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Abstract: Top squark (stop) can be produced via QCD interaction but also the elec-

troweak interaction at the LHC. In this paper, we investigate the observability of the

associated production of stop and chargino, pp→ t̃1χ̃
−
1 , in compressed electroweakino sce-

narios at 14 TeV LHC. Due to small mass splitting between the lightest neutralino (χ̃0
1)

and chargino (χ̃−1 ), the single stop production can give the mono-top signature through

the stop decay t̃1 → tχ̃0
1. We analyze the leptonic mono-top channel of the single stop

production and propose a lab-frame observable cos θb` to reduce the SM backgrounds. We

find that such leptonic mono-top events from the single stop production can be probed at

2σ level at the HL-LHC if mt̃1
< 760 GeV and mχ̃0

1
< 150 GeV. Given a discovery of the

stop and a measurement of the single stop production cross section, the stop mixing angle

can also be determined from the single stop production at the HL-LHC.
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1 Introduction

After the discovery of the Higgs boson in 2012 [1, 2], the fundamental mechanism of stabiliz-

ing the electroweak scale has become an urgent topic. Weak scale supersymmetry (SUSY)

is one of the most promising candidates for addressing such an longstanding theoretical

issue. SUSY predicts a plethora of supersymmetric particles, among which the top-squarks

(stops) play an important role in cancelling the quadratic divergence in the Higgs boson

mass. Naturalness (absence of fine-tuning in the Higgs boson mass) requires stop masses

to be below 1 TeV in the MSSM [3]. Therefore, the search for light stops is a sensitive

probe of the naturalness in SUSY [4–23].

So far, ATLAS and CMS collaborations have performed extensive searches for stops

at the LHC Run-1 and Run-2. The current search strategies are specialized for different

kinematical regions. For example, when mt̃1
� mχ̃0

1
+mt, the top quarks from stop decays

are usually energetic. With the endpoint observables, such as MT2 [24, 25], the stop pair

can be discriminated from the tt̄ background. But in the compressed regions, for example

mt̃1
≈ mχ̃0

1
+ mt, the decay products of the stop are very soft. In this region, the stop is

searched for by using the monojet signature [26–32]. Based on recent Run-2 (∼ 15 fb−1)

dataset, the stop mass has been excluded up to ∼ 1 TeV in simplified models [33–40].

Like the top quark, stops can be produced in pair, but also can be singly produced via

the electroweak interaction, such as the associated production of the stop and chargino,

bg → t̃1χ̃
−
1 (cf. figure 1) [41–43]. When the stop and chargino are not heavy or the chargino

is much lighter than the stop [41], the single stop production can have a sizable cross section

at the LHC. Although the single stop may not be a good discovery channel as the stop pair

production, the study of single stop is meaningful because it can serve as a complementary

channel to probe the electroweak properties of the stop [42, 43].

In this work, we explore the feasibility of probing the single stop production pro-

cess pp → t̃1(→ tχ̃0
1)χ̃−1 + X in a compressed SUSY scenario, where the chargino χ̃±1 is

almost degenerate with the lightest neutralino χ̃0
1. Such a spectrum is motivated by nat-

ural SUSY [4, 5] or the well-tempered neutralino frameworks [44]. Due to the small mass

splitting between χ̃±1 and χ̃0
1, the single stop production will give the mono-top signa-

ture [43, 45–49] and in ref. [43] its full-hadronic final states with top tagging technique are
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Figure 1. Feynman diagrams for the associated production of the stop and chargino at the LHC.

studied. In this study, we focus on the leptonic mono-top channel of the process pp→ t̃1χ̃
−
1 .

In contrast with the full hadronic channel, the leptonic channel has no QCD background

pollution. Besides, the cut on the leptonic mT can greatly reduce the tt̄ and W + b back-

grounds [47, 48]. We also construct a new variable, which is the open angle of the charged

lepton and b-jet from the top quark in the stop decay, to reduce the SM backgrounds.

This work is organized as follows. In section 2, we calculate the single stop production

at the LHC and stop decays in compressed electroweakino scenarios. In section 3, we

perform detailed Monte Carlo simulation for the leptonic mono-top signature from the

single stop production at the LHC. Finally, we summarize our conclusions in section 4.

2 Single production and decays of stop in compressed electroweakino

scenario

In the MSSM, the stop mass matrix in the gauge-eigenstate basis (t̃L,t̃R) is given by

M2
t̃

=

(
m2
t̃L

mtX
†
t

mtXt m2
t̃R

)
(2.1)

with

m2
t̃L

= m2
Q̃3L

+m2
t +m2

Z

(
1

2
− 2

3
sin2 θW

)
cos 2β, (2.2)

m2
t̃R

= m2
Ũ3R

+m2
t +

2

3
m2
Z sin2 θW cos 2β, (2.3)

Xt = At − µ cotβ. (2.4)

Here mQ̃3L
and mŨ3R

are the soft-breaking mass parameters for the third generation left-

handed squark doublet Q̃3L and the right-handed stop Ũ3R, respectively. At is the stop

soft-breaking trilinear parameter. The generation mixing is neglected here. This hermitian

matrix can be diagonalized by a unitary transformation:(
t̃1
t̃2

)
=

(
cos θt̃ sin θt̃
− sin θt̃ cos θt̃

)(
t̃L
t̃R

)
, (2.5)

where θt̃ is the mixing angle between left-handed (t̃L) and right-handed (t̃R) stops. In the

mass eigenstates, the relevant interactions of the stop and electroweakinos are given by

Lt̃1b̄χ̃+
i

= t̃1b̄(f
C
L PL + fCRPR)χ̃+

i + h.c. , (2.6)

Lt̃1 t̄χ̃0
i

= t̃1t̄(f
N
L PL + fNR PR)χ̃0

i + h.c. , (2.7)
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where PL/R = (1∓ γ5)/2, and

fNL = −
[
g2√

2
Ni2 +

g1

3
√

2
Ni1

]
cos θt̃ − ytNi4 sin θt̃ (2.8)

fNR =
2
√

2

3
g1N

∗
i1 sin θt̃ − ytN

∗
i4 cos θt̃, (2.9)

fCL = ybU
∗
i2 cos θt̃, (2.10)

fCR = −g2Vi1 cos θt̃ + ytVi2 sin θt̃, (2.11)

with yt =
√

2mt/(v sinβ) and yb =
√

2mb/(v cosβ) being the top and bottom Yukawa cou-

plings, respectively. When tan β is large, the values of yb can be sizable. The neutralino and

chargino mixing matrices Nij , Uij , Vij are defined in [50]. The compressed electroweakino

spectrum, mχ̃±
1
−mχ̃0

1
� mχ̃0

1
, can be realized in two limits:

(i) µ � M1,2, V11, U11, N11,12,21,22 ∼ 0, V12 ∼ sgn(µ), U12 ∼ 1 and N13,14,23 = −N24 ∼
1/
√

2. In this limit, the two neutralinos χ̃0
1,2 and the chargino χ̃±1 are nearly de-

generate higgsinos (H̃±). Such a higgsino LSP scenario may be probed at the high

luminosity LHC [51–55].

(ii) M2 � µ,M1, V11, U11 ∼ 1, V12, U12 ∼ 0, N11,13,14, N22,23,24 ∼ 0, and N12,21 ∼ 1. In

this case, the lightest neutralino χ̃0
1 and the lighter chargino χ̃±1 are nearly degenerate

winos (W̃±). If the small splitting between χ̃±1 and χ̃0
1 is not too small, the mono-

jet with soft photon events can be used to detect this wino LSP scenario at the

LHC [56–58].

We evaluate the mass spectrum and branching ratios of all sparticles with SUSY-

HIT [60]. We use MadGraph5 aMC@NLO [61] to calculate the leading order cross section

of the single stop production. The NNPDF23LO1 [62] parton distribution functions are

chosen for our calculations. The renormalization and factorization scales are set as the

default value. We include the NLO-QCD correction by applying a K-factor of 1.3 [41, 43]

to the cross section of the single stop production. It should be noted that the single stop

production not only relies on the nature of the electroweakinos, but also is affected by

the polarized states of the stop. To demonstrate this, we consider two cases: the left-

handed stop t̃L by taking mŨ3R
= 2 TeV to decouple the right-handed component, and the

right-handed stop t̃R by taking mQ̃3L
= 2 TeV to decouple the left-handed component.

In the upper panels of figure 2, we show the cross sections of the associated production

of stop and chargino at 14 TeV LHC for four different final states: t̃LH̃
−, t̃RH̃

−, t̃LW̃
−

and t̃RW̃
−. The contributions of the conjugate processes are included. For a higgsino-like

chargino, we can see that the cross section of t̃RH̃
− production is larger than that of t̃LH̃

−

production and almost independent of tan β. It can reach about 3 pb at mt̃1
= 200 GeV.

While the cross section of t̃LH̃
− strongly depends on the value of tan β, since the coupling

of the left-handed stop with χ̃±1 is dominated by the bottom Yukawa coupling yb and can

be enhanced by a large tan β. For a wino-like chargino, the cross section of t̃LW̃
− is always

much larger than that of t̃RW̃
− because of the gauge interactions.

– 3 –
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per panel), and the stop decay branching ratios (lower panel) in two compressed electroweakino

scenarios, where tan β = 10 and 50. The left (right) two figures are for a higgsino-like (wino-like)

chargino χ̃±
1 .

In the lower panel of figure 5, we present the branching ratios of stop decaying to the

top quark and neutralinos. For higgsino case, it can be seen that a left-handed stop t̃L
dominantly decays to tχ̃0

1,2 at tanβ = 10. The reason is that the decay width of bχ̃+
1 is

proportional to yb and is suppressed for a small tan β. If the stop is right-handed t̃R, its

couplings with χ̃0
1,2 and χ̃±1 are proportional to yt, and the branching ratios of t̃R → tχ̃0

1,2

and t̃R → bχ̃+
1 are about 50% and 50%, respectively. For the wino case, both t̃L and t̃R

decay to tχ̃0
1 with the same branching ratio.

Besides, it can be seen that the cross section of stop pair production σ(t̃t̃∗) is about

one order of magnitude larger than that of single stop production if stop mass is less than

300 GeV. With the increase of stop mass, the cross section of stop pair production decreases

more rapidly than the single stop production due to the suppression of phase space. For

example, when stop mass is 700 GeV, the ratio of σ(t̃t̃∗)/σ(t̃RH̃
−) is about four. Consid-

ering the stop decay branching ratios, we find that the number of events of t̃1t̃
∗
1(→ t̄χ̃0

1,2)
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production is still about two times larger than that of t̃R(→ tχ̃0
1,2)H̃− production. While

the expected number of events of t̃L(→ tχ̃0
1,2)H̃− and t̃L,R(→ tχ̃0

1)W̃− productions are less

than that of t̃R(→ tχ̃0
1,2)H̃−. In the following, we will use t̃R(→ tχ̃0

1,2)H̃− production as

an example to investigate the observability of the single stop production at the LHC.

3 Leptonic mono-top signature from single stop production at the LHC

Since χ̃±1 and χ̃0
1,2 are the nearly degenerate higgsinos in our considered scenario, the mass

splitting between them is small so that χ̃±1 and χ̃0
2 appear as missing transverse energy at

the LHC. This leads to the mono-top signature for the single stop production at the LHC,

which is

pp→ t̃1(→ tχ̃0
1,2)χ̃−1 → t+ /ET , (3.1)

In our simulation, we focus on the leptonic mono-top channel. In contrast with the full

hadronic final states, the problematic QCD multijet background can be safely neglected

in this leptonic channel. We use MadGraph5 aMC@NLO [61] to generate the parton level

events. Then, we perform the parton shower and hadronization by Pythia [63]. The jets

are clustered by the anti-kt algorithm with a cone radius ∆R = 0.4 [65]. We implement

the detector effects with Delphes [64].

The SM backgrounds are dominated by the following processes:

• The largest SM backgrounds are the semi- and di-leptonic tt̄ productions, where

the missing lepton and the limited jet energy resolution will lead to relatively large

missing ET . The leading order cross section of tt̄ production is normalized to its

approximate next-to-next-to-leading-order value σNNLOapprox
tt̄

= 920 pb [66].

• The subdominant background is the single top production, which is irreducible, up

to a jet that could come from ISR. We include three production modes tj, tb and tW

in our simulation.

There are other possible SM backgrounds, such as W + jets and the diboson production

V V . But for W + jets, the mistag rate of a light jet as a b-jet in current ATLAS and CMS

analyses is of the order of 10−2 and 10−3, depending on the working point of the b-tagging

algorithm. The acceptance of this background after cuts is found to be negligibly small.

On the other hand, V V backgrounds can also be neglected because of their small cross

sections and the difficulty of faking a b` /ET final state in WW , WZ and ZZ backgrounds.

In figure 3, we present the distributions of the transverse missing energy /ET and

the transverse mass of the lepton plus missing energy system M `
T . It is clear that the

backgrounds and the signal can be discriminated by /ET . Most events of the backgrounds

are distributed in the region of /ET . 150 GeV. However, the signal has much more events

than backgrounds in the region of /ET & 150 GeV, due to the extra missing energy from

the massive LSP. Besides, the variable M `
T can well separate the backgrounds and signal

because it has an end-point at the mass of the lepton’s parent particle, M `
T |max = M [67].

All the main backgrounds contain a W boson and a unique source of missing energy, the

neutrino, coming from its decay. So the backgrounds have endpoint around MW in the
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Figure 3. Distributions of transverse missing energy /ET and the transverse mass of the lepton plus

missing energy system M `
T . The signal benchmark point is for mχ̃0

1
= 101 GeV and mt̃1

= 421 GeV.

Figure 4. Same as figure 3, but for the distribution of jet multiplicity.

M `
T distributions. But the signal has a larger value of M `

T . A cut on M `
T ≥ 80 GeV will

greatly reduce the backgrounds while keep most of the signal.

In figure 4, we show the jet multiplicity (Njets) distributions of the signal and back-

grounds. We can see that most of events of tt̄ and single top backgrounds have larger Njets

than the single stop process. To suppress the backgrounds, we will veto the second hard

jet in our event selection.
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Figure 5. Same as figure 3, but for the distribution of the opening angle cos θb` between the

charged lepton and the b-jet in the lab-frame.

Another interesting observable is the opening angle θb` between the charged lepton and

the b-jet in the lab-frame. After requiring exactly one lepton and one b-jet, we display the

distribution of cos θb` in figure 5. We can see that most of the signal events fall in the region

of cos θb` > 0, while the backgrounds have more events in the region of cos θb` < 0. This

is because the the charged lepton and the b-quark from top quark in the stop decays are

boosted so that they tend to move in the same direction when the mass splitting between

t̃1 and χ̃0
1 is large. Thus, the requirement of a large cos θb` can further reduce backgrounds.

The detailed analysis strategies are the followings:

• We require exact one hard lepton with pT (`) > 30 GeV and |η`| < 2.5.

• We require exact one b-jet with pT (b) > 75 GeV and |ηb| < 2.5 and veto extra jets

with pT (j) > 20 GeV to suppress the tt̄ background.

• We define eight signal regions according to /ET cuts: 150, 175, 195, 200, 205, 225, 250

and 275 GeV. It is worth noting at this point that cuts in MT end up having little

correlation with cuts in /ET , as it will be shown in the cut-flow tables below.

• We require M `
T > 175 GeV and cos θb` > 0.85 to suppress top pair and single stop

backgrounds.

Finally, we use the signal region with highest S/
√
B to show our results in figure 6.

In table 1, we present a cut flow of cross sections for the signal and backgrounds at the

14 TeV LHC. The benchmark point is mχ̃0
1

= 101 GeV and mt̃1
= 421 GeV. We can see that

the tt̄ production is the largest SM background. The requirement of exact one b-jet with

– 7 –
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cut 1 lepton 1 b-jet jet veto M `
T > 175 /ET >150 cos θb`

p`T > 30GeV, |η`| < 2.5 pbT > 75GeV, |ηb| < 2.5 pT (j) > 20GeV [GeV] [GeV] >0.85

tt̄ 233465.16 77973.38 796.20 62.95 26.2472 11.75

t+ j/b/W 44891.80 8411.10 189.24 9.45 3.47 1.64

signal 24.88 9.482 1.40 1.03 0.90 0.77

S/B(%) 1.43 3.02 5.75

S/
√
B 6.67 9.04 11.53

Table 1. A cut flow analysis of the cross sections of the backgrounds and signal at 14 TeV LHC,

where the cross sections are in unit of fb. The significance S/
√
B is calculated assuming 3000 fb−1

of integrated luminosity. The benchmark point is (mχ̃0
1
,mt̃1

) = (101, 421) GeV.

Figure 6. The statistical significance S/
√
B on the plane of mt̃1

versus mχ̃0
1

at 14 TeV LHC with

L = 3000 fb−1.

pbT > 75 GeV can reduce the backgrounds by about 60%. The jet-veto for the second hard

jet can significantly reduce tt̄ background by almost two orders of magnitude. The cuts

of M `
T > 175 GeV and /ET > 150 GeV can further remove the backgrounds by one order

of magnitude. It should be noted that cos θb` > 0.85 can help to suppress backgrounds by

half and improve the value of S/B.

In figure 6, we plot the dependence of the signal significance S/
√
B on mχ̃0

1
and mt̃1

for the 14 TeV LHC with a luminosity L = 3000 fb−1. From this figure we can see that the

significance drops with the increase of mχ̃0
1

and mt̃1
because of the reduction of the cross

section. We find that the parameter range 100 GeV ≤ mχ̃0
1
≤ 150 GeV and mt̃1

≤ 760 GeV

can be covered at ≥ 2σ level with S/B > 3% at the HL-LHC, which is moderately better

than the hadronic stop channel [43].
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Figure 7. The statistical significance S/
√
B for a benchmark point mt̃1

= 600 GeV, µ = 100 GeV

and M1,2 = 2 TeV on the plane of cos θt̃1 and tan β at 14 TeV LHC with L = 3000 fb−1.

Given a discovery of the stop and a measurement of the single stop production cross

section, we examine the discriminating power of single stop production with regard to

the electroweak properties of the stop. In figure 7, we show the statistical significance

S/
√
B of the process pp → t̃1χ̃

−
1 for a benchmark point mt̃1

= 600 GeV, µ = 100 GeV

and M1,2 = 2 TeV on the plane of stop mixing angle cos θt̃1 and tanβ at 14 TeV LHC with

L = 3000 fb−1. We can see that the mixing angle cos θt̃1 . 0.5 ( right-handed-like stop) can

be probed above 5σ level. While for cos θt̃1 & 0.5 (left-handed-like stop), the significance

S/
√
B depends on the value of tan β. This is because the cross section of t̃LH̃

− production

is sensitive to tan β (cf. figure 2). When cos θt̃1 > 0.7, the significance S/
√
B is be less

than 3σ. On the other hand, if χ̃−1 is wino-like, we can expect that the large cos θt̃1 region

will have larger S/
√
B than the small cos θt̃1 region at the HL-LHC since the cross section

of t̃LW̃
− production is much larger than that of t̃RW̃

− production (cf. figure 2).

4 Conclusion

In this work we explored the observability of the associated production of stop and chargino

in the compressed electroweakino scenario at 14 TeV LHC. Due to the small mass splitting

between χ̃0
1 and χ̃−1 , such a production can lead to the mono-top signature via stop decay

t̃1 → tχ̃0
1. We analyze the leptonic mono-top channel pp→ t̃1χ̃

−
1 → b`+ /ET , and construct

a lab-frame observable cos θb` from the top quark in the stop decay to reduce the SM

backgrounds. We found that the stop mass can be probed up to 760 GeV at 2σ level

through the single stop production at 14 TeV LHC with L = 3000 fb−1. We also find that
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the stop mixing angle can also be determined from the single stop production assuming a

measurement of the single stop production cross section at HL-LHC.
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