. Namely, many other terms (actually

infinite) are expected to complete the effective action, containing higher derivatives but

also higher spin fields. Hopefully, in the full action variations could compensate among

different terms and the algebra would close. But in the truncated theory involving only

massless fields with N = N̄ = 1 in the non compact case, consistency constraints are

necessary. One solution of these constraints is the so-called section condition

∂M · · · ∂M · · · = 0 , (2.16)

where the dots stand for products of fields or gauge parameters. It implies that half of

the coordinates drop from the theory. These coordinates can be chosen to be the dual

coordinates x̃µ̂. This choice is named gravity frame since in this case the action (2.11)

simply reduces to eq. (1.1) when HMN is parametrized as in (2.3) and GDFT ≡ 2κ2
∫
dDx̃.

The section condition is sufficient to satisfy the closure constraints, but there are more

general solutions [18, 25] when there is a compact sector. It is important to stress that (2.11)

describes more physical degrees of freedom than the standard D-dimensional action (1.1)

for g, B and φ. Indeed, by introducing coordinates x̃µ̂, and their corresponding partial

derivatives ∂̃µ̂, fields can carry momentum along these directions and the backgrounds can

4The overall constant GDFT was introduced in [24].
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Φ HKL ηKL EAM SAB ηAB
∆Φ −2 −2 −1 0 0

Table 1. Conformal weights of the various tensors that appear in DFT.

also depend on these coordinates. Such dependence is not an artifact of DFT: backgrounds

with non-trivial dependence on the coordinates x̃µ̂ cannot be described in terms of D-

dimensional gravity, but are however expected to be consistent solutions of string theory. In

particular, such backgrounds lead upon compactification to fully consistent effective gauged

gravities with momenta along the internal coordinates associated to winding excitations.

DFT contains more degrees of freedom than D-dimensional gravity, and in particular,

it allows to compute observables and describe settings that cannot be accounted for in

standard D-dimensional theories.

In what follows we will compactify DFT on generic tori with constant background

fields and fluctuations around them. The constraints to be used will be extracted from

comparison with string theory results. In our computations, the section condition must be

imposed in the spacetime sector but only the LMC constraint is required in the toroidal

compact space. This appears to be consistent if fluctuations are considered only up to

third order. When going to higher orders, the failure of the gauge algebra to close should

be interpreted as an indication that new degrees of freedom must be included. A brief

discussion on this issue is offered in the concluding remarks.

2.1 Einstein frame and harmonic coordinates

The generalized metric HMN defined in (2.3) contains the g and B fields, and the gener-

alized dilaton d involves φ. We can combine both d and HMN into a single generalized

Einstein-frame metric H̃MN with non-zero determinant. For that aim, we perform a Weyl

transformation

H̃MN = e2ΩHMN , (2.17)

under which a tensor with conformal weight ∆Φ transforms as

Φ̃ = e−Ω∆Φ Φ . (2.18)

We list the conformal weights of the tensors introduced in the previous section in table 1.

Making use of these transformations, one can easily check that

R = e2Ω
[
R̃ − 2∂MH̃MN∂NΩ− 2H̃MN∂M∂NΩ− (2 +D)H̃MN∂MΩ∂NΩ

+ 8H̃MN∂MΩ∂Nd−
1

2
H̃KLH̃MN∂MH̃KL∂NΩ

]
. (2.19)

Taking Ω = d and integrating by parts, we can express (2.11) in the Einstein frame as

S =
1

GDFT

∫
dDxdDx̃ R̂(H̃, d) , (2.20)

– 7 –
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where

R̂(H̃, d) = (2−D)H̃MN∂Md∂Nd−
1

2
H̃KLH̃MN∂MH̃KL∂Nd+ ∂M∂NH̃MN

+
1

8
H̃MN∂MH̃KL∂N H̃KL −

1

2
H̃MN∂MH̃KL∂KH̃NL . (2.21)

This action (2.20) behaves similarly to the more familiar Einstein-Hilbert action in

many aspects. In particular, the equations of motion are greatly simplified by taking

a harmonic coordinate condition to fix the gauge freedom under generalized diffeomor-

phisms. This can be achieved by requiring the coordinates XR to be solutions of the

Laplacian equation

∂M

(
H̃MN∂N

)
XR = 0 ⇒ ∂MH̃MN = 0 , (2.22)

which amounts to the gauge fixing condition5

∂MHMN − 2HMN∂Md = 0 , (2.23)

when written in terms of the metric HMN and the scalar d. Alternatively this equation

can be expressed as

∂Md =
1

2
HMN∂RHNR = −1

2
HNR∂RHMN . (2.24)

Making use of these conditions and integrating by parts, the action (2.11) can be expressed

in harmonic coordinates in a particularly compact form

S =
1

GDFT

∫
dDxdDx̃ e−2d

[
1

8
HMN∂MHKL∂NHKL −

1

2
HMN∂MHKL∂KHNL

]
, (2.25)

or, in Einstein-like frame,

SDFT =
1

GDFT

∫
dDxdDx̃

(
1

8
H̃MN∂MH̃KL∂N H̃KL −

1

2
H̃MN∂MH̃KL∂KH̃LN

+ (2−D)H̃MN∂Md∂Nd
)
. (2.26)

It is also interesting to express the gauge fixing condition in terms of g, B and φ. For

standard D-dimensional gravity backgrounds with p̃µ̂ = 0, one may easily check that its

components reduce to

∂ν̂

(√
−g gµ̂ν̂e−2φ

)
= 0 , (2.27)

gµ̂ν̂∂ν̂Bλ̂µ̂ = 0 .

In particular, for vanishing dilaton φ = 0, the first equation is the usual harmonic gauge

fixing condition of General Relativity. More generally, for generic DFT backgrounds, the

gauge fixing conditions for B, g and φ read

∂ν̂

(√
−g gµ̂ν̂e−2φ

)
= ∂̃λ̂

(√
−g gµ̂σ̂Bσ̂λ̂ e

−2φ
)

= 0 , (2.28)

∂̃ν
(√
−g gµ̂ν̂e−2φ

)
= −e−2φgσ̂ν̂

(
∂ν̂ −Bν̂λ̂∂̃

λ̂
)
Bµ̂σ̂ = 0 .

5It can be shown that, in terms of the generalized connection of [1, 2, 26], this is equivalent to requiring

HMPΓMP
Q = 0.
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3 Perturbative DFT

The physical content of a quantum field theory can be recast in terms of its S-matrix

elements, that are usually computed perturbatively. In the particular case of General Rel-

ativity, perturbative computations are however specially complex due to the huge number

of vertices, rendering most of the brute force computations of scattering amplitudes infea-

sible. Fortunately, the field theory limit of Kawai-Lewellen-Tye (KLT) relations [27] allows

to express gravity amplitudes in terms of two copies of gluon amplitudes, which are much

simpler to compute. In particular, starting from gluon amplitudes and using KLT relations,

it has been possible to construct a Lagrangian for gravity [28]. The resulting Lagrangian is

particularly simple and is related to the usual Einstein-Hilbert action by non-linear redefi-

nitions and gauge fixing similar to those used in [29]. Moreover graviton spacetime indices

can be split into two types (left and right), in such a way that contractions do not mix

indices of different type.

KLT relations originate from the fact that the integrand of a closed string amplitude

involves two open string components, corresponding to left and right movers. It is then

natural to expect that this hidden simplification of gravity amplitudes also holds in DFT.

Indeed, this is already manifest in the extreme simplicity of the Lagrangian (2.25). To be

more specific, let us split HMN into background HMN and quantum fluctuations ĥMN ,

HMN = HMN + ĥMN , d = d+ d̂ . (3.1)

For simplicity, we consider HMN and d to be constant. Due to the presence of two

metrics, namely HMN and ηMN , (3.1) can be inverted in two different ways: by making

use of ηMN or by using the geometric series for matrices. We thus obtain for the inverse

HMN = HMN + ĥMN = HMN − ĥṀṄ + ĥṀP ĥ
ṖṄ − ĥṀQ ĥ

Q̇Ṗ ĥP
Ṅ + . . . , (3.2)

where we have introduced the short-hand notation AṀ ≡ HMNAN , AṀ ≡ HMNA
N , and

it is useful to note that, up to first order,

ĥMN = ηMPηNQĥQP = −HMPHNQĥQP = −ĥṀṄ . (3.3)

The single field ĥMN ≡ ηMPηMQĥPQ therefore encodes an infinite set of operators when

expressed in terms of the background metric HMN .

Note also that by construction HMNHNQ = δMQ, however ĥMN ĥNQ 6= δMQ. In-

stead, one may easily check the following relation

ĥMN ĥNQ = −
(
hṀQ + hMQ̇

)
. (3.4)

For comparison with string theory results, it proves convenient to look at fluctuations

in the so-called modified Einstein frame, namely the Einstein frame discussed above with

the vacuum value of the generalized dilaton e−2d extracted out.6 Thus, the generalized

metric is, up to first order

H̃MN = ¯̃HMN +
ˆ̃
hMN = H̄MN + (ĥMN + 2d̂H̄MN ) . (3.5)

6In what follows Einstein frame means modified Einstein frame.
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3.1 Expansion of DFT in fluctuations

Following the discussion above, by using (3.5) we expand the DFT harmonic gauge fixed

action (2.26) into background and quantum fluctuations. We get, up to third order in

fluctuations,

LDFT =
1

8
¯̃H
MN

∂M
ˆ̃
hKL∂N

ˆ̃
hKL − (D − 2) ¯̃H

MN
∂Md̂∂N d̂ (3.6)

− 1

2
ˆ̃
hMN∂M

ˆ̃
hKL∂K

ˆ̃
hNL +

1

8
ˆ̃
hMN∂M

ˆ̃
hKL∂N

ˆ̃
hKL − (D − 2)

ˆ̃
hMN∂Md̂∂Md̂ .

Recall that in terms of fields, the fluctuations ĥMN = ĥ(1)MN + ĥ(2)MN + . . . contain

contributions from higher orders. In particular, terms quadratic in ĥMN could give third

order interaction terms. However, this is not the case. Actually, integrating by parts

the term 1
4H̃
MN

∂M
ˆ̃
hKL(2) ∂N

ˆ̃
h(1)KL, one gets the equations of motion (see (4.8) below), and

so this cubic term vanishes on shell. The same conclusion holds for the second term.

Therefore, the third order terms in the action involve only the first order fluctuations of

the generalized fields, and we finally have the Lagrangian (3.6) with
ˆ̃
hKL =

ˆ̃
h(1)KL.

Before compactification, in a flat background

HMN =

(
ηµ̂ν̂ 0

0 ηµ̂ν̂

)
, (3.7)

and to first order in fluctuations, gµ̂ν̂ = ηµ̂ν̂ + hµ̂ν̂ , Bµ̂ν̂ = bµ̂ν̂ , we have

ĥMN =

(
ĥµ̂ν̂ ĥµ̂ ν̂
ĥµ̂

ν̂ ĥµ̂ν̂

)
=

(
−hµ̂ν̂ −ηµ̂ρ̂bρ̂ν̂
−ην̂ρ̂bρ̂µ̂ hµ̂ν̂

)
. (3.8)

Then from the second order terms in fluctuations and imposing the strong constraint

in the gravity frame (namely, dropping the dependence on the x̃µ̂ coordinates), we recover

the quadratic terms in the action (1.1) in the de Donder gauge [30, 32]. Actually, in the

string frame we get

S =
1

2κ2

∫
dDx e−2φ̄

[
∂σ̂

(
hν̂

ν̂

2
−2φ̂

)
∂σ̂
(
hρ̂

ρ̂

2
−2φ̂

)
− 1

2
∂σ̂(hν̂λ̂+bν̂λ̂)∂σ̂(hν̂λ̂+bν̂λ̂)

]
. (3.9)

Transforming this action into momentum space, we obtain the propagators for h, b and φ̂

Dh
µ̂ν̂;ρ̂σ̂ =

e−2φ̄

4

ηµ̂ρ̂ην̂σ̂
p2

,

Db
µ̂ν̂;ρ̂σ̂ =

e−2φ̄

4

ηµ̂ρ̂ην̂σ̂ − ηµ̂σ̂ην̂ρ̂
p2

,

D2φ̂−h
ν̂
ν̂

2 =
4e−2φ̄

p2
.

The first lesson to be drawn from this calculation is that the strong constraint must

be imposed on the space-time coordinates in order to recover ordinary gravity theories,

as expected.
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3.2 Generalized Kaluza-Klein compactification

The generalized Kaluza-Klein (GKK) decomposition of the generalized metric reads

HMN =

 gµν −gµρcρν −gµρANρ
−gνρcρµ gµν +ANµMNPA

P
ν + cρµg

ρσcσν MNPA
P
µ +ANρg

ρσcσµ
−gνρAMρ MMPA

P
ν +AMρg

ρσcσν MMN +AMρg
ρσANσ

 , (3.10)

where now theM,N indices split into spacetime µ, ν, · · · indices taking the values 0, · · · , d−
1, and internal doubled indices M,N, · · · = 1, · · · , 2(D − d). We have introduced the

combination cµν = bµν + 1
2A

N
µ ANν , ANµ denote the vectors and MMN is the scalar matrix

defined below.

In terms of components, the constant generalized background metric reads now

HMN =

ηµν 0 0

0 ηµν 0

0 0 MMN

 , (3.11)

with

MMN =

(
Gmn −GmpBpn

BmpG
pn Gmn −BmpGpqBqn

)
, (3.12)

where m,n, · · · = 1, · · · , D − d. The fluctuations up to first order are

ĥ(1)MN =

 ĥµν(1) ĥµ(1)ν ĥµ(1)N

ĥ ν
(1)µ ĥ(1)µν ĥ(1)µN

ĥ ν
(1)M ĥ(1)Mν ĥ(1)MN

 =

 −hµν −ηµρbρν −ηµρANρ
−ηνρbρµ hµν MNPA

P
µ

−ηνρAMρ MMPA
P
ν hMN

 . (3.13)

The matrix hMN encoding the scalar field content reads

hMN =

(
−GnkhklGlm −Gnkbkm+GnkhksG

slBlm
−BnsGslhlkGkm+bnlG

lm hnm−bnlGlkBkm+BnkG
kshsrG

rbBbm−BnkGklblm

)
(3.14)

where hnl, bnl are the scalar fields derived from the higher dimensional graviton and anti-

symmetric fields, respectively.

From the definition of the generalized dilaton (2.13) and recalling that d = d + d̂,

we have

e−2d = e−2φ0
√
detG , (3.15)

d̂ = φ̂− 1

4
hµµ . (3.16)

In Einstein frame, the only fluctuations that are modified are

ˆ̃
hµν = (hµν + 2d̂ ηµν) ≡ h̃µν ,
ˆ̃
hµν = (−hµν + 2d̂ ηµν) ≡ −h̃µν ,

ˆ̃
hMN = (hMN + 2d̂MMN ) ≡ h̃MN . (3.17)

The harmonic gauge conditions in the Einstein frame (∂MH̃MN = 0) become, in terms

of fluctuations,

∂M
ˆ̃
hMN = ∂µ

ˆ̃
hµN + ∂L

ˆ̃
hLN = 0 , (3.18)
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where we have used the strong constraint in the spacetime sector. Therefore, when speci-

fying values for the index N , we have

∂µ
ˆ̃
hµν + ∂N

ˆ̃
hNν = 0 → ∂µh̃

µν + ∂NA
Nν = 0 , (3.19)

∂µ
ˆ̃
hµν + ∂N

ˆ̃
hNν = 0 → ∂µbµν − i(PMA)ν = 0 , (3.20)

∂µ
ˆ̃
hµN + ∂M

ˆ̃
hMN = 0 → ∂µANµ − i(PMh̃M)N = 0 . (3.21)

We will discuss the link between this set of equations and the vanishing of conformal

anomalies in string theory in section (5) below.

4 Toroidal compactification

We consider the mode expansion of fields on an internal 2n-dimensional double torus with

constant background (metric, dilaton and antisymmetric fields) turned on. It corresponds

to a compactification on 2(D− d) = 2n circles, which are generically non-orthogonal since

the background metric is in general non-diagonal.7

The internal coordinates YM = (ỹm, y
m) have periodicity

ỹm ∼ ỹm + 2πR̃(m) , ym ∼ ym + 2πR(m) , (4.1)

where R(m) and R̃(m) = α′R(m)−1
denote the radii of the m-th cycle and its dual, respec-

tively. The internal momenta are encoded in the O(n, n) vector PM of components

PM ≡ (Pm,Pn+m) = (pm, p̃
m) =

(
nm

R(m)
,
wm

R̃(m)

)
, (4.2)

nm and wm being the integer momentum and winding numbers.

On the torus background, the non-trivial identifications (4.1) are only preserved by

O(n, n) transformations with integer-valued matrix entries. Thus, the O(n, n,R) symmetry

is broken to the discrete O(n, n,Z) group.

The mode expansion of the generalized metric would be H(x,Y) = H̄+ ĥ(x,Y) with

ĥ(x,Y) =
∑
P

′ĥ(P)(x)eiPMYM , (4.3)

where the dependence on the dual space time coordinates x̃µ has been dropped. The

expansion of the component fields is

gµν(x,Y) = ηµν +
∑
P

′h(P)
µν (x)eiPMYM , (4.4)

bµν(x,Y) =
∑
P

′b(P)
µν (x)eiPMYM , (4.5)

and similarly for d̂(x,Y), gauge parameters, etc.

The sum over P involves, in principle, all integer values of momenta and windings

(nm, w
m). Possible constraints are indicated with a prime on the sum. Also, since all the

fields we are dealing with are real, we require H(−P)(x) = H(P)(x)∗.

7Here we consider dimensionful internal coordinates whereas the metric is dimensionless. Alternatively,

we could absorb the dimensions in the metric just by redefining Gmn → GmnR
(m)R(n).
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Remember that we have dropped the field dependence on dual space-time coordinates,

or in DFT words, we have imposed the strong constraint in order to stay in the gravity

frame. This means that there will be a 1
2κ2 overall factor in the action, where κ is now the

gravitational constant in d+ 2n dimensions. In terms of the DFT coupling above it would

formally read 1
2κ2 = 1

GDFT

∫
ddx̃.

Due to the contributions from both, a circle and its dual, the usual R dependent volume

factor of dimensional reduction is not present here, and instead an α′ factor is left, namely

d2nY = Πn
i=1

dyi

2πRi

dỹi

2πR̃i
= Πn

i=1

1

(2π)2α′
dyidỹi . (4.6)

Furthermore, we use that∫
d2nYei(PM+QM )YM = δ2n(PM + QM ) , (4.7)

since
∫ 2πRi

0
dyi

2πRi
= 1. We will see below that the dependence on radii shows up when

vector fields are redefined in order to have integer U(1) charges. Also a scaling factor

appears through the expectation value of the generalized dilaton e−2d̄ containing both the

determinant of the background metric Ḡ and dilaton φ̄ fields.

4.1 Quadratic terms and masses

We first concentrate on the quadratic terms in the action. Inserting the GKK expansion

in the first line of the Lagrangian (3.6), we obtain

S
(2)
DFT =

1

2κ2
d

∑
P

′
∫
ddx

[
d̂(x)(P)(∂µ∂

µ − PMM
MNPN )d̂(x)(−P)

− 1

8
ˆ̃
h(P)KL(x)(∂µ∂

µ − PMM
MNPN )

ˆ̃
h

(−P)
KL (x)

]
, (4.8)

where we have redefined d̂→ (D − 2)1/2d̂, and by using (3.15),

1

2κ2
d

=
1

2κ2
e−2d. (4.9)

The equations of motion read(
∂µ∂

µ − PMM
MNPN

)
ˆ̃
h

(P)
KL (x) = 0,

(
∂µ∂

µ − PMM
MNPN

)
d̂(P) (x) = 0. (4.10)

Interestingly enough, these expressions not only reproduce the propagators for the

gravity multiplet8 but they also contain the propagators for GKK states. In particular, we

can identify the mass squared of the GKK (P) modes9 as

M2 = −k2 = PMM
MNPN = PṀPM . (4.11)

8A careful discussion about physical degrees of freedom is presented in next section.
9Here the dot refers to contractions with the internal metric M.
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This is exactly the mass squared of string states on generic toroidal backgrounds for

N + N̄ − 2 = 0. We expect this condition is satisfied since we started with N = N̄ = 1.

However, the string states also satisfy the LMC, namely

1

2
PMPM = N − N̄ = 0 . (4.12)

Therefore, it appears that in order to recover the string theory results, we must consider

the following constrained GKK expansion

ĥ(x,Y) =
∑
P
ĥ(P)(x)eiPMYM δ(P2) , (4.13)

and similarly for d̂(x,Y).

Let us look at the transformation of the compactified action under the generalized

diffemorphisms (2.1). From the discussion above, we know that this variation should be

proportional to terms that vanish if the strong constraint ∂P⊗∂P = 0 is imposed. Moreover,

since the space-time part already satisfies it, the transformation must be proportional to

∂P ⊗ ∂P = 0, where now P labels the internal compact coordinates. Since the variation

is proportional to the gauge parameter, it can be written as ∂P ξMJ
PM , with JPM a

product of generalized metric and dilaton fields with a ∂P derivative acting on one of

them. By mode expanding the generalized fields, these derivatives lead to a Qi
PQjP factor

times a δ2n(
∑

iQi) requiring total momentum conservation. If up to third order terms in

fluctuations are kept in the action, momentum conservation and level matching Qi2 = 0

for each field (including ξM ) leads to Qi · Qj = 0 and we conclude that the action, up to

this order, is invariant under generalized diffeomorphisms.

4.2 Physical degrees of freedom

The mass formula (4.11) is generic and does not allow us to isolate physical states. For

instance,
ˆ̃
h

(P)µ
M (x) seems to denote 2(D− d) massive vector states. However, we know that

some of these vectors must be absorbed by the gravitational and two-form fields to become

massive. Actually, the harmonic gauge condition allows to identify the physical degrees of

freedom. In order to see this, first recall the expected physical fields in lower dimensions.

A symmetric massless two-tensor in D dimensions has (D − 2)(D − 1)/2 degrees of

freedom.10 With n compact dimensions, we can write

1

2
(D − 2)(D − 1) =

1

2
(D − n− 2)(D − n− 1) + n(D − n− 2) +

1

2
n(n+ 1) or

1

2
(D − 2)(D − 1) =

1

2
(D − n− 1)(D − n) + (n− 1)(D − n− 1) +

1

2
n(n− 1)

Starting with the metric in D dimensions, decomposing the indices into D−n spacetime and

n internal indices, for massless states (corresponding to zero modes in the KK expansion) we

would have 1
2(D−n−2)(D−n−1) d.o.f. for gµν , n vectors gµm leading to n(D−n−2) d.o.f.

10We count here the degree of freedom of the trace, associated to the dilaton field. We discuss the splitting

of traceless and trace parts below, in order to compare with string theory results.
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and 1
2n(n+1) scalars gmn, consistent with the first equation. On the other hand, if the states

are massive, we must decompose them as in the second equation, corresponding to a massive

symmetric two-tensor, n−1 massive vectors and 1
2n(n−1) scalars. We can understand this

combination by interpreting that a scalar is eaten by a massless vector to become massive,

leaving 1
2n(n+1)−n = 1

2n(n−1) scalars and n massive vectors with (D−n−1) degrees of

freedom. However, one of these vectors is eaten by the massless graviton to become massive,

leaving a massive two-tensor with 1
2(D−n−2)(D−n−1)+(D−n−1) = 1

2(D−n−1)(D−n)

d.o.f., and n− 1 massive vectors.

A similar computation can be done for the antisymmetric tensor. Namely, a massless

two-tensor with 1
2(D − 2)(D − 3) d.o.f. can be decomposed as

1

2
(D − 2)(D − 3) =

1

2
(D − n− 2)(D − n− 3) + n(D − n− 2) +

1

2
n(n− 1) (4.14)

1

2
(D − 2)(D − 3) =

1

2
(D − n− 1)(D − n− 2) + (n− 1)(D − n− 1) +

1

2
(n− 2)(n− 1).

The first equation leads to the familiar KK decomposition in terms of a massless two-tensor

bµν , n massless vectors bµm and 1
2n(n − 1) massless scalars bmn. For the massive case, a

massless antisymmetric tensor eats a massless vector, leaving a massive antisymmetric

tensor with 1
2(D − n − 2)(D − n − 3) + (D − n − 2) = 1

2(D − n − 1)(D − n − 2) d.o.f.

The n− 1 massless vectors left eat n− 1 scalars to become n− 1 massive vectors, leaving
1
2n(n− 1)− (n− 1) = 1

2(n− 2)(n− 1) massive scalars.

On the whole, a massive GKK level is characterized by the generalized momentum P,

with P2 = 0, and it contains a spin two symmetric tensor (which can be decomposed into

a traceless tensor + trace), an antisymmetric tensor, 2(n− 1) vectors and n(n− 1) scalars,

all mass degenerate with mass M2 = PMP. Note that a non-equivalent level P′ = hP will

have the same mass if h is an O(n, n) transformation, namely h is a duality transformation.

Recall that, in the n = 1 double circle case no extra massive vectors or scalars are present.

In (both spacetime and internal) momentum space, the generalized harmonic gauge

conditions (3.21) for the modes
ˆ̃
h

(P)
MN (k) read

kµ
ˆ̃
h

(P)
µN (k) +

(
Pˆ̃
h(P)

)
N

(k) = kµ
[
ˆ̃
h

(P)
µN (k)− 1

M2
kµ

(
Pˆ̃
h(P)

)
N

(k)

]
= 0 , (4.15)

where we have used that −k2 = M2 is the (squared) mass of the states as given in (4.11).

This is an indication that there is a physical massive field

ˆ̃
h
′(P)
µN (k) =

ˆ̃
h

(P)
µN (k)− 1

M2
kµ

(
Pˆ̃
h(P)

)
N

(k) + . . . ,

(where . . . indicate possible terms vanishing when contracted with kµ) or equivalently

ˆ̃
h
′(P)
µN (x) =

ˆ̃
h

(P)
µN (x) + i

1

M2
∂µ

(
Pˆ̃
h(P)

)
N

(x) ,

satisfying ∂µ
ˆ̃
h
′(P)
µN (x) = 0. The field combinations (Pˆ̃

h(P))N play the role of eaten Goldstone

fields to provide the physical degrees of freedom. Let us analyze them in terms of component
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fields. Using (3.13), (4.15) can be decomposed into graviton, antisymmetric tensor and

vector field polarization tensors as

kµ
[
h̃(P)
µν (k)− 1

M2
kµ

(
P ·A(P) (k)

)
ν

]
= 0 ,

kµ
[
b(P)

µν (k) +
1

M2
kµ

(
P · M ·A(P) (k)

)
ν

]
= 0 , (4.16)

kµ
[
A(P)
µ

N (k)− 1

M2
kµ

(
P · M · h̃(P) (k) · M

)N]
= 0 .

Gravitons. The first equation in (4.16) can be recast as

kµ
{
h̃(P)
µν −

1

M2

[
kµ

(
P ·A(P)

)
ν

+ kν (P ·A)µ + kνkµ
1

M2

(
P · M · h̃(P).M · P

)]}
= 0 ,

where we have used the third equation in (4.16). Thus, we have an effective symmetric

tensor with polarization h̃
′(P)
µν satisfying

kµh̃
′(P)
µν (k) = 0 , (4.17)

where

h̃′(P)
µν (k) = h̃(P)

µν −
1

M2

[
kµ

(
P ·A(P)

)
ν

+ kν

(
P ·A(P)

)
µ
− kνkµ

1

M2

(
P · M · h̃(P) · M · P

)]
(4.18)

is constructed from the original graviton polarization tensor, one vector field (P · A)ν and

a scalar field P ·M · h̃ ·M · P, as expected from the above counting of degrees of freedom.

Antisymmetric tensor. We can proceed similarly with the antisymmetric field.

Namely, the second equation in (4.16) can be rewritten as

kµ
{
b(P)

µν+
1

M2

[
kµ

(
P · M ·A(P)

)
ν
−kν

(
P · M ·A(P)

)
µ

]}
+

1

M2
kνk

µ
(
P · M ·A(P)

)
µ

=0 ,

and using the third equation in (4.16), the last term reads

kµ
(
P · M ·A(P)

)
µ

= −P · M · h(P) · P . (4.19)

However, this term vanishes at first order,11 and then we are left with an effective anti-

symmetric polarization

b′(P)
µν = b(P)

µν +
1

M2

[
kµ

(
P · M ·A(P)

)
ν
− kν

(
P · M ·A(P)

)
µ

]
, (4.21)

where the original polarization b
(P)
µν “eats” a vector (P · M · A(P))ν , in agreement with the

discussion above.
11In fact, this can be easily seen by rewriting the condition P2 = 0. Namely

P2 = PMMMNη
NKMKLPL = PM

(
MMN + h̃MN

)
ηNK

(
MKL + h̃KL

)
PL (4.20)

= P2 + 2P · M · h̃ · P +O
(
h̃2
)

and, therefore P · M · h̃ · P = 0.
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Vectors. The third equation (4.16) directly tells us that there are massive vector polari-

zations

A
′(P)N
ν (k) = A(P)N

ν (k) +
1

M2
kν

(
P · M · h̃(P) · M

)N
+ . . . , (4.22)

satisfying kνA
′(P)N
ν = 0.

Thus, from the 2n original vectors A
(P)N
µ , the combination P · A(P)

µ is eaten by the

graviton and the combination P ·M ·A(P)
µ is eaten by the b

(P)
µν field to become massive, and

we are left with 2n− 2 vectors. These vectors become massive by absorbing 2n− 2 scalars

from the n2 original h̃
(P)
MN . One more scalar (the combination P ·M · h̃(P) ·M · P) is eaten

by the graviton, so finally we are left with n2 − (2n− 2)− 1 = (n− 1)2 scalars.

Notice that the vector eaten by the graviton should be different from the one eaten

by b
(P)
µν . Indeed, this appears to be the case. If P · A(P) selects some combination, then

P ·M ·A(P) selects an independent one. Actually, M acts effectively by changing lower to

upper indices (see (3.3)).

The physical states found above should be interpreted from the generalized gauge

transformations. Starting with generic states, there should be a choice of gauge param-

eters ξM = (ξµ, ξ̃µ,Λ
M ) such that, by performing a generalized transformation of the

form (2.1), unphysical states are gauged away. Let us show that this is indeed the case.

The generalized diffeomorphisms (2.10), in terms of component fields and up to first order

in fluctuations, read

δξh̃µν = ∂µξ
ληλν + ∂νξ

ληλµ , (4.23)

δξbµν = ∂µξ̃ν − ∂ν ξ̃µ , (4.24)

δξA
N
µ = ∂µΛN + ηλµM

NM
∂Mξ

λ − ∂N ξ̃µ , (4.25)

δξh̃MN =MMP∂NΛP +MPN∂MΛP −MMP∂
PΛN −MPN∂

PΛM . (4.26)

In terms of GKK modes, the gauge transformed fields will be

h̃′(P)
µν = h̃(P)

µν + δξh̃
(P)
µν = h̃(P)

µν + ik(µην)λξ
λ(P) , (4.27)

b′(P)
µν = b(P)

µν + δξb
(P)
µν = b(P)

µν + ik[µξ̃
P)
ν]

A′(P)N
µ = A(P)N

µ + δA(P)N
µ = A(P)N

µ + ikµΛ(P)N + iηλµ(MP)Nξ(P)λ − iPN ξ̃(P)
µ ,

h̃
′(P)
MN = h̃

(P)
MN+δξh̃

(P)
MN = i

(
MΛ

(P)
M

)
PN+i

(
MΛ

(P)
N

)
PM−i

(
MP

)
M

Λ
(P)
N −i

(
MP

)
N

Λ
(P)
M .

In order to fix the gauge parameters, we first impose the conditions

P ·A′(P)
µ = 0 , (4.28)

P · M ·A′(P)
µ = 0 , (4.29)

as it should, since the first equation corresponds to the combination eaten by the mas-

sive graviton and the second one to the combination eaten by the antisymmetric tensor

b
(P)
µν . These conditions fix the form of Λ

(P)
N , ξ(P)λ up to a coefficient and ξ̃

(P)
ν . By also

requiring that

P · M · h̃′(P) · M · P = 0 , (4.30)
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since this is the scalar absorbed by the graviton, this coefficient is fixed. Finally, the gauge

transformations required to gauge away the non-physical fields read

ξ(P)λ = i
1

M2
ηλµ

[(
P ·A(P)

µ

)
− kµ

1

2M2

(
P · M · h̃(P) · M · P

)]
,

ξ̃(P)
µ = −i 1

M2
P · M ·A(P)

µ ,

Λ(P)N = i
1

M2

[(
P · M · h(P) · M

)N
− 1

2M2

(
MP

)N P · M · h(P) · M · P
]
. (4.31)

By noticing thatM·P ·Λ(P)N = 0 and P ·Λ(P)N = − 1
2M2P ·M·h̃(P) ·M·P, and using the

LMC (P2 = 0), it is easy to check that (4.29) and (4.30) are satisfied. By replacing these

gauge parameters in (4.27), we obtain the explicit expressions in terms of the old fields.

The resulting physical fields h̃
′(P)
µν , b

′(P)
µν are the ones given in (4.18) and (4.21), respectively.

Also,

h̃
′(P)
MN = −

(
P · M · h̃(P)

)
M

PN

+
1

M2

(
MP

)
M

[
P · M · h̃(P) · M

)
N
− 1

2M2

(
MP

)
N
P · M · h̃(P) · M · P]+M ↔ N

and

A′
(P)N
µ = A(P)N

µ − kµ
1

M2

(
P · M · h̃(P) · M

)N
− 1

M2

(
MP

)N [(P ·A(P)
µ

)
− 1

M2
kµ

(
P · M · h̃(P) · M · P

)]
(4.32)

− 1

M2
PN
(
P · M ·A(P)

µ

)
.

Interestingly enough, since in the harmonic gauge

k ·A(P)N = −
(
P · M · h̃(P) · M

)N
, (4.33)

then the physical vectors satisfy

k ·A′(P)N = 0 . (4.34)

Moreover, it can also be checked that the physical fields A′(P)N
µ , h̃

′(P)
µν , b

′(P)
µν , h̃

′(P)
MN are

invariant under generic linearized diffeomorphisms δξ(P) = (δξµ(P) , δ
ξ̃
(P)
µ
, δΛM(P)) as given

in (4.27). This is due to the fact that these combinations correspond to physical fields.

The situation is analogous in electromagnetism where the electric and magnetic fields are

a gauge invariant combination. Here A′(P)N
µ , h̃

′(P)
µν , b

′(P)
µν , h̃

′(P)
MN would be the physical combi-

nations for the internal symmetries (symmetries associated to δξ(0) must still be fixed).

Finally let us discuss the splitting of the symmetric tensor into a traceless part and

a trace contribution. Of course the splitting can be performed just by adding and sub-

tracting the trace. Let us consider a trace contribution of the form h̃
φ(P)
µν = h̃

′λ(P)
λ (k)εφµν(k)

with εφµν(k) = fd(P)(ηµν + kµχ
(P)
ν + kνχ

(P)
µ ), where we have used the freedom of including

a diffeomorphism parameter χν and fd is a numerical factor (different for massive and
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massless states). The parameters χν are chosen such that kµεφµν(k) = 0. For the mass-

less modes, this leads to the requirement kµχ
(0)µ = −1, whereas for massive modes with

M2 = P ·M · P, we find χ
(P)
µ = 1

2M2kµ. Therefore, the polarization tensor for the traceless

symmetric graviton is

h̃
′G(P)
µν (k) = h̃

′(P)
µν (k)− h̃′µ(P)

µ (k)εφµν(k) , (4.35)

with fd = 1
d−2 for the massless modes and fd = 1

d−1 for the massive ones.

However, we still have the freedom to fix the trace h̃′λλ. A convenient choice is Tr(h̃′) =

h̃′λλ = 4φ, where φ is the dilaton field, which amounts to setting d̂ = 0 (see (3.15)).

Actually, in order to compare with string theory results, it proves useful to redefine

the dilaton as φ
′(P) =

√
fdφ

(P), and therefore the dilaton polarization becomes

εφ
′
µν (k) =

√
fd (P)

(
ηµν + kµχ

(P)
ν + kνχ

(P)
µ

)
. (4.36)

It is normalized as εφ
′
(P) · εφ′(P) = 1 and also εφ

′
(P) · εG(P) = 0, by construction.

We notice that the choice d̂ = 0 eliminates the last d̂ dependent term from the La-

grangian (3.6). However the dilaton part is now included in the previous terms due to the

splitting h̃′µν = h̃
′G
µν + h̃

′φ
µν .

Finally, the cubic order Lagrangian to be considered is

LDFT = −1

2
ˆ̃
h′MN∂M

ˆ̃
h′KL∂K

ˆ̃
h′NL +

1

8
ˆ̃
h′MN∂M

ˆ̃
h′KL∂N

ˆ̃
h′KL , (4.37)

where only the physical fields identified above must be considered.

Recall that, even if diffeomorphisms have been used in order to fix the physical degrees

of freedom, the expression of the action in the harmonic gauge can still be used since these

transformations, up to first order in the fields and on shell, do preserve the gauge. More

explicitly, ∂MHML changes as ∂MHML −→ ∂MHML + δξ
(
∂MHML

)
, where from (2.10)

we read that

δξ
(
∂MHML

)
= ∂PξM∂

PHML − 2∂M∂Pξ
MHLP − 2∂M∂Pξ

LHMP

+ 2∂M∂
MξPHLP + 2∂M∂

LξPHMP .

Since the gauge parameters ξM are already first order in the fields, we obtain (using LMC)

δξ
(
∂MHML

)
= −2H̄LP∂P∂MξM − 2H̄MP∂M∂PξL + 2∂L

(
H̄MP∂MξP

)
. (4.38)

The second term vanishes due to the e.o.m (see (4.8)) and it can be easily checked that

∂Mξ
M and H̄MN∂N ξM are identically zero for the ξM parameters found above. Thus,

the harmonic gauge does not completely fix the gauge freedom, and we can still use the

remaining symmetries to gauge away the Goldstone bosons.

4.3 Unbroken symmetries

The fact that physical fields can be defined by absorbing “Goldstone like fields” is associated

to the spontaneous symmetry breaking by the background. This issue has been extensively

discussed in the literature about KK compactification (see for instance [33–38]).
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Actually, most of the generalized diffeomorphisms are spontaneously broken by the

choice of vacuum, namely

〈gµν〉 = ηµν ,

〈AMµ 〉 = 〈bµν〉 = 0 ,

〈HMN 〉 =MMN .

In fact, only the zero modes ξ
(0)
M (x) parametrize the local symmetries, whereas the

transformations associated to non-zero modes ξ
(P)
M are spontaneously broken.12 Thus, for

instance, the generalized internal diffeomorphism parameter ΛM (x) becomes the U(1)M
gauge parameter, under which the physical fields transform as

δgµν = ΛM∂Ng
µν ,

δAN = ΛM∂MA
N + dΛM ,

δb = ΛM∂Mb+
1

2
AM ∧ dΛM ,

δMMN = ΛP∂PMMN ,

(4.39)

where these equations must be understood as holding for all GKK modes. Recall that

∂MΛN = 0, i.e. the gauge parameters do not depend on the internal coordinates, and

dΛM = 0 for massive modes. For massless modes A(0)N , the usual gauge transformations

are obtained. The gauge transformation of the two-form field b is particularly interesting

since it involves the vector bosons and, for massless fields, it gives rise to the familiar Chern

Simons three-form. Actually, there exist two simple covariant combinations of fields under

the above gauge transformations, namely

H =
(
d−AM ∧ ∂M

)
b+

1

2
AM ∧

(
d−AN ∧ ∂N

)
AM ,

BM = ∂Mb+
1

2
AN ∧ ∂MAN ,

(4.40)

where H and BM are spacetime three-form and two-form, respectively. We will see that

fields in the Lagrangian do group into these combinations.

4.4 Cubic terms and effective action

Once the physical states have been identified, we proceed to consider the third order ac-

tion13 (4.37). By splitting the indices of the fluctuations into spacetime and internal com-

12The algebra of diffeomorphisms is discussed in the appendix.
13A Kaluza-Klein inspired rewritting of the strongly constrained double field theory action was performed

in [21].
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ponents, the Lagrangian containing only physical fields, reads

L = − 1

12
HµνρH

µνρ +
1

4
DµgνρDσg

νρgµσ − 1

2
DµgνρDσg

µνgρσ

−1

4
MMNF

M
µνF

Nµν +
1

8
gµνDµMMND

µMMN

+
1

4
MMN∂Mgµν∂Ng

µν − 1

2
MMN∂PA

M
µ ∂QA

N
ν g

µνMPQ +
1

8
MPQ∂PMMN∂QMMN

−1

4
MMNBMµνBNρσg

µρgνσ − 1

2
MMNBMµνFNρσg

µρgνσ

+
1

2
MMN∂MA

P
µDνMNP g

µν − 1

2
MMN∂PAMµDνMNP g

µν − 1

2
∂MANµ ∂NAMνg

µν

−1

2
MMN∂MMPQ∂PMNQ +

1

2
MMNMPQ∂MAPµ∂QANνg

µν , (4.41)

where we have included cubic interactions plus some higher order terms required by space-

time diffeomorphism and gauge invariances.

Here

FMµν = D[µA
M
ν] ≡ ∂[µA

M
ν] −A

N
[µ∂NA

M
ν] ≡ ∂µA

M
ν − ∂νAMµ −ANµ ∂NAMν +ANν ∂NA

M
µ

Hµνρ = D[µbνρ] −
1

2
AM[µDνAρ]M

≡ Dµbνρ +Dνbρµ +Dρbµν −
1

2
(AMµ DνAρM +AMν DρAµM +AMρ DµAνM )

+
1

2

(
AMµ DρAνM +AMν DµAρM +AMρ DνAµM

)
BMµν = ∂Mbµν +

1

2
AN[µ∂MANν]

≡ ∂Mbµν +
1

2
ANµ ∂MANν −

1

2
ANν ∂MANµ , (4.42)

and the derivatives are

Dµ = ∂µ −AMµ ∂M . (4.43)

Recall that gµν = ηµν + hµν ,MMN =MMN + hMN , etc.

The Lagrangian (4.41) has a rather compact expression due to the explicit O(n, n)

invariant setting. The fields here depend on both space time and internal coordinates and

must still be mode expanded in generalized momenta, according to (4.13). Modes corre-

spond to physical fields, in terms of which the contributions acquire a more familiar shape.

Recall that, when acting on the field mode (P), −i∂M → PM is just the charge operator.

The action contains both kinetic and cubic interaction terms of massless and massive

fields. Covariant derivatives and Chern-Simons terms in the antisymmetric tensor field

strength appear as usual. For instance, the derivative Dµ in (4.43) leads, when mode

expanded and acting on a generic field Φ(P)(x), to the covariant derivative

DµΦ(P)(x) = (∂µ − iA(0)M
µ PM )Φ(P)(x) , (4.44)

where PM is the electric charge with respect to the U(1)M gauge field A
(0)M
µ .
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We know from (4.2) that fields charged under (A
(0)m
µ , Ã

(0)
mµ) carry charge ( nm

R(m) ,
wm

R̃(m)
)

and therefore, in order to have integer charge, field redefinitions

A(0)m
µ → R(m)A′(0)m

µ , (4.45)

Ã(0)
mµ → R̃(m)Ã

′(0)
mµ , (4.46)

must be performed. Therefore, by using the standard definition − 1
4g2
d

for the coefficient

of the field strength squared term in the d-dimensional Lagrangian, we see that the corre-

sponding gauge and gravitational coupling constants are

g
′(m)2
d =

2κ2
d

R(m)2 , g̃′2d(m) =
2κ2

d

R̃(m)

, κ2
d = κ2e2d . (4.47)

Recall that, since the generalized dilaton is O(n, n) invariant, κd is invariant, as ex-

pected.

The massless modes in the first line of (4.41) give rise to the extended Hilbert-Einstein

action (1.1), now in d dimensions. The second line contains Abelian field strength kinetic

terms −1
4MMNF

(0)M
µν F (0)Nµν = −1

4F
(0)Ṁ
µν F

(0)µν
M as well as kinetic terms for the scalars.

The third line has the massive terms for gravitons, vectors and scalars. For instance, the

term for the vector bosons leads to

− 1

2
MMNA

(P)M
µ A(−P)N

ν gµνPMP = −1

2
A

(P)
µMA

(−P)Ṁ
ν gµνPṀPM , (4.48)

with M2 = PMP = PṀPM the mass of the vector, etc.

We present the full expanded expression in the case of circle compactification

in (5.22) below.

Let us stress that the action (4.41) is an effective gauge invariant action. The mass-

less sector contains gravity+Kalb-Ramond field+ vector bosons + scalars, coupled to the

corresponding towers of massive fields associated to KK momenta as well as windings.

Propagators, Feynman rules, etc. which are necessary for field amplitudes computations

can be explicitly obtained. It provides a generalization of previous constructions (see for

instance [39, 40]) where KK compactifications of gravity were considered, in diverse phe-

nomenological proposals.

For comparison with string theory amplitudes we will be interested in the on

shell action.

5 String theory amplitudes

In this section we consider string theory with constant toroidal backgrounds Gpn and Bmp
for the metric and antisymmetric tensor, respectively. We analyze the vertex operators

creating physical states, discuss the computation of their three-point functions and contrast

with the results obtained in the previous sections from DFT. We restrict to states with

left and right moving oscillator numbers N = N̄ = 1. The vertex operators creating these

states are analyzed in two different ways:
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On the one hand, we show that a combination of different vertex operators (associated

to vectors, two-tensors or scalars) is needed in order to cancel conformal anomalies. These

combinations can be identified with the expressions determined by the generalized harmonic

gauge choice on the DFT side and correspond to a worldsheet manifestation of a built-in

string Higgs mechanism.

On the other hand, consistency requirements on the full vertex operator, once the

harmonic gauge was chosen, fix the physical polarizations and it is with these operators,

corresponding to physical degrees of freedom, that all scattering amplitudes are computed.

5.1 Conformal anomalies and DFT harmonic condition

It is known that the cancellation of conformal anomalies at the string world sheet level

manifests as gauge symmetry requirements on the target space fields. This is indeed the

case here. The different vertex operators corresponding to two-tensor, vector and scalar

fields will generically have anomalous OPEs (Operator Product Expansions) with the world

sheet stress energy tensor. For massless fields, the cancellation of anomalous terms leads

to the familiar gauge conditions kµεGµν(k) = 0, kµεMµ (k) = 0, etc. for the polarization

tensors of gravitons, vectors, etc. These correspond to equations (4.16) for zero genera-

lized momentum.

For massive fields, a combination of the different vertex operators must be considered,

such that the sum of the different anomalous contributions cancel. This is, indeed, a

world sheet manifestation of the Higgs mechanism. The conditions for cancellation of the

anomalous terms can be written in an O(n, n) language and can be shown to coincide with

the harmonic gauge conditions found in DFT.

The vertex operators we are interested in are, up to normalizations,

VG = εGρσ(k, kL, kR) : ∂Xρ∂̄Xσ eik·X+ikL·Y+ikR·Ȳ : ,

VAR = εaRρ(k, kL, kR) : ∂Xρ∂̄Ȳ a eik·X+ikL·Y+ikR·Ȳ : ,

VAL = εaLρ(k, kL, kR) : ∂Y a ∂̄Xρ eik·X+ikL·Y+ikR·Ȳ : ,

Vφ = φab(k, kL, kR) : ∂Y a ∂̄Ȳ b eik·X+ikL·Y+ikR·Ȳ : (5.1)

The label G generically denotes a symmetric traceless, antisymmetric or trace polariza-

tion, AL, AR refer to vectors and φ to scalars. Here ∂̄ = ∂z̄, ∂ = ∂z and Y = Y (z), Ȳ = Ȳ (z̄)

denote left and right moving coordinates. It is convenient to use coordinates Y a = em
aY m

with tangent space indices a, b, . . ., defined in terms of the vielbein em
a (δab = em

agmnen
b)

since they have the standard OPEs. Namely, the propagators read

〈Xµ(z, z̄)Xν(w, w̄)〉 = −α
′

2
ηµν ln|z − w|2 ,

〈Y a(z)Y b(w)〉 = −δabα
′

2
ln(z − w) , 〈Ȳ a(z̄)Ȳ b(w̄)〉 = −δabα

′

2
ln(z̄ − w̄) .

The vertex operator momenta are

kaL = ea
mpmL , kaR = ea

mpmR , (5.2)
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where

pmL = p̃m + gmn(pn −Bnkp̃k) , pmR = −p̃m + gmn(pn −Bnkp̃k) .

The stress energy tensor is

T (z) = − 1

α′
(ηµν : ∂Xµ(z)∂Xν(z) : +δab : ∂Y a(z)∂Y b(z) :) ,

and similarly for the right moving one. The OPEs are

T (z1)VG (z2) =

[
α′

4

(
k2 + k2

L

)
+ 1

]
VG
z2

12

− 2i
α′

4z3
12

[
: kρεGρσ∂X̄

σ eik·X+ikL·Y+ikR·Ȳ :
]

+ . . . ,

T (z1)VAL =

[
α′

4

(
k2 + k2

L

)
+ 1

]
VAL
z2

12

− 2i
α′

4z3
12

[
: kaLε

a
Lρ∂X̄

ρ eik·X+ikL·Y+ikR·Ȳ :
]

+ . . . ,

T (z1)VAR =

[
α′

4

(
k2 + k2

L

)
+ 1

]
VAR
z2

12

− 2i
α′

4z3
12

[
: kρεaRρ∂Ȳ

a eik·X+kLY+kRȲ :
]

+ . . . ,

T (z1)Vφ =

[
α′

4

(
k2 + k2

L

)
+ 1

]
Vφ
z2

12

− 2i
α′

4z3
12

[
: kaLφab∂Ȳ

b eik·X+ikL·Y+ikR·Ȳ :
]

+ . . . .

Since k2
L = −k2, the vertex operators have the correct conformal weight h = 1 (and

similarly h̄ = 1), however, there are cubic anomalies which suggest that the physical

fields should be created from combinations of these operators. Consider then the vertex

associated with the massive graviton

V = αVG + βVAL + γVAR + δVφ , (5.3)

with constant α, β, γ, δ. From the OPE with T and T̄ , the anomaly cancellation condi-

tions are

αkρερσ + βkaLε
a
Lσ = 0 , αkρερσ + γkaRε

a
Rσ = 0 ,

δkaLφab + γεbRσk
σ = 0 , δkaRφba + γkρεbLρ = 0 (5.4)

Choosing 2α = γ = β, the sum of the first two equations leads to

kρεGρσ + kaLεLa + kaRεRa = kρεGρσ + p̃mε̃mσ + gmnpnεmσ = kρh̃(P)
ρσ + P ·A(P)

σ = 0 , (5.5)

where we have defined

εmσ = εLmσ + εRmσ, ε̃mσ +Bmnε
n
σ = εLmσ − εRmσ , (5.6)

and we have made the identifications

A
(P)
Mσ =

(
A(P)
mσ, A

(P)m
σ

)
≡ (ε̃mσ, ε

m
σ ), εGρσ ≡ h̃(P)

ρσ . (5.7)

Therefore, (5.5) is nothing but the first harmonic gauge condition in (3.21) in momen-

tum space.

On the other hand, by subtracting the first two equations in (5.4), we obtain

kLεL − kRεR = p̃mεmσ + gmn(pn +Bnkp̃
k)(ε̃mσ +Bmpε

p
σ) = 0 ,
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which can be written as

P · M ·Aσ
(P)

= 0 , (5.8)

as found in (4.29).

The other two equations involving the scalars lead to

δ(kmL φmn + knRφmn) + γk.(εmL + εmR ) = 2δgmn(pn +Bnkp̃
k)φmn + γk · εn = 0 ,

δ(kmL φmn − knRφmn)− γk.(εmL − εmR) = 2δp̃mφmn − γk · (ε̃n +Bnl · εl) = 0 ,

which can be shown to coincide with the third equation of the harmonic gauge condi-

tions in (3.21) when choosing δ = 1
2γ and establishing the identification with DFT scalar

fields (3.14)

φmn + φnm = h̃mn ,

φmn − φnm = bmn. (5.9)

Thus, the physical vertex operator for the massive graviton is

V =
1

2
VG + VAL + VAR +

1

2
Vφ. (5.10)

The effective symmetric polarization tensor can be shown to coincide with (4.18).

Similar steps can be followed for the Kalb-Ramond field and the second equation

in (3.21) is obtained.

In the next section we introduce the physical vertex operators used in the computation

of scattering amplitudes. The anomaly free conditions on the polarizations coincide with

those of the physical fields redefined through the use of the harmonic gauge condition.

5.2 Physical vertex operators on the torus

In the same way that we found the anomaly free combinations of vertex operators (or

equivalently, the harmonic gauge conditions), we can impose that each one of the vertex

operators (5.1) be anomaly free. This would give the conditions to be satisfied by the

physical polarizations, that now we distinguish with a prime. Note that this procedure will

give identically zero polarizations for massive vectors and scalars in the case of only one

compact dimension, thus confirming that there are no such degrees of freedom on a circle

compactification.

The anomaly cancellation conditions for vectors are

kaLε
′a
Lρ = 0 , kaRε

′a
Rρ = 0 ,

kρε′aLρ = 0 , kρε′aRρ = 0 .
(5.11)

The first two equations can be combined as

kaLε
′a
Lρ + kaRε

′a
Rρ = 0 or as kaLε

′a
Lρ − kaRε

′a
Rρ = 0 , (5.12)

which are equivalent to

P ·A′µ = 0 ,

P · M · A′µ = 0 ,

∂µA
′B
µ = 0 .

(5.13)
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Namely, the conditions found in (4.29) after gauge fixing. In the same way, for scalars

we find

kaLφ
′ab = 0 , kbRφ

′ab = 0 , (5.14)

which can be expressed in terms of h̃
′
mn and b

′
mn as the following two conditions

−p̃mh̃′mn + p̃mBmkG
ksb
′
sn + pmG

mkb
′
kn = 0 ,

−p̃mb′mn + p̃mBmkG
ksh̃

′
sn + pmG

mkh̃
′
kn = 0 .

(5.15)

These coincide with the DFT condition (see 4.30)

P ·M · h̃′ ·M = 0 , (5.16)

which represents the Goldstone boson absorbed by the massive vectors.

For the tensors h̃
′
µν and b

′
µν we get the usual transverse gauge conditions

kµh̃
′
µν = 0 ,

kµb
′
µν = 0 .

(5.17)

Finally, the dilaton vertex can be written as

Vφ = φεφµν∂X
µ∂̄Xνeik·X , (5.18)

with

εφµν =
√
fd
(
ηµν + kµk̄ν + kν k̄µ

)
, (5.19)

as found in (4.36) by identifying k̄ν ≡ χ
(0)
ν for the massless case and k̄ν ≡ χ

(P)
ν for mas-

sive dilatons.

Thus, we have obtained the requirements that physical polarizations must satisfy.

Notice that the two approaches to deal with vertex operators provide different informa-

tion on the theory: the first one displays a built in Higgs mechanism exhibiting the Gold-

stone bosons. The second one deals with the physical degrees of freedom once the gauge was

chosen. Of course, one can obtain the latter using the former, as was shown in the previous

section. We will use physical polarization tensors to compute scattering amplitudes.

5.3 Three-point interaction terms

In this section we consider three point functions of the massless and massive string states

created by the vertex operators described above. The resulting amplitudes are then com-

pared with the DFT action (4.37), evaluated on shell. We sketch the computation here

and provide some details for the circle case in the appendix.

For the sake of clarity we first concentrate on the circle compactification. This case is

particularly simple since neither physical massive vectors nor massive scalars are present.

The string S-matrix three-point amplitudes are presented in (B). When mode expand-

ing (4.37) and by using the identifications (5.7) and (5.9) between string polarization ten-

sors and DFT fields polarizations, complete agreement is achieved if we further identify

πgc =
1

2κ2
d

, (5.20)

where gc is the closed string coupling.
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The effective U(1)×U(1) gauge invariant action, containing massless as well as massive

states with these S-matrix elements, can be written down. By including terms required

from gauge invariance and diffeomorphism invariance, this action reads

S =
1

2κ2
d

∫
dD−1x

√
−gL (5.21)

with

L = R− 1

12
H2
µνρ −

1

4
∂µΦ∂µΦ

− 1

4
FµνF

µν − 1

4
F̃µνF̃

µν +
1

2
FµνF

µνΦ− 1

2
F̃µνF̃

µνΦ

− 1

2

∞∑
n=1

(
Dρh∗ (n)

µν Dρh(n)µν − 2Dµh∗ (n)
νρ Dνh(n)µρ +m2

nh
∗ (n)
µν h(n)µν

)
− 1

2

∞∑
w=1

(
Dρh̃∗ (w)

µν Dρh̃(w)µν − 2Dµh̃∗ (w)
νρ Dν h̃(w)µρ +m2

wh̃
∗ (w)
µν h̃(w)µν

)
+
∞∑
n=1

(
1

6
|H(n)

µνρ|2 +
m2
n

2
|b(n)
µν |2

)
+
∞∑
w=1

(
1

6
|H̃(w)

µνρ|2 +
m2
w

2
|b̃(w)
µν |2

)

+

∞∑
n=1

1

2

n2

R2

(
|h(n)
µν |2 + |b(n)

µν |2
)

Φ−
∞∑
w=1

1

2

w2

R̃2

(
|h̃(w)
µν |2 + |b̃(w)

µν |2
)

Φ

− i
∞∑
n=1

n

R

(
h∗(n)
µν b(n)ν

ρ + h(n)
µν b
∗(n)ν
ρ

)
F̃µρ − i

∞∑
w=1

w

R̃

(
h̃∗(w)
µν b̃(w)ν

ρ + h̃(w)
µν b̃

∗(w)ν
ρ

)
Fµρ

+

ni 6=0∑
n1+n2+n3=0

(
1

4
Dµh(n1)

ρσ Dνh(n2) ρσh(n3)µν − 1

2
h(n1)
µρ Dµh(n2)

νσ Dνh(n3) ρσ

)

+

wi 6=0∑
w1+w2+w3=0

(
1

4
Dµh̃(w1)

ρσ Dν h̃(w2) ρσh̃(w3)µν − 1

2
h̃(w1)
µρ Dµh̃(w2)

νσ Dν h̃(w3) ρσ

)

+

n3 6=0∑
n1+n2+n3=0

(
1

4
Dµb(n1)

ρσ Dνb(n2) ρσh(n3)µν −Dµb(n1)σνDνb(n2)
σρ h(n3)µρ

− 1

2
b(n1) ρµDµb(n2)σνDνh(n3)

ρσ

)
+

w3 6=0∑
w1+w2+w3=0

(
1

4
Dµb̃(w1)

ρσ Dν b̃(w2) ρσh̃(w3)µν −Dµb̃(w1)σνDν b̃(w2)
σρ h̃(w3)µρ

− 1

2
b̃(w1) ρµDµb̃(w2)σνDν h̃(w3)

ρσ

)
(5.22)

where Φ denotes the massless scalar; h
(n)
µν and h̃

(w)
µν the modes of the massive graviton

with momentum n and winding w respectively; b
(n)
µν and b̃

(w)
µν the modes of the massive

antisymmetric tensor with momentum n and winding w respectively.
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We have introduced the following definitions

∇µfρσ = ∂µfρσ − Γλρµfλσ − Γλσµfρd ,

Γλµν =
1

2
gλσ (∂νgσµ + ∂µgσν − ∂σgµν) ,

Fµν = ∇µAν −∇νAµ ,
Dµ = ∇µ − iAµq̂n − iÃµq̂w ,

Hµνρ = Dµbνρ +Dρbµν +Dνbρµ .

(5.23)

Here indices are raised with the inverse of the metric tensor gµν , q̂ is the charge opera-

tor, complex conjugation is denoted with ∗ and, under charge conjugation, the momentum

or winding change sign i.e h(n) ∗ = h(−n).

The kinetic terms of the symmetric massive states produce the known Fierz Pauli

Lagrangian [31, 32], and the T-duality symmetry R ↔ R̃, n ↔ w is manifest. This action

coincides with (4.41) when specified for the circle case.

5.4 Strings vs DFT on generic tori

Generalizing the results obtained for the circle to generic tori is formally straightforward.

However, the number of terms involved is much bigger. The massless sector contains,

besides the graviton, dilaton, antisymmetric and scalar fields, the 2n gauge fields asso-

ciated to U(1)n × U(1)n. The massive sector includes now, generically, massive vectors

and scalars. The comparison of DFT cubic interactions contained in the mode expansion

of (4.37) with three point scattering amplitudes computed using the vertex operators (5.1)

is now performed with the help of the symbolic algebra computer program XCadabra [23].

Our algorithm compares three point scattering amplitudes of string states and DFT cubic

interaction terms by systematic use of momentum conservation and on shell conditions.14

As an example of the calculated quantities, we present the result of the scattering

amplitude between one antisymmetric tensor bµν (with momentum k1µ, and charges p1m

and w1m), one vector AmLµ (with momentum k2µ, and charges p2m and w2m) and one

antisymmetric scalar bmn (with momentum k3µ, and charges p3m and w3m).

In the DFT action there is only one place where the interaction vertex can be

found, namely

− 1

2κ2
d

∂Mbµν∂ρANσM
MNgµρgνσ . (5.24)

Splitting the double internal indices, in order to exhibit the explicit contributions of bmn
and hmn scalars, one can collect the required interactions and compute the three point

amplitude. The result is

1

2κ2
d

εµν(k1)εLµm(k2)Gnmbnk(k3)
[
k2νw

1k −Gks(k3)k2νp1s +BslG
sk(k3)k2νw

1l
]
,

where εµν , εLµm and bnk are the polarizations of the two-form, the left vector and the

scalar, respectively. The same result is obtained in string theory if we choose 1
2κ2
d

= πgc.

14The program is available upon request to the authors.
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6 Conclusions and outlook

Double Field Theory was originally motivated by toroidal compactifications and a double

set of coordinates was proposed as conjugate variables of compact momenta and windings.

However, a specific realization of momentum and winding modes, which generically requires

dealing with massive states, was lacking.

In this work we have dealt with massless and massive states of DFT compactifications

on generic double tori (in presence of constant background fields) and compared them

with a slice of the massless and massive states of bosonic string theory compactified on a

torus. The slice considered corresponds to states with excitation numbers N = N̄ = 1,

namely, a subsector of the bosonic string arising from states containing one left and one

right moving oscillators.

We found complete agreement between the spectra of both DFT and string theory

when a level matching constraint is imposed on the DFT side. Moreover, by expanding the

generalized fields of DFT at first order in fluctuations around the constant background,

the resulting third order action agrees with the effective action arising from three-point

scattering amplitudes in string theory. For n dimensional tori and d space-time dimensions

the obtained action corresponds to a gauge theory with Gn = U(1)n × U(1)n Abelian

gauge group coupled to gravity. The computations involve both KK and winding modes,

named here GKK modes, and therefore the action contains an infinite number of charged

massive fields.

It is worth emphasizing that DFT provides a concise and manifestly O(n, n) realiza-

tion of this effective string theory action. Moreover, on a 2n-dimensional double torus

background, the global O(n, n,R) symmetry of DFT is broken to O(n, n,Z), the discrete

T-duality group of the full string theory.

As is well known, physical states in string theory are selected by ensuring cancellation

of conformal anomalies in the world sheet. We found that the DFT manifestation of

these requirements is the invariance under generalized diffeomorphisms. By using such

invariance, we have shown that a generalized harmonic gauge condition can be chosen,

and established a correspondence with conditions derived from string theory. Interestingly

enough, this gauge choice allows to identify the different Goldstone modes that are absorbed

to generate physical fields. Besides the gravity multiplet and massless vectors associated to

the compactified gravitational and antisymmetric fields, physical massive fields correspond

to massive symmetric and antisymmetric tensors, vectors and scalars charged under the

Gn gauge group. The charges, corresponding to momentum and winding numbers, are

simply encoded in the generalized DFT momenta P. Generalizing known results in KK

compactifications, we found the infinite global symmetry algebra associated to infinite local

generalized parameters. In particular, it contains a finite Poincaré ×SO(1, 2)n × SO(1, 2)n

subalgebra and massive states should organize in its (infinite dimensional) representations.

Of course the effective action reproducing the three-point amplitudes of these physical

massless and massive string states is not a low energy effective action since all possible

massive levels are involved. The action provides an organized truncation of string theory.

However this truncation is incomplete since it contains states with masses of the order
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or higher than those of string states with N and/or N̄ 6= 1 that were not included here.

Indeed, we know from string theory that new fields involving higher spins (associated

with N and/or N̄ 6= 1) appear in the spectrum and play a crucial role in higher point-

amplitudes. In DFT language, higher order O(n, n) generalized tensors, incorporating

these missing string degrees of freedom, are expected.

We also know that a gauge symmetry enhancing, associated to the presence of windings,

occurs in string theory at self dual points. This enhancing involves states with N − N̄ 6= 0

(e.g. N, N̄ = 0,±1) and for this reason it cannot be seen in our construction. In [20], a

DFT description of gauge enhancing in circle compactification at self dual radius R0 was

provided. There, it is shown that enhancing from U(1) × U(1) to SU(2) × SU(2) requires

a dependence of the fields on the internal coordinates y, ỹ associated to a double circle,

as we indeed have here. But it also requires an extension of the tangent space, leading

to an O(d + 1 + 2, d + 1 + 2) structure, that accommodates the extra massless vector

fields associated to winding modes. The computation was performed at R = R̃ = R0

by keeping only massless states, and it could be extended to R − R̃ = R0ε by keeping

small masses. If we tried to generalize in this direction the procedure described in the

previous sections, namely by including states with N, N̄ = 0,±1 and keeping GKK massive

modes, we would immediately run into trouble. Since the gauge group is enhanced, now

the massive states (massive gravitons, two-forms, vectors and scalars) must transform

under SU(2) × SU(2). However, there are not enough states, for a given mass, to fill up

these representations. This is again an indication that new fields are needed. Actually, a

string theory analysis, for instance by considering the OPE of SU(2) currents with massive

gravitons (with N = N̄ = 1), shows that for masses M2 = 2mα′, gravitons organize into

(2, 2), (3, 3), . . . (m + 1,m + 1) representations. In order to fill up these representations,

higher spin fields are required, which are not contained in the present version of DFT.

Again, the presence of higher order tensors is claimed for, now from gauge invariance.

Massive particles with spin larger than 2 would also be needed if higher powers of

momentum were considered. Actually, the three-point functions presented in the appendix

contain higher powers of momentum that we have not included since they go beyond the

aim of this paper. However, these higher order terms lead to higher derivative contribu-

tions to the effective action which would of course be necessary if quantum corrections

were considered. In particular, the inclusion of higher order terms in curvature invariants

is known to demand the addition of massive tensors in order to fix the short-distance vio-

lations of causality [41], and the Regge behavior required for the resolution of the causality

problem [42] also calls for higher order tensors in DFT.

Certainly, the effective theory we have constructed does not work as a fundamental

theory. Nevertheless, despite the absence of essential ingredients for full consistency, it

might be appealing by itself. It encodes an effective gauge invariant theory with a massless

sector containing gravity, antisymmetric tensor plus gauge bosons and scalars coupled to

towers of GKK massive modes. It is interesting to notice that, even if a given field has

a zero mode, it spreads out into towers of momenta and windings. The simplest case

of a non-zero graviton mass is an interesting theoretical possibility since it was not until

recently that a consistent non-linear theory of massive gravity could be constructed [43].
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Even in this simple toroidal scenario it could be interesting to look at possible phe-

nomenological consequences and to explore them in more detail. This aspect is beyond

the scope of the present work but let us signal some new features that could be worth

exploring. Many scenarios including KK excitations have been proposed in the literature

for different physical models. These proposals deserve being reconsidered in this GKK

scenario including windings as well as other fields. On the one hand new fields, associated

to antisymmetric tensor and dilaton, can be present. Also a new energy scale is built in.

In fact, even at the circle level two different energy scales λKK = 1/R and λwindings = 1/R̃

appear now which can lead to relevant physical consequences.

For instance, the type of models proposed in [39] in the large extra dimensions scenario

of [44, 45] appear to be drastically modified. There, toroidal bulk KK gravity modes were

coupled to Standard Model fields with radii λKK . Mstring ∼ TeV . However now, besides

the fact that other fields are present, the λwindings energy scale will also be present. Leaving

aside stringy gauge symmetry enhancing, R = R̃ self dual point situations, where both

windings and KK modes contribute on the same footing, are also possible.

KK universal scenarios for dark matter [46] have been extensively discussed. The con-

sistent incorporation of massive antisymmetric tensors coupled to Einstein gravity plus

other massless and massive fields could be also appealing in this context (see for exam-

ple [47–49]). More complex situations, that would require generalizations of this simpler

toroidal case, provide attractive candidates for dark matter [50, 51]. Phenomenology of

massive KK gravitons at the LHC was recently discussed in [52], composite Higgs models

associated to bulk KK modes have been considered in [53], etc.

The ideas developed here could in principle be extended to GKK reductions in which

the starting theory has non Abelian gauge fields already in higher dimensions (e.g. the

heterotic string). These are just plausible roads of research that call for careful study.
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A Extra terms in the DFT action

In the original frame formulation of DFT by Siegel [1, 2]. the action contains extra terms

that are not contained in (2.11). Up to total derivatives those can be recast as [18]

∆S =

∫
d2DX e−2d

[
1

2
(SĀB̄−ηĀB̄)ηPQ ∂ME

Ā
P∂

MEB̄Q+4∂Md∂
Md−4∂M∂

Md

]
. (A.1)

Here we show that these terms vanish once the level matching condition (2.15) is imposed.
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To show the vanishing of the term proportional to SĀB̄ we consider the following inte-

gral

I1 =

∫
d2DX ∂M∂M

(
e−2dηPQHPQ

)
=

∫
d2DX ∂M∂M

(
e−2dηPQSĀB̄E

Ā
PE

B̄
Q

)
= 0 .

(A.2)

A little of algebra, making use of the property HPQηPQ = 0, shows that

I1 = 2

∫
d2DX e−2dηPQSĀB̄

(
∂ME

Ā
P∂

MEB̄Q + EĀP∂M∂
MEB̄Q

)
. (A.3)

Similarly, for the term in (A.1) proportional to ηĀB̄ we consider the integral

I2 =

∫
d2DX ∂M∂M

(
e−2dηPQηPQ

)
=

∫
d2DX ∂M∂M

(
e−2dηPQηĀB̄E

Ā
PE

B̄
Q

)
=0 , (A.4)

that can be recast as

I2 = 2

∫
d2DX e−2dηPQ

(
−ηPQ∂M∂Md+ ηĀB̄∂ME

Ā
P∂

MEB̄Q + ηĀB̄E
Ā
P∂M∂

MEB̄Q

)
.

(A.5)

Finally, for the term proportional to ∂Md∂
Md, we consider the integral

I3 =

∫
d2DX ∂M∂Me

−2d = 2

∫
d2DX e−2d

(
2∂Md∂

Md− ∂M∂Md
)

= 0 . (A.6)

From I1, I2 and I3, we can therefore express ∆S as

∆S =

∫
d2DX e−2d

[
−1

2
(SĀB̄ − ηĀB̄)ηPQEĀP∂M∂

MEB̄Q − (2 +D)∂M∂
Md

]
. (A.7)

And therefore, transforming into momentum space and imposing the level-matching con-

dition (2.15), we get ∆S = 0.

B String computations

The results of three-point scattering amplitudes in bosonic string theory are presented here

for the case of one compact dimension on a circle of radius R. They are computed with the

vertex operators defined in (5.1). We first collect the amplitudes involving only massless

states and then the ones containing at least one massive state. We use a shorthand notation

with h, b, φ,A, Ã denoting graviton, antisymmetric tensor, scalar and vector fields. Recall

that no massive vectors or scalars appear in the circle compactification and the massive

fields are only h and b. Dots indicate contractions with Minkowski space-time metric ηµν .

3-point amplitudes for massless states

〈ΦΦh〉 = −(πgc)
1

2
ΦΦ(k1 · εh · k2) (B.1)

〈hhh〉 = −(πgc)
1

2

(
(k2 · εh1 · εh3 · εh2 · k3) + (k3 · εh1 · εh2 · εh3 · k2) + (k3 · εh2 · εh1 · εh3 · k1)

− 1

2
(k3 · εh1 · k2)Tr(εh2ε

h
3)− 1

2
(k3 · εh2 · k1)Tr(εh1ε

h
3)− 1

2
(k1 · ε3 · k2)Tr(εh1ε

h
2)

)
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〈AAΦ〉 = (πgc)Φ(k2 · ε1)(k1 · ε2)

〈ÃÃΦ〉 = −(πgc)Φ(k2 · ε1)(k1 · ε2)

〈AAh〉 = (πgc)
(

(ε1 · ε2)(k1 · εh · k1) + (k1 · εh · ε2)(ε1 · k2) + (k2 · εh · ε1)(ε2 · k1)
)

〈AÃb〉 = (πgc)
(

(k1 · εb · ε2)(ε1 · k2) + (k2 · εb · ε1)(ε2 · k1)
)

〈bbh〉 = (πgc)
1

2

(
1

2
Tr(εb1 · εb2)(k1 · εh3 · k2) + (k1 · εb2 · εb1 · εh3 · k1) + (k2 · εb1 · εh3 · εb2 · k3)

)
3-point amplitudes with at least one massive state

〈hhA〉 = (πgc)
p1

R

(
(k1 · ε3)Tr(εh1 · εh2) + (ε3 · εh2 · εh1 · k2)− (ε3 · εh1 · εh2 · k1)

)
〈hhÃ〉 = (πgc)

p̃1

R̃

(
(k1 · ε3)Tr(εh1 · εh2) + (ε3 · εh2 · εh1 · k2)− (ε3 · εh1 · εh2 · k1)

)
〈hhΦ〉 = (πgc)

1

2
ΦTr(εh1 · εh2)k1Lk1R

〈bbΦ〉 = −(πgc)
1

2
ΦTr(εb1 · εb2)k1Lk1R

〈bbA〉 = −(πgc)
p1

R

(
(ε3 · k1)Tr(εb1 · εb2) + (k2 · εb1 · εb2 · ε3)− (k1 · εb2 · εb1 · ε3)

)
〈bbÃ〉 = −(πgc)

p̃1

R̃

(
(ε3 · k1)Tr(εb1 · εb2) + (k2 · εb1 · εb2 · ε3)− (k1 · εb2 · εb1 · ε3)

)
〈hbA〉 = (πgc)

(p1

R
(k2 · εh1 · εb2 · ε3) +

p2

R
(ε3 · εh1 · εb2 · k1)

)
〈hbÃ〉 = (πgc)

(
p̃1

R̃
(k2 · εh1 · εb2 · ε3) +

p̃2

R̃
(ε3 · εh1 · εb2 · k1)

)

(B.2)

where kL = p
R + p̃

R̃
and kR = p

R −
p̃

R̃
.

C Algebra of diffeomorphisms

Following the discussion in [33–37], we can associate a global infinite parameter algebra

to the infinite modes ξP(M)(x) of the GKK expansion of the parameters of local trans-

formations, in much the same way as a global Poincaré algebra is associated to general

coordinate transformations. From

ξP(x,Y) =
∑
M

′ξP(M)(x)eiM.Y , (C.1)

with P = (ρ, L), we restrict to

ξρ(M)(x) = aρ(M) + ω(M)ρ
νx

ν , (C.2)

ξL(M)(x) = CL(M) , (C.3)

where aρ(M), ω(M)ρ
ν , C

L(M) are constants. The corresponding generators are

P̂ (M)
ρ = ieiM·Y∂ρ , (C.4)

M̂ (M)
µν = eiM·Y(xµ∂ν − xν∂µ) , (C.5)

Q̂
(M)
L = ieiM·Y∂L . (C.6)
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It is easy to check that these operators generate an algebra that corresponds to the

direct generalization of the algebra found in [33]. Namely,[
M̂ (M)
µν , M̂ (N)

ρσ

]
= i
[
ηνρM̂

(M+N)
µσ + ηµσM̂

(M+N)
νρ − ηµρM̂ (M+N)

νσ − ηνσM̂ (M+N)
µρ

]
[
M̂ (M)
µν , P

(N)
λ

]
= i
[
ηλνP

(M+N)
µ − ηλµP (M+N)

ν

]
[
P (M)
ρ , P (N)

µ

]
= 0[

Q
(M)
L , M̂ (N)

µν

]
= −NLM (M+N)

µν[
Q

(M)
L , P (N)

µ

]
= −NLP (M+N)

µ[
Q

(M)
L , Q

(N)
S

]
= −NLQ(M+N)

S + MSQ
(M+N)
L (C.7)

We see that the zero modes lead to the d dimensional Poincaré algebra. Also, from

the last equation we notice that, for L = S[
Q

(M)
L , Q

(N)
L

]
= (ML − NL)Q

(M+N)
L , (C.8)

which is a Virasoro algebra (with no central charge) for each value of L = 1, . . . 2n.

For the case of the circle we would have M = (m1,m2) = (m, m̃) with m = 0 or m̃ = 0

due to LMC.

Notice that if we choose M = (m, 0) and N = (n, 0) with m,n = ±1, 0. Then

Q̂
(M)
1 ≡ Q̂

(±1)
1 , Q

(0)
1 and P̂

(0)
µ , M̂

(0)
µν , Q̂

(0)
2 close a Poincaré⊗SO(1, 2) algebra. In the same

way, exchanging 1 ↔ 2, namely, windings with momenta, another SO(1, 2) algebra is ob-

tained. Thus, finally the original Poincaré algebra is enlarged to Poincaré ⊗SO(1, 2)2. It

was shown in [38] that, in the circle case in field theory, the massive KK states organize

into an infinite dimensional (non-unitary) R representation of SO(1, 2). In DFT on the

circle, windings and momenta are decoupled, so massive KK momenta states will fill up

the infinite dimensional representation of the first algebra whereas windings will organize

in a similar representation of the second one, namely (R, 1) + (1, R).

In the generic case we can proceed in the same way by choosing the GKK momenta

at the position L, ML = 0,±1 with all other components vanishing. In this case we would

have Poincaré ⊗SO(1, 2)2n. Since massive states with M2 = P · M · P mix windings and

momenta the analysis of representations is more involved and we will not perform it in the

present work.

Even if the above algebra is a symmetry of the original Lagrangian, it is broken to

Poincaré ×U(1)n×U(1)n by the vacuum (4.3). This can be easily verified by inserting the

mode expansions (C.1) to compute the transformations of the fields gµν , A
M
µ , bµν ,HMN and

by requiring the vacuum (4.3) to be invariant under these transformations. ξP(M), with

M 6= 0 correspond to broken generators associated to Goldstone bosons.
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