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1 Introduction

Despite the ubiquity of conformal field theories (CFTs) in d > 2 spacetime dimensions, very

little is known about their operator dimensions and OPE coefficients away from simplifying

limits like large central charge (large-N) or weak coupling. Unlike in d = 2 dimensions [2],

we have no nontrivial exactly-solvable CFTs in d > 2 from which to draw lessons.

In this work, we produce a new numerical picture of the spectrum of the 3d Ising CFT,

including about 100 operators, and use it as a guide to explore the theory analytically. In

addition to the intrinsic interest of the 3d Ising CFT for its role in second-order phase
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transitions, our motivation is to develop analytical tools for solving crossing symmetry in

general (and eventually apply them to wider classes of theories).

The current most powerful techniques for studying the spectrum of small central charge

theories are numerical bootstrap techniques [3–52], based on the conformal bootstrap [53,

54] and the methods pioneered in [3]. For example, the numerical bootstrap has yielded

precise predictions for dimensions of the lowest-dimension scalars σ and ε in the 3d Ising

CFT [12, 20, 24, 31, 55]. It is difficult to reproduce these results analytically because the

3d Ising CFT does not admit a (known) controlled expansion in a small coupling constant.1

But even strongly-coupled theories admit small parameters in kinematic limits. The

authors of [59, 60] showed that every CFT admits a large-spin expansion, accessible via the

lightcone limit of the crossing equations. By studying the lightcone limit, one can prove:

Theorem 1.1 (Existence of double-twist operators [59, 60]). Suppose a CFT in d > 2

dimensions contains primary operators O1,O2 with twists τ1, τ2.2 For each n = 0, 1, 2, . . . ,

there exists an infinite family of primary operators with increasing spin and twists ap-

proaching τ1 + τ2 + 2n as `→∞.

Schematically, these operators are

O1∂
µ1 · · · ∂µ`∂2nO2 . (1.1)

Of course, composite operators like (1.1) don’t make sense in a general strongly-coupled

theory. However, theorem 1.1 implies that they do make sense in the large-` limit. We

denote the family with twist approaching τ1+τ2+2n as [O1O2]n and refer to such operators

as “double-twist” operators (following [60]).

Dimensions and OPE coefficients of double-twist operators have a computable expan-

sion in (generically non-integer) powers of 1/`, where terms in the expansion come from

matching operators on the other side of the crossing equation. Recently, there has been

significant progress in understanding this expansion [1, 59–67]. The large-` expansion is

asymptotic in general [1], so its usefulness for studying finite-spin operators is not immedi-

ately clear. Nevertheless, we might hope that large-spin techniques could enhance numerics

or vice versa. Perhaps an analytical solution of the large-spin expansion could help make

numerics more efficient, or even replace numerics entirely if crossing symmetry could be

solved via the lightcone limit.

With our concrete numerical calculations as a guide, we find the following:

• Double-twist operators play an important role in the numerical bootstrap.

• By truncating the asymptotic large spin expansion, and with the help of some new

analytical techniques described below, we can describe a large part of the 3d Ising

spectrum, including operators with spin as small as ` = 2 or ` = 4.

• The large-spin expansion can be used to solve crossing symmetry systematically in a

“double lightcone” expansion in z, 1− z.3

1See [56–58] for recent attempts using Mellin space.
2Twist is defined as τ = ∆− `.
3While this work was nearing completion, [66, 67] appeared which also develop this approach.
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• The “errors” associated with the fact that the expansion is asymptotic can be pre-

cisely characterized (they are “Casimir-regular” terms defined in section 4). Requir-

ing that they cancel gives nontrivial constraints on the spectrum.

Let us describe the structure of this paper in more detail.

In section 2, we perform a (non-rigorous) numerical computation of the 3d Ising spec-

trum using the extremal functional method [7, 14, 20]. Importantly, we use a trick from [68]

which lets us assign error bars to the resulting operator dimensions and thereby understand

which predictions are robust and which ones aren’t. The robust predictions turn out to be

for low-twist operators (not just low-dimension operators). Specifically, we find relatively

precise predictions for 112 operators in the 3d Ising CFT, of which only 9 do not fall into

an obvious double-twist family. The remaining 103 operators give a clear numerical picture

of the families [σσ]0, [σσ]1, [εε]0, and [σε]0, up to spin ` ∼ 40. We give additional details of

our computation in appendix A, and list the resulting operators in appendix A.3. Although

many of the results in this work are analytical (and applicable to any CFT), this numerical

picture is a crucial guide, helping us ask the right questions and find the right tools to

answer them.

We then set out to describe the families [σσ]0, [σσ]1, [εε]0, and [σε]0 analytically using

the large-spin expansion. To succeed, we must develop two new technologies:

• Techniques for summing an infinite family of large-spin operators in the conformal

block expansion. (For example, this lets us compute the contribution of a twist family

to its own anomalous dimensions.)

• Techniques for describing mixing between multi-twist families.

Our key tool is a better understanding of infinite sums of SL(2,R) conformal blocks,

which we develop in section 4 (after reviewing the lightcone bootstrap in section 3). By

generalizing the conformal block expansion of 1-dimensional Mean Field Theory, we show

how to compute exactly, and in great generality, sums of SL(2,R) blocks in an expansion

in the crossed channel z → 1− z. A simple example is4

∑
h=h0+`
`=0,1,...

1

Γ(−a)2

Γ(h)2

Γ(2h− 1)

Γ(h− a− 1)

Γ(h+ a+ 1)
zh2F1(h, h, 2h, z) =

(
1− z
z

)a
− 1

Γ(−a)2

Γ(h0 − a− 1)

Γ(h0 + a)

∞∑
k=0

∂

∂k

(
Γ(h0 + k)

k!(a− k)Γ(h0 − k − 1)

(
1− z
z

)k)
.

(1.2)

The crucial point is that the first term on the right-hand side,
(

1−z
z

)a
, becomes arbitrarily

singular at z = 1 after repeated application of the quadratic Casimir of SL(2,R), while the

remaining terms do not. We compute general sums of SL(2,R) blocks by exploiting this

distinction. Because SO(d, 2) conformal blocks are sums of SL(2,R) blocks, equation (1.2)

and similar identities can be used as building blocks for understanding crossing symmetry

4The sum over k in (1.2) can be written in terms of 3F2 hypergeometric functions.
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in general. Using them, we solve the asymptotic lightcone bootstrap to all orders (for both

OPE coefficients and anomalous dimensions) in section 5.

In section 6, we explore how well the truncated large-spin expansion describes the

families [σσ]0 and [σε]0. Surprisingly, we find that the first few terms (coming from ε and

Tµν in the crossed-channel) fit the numerical data for [σσ]0 beautifully, even down to spin

` = 2!5 To describe [σε]0, we must perform a nontrivial sum over the twist family [σσ]0
in the σσ → εε OPE channel. The result is another beautiful fit that works down to spin

` = 2. In this way, we find analytical approximations for dimensions and OPE coefficients

of [σσ]0 and [σε]0 in terms of the data {∆σ,∆ε, fσσε, fεεε, cT }.
Describing [σσ]1 and [εε]0 requires a novel approach because the two families exhibit

nontrivial mixing. (For example the OPE coefficient fεε[σσ]1 is larger than fεε[εε]0 for spins

` ≤ 26.) In section 7, using our solution of the asymptotic lightcone bootstrap, we show how

to define a “twist Hamiltonian” H(h = ∆+`
2 ) whose diagonalization correctly describes this

mixing, and matches the numerics well for ` ≥ 4. In particular, diagonalizing H(h) leads

to O(1) anomalous dimensions and variations in OPE coefficients, despite the fact that

we have truncated the asymptotic expansion for H(h) to only a few terms. Our tentative

conclusion is that by using the appropriate twist Hamiltonian, the large-spin expansion

can in practice be extended down to relatively small spins for all double-twist operators in

the 3d Ising CFT (and perhaps other theories as well).

In section 8, we ask what the asymptotic large spin expansion is missing. Part of the

four-point function is invisible to this expansion, to all orders in 1/`. Demanding that this

part be crossing-symmetric gives additional nontrivial constraints on the CFT data. Using

our analytical approximations from section 6, we briefly explore some of these constraints.

For example, we find conditions that approximately determine cT and fσσε in terms of

∆σ,∆ε, fεεε, using only the lightcone limit.

We discuss future directions in section 9.

2 Numerics and the lightcone limit

2.1 A numerical picture of the 3d Ising spectrum

Numerical bootstrap methods have become powerful enough to estimate several operator

dimensions and OPE coefficients in the 3d Ising CFT. The strategy is as follows. Consider

the four-point functions 〈σσσσ〉, 〈σσεε〉, and 〈εεεε〉 where σ and ε are the lowest-dimension

Z2-odd and Z2-even scalars in the 3d Ising CFT, respectively. Crossing symmetry and

unitarity for these correlators forces the dimensions ∆σ,∆ε and OPE coefficients fσσε, fεεε
to lie inside a tiny island given by [55]

∆σ = 0.5181489(10) , fσσε = 1.0518537(41) ,

∆ε = 1.412625(10) , fεεε = 1.532435(19) . (2.1)

We can then ask: given that (∆σ,∆ε, fσσε, fεεε) lie in this island, what other operators

are needed for crossing symmetry? Although it is possible in principle to compute rigor-

5This was conjectured in [1, 62].
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ous bounds on more operators, it is difficult in practice because we must scan over the

dimensions and OPE coefficients of those additional operators.

Instead, we adopt the non-rigorous approach of [68], based on the extremal functional

method [7, 14, 20]. Consider N derivatives of the crossing equation around z = z = 1
2 ,

which we write as FN = 0, where FN is an N -dimensional vector depending on the CFT

data. We assume that OPE coefficients are real and operator dimensions are consistent

with unitarity bounds [69]. By the argument of [3], there is an allowed region AN in the

space of CFT data such that any point outside AN is inconsistent with FN = 0.6 For every

point p on the boundary of AN , there is a unique “partial spectrum” SN (p): a finite list

of operator dimensions and OPE coefficients that solve FN = 0. The number of operators

in SN (p) grows linearly with N .7

If p lies on the boundary of the Ising island and N is large, we might expect that

SN (p) is a reasonable approximation to the actual spectrum of the theory. However, it is

not obvious how to assign error bars to SN (p). Firstly, the actual theory lies somewhere

in the interior of the island, not on the boundary. It is important that the island is small

enough that points on the interior are close to points on the boundary. Secondly, SN (p)

depends on p, and there is no canonical choice of p.

In [68], we propose the following trick. We sample several different points p on the

boundary of the island, and compute SN (p) for each one. As we increase N and vary p,

some of the operators in SN (p) jump around, while others remain relatively stable. If an

operator remains stable, we can guess that it is truly required by crossing symmetry.

In [68], we used this strategy to estimate the dimensions and OPE coefficients of a few

low-dimension operators in the 3d Ising CFT. In figures 1 and 2, we show a more complete

computation, giving about a hundred stable operators. To produce figures 1 and 2, we

computed 60 different spectra by varying (∆σ,∆ε, fσσε, fεεε) and minimizing cT . (We give

more details in appendix A.1.) We then superimposed these 60 spectra, and grouped

together operators with dimensions closer than 0.03. Each circle represents a group, and

the size of the circle is proportional to the number of operators in that group. Thus, large

circles correspond to stable operators and small circles correspond to unstable operators.

We list the dimensions and OPE coefficients of the stable operators in appendix A.3. Most

of the stable operators also appear in figures 7, 9, 12, 13, 14, 17, 18, and 19, where we

compare to analytics.

2.2 Effectiveness of the large spin expansion

Let us make some comments about these results. Firstly, most of the stable operators fall

into families with increasing spin and nearly constant twist τ = ∆ − `. We immediately

recognize these as double-twist operators — specifically the families [σσ]0, [σσ]1, [εε]0 in

figure 1, and [σε]0 in figure 2. (There are also vague hints of [σε]1.) The fact that these

6The island (2.1) is the projection of A1265 onto (∆σ,∆ε, fσσε, fεεε)-space, where we also assume that σ

and ε are the only relevant scalars in the theory.
7It is impossible to solve the full crossing equations with a finite number of operators. SN (p) can be

finite because we have truncated the crossing equations to FN = 0.
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operators in the σ×σ and ϵ× ϵ OPEs

Figure 1. Estimates of Z2-even operators in the 3d Ising model. Larger circles represent “stable”

operators whose dimensions and OPE coefficients have small errors in our computation. We plot

the twist ∆ − ` versus spin `. The grey dashed lines are τ = 2∆σ + 2n and τ = 2∆ε + 2n for

nonnegative integer n.

10 20 30 40 50
ℓ

5

10

15

20
τ=Δ-ℓ

operators in the σ× ϵ OPE

Figure 2. Estimates of Z2-odd operators in the 3d Ising model. Larger circles represent “stable”

operators. We plot the twist ∆ − ` versus spin `. The grey dashed lines are τ = ∆σ + ∆ε + 2n for

nonnegative integer n.

families are stable implies that they play a crucial role in the numerical bootstrap for the

3d Ising CFT.8

8Note that even though our numerical calculation uses an expansion of the crossing equation around the

Euclidean point z = z = 1
2
, the results are sensitive to the Lorentzian physics of the lightcone limit. The

prevailing lore was that, since the conformal block expansion converges exponentially in ∆ in the Euclidean

regime [70], numerical bootstrap methods should only be sensitive to low-dimension operators. Evidently

this is incorrect because certain derivatives probe physics outside the Euclidean regime. Some hints that

the numerical bootstrap probes the lightcone limit were given in [71], where an exact extremal functional

was constructed that involves the lightcone limit of conformal blocks.
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One can compute anomalous dimensions of double-twist operators in a large-` expan-

sion using the crossing equation [1, 59–67]. The authors of [1] observed that the large-`

expansion appears to be asymptotic, but they conjectured that the anomalous dimensions

of [σσ]0 should be well-described by the first few terms in this expansion, coming from

the operators ε and Tµν appearing in the σ × σ OPE. The expansion is most naturally

organized in terms of the “conformal spin” J defined by

J(`)2 ≡
(
τ(`)

2
+ `

)(
τ(`)

2
+ `− 1

)
. (2.2)

One finds9

τ[σσ]0(J) ≈ 2∆σ +
∑

O=ε,Tµν

f2
σσO

c0(τO, `O)

JτO

(
1 +

c1(τO, `O)

J2

)
,

c0(τ, `) ≡ −2(−1)`Γ(τ + 2`)Γ(∆σ)2

Γ(∆σ − τ
2 )2Γ(`+ τ

2 )2
,

c1(τ, `) ≡ −
(−2∆σ + τ + 2)2

(
2`2(d+ τ − 2) + 2`(τ − 1)(d+ τ − 2) + (d− 4)τ2

)
8(d+ 2`− 4)

(
d− 2(`+ τ + 1)

) ,

− τ

12
(−3τ∆σ + τ2 + 3τ + 2) , (2.3)

where

f2
σσTµν =

d∆2
σ

4(d− 1)

cfree

cT
. (2.4)

Here, d = 3 is the spacetime dimension and cfree is cT for the free boson [72]. We will

rederive (2.3) and find its all-orders generalization in section 5. Plugging in (2.1) and the

value
cT
cfree

≈ 0.946534(11) (2.5)

computed in [20], we find that this prediction fits the numerics beautifully, even at small

` (figure 7)! This is surprising because the arguments leading to (2.3) only fix anomalous

dimensions at asymptotically large `. Rigorously speaking, they say nothing about any

finite value of `.

Nevertheless, inspired by this result, we might try to match the dimensions of [εε]0
and [σσ]1 to the leading terms in their large-spin expansions. Unfortunately, the naive

analytic predictions disagree wildly with the data. To fit [εε]0 and [σσ]1, we will need a

more sophisticated understanding of the large-spin expansion, which we develop over the

course of this work.

A clue about what’s going on is the fact that the twists of [εε]0 and [σσ]1 move away

from each other at small `. This is reminiscent of the behavior of the eigenvalues of(
τ1 1/`

1/` τ2

)
(2.6)

9Note that τ[σσ]0(`) depends on J , and J depends on τ[σσ]0(`). To obtain a series in `, one can repeatedly

substitute the expressions for τ[σσ]0(`) and J into each other, starting with the initial seed J = (∆σ + `)

(∆σ + `− 1).
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as ` → 0. If |τ1 − τ2| is small, the eigenvalues repel more at small `. Furthermore, the

small-` eigenvectors become nontrivial admixtures of the large-` eigenvectors. In the 3d

Ising CFT, it turns out that τ1 = 2∆σ + 2 ≈ 3.04 is numerically close to τ2 = 2∆ε ≈ 2.83.

This suggests that the repulsion between [εε]0 and [σσ]1 is due to large mixing between

these families. We will make this notion more precise in section 7 and compute the twists

of [εε]0 and [σσ]1 in section 7.5. The off-diagonal terms will come from the σ operator in

the σ × ε OPE and behave like `−∆σ .

3 Lightcone bootstrap review

3.1 Double-twist operators

Let us review the argument from [59, 60] for the existence of double-twist operators. The

crossing symmetry equation for a four-point function of scalar operators 〈φφφφ〉 is

(zz)−∆φ
∑
O
f2
φφOg∆,`(z, z) =

(
(1− z)(1− z)

)−∆φ
∑
O
f2
φφOg∆,`(1− z, 1− z) . (3.1)

Here, O runs over primary operators in the φ × φ OPE and ∆, ` are the dimension and

spin of O. The functions g∆,`(z, z) are conformal blocks for the d-dimensional conformal

group SO(d, 2).

The lightcone limit is given by z � 1 − z � 1.10 Let us replace z → 1 − z so that

we have(
z(1− z)

)−∆φ
∑
O
f2
φφOg∆,`(z, 1− z) =

(
(1− z)z

)−∆φ
∑
O
f2
φφOg∆,`(z, 1− z) , (3.2)

and the lightcone limit becomes z � z � 1. (We have used g∆,`(1− z, z) = g∆,`(z, 1− z).)

In this limit, the left-hand side is dominated by the unit operator, z−∆φ
(
1 + O(z)

)
. On

the right-hand side, no single term dominates the small z limit. However, because we also

have small z, we can replace each conformal block by its expansion in small z [73, 74],

g∆,`(z, 1− z) = zhk2h(1− z) +O(zh+1) , (3.3)

k2h(x) ≡ xh2F1(h, h, 2h, x) , (3.4)

where11

h ≡ ∆− `
2

=
τ

2
, h ≡ ∆ + `

2
=
τ

2
+ ` . (3.5)

The function k2h(x) is a conformal block for the 1-dimensional conformal group SL(2,R).

Our equation becomes

z−∆φ + · · · =
∑
O
f2
φφOz

h−∆φk2h(1− z) + . . . . (3.6)

10By developing methods for summing infinite families of operators, we will eventually work in the limit

z, 1− z � 1 (with no restrictions on 1− z relative to z), sometimes called the “double lightcone limit”. We

mostly abuse terminology and continue to call this the lightcone limit.
11These definitions are conventional in 2d CFT. In this work, we are considering d > 2, but it is still

convenient to use h, h.
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The left-hand side of (3.6) has a power-law singularity at small z. However, each

individual term on the right-hand side has a logarithmic singularity at small z,12

k2h(1− z) = −Γ(2h)

Γ(h)2

(
2ψ(h)− 2ψ(1) + log(z)

)
+O(z log z) . (3.7)

A power singularity can only come from the sum over an infinite number of operators on

the right-hand side with h → ∞. Also, these operators must have h → ∆φ as h → ∞ to

match fact that z−∆φ on the left-hand side is independent of z. These are the double-twist

operators [φφ]0.

One can determine the asymptotic growth of the OPE coefficients fφφ[φφ]0 by demand-

ing that they reproduce the singularity z−∆φ . The leading growth is

fφφ[φφ]0(h)2 ∼ 23−2h√π
Γ(∆φ)2

h
2∆φ− 3

2 . (3.8)

The sum in (3.6) is dominated by the regime 2h
√
z ∼ 1,13 where the SL(2,R) block becomes

k2h(1− z) ≈ 22h

√
h

π
K0(2h

√
z) (h� 1, 2h

√
z fixed) , (3.9)

where K0(x) is a modified Bessel function. We can then approximate the sum over [φφ]0
as an integral, which reproduces the required singularity∑

O∈[φφ]0

f2
φφOk2h(1− z) ≈ 1

2

∫
dh

8

Γ(∆φ)2
h

2∆φ−1
K0(2h

√
z) = z−∆φ . (3.10)

(The factor of 1
2 is because only even spin operators appear in [φφ]0.)

Matching z−∆φ only determines the asymptotic density of OPE coefficients f2
φφ[φφ]0

at

large h. The density (3.8) could be distributed evenly, with one operator per spin, or with

one operator every other spin, or in many different ways. We will not see evidence of this

freedom when we compare to numerics. The OPE coefficients will always be distributed in

the simplest way consistent with the large-spin expansion.

We can determine the anomalous dimensions of double-twist operators by matching

additional terms on the left-hand side of (3.6). Let O0 be the smallest-twist operator in

the φ× φ OPE that is not the unit operator (often O0 = Tµν). Including the contribution

of O0 at small z on the left-hand side of (3.6), we have

z−∆φ + zh0−∆φk2h0
(1− z) + . . . (3.11)

= z−∆φ + zh0−∆φ

(
−Γ(2h0)

Γ(h0)2

(
2ψ(h0)− 2ψ(1) + log z

)
+ . . .

)
+ . . . ,

=
∑
O
f2
φφOz

h−∆φk2h(1− z) + . . . (3.12)

12ψ(x) = Γ′(x)
Γ(x)

is the digamma function.
13The fact that 2h

√
z ∼ 1 is the appropriate regime was shown in [59]. It also follows from the physical

arguments of [75].

– 9 –



J
H
E
P
0
3
(
2
0
1
7
)
0
8
6

− log z

log `

φ φ

φ φ

O0

Figure 3. A diagram representing the contribution of the exchange of O0 in one channel (left to

right) to anomalous dimensions and OPE coefficients of double-twist operators [φφ]n in the other

channel (bottom to top). In the physical picture of [75], this diagram shows the exchange of virtual

O0-particles between φ-particles separated by a distance log ` over time log z.

where we have used (3.7), this time on the left-hand side of the crossing equation. To

match the log z term, we can take

h[φφ]0(h) = ∆φ + δ(h) ,

fφφ[φφ]0(h)2δ(h) ∼ −Γ(2h0)

Γ(h0)2

23−2h√π
Γ(∆φ − h0)2

h
2∆φ−2h0− 3

2 . (3.13)

Dividing (3.13) by (3.8) gives the leading large-h expansion of the anomalous dimension

δ(h) ∝ h−2h0
, agreeing with the leading term in (2.3).14 Again, only the asymptotic density

of the combination f2
φφ[φφ]0

δ is determined by this computation.

An interesting feature of this argument (not realized in [59, 60], but pointed out in [61])

is that it most naturally determines a function h(h) instead of τ(`). We obtain actual

operator dimensions by demanding that the spin be an even integer,

h− h(h) = ` , ` ∈ {0, 2, . . . } . (3.14)

Thinking in terms of h(h) will be even more important when we compute higher-order

corrections to (3.13).

It is often useful to draw the contribution of O0 as a “large-spin diagram” like figure 3

(see, e.g. [76]). Such diagrams are particularly natural in the language of [75], where large-

spin operators become widely separated particles in a massive two-dimensional effective

theory. Figure 3 represents a Yukawa potential between φ-particles induced by exchange of

a virtual massive O0-particle. The distance between φ’s (the width of the figure) is given

by χ = log `, and the mass of O0 is the twist m = τ0. The Yukawa potential has the form

e−mχ = `−τ0 , in agreement with the large-` behavior of δ(h). We can also think of figure 3

as having height − log z, so that integration over the vertical position of the O0 exchange

gives a factor − log z, matching the − log z term in the conformal block of O0 (3.12).

14δ = γ
2

is half of what is usually called the anomalous dimension.
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φ φ

φ φ

O0

O0

O0

...

Figure 4. Exponentiation of the contribution of O0 in the bottom-to-top channel becomes an

exchange of multi-twist operators [O0 . . .O0] in the left-to-right channel.

3.1.1 What about logn z?

Above, we matched the log z terms on the left-hand side of (3.12) to anomalous dimensions

on the right-hand side. However, the expansion of zδ contains higher-order terms in log z:

zδ = 1 + δ log z +
δ2

2
log2 z + . . . . (3.15)

What do they map to under crossing? Using (3.8), (3.9), and (3.13), the logn z terms

become ∑
O
f2
φφOδ

n logn z k2h(1− z) ∼ znh0−∆φ logn z . (3.16)

The z-dependence of (3.16) is what one would expect from an operator of weight nh0. Such

operators exist: they are the multi-twist operators [O0 . . .O0]0. The logn z behavior is not

present in any individual conformal block — instead it must come from a sum over all the

operators in the family [O0 . . .O0]0. We will see examples of log2 z coming from a sum over

double-twist operators in sections 6 and 7. We prove that double-twist operators always

account for the correct log2 z terms (i.e. that exponentiation of δ log z works automatically

to second order) in appendix C.

We could have immediately guessed this result using large-spin diagrams. Exponentiat-

ing the Yukawa potential in figure 3 gives a sum of “ladder diagrams” like figure 4. Reading

these diagrams from left-to-right, they look like an exchange of multi-twist operators. If

we interpret the figure as having height log z, then integration over the vertical positions

of the exchanges gives logn z. In practice, n − 1 “integrations” are achieved by summing

over different distributions of derivatives among the operators ∂ · · · ∂O0 · · · ∂ · · · ∂O0 (i.e. by

summing over all members of the twist family [O0 · · · O0]), while one integration is encoded

in the log z factor in each individual conformal block. This makes it clear why we must

sum over all multi-twist operators [O0 . . .O0] in one channel to recover exponentiation in

the other channel.

In this way, crossing symmetry forces multi-twist operators [O1 . . .On] to appear in

the conformal block expansion whenever O1, . . . ,On do individually. In particular, this

implies that multi-twist operators built from the stress tensor and other low-spin operators

– 11 –
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should appear in the σ×σ OPE in the 3d Ising model. In figure 1, we see some evidence of

operators with twist near 2, which would correspond to [TT ]0. However, none of them are

numerically stable. This is likely because the anomalous dimension δ[σσ]0 is small (of order

10−2), so higher terms in the expansion of zδ (3.15) are highly suppressed. To get a better

picture of these operators, one must study mixed correlators involving σ and Tµν together,

or perhaps higher-point correlators like 〈σσσσσσ〉. We return to this point in section 7.1.

3.2 The Casimir trick

The derivation of (3.13) makes sense when h0 < ∆φ, so that the sum

zh0−∆φ ≈
∑
h

fφφ[φφ]0(h)2δ(h)k2h(1− z) (3.17)

diverges faster than any individual term (log z) at small z. When this happens, the sum

must be dominated by large h and can be approximated by an integral.15 However, [61]

argued that the large-spin expansion can be extended to include contributions from oper-

ators with h0 > ∆φ. For example, there is a calculable correction to δ[σσ]0 in the 3d Ising

CFT coming from ε, which has hε ≈ 0.7 > ∆σ ≈ 0.52.

To see why, suppose h0 > ∆φ. Since each term k2h(1−z) is more singular than zh0−∆φ ,

we cannot conclude that the sum is dominated by large h. However, k2h(1 − z) obeys a

Casimir differential equation with eigenvalue h(h− 1),

Dk2h(1− z) = h(h− 1)k2h(1− z) ,

D ≡ (1− z)2z∂2
z + (1− z)2∂z . (3.18)

By repeatedly acting with the Casimir operator D on a power za, we can make it arbitrarily

singular,16

Dnza = (a− n+ 1)2
nz

a−n(1 +O(z)
)
. (3.19)

Acting n times on (3.17), we obtain

(h0 −∆− n+ 1)2
nz

h0−∆φ−n + · · · ≈
∑
h

fφφ[φφ]0(h)2δ(h)
(
h(h− 1)

)n
k2h(1− z) . (3.20)

Taking n big, the right-hand side is now dominated by large h when z is small, and we can

proceed as before. The resulting correction to f2
φφ[φφ]0

δ is again given by (3.7).

3.3 Higher-order corrections

By including 1/h-corrections in the approximation (3.9), one can compute higher-order

corrections to the OPE coefficients fφφ[φφ]0(h) and anomalous dimensions δ(h). After ap-

plying the Casimir operator enough times, each term in the 1/h-expansion contributes to

15When O0 = Tµν , we always have hTµν = d−2
2
≤ ∆φ, by unitarity.

16(a)n = Γ(a+n)
Γ(a)

is the Pochhammer symbol.
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a singularity at small z, and can thus be calculated by approximating the sum over h as

an integral. This gives expansions of the form

fφφ[φφ]0(h)2 ∼ 2−2h
∑
O
h

2∆φ−2hO− 3
2

(
a0 +

a1

h
+
a2

h
2 + . . .

)
,

fφφ[φφ]0(h)2δ(h) ∼ 2−2h
∑
O6=1

h
2∆φ−2hO− 3

2

(
b0 +

b1

h
+
b2

h
2 + . . .

)
. (3.21)

The authors of [1] showed how to use the Casimir trick to compute the above coefficients.

(Actually, they organize their expansion in terms of the Casimir eigenvalue J2 = h(h− 1),

as in equations (2.2) and (2.3).) In section 5, we will write down an all-orders solution

for (3.21).

We have written “∼” to indicate that both sides have the same asymptotic expansion

at large h. The arguments above only fix the asymptotic expansion of fφφ[φφ]0(h)2 and

δ(h) because it is always possible to throw away a finite number of blocks k2h(1 − z) and

still match the power zhO−∆φ on the other side of the crossing equation. We can only fix

the behavior of fφφ[φφ]0(h)2 and δ(h) for h larger than some h0, where h0 might grow as

we include more terms in (3.21). Thus, (3.21) should be interpreted as asymptotic series.

The behavior of fφφ[φφ]0(h)2 and δ(h) at finite h is still important — it contributes to

“Casimir-regular” terms defined in the following section.

4 Sums of SL(2,R) blocks

Our main tool will be a better understanding of infinite sums of SL(2,R) blocks,

∞∑
`=0

p(h`)k2h`(1− z) , (4.1)

where h` is an increasing series of weights that asymptotes to integer spacing, and p(h)

are coefficients that grow no faster than 2−2hhconst. as h → ∞. We start from a simple

example, Mean Field Theory (MFT) in 1-dimension, and then generalize it in several ways.

4.1 Casimir-singular vs. Casimir-regular terms

Sums of SL(2,R) blocks have two parts that play different roles in the bootstrap. As

discussed in in section 3.2, we can make a power za arbitrarily singular by repeatedly

applying the Casimir operator D,

Dnza = (a− n+ 1)2
nz

a−n(1 +O(z)
)
. (4.2)

We say that za for generic a is Casimir-singular. An exception occurs when a is a nonneg-

ative integer, since then (a− n+ 1)2
n vanishes for n ≥ a+ 1. In fact, terms of the form

zn, zn log z n ∈ Z≥0 (4.3)

do not become arbitrarily singular when we repeatedly apply D. We call such terms

Casimir-regular.
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The lesson of section 3.3 is that Casimir-singular terms can be matched unambigu-

ously to an asymptotic expansion in large h. Furthermore, to compute coefficients in this

expansion, we can think of the sum over h as an integral. By contrast, Casimir-regular

terms are not determined by a large-h expansion. This is consistent with the fact that a

single SL(2,R) block k2h(1− z) is Casimir-regular, since it is an eigenvector of the Casimir

operator. (We can also see that it is Casimir-regular by noting that its z-expansion (3.7)

is a sum of terms of the form (4.3).) For example, suppose

∞∑
m=0

p(hm)k2hm(1− z) = f(z) . (4.4)

Moving the first term on the left-hand side to the right-hand side, we have

∞∑
m=1

p(hm)k2hm(1− z) = f(z)− p(h0)k2h0(1− z) (4.5)

The Casimir-regular part of the right-hand side has changed, but the large-h expansion of

p(h) obviously hasn’t.

It will often be useful to work modulo Casimir-regular terms. When we do so, we

denote Casimir-regular terms by [ . . . ]z.

4.2 Matching a power-law singularity

Casimir-singular terms match to a unique asymptotic expansion for coefficients of SL(2,R)

blocks at large h. We can find the right expansion by looking at an example. Consider the

conformal block expansion of 〈φ1(0)φ2(z)φ2(1)φ1(∞)〉, where φ1,2 are scalars of dimension

∆/2 in 1-dimensional MFT,

∞∑
`=0

(∆)2
`

`!(`+ 2∆− 1)`
k2∆+2`(z) =

(
z

1− z

)∆

. (4.6)

Replacing z → 1− z and writing ∆ = −a, this can be written∑
h=−a+`
`=0,1,...

Sa(h)k2h(1− z) = ya, (4.7)

where

y ≡ z

1− z
, (4.8)

Sa(h) ≡ 1

Γ(−a)2

Γ(h)2

Γ(2h− 1)

Γ(h− a− 1)

Γ(h+ a+ 1)
. (4.9)

Many formulae will be much simpler in the variable y (and y, defined similarly) instead

of z. Note that ya is Casimir-singular for generic a, while yn and yn log y for nonnegative

integer n are Casimir-regular. We will denote Casimir-regular terms by [ . . . ]y. The crossing

transformation z → 1− z maps y → 1/y.
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Casimir-singular terms can only come from an infinite sum of blocks, and they are

sensitive only to the asymptotic density of OPE coefficients. Thus, if we change the weights

h entering (4.7), while preserving the same asymptotic density, only the Casimir-regular

terms should change. For example, changing −a+ `→ h0 + `, we expect

∑
h=h0+`
`=0,1,...

Sa(h)k2h(1− z) = ya + [ . . . ]y . (4.10)

The Casimir-singular term ya is independent of h0, but the Casimir-regular terms [ . . . ]y
depend on h0. As a sanity check, (4.10) is certainly true when h0 = −a+n for nonnegative

integer n, since we get it by moving the first n terms of (4.7) to the right-hand side.

The coefficients Sa(h) will be our building blocks for solving the asymptotic lightcone

bootstrap. They encode the all-orders large-h expansion needed to match powers ya. By

taking linear combinations, we can match any Casimir-singular term we want. For example,

to match an SL(2,R) block k2h′(z) in the crossed channel, we can take a linear combination

of Sh′+m(h) which can be resummed into a 4F3 hypergeometric function.

Casimir-regular terms depend on the detailed structure of the weights being summed

over. We can determine the Casimir-regular terms in (4.10) as follows. Let us expand

k2h(1− z) in small y (equivalently small z) inside the sum,

k2h(1− z) = −Γ(2h)

Γ(h)2

∞∑
k=0

∂

∂k

(
T−k−1(h)yk

)
, (4.11)

∑
h=h0+`
`=0,1,...

Sa(h)k2h(1− z) =
∑

h=h0+`
`=0,1,...

(1− 2h)Ta(h)

∞∑
k=0

∂

∂k

(
T−k−1(h)yk

)
. (4.12)

Here, we have introduced

Ta(h) ≡ Γ(2h− 1)

Γ(h)2
Sa(h) =

1

Γ(−a)2

Γ(h− a− 1)

Γ(h+ a+ 1)
. (4.13)

Naively, we might try to switch the order of summation in (4.12),

∑
h=h0+`
`=0,1,...

Sa(h)k2h(1− z)
?
=

∞∑
k=0

∂

∂k

(
yk

∑
h=h0+`
`=0,1,...

(1− 2h)Ta(h)T−k−1(h)

)
. (4.14)

However, this cannot be correct. If the result converged, it would be Casimir-regular, a

contradiction. Indeed, the summand

(1− 2h)Ta(h)T−k−1(h) (4.15)
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grows like h2k−2a−1, so the terms with k > a diverge. However, let us analytically continue

from the region a > k for each term. After some gymnastics,17 we find∑
h=h0+`
`=0,1,...

(1− 2h)Ta(h)Tb(h) = −(a+ h0)(b+ h0)

a+ b+ 1
Ta(h0)Tb(h0) ≡ Aa,b(h0) . (4.17)

We claim that (4.17) gives the correct coefficients for the Casimir-regular terms

in (4.10). That is, we have the remarkable exact identity (equation (1.2) from the in-

troduction) ∑
h=h0+`
`=0,1,...

Sa(h)k2h(1− z) = ya +
∞∑
k=0

∂

∂k

(
Aa,−k−1(h0)yk

)
. (4.18)

One can verify that (4.18) is consistent with the fact that shifting h0 → h0 + 1 changes

both sides by −Sa(h0)k2h0(1 − z). We have also extensively checked (4.18) numerically.18

We slightly generalize (4.18) in equation (4.47). The special case of this formula where

h0 = 0 was proven recently in [78], using hypergeometric function identities from [79].

The key feature of (4.18) is that it expresses an integer-spaced family of conformal

blocks in one channel as an expansion in the other channel. Since families of nearly integer-

spaced operators are ubiquitous, we can use (4.18) as a building block for understanding

crossing symmetry in general.

4.3 General coefficients

Consider a sum of SL(2,R) blocks with general coefficients p(h) and integer-spaced weights,∑
h=h0+`
`=0,1,...

p(h)k2h(1− z) . (4.19)

If p(h) has the same large-h behavior as a sum of Sa(h)’s, the structure of (4.19) will be

similar to (4.18). To determine the Casimir-singular terms, we match asymptotic expan-

sions,

p(h) ∼
∑
a∈A

caSa(h) (h→∞) , (4.20)

where A is some discrete (possibly infinite) set of values depending on the function p(h),

and ca are constants. We then have∑
h=h0+`
`=0,1,...

p(h)k2h(1− z) =
∑
a∈A

cay
a + [ . . . ]y . (4.21)

17We obtained (4.17) in the following shameful way. When b = −1, we can use

∞∑
`=0

Γ(`+ α)

Γ(`+ β)
=

1

β − α− 1

Γ(α)

Γ(β − 1)
. (4.16)

When b = −k− 1 with k a positive integer, T−k−1(h) is a polynomial in h and we can write Ta(h)T−k−1(h)

in terms of linear combinations of terms of the form Γ(`+α)
Γ(`+β)

and use (4.16). We did this for several positive

integer k’s, guessed an answer for general k, analytically it continued away from integer k, and then checked

the result numerically.
18We expect (4.18) can be derived using Sturm-Liouville theory for SL(2,R) blocks [77].
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To compute the Casimir-regular terms, we expand k2h(1− z) inside the sum and then

naively switch the order of summation,

−
∞∑
k=0

∂

∂k

(
yk

∑
h=h0+`
`=0,1,...

p(h)
Γ(2h)

Γ(h)2
T−k−1(h)

)
(4.22)

Again, the sums in parentheses are divergent for sufficiently large k. However, we can

regulate them by adding and subtracting linear combinations of the known answer (4.18)

until the sums become convergent. This gives

∑
h=h0+`

p(h)k2h(1− z) =
∑
a∈A

cay
a +

∞∑
k=0

yk
(
αk[p](h0) log y + βk[p](h0)

)
(4.23)

αk[p](h0) ≡
∑
a∈A
a<K

caAa,−k−1(h0)−
∑

h=h0+`
`=0,1,...

(
p(h)−

∑
a∈A
a<K

caSa(h)

)
Γ(2h)

Γ(h)2
T−k−1(h)

βk[p](h0) ≡ ∂

∂k
αk[p](h0) . (4.24)

If we choose K ≥ k, then the sum over h in (4.24) will converge. In fact, the larger we take

K, the more quickly the sums converge (since the quantity in parentheses falls off more

quickly with h). Note that αk is analytic in k, so we can evaluate its derivative βk.

4.4 Non-integer spacing and reparameterization invariance

We often encounter sums over SL(2,R) blocks k2h(1 − z) where the weights h are not

integer-spaced. The Casimir-singular terms depend only on the asymptotic density of

OPE coefficients. Thus, for a sequence h` that depends sufficiently nicely on `, we can

compensate for uneven spacing by inserting a factor of ∂h`
∂` , giving the same Casimir-

singular part as an integer-spaced sum:

∞∑
`=0

∂h`
∂`

p(h`)k2h`(1− z) =

∞∑
`=0

p(h0 + `)k2(h0+`)(1− z) + [ . . . ]y . (4.25)

A way to understand (4.25) is that Casimir-singular terms come from asymptotically large

h, where the sum can be treated as an integral. We are then free to redefine the integration

variable and include a Jacobian ∂h`
∂` . We call this freedom “reparameterization invariance”.

Let us prove (4.25) for an important class of h`. Suppose h` is defined implicitly by

h` = h0 + `+ δ(h`) , (4.26)

where δ(h) is an analytic function that behaves like a sum of powers h−b as h → ∞.

We have
∂h`
∂`

= 1 +
∂δ(h`)

∂h0
=
(
1− δ′(h`)

)−1
. (4.27)
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Working modulo Casimir-regular terms, we may restrict the sum (4.25) to ` ≥ L for some

large L so that δ(h) is small. Expanding (4.25) in small δ, we find the following identity:

∂h`
∂`

p(h`)k2h`(1− z) =

(
1 +

∂δ(h`)

∂h0

)
p(h`)k2h`(1− z)

=

∞∑
k=0

∂kh0

(
δ(h0 + `)k

k!
p(h0 + `)k2(h0+`)(1− z)

)
. (4.28)

(One way to motivate why an identity like (4.28) should exist is to pretend the sum over ` is

an integral and consider an infinitesimal change of variables in the integral.) Now summing

over `, the terms in parentheses are integer-spaced sums of the type in section 4.3. They give

Casimir-singular contributions that are independent of h0. Thus, only k = 0 contributes

in (4.28), modulo Casimir-regular terms. This proves (4.25).

Another way to understand (4.25) is as follows. The non-integer-spaced sum can be

written as a contour integral

∞∑
`=0

∂h`
∂`

p(h`)k2h`(1− z) =

∮ −ε+i∞
−ε−i∞

dh
π

tan
(
π
(
h− h0 − δ(h)

))p(h)k2h(1− z) . (4.29)

The Casimir-singular part must come from the region of the integral h→ ±i∞, since any

sum of blocks with bounded h is Casimir-regular. However, in this region the δ-dependent

factor in the integrand approaches a δ-independent constant exponentially quickly (assum-

ing δ(h) grows slower than h as h→ ±i∞):

π

tan
(
π
(
h− h0 − δ(h)

)) → ∓1 +O(e∓2s) (h = ±is) . (4.30)

Thus, the Casimir-singular part is δ-independent and can be obtained by replacing

tan
(
π
(
h− h0 − δ(h)

))
→ tan(πh).19

Sums over general weights h with general coefficients p(h) can be computed using the

same strategy as in section (4.3). We obtain Casimir-singular terms from the asymptotic

expansion of p(h). We determine Casimir-regular terms by expanding k2h(1− z) inside the

sum, naively reversing the order of summation, and regulating the resulting sums over h.

We give more details in appendix B.

4.5 Alternating sums and even integer spacing

We will also encounter sums of SL(2,R) blocks with insertions of (−1)`. To under-

stand these, consider the conformal block expansion of 〈φ1(0)φ2(z)φ1(1)φ2(∞)〉 in 1-

dimensional MFT,
∞∑
`=0

(−1)`
(∆)2

`

`!(`+ 2∆− 1)`
k2∆+2`(z) = z∆. (4.31)

19This point of view suggests that reparameterization invariance holds for any δ(h) that grows slower

than h1−ε for some ε > 0 as h → ±i∞. In particular, this includes logarithmically growing δ(h), as in

Regge trajectories in conformal gauge theories.
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Substituting z → 1− z and ∆→ −a, this can be written∑
h=−a+`
`=0,1,...

(−1)`Sa(h)k2h(1− z) = (1 + y)a. (4.32)

Note that (1+y)a is Casimir-regular. Using the logic of the preceding sections, we conclude

that general sums with (−1)` insertions are Casimir-regular,∑
`

(−1)`
∂h

∂`
Sa(h)k2h(1− z) = [ . . . ]y , (4.33)

where h = h` is any sequence of the form discussed in section (4.4).

Let us describe how to compute the Casimir-regular terms in alternating sums. For

simplicity, consider the case of integer-spaced weights and general coefficients p(h),∑
h=h0+`
`=0,1,...

(−1)`p(h)k2h(1− z) . (4.34)

The strategy is the same as before: we expand k2h(1 − z) at small y, switch the order of

summation, and regulate the resulting sums by adding and subtracting known answers.

We find ∑
h=h0+`

(−1)`p(h)k2h(1− z) =

∞∑
k=0

yk
(
α−k [p](h0) log y + β−k [p](h0)

)
, (4.35)

where

α−k [p](h0) =
∑
a∈A
a<K

caA−a,−k−1(h0)−
∑

h=h0+`
`=0,1,...

(−1)`

(
p(h)−

∑
a∈A
a<K

caSa(h)

)
Γ(2h)

Γ(h)2
T−k−1(h) ,

β−k [p](h0) =
∂

∂k
α−k [p](h0) . (4.36)

Again, ca are defined by matching asymptotic expansions p(h) ∼
∑

a∈A caSa(h). The

quantity A−a,b(h0) is given by

A−a,b(h0) ≡
∑

h=h0+`
`=0,1,...

(−1)`(1− 2h)Ta(h)Tb(h) , (4.37)

analytically continued in a from the region where the sum converges.

We have not found a simple closed-form expression for A−a,b(h0) for general a, b. How-

ever, we can evaluate it to arbitrary accuracy as follows. Using similar tricks to before, we

can compute the case b = −1:

A−a,−1(h0) =
∑

h=h0+`
`=0,1,...

(−1)`(1− 2h)Ta(h) = −(h0 + a)Ta(h0) . (4.38)
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This can be used to regularize the sum for general b 6= −1. Note that Ta(h)Tb(h) has the

same large-h expansion as

Ta(h)Tb(h) ∼
∞∑
k=0

ta,b(k)Ta+b+k+1(h)

ta,b(k) ≡ Γ(−1− a− b)2

Γ(−a)2Γ(−b)2

(a+ 1)k(b+ 1)k
(a+ b+ 2)k

(−1)k

k!
. (4.39)

Thus, we have

A−a,b(h0) =
K∑
k=0

ta,b(k)A−a+b+k+1,−1(h0)

+
∑

h=h0+`
`=0,1,...

(−1)`(1− 2h)

(
Ta(h)Tb(h)−

K∑
k=0

ta,b(k)Ta+b+k+1(h)

)
, (4.40)

where K > −a−b−5/2 is taken large enough that the sum over h converges. The larger we

takeK, the faster the sum converges. When a or b is a negative integer, the expansion (4.39)

truncates and becomes an equality, and we can omit the second line in (4.40).

We will also need to evaluate sums with even-integer spacing. These are an average of

alternating and non-alternating sums,∑
h=h0+`
`=0,2,...

p(h)k2h(1− z) =
1

2

∑
a∈A

cay
a +

∞∑
k=0

yk
(
αeven
k [p](h0) log y + βeven

k [p](h0)
)
,

αeven
k [p](h0) ≡ 1

2

(
αk[p](h0) + α−k [p](h0)

)
,

βeven
k [p](h0) ≡ 1

2

(
βk[p](h0) + β−k [p](h0)

)
. (4.41)

Similarly, we define

Aeven
a,b (h0) ≡ 1

2

(
Aa,b(h0) +A−a,b(h0)

)
. (4.42)

4.6 Mixed blocks

Correlation functions of operators 〈φ1φ2φ3φ4〉 with different scaling dimensions can be

expanded in SL(2,R) blocks of the form

kr,s2h (z) ≡ zh(1− z)−r2F1(h− r, h+ s, 2h, z) , (4.43)

where r = h1 − h2, s = h3 − h4. We include the unconventional factor (1 − z)−r because

it simplifies several formulae later on. It also ensures that kr,s2h (z) is symmetric in r and

s, by elementary hypergeometric function identities. Casimir-regular terms for the mixed

block (4.43) are of the form yn−r and yn−s for nonnegative integer n.

The mixed block analog of Sa(h) is

Sr,sa (h) ≡ 1

Γ(−a− r)Γ(−a− s)
Γ(h− r)Γ(h− s)

Γ(2h− 1)

Γ(h− a− 1)

Γ(h+ a+ 1)
. (4.44)
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These coefficients satisfy the 1-dimensional MFT equation∑
h=`−a
`=0,1,...

Sr,sa (h)kr,s2h (1− z) = ya, (4.45)

and its generalization in the spirit of the previous sections20

∞∑
`=0

∂h

∂`
Sr,sa (h)kr,s2h (1− z) = ya + [ . . . ]y . (4.46)

Using (4.17), we also find a generalized version of (4.18) giving the explicit Casimir-

regular terms in an integer-spaced sum of mixed blocks∑
h=h0+`
`=0,1,...

Sr,sa (h)kr,s2h (1− z) =

ya+
π

sin
(
π(s−r)

) Γ(−a)2

Γ(−a−r)Γ(−a−s)

∞∑
k=0

(
Γ(k+1−r)2Aa,r−k−1(h0)

Γ(k+1+s−r)k!
yk−r− (r ↔ s)

)
.

(4.47)

5 Large spin asymptotics to all orders

5.1 Basic idea

Equipped with the results of section 4, we can solve the asymptotic lightcone bootstrap.

The idea is to expand both sides of the crossing equation in y, y and match ya on one side

to Sa(h) on the other. For the lowest family of double-twist operators [φφ]0, we have an

equation of the form (3.12), which in the y variables reads

y−2hφ +
∑
i

yhi−2hφ
(
Ai log y+Bi +O(y)

)
=

∑
O∈[φφ]0

f2
φφOy

hO−2hφk2hO
(1− z) + . . . . (5.1)

Here, “ . . . ” represents other operators that are unimportant for this computation. Note

that the y variables make the unit operator block very simple. For other operators, ex-

panding in y instead of z is equivalent to shuffling around contributions of descendants.

The hi are weights of primary and descendant operators in the φ × φ OPE. We can

match the left-hand side by choosing

h[φφ]0(h) = 2hφ + δ[φφ]0(h) , (5.2)

fφφ[φφ]0(h)2 =
∂h

∂`
λφφ[φφ]0(h)2 =

(
1−

∂δ[φφ]0(h)

∂h

)−1

λφφ[φφ]0(h)2, (5.3)

where

λφφ[φφ]0(h)2 ∼ 2S−2hφ(h) + 2
∑
i

BiShi−2hφ(h) ,

λφφ[φφ]0(h)2δ[φφ]0(h) ∼ 2
∑
i

AiShi−2hφ(h) . (5.4)

20The meaning of [ . . . ]y depends on what type of SL(2,R) blocks we are summing over. Here, it refers

to terms of the form yn−r and yn−s. For the case r = s = 0, it refers to terms of the form yn and yn log y.

– 21 –



J
H
E
P
0
3
(
2
0
1
7
)
0
8
6

Here, “∼” means the two sides have the same large-h expansion. We include factors of 2

in (5.4) because the family [φφ]0 only contains even spin operators. Dividing, we find

δ[φφ]0(h) ∼
∑

iAiShi−2hφ(h)

S−2hφ(h) +
∑

iBiShi−2hφ(h)
. (5.5)

Once we know δ[φφ]0(h), we can obtain the OPE coefficients fφφ[φφ]0 from (5.3). Expanding

in large h gives a series with terms of the form 1/h
2(hi1+···+hik )+n

.

In (5.5), we can see explicitly why the large-spin expansion for δ[φφ]0(h) is naturally

organized in terms of the Casimir eigenvalue J2 = h(h−1) as discussed in [61]. The reason

is that ratios of Sa(h) are also ratios of Ta(h) = Γ(2h−1)

Γ(h)2 Sa(h), which has a series expansion

in J2,

Ta(h) =
1

J2a

(
t0 +

t2
J2

+
t4
J4

+ . . .

)
. (5.6)

We have suppressed an important subtlety in (5.1). The OPE φ×φ contains an infinite

number of operators with bounded h (for example, the families [φφ]n) themselves. Thus

the sum on the left-hand side, ∑
i

yhi(Ai log y +Bi) , (5.7)

may not converge. For simplicity, suppose all the hi = h are the same. The correct

procedure is to perform the sum over i first, before expanding in y, using the methods of

section 4.2. This leads to

yh
∑
a

cay
a + yh

(
A log y +B +O(y)

)
, (5.8)

where A and B are regularized versions of the sums over Ai and Bi. The ya terms are

Casimir-singular in y, and will be cancelled by other operators on the right-hand side

of (5.1). The remaining y-Casimir-regular (but still y-Casimir-singular) terms yhA log y

and yhB contribute to anomalous dimensions and OPE coefficients of [φφ]0, respectively.

The y-Casimir-singular terms in (5.8) can also include logn y contributions related to higher-

order exponentiation of anomalous dimensions, and discussed in section 3.1.1. We will see

several examples in section 6.

Thus, the techniques of section 4.2 for summing SL(2,R) blocks have two roles to

play. Firstly, they let us match Casimir-singular terms in one channel to h-dependence in

the other channel. Secondly, they let us resum operators whose twists have accumulation

points.

Naively this leads to an impasse: we must resum [φφ]0 before finding how it contributes

to its own anomalous dimensions δ[φφ]0 . However, it turns out that [φφ]0 contributes to its

own anomalous dimensions only at order δ2
[φφ]0

and higher. (This is related to the fact that

Mean Field Theory has no anomalous dimensions.) Thus, both the resummation and the

matching to h-dependence will be possible. We will see this explicitly in section 6.1.2.
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5.2 Why asymptotic?

We have been careful to write “∼” instead of “=” because the relations (5.4) are not

necessarily equalities. In fact, taken literally, the expressions on the right-hand side may

not even converge to functions of h. Instead, they represent equivalence classes of functions

with the same asymptotic expansions at large h. For example, both sides of

Tb(h)Ta(h) ∼ Γ(−1− a− b)2

Γ(−a)2Γ(−b)2

∞∑
k=0

(a+ 1)k(b+ 1)k
(a+ b+ 2)k

(−1)k

k!
Ta+b+k+1(h) (5.9)

formally have the same large-h expansion, but they are different. In fact, the sum on the

right diverges. We must interpret (5.9) in terms of large-h equivalence classes.

The asymptotic nature of the large-h expansion for double-twist operators makes math-

ematical and physical sense. Mathematically, a given Casimir-singular term only deter-

mines an asymptotic density of coefficients on the other side of the crossing equation. Any

change in the density at finite h contributes to Casimir-regular terms. Thus, we cannot fix

the actual function of h without simultaneously considering all Casimir-regular terms.

Physically, it is ambiguous which twist family (if any) we should assign a given operator

to. For instance, should we assign Tµν to the family [σσ]0, or should the family should

start at spin-4 or higher? Twist families only make sense as infinite collections of operators

with unbounded spin. We shouldn’t necessarily expect to write analytic expressions that

interpolate between their OPE coefficients and dimensions at finite `. On the other hand,

we might expect a convergent large-h expansion for an object that packages together all

operators in the theory, and does not try to distinguish them into twist families.

When our theory has extra structure, twist families may become well-defined even at

finite spin. For example, in a large-N expansion, we have a well-defined classification of

operators into single-trace, double-trace, etc. . Consequently, large-h equivalence classes

in large-N theories should have distinguished representatives. See, for example, in [80].

Similar remarks hold in weakly-coupled theories.

5.3 General double-twist families

Let us be more explicit and derive all-orders expansions for OPE coefficients and anomalous

dimensions of double twist families [φiφj ]n for all n ≥ 0. For generality, we study mixed

four-point functions 〈φ1φ2φ3φ4〉 of scalars with possibly different external dimensions.

We use a slightly unconventional definition for SO(d, 2) blocks,

Gr,s
h,h

(z, z) ≡
(
(1− z)(1− z)

)−r
g2r,2s

h+h,h−h(z, z) , (5.10)

where g∆12,∆34

∆,` (z, z) are the mixed scalar blocks of [81] with coefficient c` = 1.21 Using

identities from [81], one can show that our Gr,s
h,h

(z, z) is symmetric under r ↔ s. The extra

factors
(
(1 − z)(1 − z)

)−r
= v−r simplify the crossing equations in the y, y variables and

make the symmetry between r and s manifest. For brevity, we omit r, s when they are zero.

21Our blocks differ from those of [24] by Gours(u, v) = v−
∆12

2 (−1)` 4∆(2ν)`
(ν)`

gtheirs(u, v).
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The four-point function 〈φ1φ2φ3φ4〉 has conformal block expansion22

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 =
1

x∆1+∆2
12 x∆3+∆4

34

x∆34
14 x∆12

23

x∆12+∆34
13

∑
O
f12Of43OG

h12,h34

hO,hO
(z, z) ,

(5.11)

where hij ≡ hi − hj =
∆ij

2 . The coefficients fijO are real in unitary theories. Demanding

symmetry under 1↔ 3 gives the crossing equation

y−h1−h3
∑
O
f32Of41OG

h32,h14

hO,hO
(z, 1− z) = y−h1−h3

∑
O
f12Of43OG

h12,h34

hO,hO
(z, 1− z) . (5.12)

5.3.1 Sums over n and `

The coefficients Sr,sa (h) give a simple result when summed over a single family of SL(2,R)

blocks. However, in d-dimensions, double-twist operators come in doubly-infinite families,

labeled both by ` and n such that h ≈ h0 + n. The d-dimensional analog of Sr,sa (h) will be

coefficients C
(n)r,s
a (h0, h) that, when summed over both ` and n, produce a simple result,

∞∑
n=0

∞∑
`=0

∂h

∂`
C(n)r,s
a (h0, h)Gr,s

h0+n,h
(z, 1− z) = yh0ya + [ . . . ]y . (5.13)

We can obtain the C
(n)r,s
a (h0, h) by expanding SO(d, 2) blocks in terms of SL(2,R)

blocks and using what we know about the coefficients Sr,sa (h). A simple example is in

2-dimensions, where SO(2, 2) blocks are just products of SL(2,R) blocks,23

Gh,h(z, z) = k2h(z)k2h(z) (d = 2) , (5.14)

(for simplicity we take r = s = 0). Then we have

C(n)
a (h0, h) = S−h0(h0 + n)Sa(h) (d = 2) . (5.15)

In general, SO(d, 2) blocks have an expansion of the form24

Gr,s
h,h

(z, z) =

∞∑
n=0

n∑
j=−n

Ar,sn,j(h, h)yh+nkr,s
2(h+j)

(z) . (5.16)

The coefficients Ar,sn,j(h, h) can be determined, for example, by solving the SO(d, 2) Casimir

equation order-by-order in y. Alternatively, we can obtain them from the decomposition

22The ordering f12Of43O differs from the f12Of34O ordering in [24] because our blocks differ by (−1)` times

positive factors. We have reabsorbed this (−1)` by using f34O = (−1)`Of43O. A useful way to remember

the correct sign is to note that 〈φ1(0)φ2(z)|O|φ2(1)φ1(∞)〉 is the norm of a state in radial quantization,

where |O| is a projector onto the conformal multiplet of O. Thus, it should be positive, which implies that

it should have coefficient f2
12O in the conformal block expansion.

23Here, we organize operators into irreps of SO(2), and not traceless symmetric tensors of SO(2). The

latter convention would give an additional term z ↔ z.
24The 2d global conformal group SL(2,R)L × SL(2,R)R is a subgroup of SO(d, 2). The expansion (5.16)

follows from decomposing an SO(d, 2) multiplet into multiplets of R∗ × SL(2,R)R, where R∗ is the Cartan

of SL(2,R)L.
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of d-dimensional blocks into 2-dimensional blocks [82]. The first few coefficients are

Ar,s0,0(h, h) = 1 ,

Ar,s1,−1(h, h) =
ν(h− h)

h− h+ ν − 1
,

Ar,s1,0(h, h) =
s+ r − h

2
− rs(h

2 − h− hν + ν)

2(h− 1)h(h− ν)
,

Ar,s1,1(h, h) =
ν(h+ h− 1)(h− r)(h+ r)(h− s)(h+ s)

4h
2
(2h− 1)(2h+ 1)(h+ h− ν)

, (5.17)

where ν = d−2
2 .25

Since the leading y-dependence of Gr,s
h0,h

(z, 1− z) is simply yh0kr,s
2h

(1− z), if we take

C(0)r,s
a (h0, h) = Sr,sa (h) , (5.18)

then the yh0 terms on both sides of (5.13) will agree, by equation (4.46). We can then

choose the n > 0 coefficients to cancel higher-order terms in y. This gives a recursion

relation

C(n)r,s
a (h0, h) = −

n∑
m=1

m∑
j=−m

C(n−m)r,s
a (h0, h−j)Ar,sm,j(h0+n−m,h−j) (n > 0) , (5.19)

that determines all the higher C(n)’s.

As a cross-check, recall that d-dimensional MFT has conformal block expansion

∞∑
n,`=0

CMFT
n,` (∆1,∆2)G

∆12
2
,
∆21

2
∆1+∆2

2
+n,

∆1+∆2
2

+n+`
(z, z) = y

∆1+∆2
2 y

∆1+∆2
2 , (5.20)

with coefficients given by [83]

CMFT
n,` (∆1,∆2) =

(∆1 − ν)n(∆2 − ν)n(∆1)`+n(∆2)`+n
`!n!(`+ν+1)n(∆1+∆2+n−2ν−1)n(∆1+∆2+2n+`−1)`(∆1+∆2+n+`−ν−1)n

.

(5.21)

To be consistent with (5.13), we must have

C
(n)

∆12
2
,
∆21

2

−∆1+∆2
2

(
∆1 + ∆2

2
,
∆1 + ∆2

2
+ n+ `

)
= CMFT

n,` (∆1,∆2) . (5.22)

We have checked this explicitly for n = 0, 1, 2. Although CMFT
n,` (∆1,∆2) has a simple

formula, we have not found a closed-form expression for C
(n)r,s
a (h0, h) in general dimensions.

25Equations (5.16) and (5.17) are subtle in even dimensions because the limit ν → d−2
2

does not commute

with the limit h → h + ` when both d/2 and ` are integers. This is easily visible for the case ν = 1 and

h − h = 0 in Ar,s1,−1 in (5.17). To get the correct block, one must take the limit ν → d−2
2

last. On the

other hand, in even dimensions the blocks have simple analytic formulae [73, 74], and one can simplify the

present analysis by using those specialized formulae. For example, after multiplying the crossing equation

in 4d by z−z
zz

, one obtains products of SL(2,R) blocks, and the analysis becomes similar to 2d.
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5.3.2 Small y expansion of the left-hand side

On the left-hand side of the crossing equation, we should expand the blocks Gh,h(z, 1− z)

in small y. As a starting point, the SL(2,R) blocks have an expansion

kr,s
2h

(1− z) =
∞∑
k=0

(
Kr,s
k (h)yk−r +Ks,r

k (h)yk−s
)
, (5.23)

Kr,s
k (h) ≡ Γ(r − s)Γ(1 + s− r)

Γ(k + 1)Γ(k + 1 + s− r)
Γ(2h)

Γ(h− r)Γ(h− s)
Γ(h+ k − r)
Γ(h− k + r)

. (5.24)

Thus, we have

Gr,s
h,h

(z, 1− z) =
∞∑

m,k=0

yh+m
(
P r,sm,k(h, h)yk−r + P s,rm,k(h, h)yk−s

)
,

P r,sm,k(h, h) ≡
m∑

j=−m
Ar,sm,j(h, h)Kr,s

k (h+ j) . (5.25)

In the special case r = s, this becomes

Gr,r
h,h

(z, 1− z) =

∞∑
m,k=0

yh+m ∂

∂k

(
Qrm,k(h, h)yk−r

)
, (5.26)

Qrm,k(h, h) ≡ lim
s→r

(
(s− r)P r,sm,k(h, h)

)
= −

m∑
j=−m

Ar,sm,k(h, h)
Γ(2h+ 2j)

Γ(k + 1)2Γ(h+ j − r)2

Γ(h+ j + k − r)
Γ(h+ j − k + r)

. (5.27)

5.3.3 Matching the two sides

Using (5.25), the left-hand side of the crossing equation (5.12) is

y−h1−h3

∑
O
f32Of41OG

h32,h14

hO,hO
(z, 1− z) =

y−h1−h3

×
∑
O
f32Of41O

∞∑
m,k=0

yhO+m−h1−h3
(
Ph32,h14

m,k (hO, hO)yk+h1+h2 +Ph14,h32

m,k (hO, hO)yk+h3+h4
)
.

(5.28)

Let us assume that the terms yk+h1+h2 match the families [φ1φ2]n with n ≤ k on the

right-hand side, while yk+h3+h4 match [φ3φ4]n with n ≤ k. (We return to this assumption

in section 7.) As before, define λij[kl]n by

fij[kl]n(h) = λij[kl]n(h)

(
∂h

∂`

)1/2

= λij[kl]n(h)

(
1−

∂δ[kl]n(h)

∂h

)−1/2

. (5.29)

Using (5.13) and working order-by-order in y, we find

λ12[12]n(h)λ43[12]n(h) ∼
∑′

O∈2×3
m≥0

f32Of41OU
(n)1234
O,m (h) , (5.30)
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Figure 5. Large-spin diagrams for the contribution of O to λ12[12]nλ43[12]n in (5.30).

where

U
(n)1234
O,m (h) ≡

n∑
k=0

P h32,h14

m,n−k (hO, hO)C
(k)h12,h34

hO+m−h3−h1
(h1 + h2 + n− k, h) . (5.31)

The sum
∑′
O∈2×3,m≥0 runs over operators O in the φ2 × φ3 OPE and their descendants

organized by weights under SL(2,R)L. The prime indicates that we must regularize the

sum, as discussed above and demonstrated in sections 6 and 7.

By the same logic with 4↔ 3 swapped, we obtain

λ12[12]n(h)λ34[12]n(h) = (−1)`λ12[12]n(h)λ43[12]n(h) ∼
∑′

O∈2×4
m≥0

f42Of31OU
(n)1243
O,m (h) , (5.32)

where we used λijO = (−1)`OλjiO. Naively, equations (5.30) and (5.32) seem to contradict

each other. However, the meaning of (5.30) and (5.32) is that the h-dependence above

reproduces the correct Casimir-singular terms on the other side of the crossing equations.

We are free to add contributions that do not change the Casimir-singular part of the sum

over blocks. As we learned in section 4.5, sums with a (−1)` insertion are Casimir-regular.

Thus, we can safely add the two contributions,

λ12[12]n(h)λ43[12]n(h) ∼
∑′

O∈2×3
m≥0

f32Of41OU
(n)1234
O,m (h) + (−1)`(3↔ 4) , (5.33)

and this single formula produces the correct Casimir-singular terms in both cases.26 The

two terms in (5.33) are illustrated in figure 5.

In the special case h1 + h2 = h3 + h4, (5.28) develops log y-dependence (because P r,sm,k
has a pole at r = s), and we instead find a formula for products of OPE coefficients and

26One can check that (5.33) is consistent with the symmetry λijO = (−1)`OλjiO for both λ12[12]n and

λ43[12]n .
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anomalous dimensions,

λ12[12]n(h)λ43[12]n(h)δ[12]n(h) + λ12[34]n(h)λ43[34]n(h)δ[34]n(h)

∼
∑′

O∈2×3
m≥0

f32Of41OV
(n)1234
O,m (h) + (−1)`(3↔ 4) , (5.35)

λ12[12]n(h)λ43[12]n(h) + λ12[34]n(h)λ43[34]n(h)

∼
∑′

O∈2×3
m≥0

f32Of41OW
(n)1234
O,m (h) + (−1)`(3↔ 4) , (5.36)

where V,W are defined by(
V

(n)1234
O,m (h) log y +W

(n)1234
O,m (h)

)
yh1+h2 ≡

lim
h3+h4→h1+h2

U
(n)1234
O,m (h)yh1+h2 + U

(n)3412
O,m (h)yh3+h4 . (5.37)

More explicitly, they are given by

V
(n)1234
O,m (h) =

n∑
k=0

Qh32
m,n−k(hO, hO)C

(k)h12,h34

hO+m−h3−h1
(h1 + h2 + n− k, h) , (5.38)

W
(n)1234
O,m (h) =

n∑
k=0

∂

∂n

(
Qh32
m,n−k(hO, hO)C

(k)h12,h34

hO+m−h3−h1
(h1 + h2 + n− k, h)

)
. (5.39)

Specializing further, we will need the case where the pairs of operators φ1,2 and φ3,4

are actually the same. Since now only a single family [12]n reproduces yk+h1+h2 and

yk+h1+h2 log y in (5.28), we must drop the [34]n terms in (5.35) before setting 12 = 43.

This gives

λ12[12]n(h)2δ[12]n(h) ∼
∑′

O∈1×1
m≥0

f11Of22OV
(n)1221
O,m (h) + (−1)`

∑′

O∈1×2
m≥0

(−1)`Of2
12OV

(n)1212
O,m (h) ,

(5.40)

λ12[12]n(h)2 ∼
∑′

O∈1×1
m≥0

f11Of22OW
(n)1221
O,m (h) + (−1)`

∑′

O∈1×2
m≥0

(−1)`Of2
12OW

(n)1212
O,m (h) .

(5.41)

The identity operator is the leading contribution to (5.41). Its coefficients are those of

Mean Field Theory, analytically continued to ` = h− h1 − h2 − n,

W
(n)1221
1,m (h) = δm,0C

(n)h12,h21

−h1−h2
(h1 + h2, h) = δm,0C

MFT
n,`=h−h1−h2−n

(2h1, 2h2) . (5.42)

Finally, when all the operators are equal, (5.40) and (5.41) become

λ11[11]n(h)2δ[11]n(h) ∼
(
1 + (−1)`

) ∑′

O∈1×1
m≥0

f2
11OV

(n)1111
O,m (h) , (5.43)

λ11[11]n(h)2 ∼
(
1 + (−1)`

) ∑′

O∈1×1
m≥0

f2
11OW

(n)1111
O,m (h) . (5.44)
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We will often replace 1 + (−1)` → 2 and simply remember that only even-spin operators

appear in the OPE φ1 × φ1.

5.3.4 Checks

Knowing CFT data up to weight hmax unambigiously determines the large-h corrections up

to order h
−2hmax

, or equivalently J−τmax . To get this information, we could alternatively

use the technology of [1]. It is straightforward to check that the first few J−τO corrections

to anomalous dimensions agree:

2
V

(0)φφφφ
O,0 (h) + V

(0)φφφφ
O,1 (h)

C
(0)
−2hφ

(2hφ, h)
= 2

Q0,0(h0, h0)ShO−2hφ(h) +Q1,0(hO, hO)ShO+1−2hφ(h)

S−2hφ(h)

=
c0(τO, `O)

JτO

(
1 +

c1(τO, `O)

J2
+ . . .

)
, (5.45)

where c0,1(τO, `O) are the coefficients computed in [1] and given in equation (2.3). (The

factor of 2 is because τ(h) = 2∆φ+2δ(h).) The numerator above includes the contributions

to anomalous dimensions from an operator O and its descendants at level 1 (5.43). The de-

nominator includes the leading OPE coefficient coming from the unit operator. Additional

terms in the denominator would give corrections of the form J−τ1−···−τn−k not computed

in [1].

5.3.5 Meaning of ∂h
∂`

Equation (5.40) implies that the anomalous dimension δ[12]n is not a smooth function of h

alone, but also depends on (−1)`. Our proof of reparameterization invariance in section 4.4

does not apply to this case, but it can be fixed with a small modification. Suppose

h = h0 + `+ δ(`, h) , (5.46)

where δ(`, h) has a large-h expansion that includes powers of h and factors of (−1)`,

δ(`, h) ∼
∑
b+

h
−b+

+ (−1)`
∑
b−

h
−b−

, h→∞ . (5.47)

The proof in section 4.4 then works, provided we replace

∂h

∂`
→ ∂h

∂h0

= 1 +
∂δ

∂h0

=

(
1− ∂δ

∂h

)−1

, (5.48)

where in the derivative ∂δ
∂h

we treat (−1)` as constant.

6 Application to the 3d Ising CFT

Let us now apply these results to the 3d Ising CFT. We would like to see how well the

truncated large-h expansion describes the spectrum at finite h. The more operators we

can describe precisely, the better the prospects for hybrid analytical/numerical approaches
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Figure 6. The contributions of ε, T to λσσ[σσ]0 and δ[σσ]0 in (6.1) and (6.2).

like those discussed in section 9.1. We will find that a few terms in the expansion match

numerics surprisingly well, even down to relatively small spins.

We will organize our expansions in terms of Sa(h)’s. This simplifies several computa-

tions (in particular it makes it simpler to compute Casimir-regular terms). However, one

could just as well use powers of the SL(2,R) Casimir J2, as in [1, 61, 62, 65–67]. A sum of

Sa(h)’s is a partial resummation of a series in J2.

We will work our way upwards in twist, first understanding [σσ]0 in section 6.1, then

[σε]0 in section 6.2, and finally [σσ]1 and [εε]0 in section 7.5. Because 2hσ is so small,

the family [σσ]0 is particularly important. Its contribution to other large-h expansions is

competitive with those Tµν and ε. Thus, we will use our formulae for OPE coefficients and

dimensions of [σσ]0 in several subsequent computations. We expect this approach should

also work well for the O(N) models. It is an interesting question whether it works in a

general CFT.

6.1 [σσ]0

The OPE coefficients and anomalous dimensions of [σσ]0 fit nicely to the first few terms

in (5.43), (5.44), illustrated in figure 6,

λ2
σσ[σσ]0

≈ 2
(
S−2hσ(h) + f2

σσεW
(0)σσσσ
ε,0 (h) + f2

σσTW
(0)σσσσ
T,0 (h)

)
, (6.1)

λ2
σσ[σσ]0

δ[σσ]0 ≈ 2
(
f2
σσεV

(0)σσσσ
ε,0 (h) + f2

σσTV
(0)σσσσ
T,0 (h)

)
, (6.2)

where

V
(0)σσσσ
O,0 (h) = −Γ(2hO)

Γ(hO)2
ShO−2hσ(h) ,

W
(0)σσσσ
O,0 (h) = −Γ(2hO)

Γ(hO)2

(
2ψ(hO)− 2ψ(1)

)
ShO−2hσ(h) , (6.3)
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Figure 7. A comparison between the analytical prediction (6.5) (blue curve) and numerical data

(blue dots) for τ[σσ]0 . The two agree with accuracy 3 × 10−3 and 5 × 10−4 for spins ` = 2, 4,

respectively, and ∼ 5× 10−5 for ` > 4. The grey dashed line is the asymptotic value τ = 2∆σ. The

curve (2.3) from [1] looks essentially the same.

and

∆σ = 2hσ ≈ 0.5181489 ,

∆ε = 2hε ≈ 1.412625 ,

fσσε ≈ 1.0518539 ,

fσσT =

√
3

8cT
∆σ ≈ 0.326138 . (6.4)

In other words, we have

δ[σσ]0 ≈
2
(
f2
σσεV

(0)σσσσ
ε,0 (h) + f2

σσTV
(0)σσσσ
T,0 (h)

)
2
(
S−2hσ(h) + f2

σσεW
(0)σσσσ
ε,0 (h) + f2

σσTW
(0)σσσσ
T,0 (h)

) (6.5)

f2
σσ[σσ]0

≈
(

1−
∂δ[σσ]0(h)

∂h

)−1

λσσ[σσ]0(h)2, (6.6)

where we used equation (5.48) for the Jacobian ∂h
∂`

that relates fσσ[σσ]0 to λσσ[σσ]0 . The

actual operator dimensions are determined by solving h− 2hσ − δ(h) = 0, 2, 4, . . . .

A comparison between the above formula and numerics for τ[σσ]0 = 2∆σ + 2δ[σσ]0 is

shown in figure 7. The discrepancy between analytics and numerics is 3×10−3 and 5×10−4

for spins ` = 2, 4, respectively, and ∼ 5× 10−5 for ` > 4. Including additional higher-twist

operators (primaries or descendants) in (6.1) and (6.2) does not improve the fit for low

spins, and barely affects it for high spins.
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6.1.1 Differences from [1]

Let us comment briefly on the (inconsequential) differences between the above calculation

and the series (2.3) computed in [1]. Firstly, we have not included descendants of ε, T ,

namely terms of the form W
(0)σσσσ
O,m and V

(0)σσσσ
O,m with m ≥ 1, whereas [1] included descen-

dants at first order in z. This is because it doesn’t make sense to include level-1 descendants

of ε, T without also including the double-twist operators [εT ]0, [TT ]0, which contribute at

the same order in the large-h expansion. Also, because we organize everything as a series

in y instead of z, the contributions of descendants will differ somewhat (though the sum

over all of them will be the same). In addition, we have partially resummed the J series

into sums of Sa(h)’s.

All these alternatives represent different choices of subleading terms in a series that we

are truncating anyway. Fortunately, they turn out to be inconsequential at the truncation

order and precision at which we are working. A plot of (2.3) looks essentially identical to

figure 7. However, Sa(h)’s will begin to differ from powers of J when a = hO + m − 2hσ
is larger (i.e. for higher-twist primaries and descendants in the crossed-channel). This is

because Sa(h) has poles at h = a + 1, a, a − 1, . . . , whereas J−2a does not. (In Sturm-

Liouville theory for SL(2,R) blocks [77], these poles come from the region near y ∼ 1,

outside the validity of the small-y expansion. Thus, they are artifacts of our expansion in

small-y in the crossed-channel.) These differences reflect the fact that we are comparing

different truncations of an asymptotic expansion outside the regime of validity of those

truncations.

6.1.2 Contributions of [σσ]0 to itself

We should also include higher-spin members of the family [σσ]0 in (6.1), (6.2). Their

contributions for ` = 4, 6, . . . are small because

W
(0)σσσσ
O,0 (h), V

(0)σσσσ
O,0 (h) ∝ 1

Γ(hO − 2hσ)2
∼ δ2
O , (6.7)

where δO = hO−2hσ is half the anomalous dimension of O, and δO decreases with `. Nev-

ertheless, we can sum the whole family [σσ]0 by by expanding in the anomalous dimension

δ[σσ]0 and using the methods we have developed for summing SL(2,R) blocks.27

Using (B.1), we have∑
`=`0,`0+2,...

f2
σσ[σσ]0

yh[σσ]0
−2hσk2h(1− z) =

∞∑
m=0

logm y

∞∑
k=0

∂

∂k

(
ykαeven

k

[
λ2
σσ[σσ]0

δm[σσ]0

m!
, δ[σσ]0

]
(2hσ + `0)

)
+ casimir-singular .

(6.8)

27An alternative approach to computing corrections to anomalous dimensions from an infinite family of

operators is given in [66, 67].
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ε, T ε, T + · · ·+
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σ

σ

ε, T . . . ε, T + · · · (6.10)

Figure 8. Contributions to λσσ[σσ]0 and δ[σσ]0 (bottom-to-top channel) from the exchange of

double-twist operators [σσ]0 (left-to-right channel). We can further expand the contribution of

the family [σσ]0 in small δ[σσ]0 . We illustrate the m-th order term in this expansion by adding m

vertical exchanges between σ lines, coming from the operators that contribute to δ[σσ]0 (ε and T in

our approximations (6.1) and (6.2)). The leading nonzero term has m = 2, corresponding to two

vertical lines, or a “box diagram”.

The terms with k = 0 contribute to λσσ[σσ]0 and δ[σσ]0 as follows

λσσ[σσ]0(h)2 ∼ above + 2

∞∑
m=2

βeven
0

[
λ2
σσ[σσ]0

δm[σσ]0

m!
, δ[σσ]0

]
(2hσ + `0)

∂mSa(h)

∂am

∣∣∣∣
a=0

≈ above− 0.000572238
∂2Sa(h)

∂a2

∣∣∣∣
a=0

+ 8.92146 · 10−7∂
3Sa(h)

∂a3

∣∣∣∣
a=0

+ . . .

λσσ[σσ]0(h)2δ[σσ]0(h) ∼ above + 2

∞∑
m=2

αeven
0

[
λ2
σσ[σσ]0

δm[σσ]0

m!
, δ[σσ]0

]
(2hσ + `0)

∂mSa(h)

∂am

∣∣∣∣
a=0

,

≈ above− 0.000123342
∂2Sa(h)

∂a2

∣∣∣∣
a=0

+ 2.1276 · 10−7∂
3Sa(h)

∂a3

∣∣∣∣
a=0

+ . . . ,

(6.9)

where “above” represents terms already present in (6.1) and (6.2), and βeven
k = ∂

∂kα
even
k .

The sums start at m = 2 because Sa(h) has a second-order zero at a = 0. (Equivalently,

the terms proportional to logm y are Casimir-regular in the other channel when m = 0, 1.)

We illustrate the contributions (6.9) in figure 8.

Equation (6.9) might look complicated because λσσ[σσ]0 and δ[σσ]0 are defined in terms

of themselves. However, δ[σσ]0 is small, so (6.9) is easily solved by iteration starting with

the approximations (6.1), (6.2). Above, we show the result from plugging in (6.1), (6.2)

and setting `0 = 4. The corrections in (6.9) are so small that we mostly omit them in what

follows. By contrast, similar corrections for [σε]0 begin at m = 1, and for [εε]0 they begin

at m = 0. In these cases, one must sum the whole family [σσ]0 to get accurate results.

We compare analytics and numerics for fσσ[σσ]0 in figure 9. There is an interesting

wrinkle in interpreting the numerics. Although the numerical spectra include operators
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Figure 9. A comparison between the analytical prediction (6.6) and numerics for fσσ[σσ]0 , both

normalized by dividing by the Mean Field Theory OPE coefficients fMFT =
(
2S−2hσ (h)

)1/2
. We

show two sets of numerical data. The orange series gives the OPE coefficients of the operators O`
with twist closest to τ[σσ]0 for each spin `. The blue series combines the contributions of O` and

spurious higher-spin currents J` into (f2σσO` + f2σσJ`)
1/2. The latter quantities have smaller errors

and better match the analytical prediction. The fact that the errors shrink after this modification

supports the idea that the correct OPE coefficient is being shared between the real operators O`
and “fake” operators J`.

O` with twists τ[σσ]0 , they also sometimes include spurious higher-spin currents J` at the

unitarity bound with small but nonzero OPE coefficients. Because τ[σσ]0 is close to the

unitarity bound, these spurious operators can “fake” the contribution of O` in the conformal

block expansion.28 The J` are artifacts of the extremal functional method. They should

disappear at sufficiently high derivatives, but working at higher derivatives is not currently

feasible. Instead, we remove them by hand and add their OPE coefficients to the correct

operators O`. In other words, we use (f2
σσO` + f2

σσJ`
)1/2 as our numerical prediction for

fσσ[σσ]0 . Indeed, the numerical errors in in this modified quantity are smaller than the

errors in fσσJ` , and the results agree beautifully with the analytical prediction. We show

numerical data both before and after the modification in figure 9.

The leading contribution to the OPE coefficients λεε[σσ]0 comes from σ-exchange in the

σε→ σε channel,

λσσ[σσ]0λεε[σσ]0 ≈ 2f2
σσεU

(0)σσεε
σ,0 (h) . (6.11)

This agrees with numerics within 1% for all spins ` ≥ 2. In the next section, we compute

additional corrections from the family [σε]0 and improve the agreement.

28Higher spin currents are disallowed in interacting CFTs [84–87].
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Figure 10. Contribution of σ-exchange (left-to-right) to the [σε]0 family (bottom-to-top). We get

a factor of (−1)` in (6.12) and (6.13) because σ and ε switch places.

6.2 [σε]0

The leading correction to OPE coefficients and anomalous dimensions of [σε]0 comes from

exchange of σ in the σε→ εσ channel (figure 10),

λ2
σε[σε]0

≈ Shσε,hεσ−hσ−hε(h) + (−1)`f2
σσεW

(0)σεσε
σ,0 (h) + . . . (6.12)

λ2
σε[σε]0

δ[σε]0 ≈ (−1)`f2
σσεV

(0)σεσε
σ,0 (h) + . . . . (6.13)

To go further, we must include the contribution of the family [σσ]0 in σσ → εε. Doing so

will provide a nontrivial test of the tools we have developed.

Because we will discuss both channels simultaneously, let us write the crossing equation

in a way that emphasizes the important terms:∑
O∈[σε]0

f2
σεOy

hO−hσ−hεkhσε,hεσ
2h

(1− z) + · · · =
∑
O∈[σσ]0

fσσOfεεOy
hO−hσ−hεk2h(1− z) + . . . .

(6.14)

Our first goal is to compute the sum over [σσ]0 on the right-hand side,∑
O∈[σσ]0

fσσOfεεOy
hO−hσ−hεk2h(1− z) =

y-Casimir-singular + α(y) log y + β(y) +O(y) . (6.15)

The terms α(y) log y and β(y) have the correct form to contribute to anomalous dimensions

and OPE coefficients of [σε]0 on the left-hand side of (6.14). However, the Casimir-singular

terms do not, and must be cancelled in some other way. We work through an explicit

example in section 6.2.1.

Before performing the sum over [σσ]0, let us understand what part we will need.

Consider O = [σσ]0,` on the right-hand side of (6.14), and suppose ` is large so that

δ[σσ]0,` = hO − 2hσ is small. The y-dependence of the O-block maps to the following

h-dependence of λσε[σε]0 on the left-hand side:

yhσ−hε+δ[σσ]0 =

∞∑
k=0

δk[σσ]0

k!
yhσε logk y →

∞∑
k=0

δk[σσ]0

k!

∂k

∂ak
Shσε,hεσhσε+a

(h)

∣∣∣∣
a=0

. (6.16)
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Figure 11. Contribution of [σσ]0-exchange (left-to-right) to the [σε]0 family (bottom-to-top). In

general, any operators can appear in the internal legs of the box diagram. Here we highlight the

contributions computed below.

The k = 0 term vanishes because Sr,sr+a has a simple zero at a = 0. The first nontrivial

correction has k = 1 (figure 11). Thus, the leading correction to λσε[σε]0 and δ[σε]0 in the

sum over [σσ]0 comes from expanding to first-order in the anomalous dimension δ[σσ]0 :

yhσ−hε log y
∑

h=h0+`
`=0,2,...

λσσ[σσ]0(h)λεε[σσ]0(h)δ[σσ]0(h)k2h(1− z) + . . . . (6.17)

Here, “ . . . ” represents non-log y terms that do not contribute to λσε[σε]0 and δ[σε]0 . We will

treat Tµν separately, so the family [σσ]0 starts at h0 = 2hσ + `0 with `0 = 4.

The quantities λσσ[σσ]0 , λεε[σσ]0 , and δ[σσ]0 can be obtained from (6.1), (6.2), and (6.11).

For simplicity, we approximate their product by the first two leading terms at large h,

coming from the corrections to δ[σσ]0 due to ε and T ,

λσσ[σσ]0λεε[σσ]0δ[σσ]0 ≈∑
O=T,ε

−2f2
σσOf

2
σσε

Γ(2hO)Γ(2hσ)3Γ(hε − hO)2Γ(2hε − 2hσ)

Γ(hO)2Γ(hε)4Γ(2hσ − hO)2
ShO−hε(h) . (6.18)

This approximation has the correct asymptotics and also matches numerics within 1% for

all ` ≥ 4. This is sufficient accuracy for our purposes, since we are already computing a

small correction to [σε]0.

For the O = T term, we have

∑
h=h0+`
`=0,2,...

ShT−hε(h)k2h(1− z) =

1

2
yhT−hε + αeven

0 [ShT−hε ](h0) log y + βeven
0 [ShT−hε ](h0) +O(y) , (6.19)
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where

αeven
0 [Sa](h0) = Aeven

a,−1(h0) = − Γ(h0 − a− 1)

2aΓ(−a)2Γ(h0 + a− 1)
, (6.20)

βeven
0 [Sa](h0) =

∂

∂k
Aeven
a,k (h0)

∣∣∣∣
k=−1

. (6.21)

Equation (6.19) has the form anticipated in (6.15). As we prove in appendix C, the Casimir-

singular term yhT−hε is cancelled by the exchange of [Tσ]0 in the σε → σε OPE. The

remaining terms give nontrivial contributions to λσε[σε]0 and δ[σε]0 . We have not found an

analytic formula for βeven
0 [Sa](h0) in general, but it can be computed to arbitrary accuracy

using (4.17) and (4.40).

The O = ε term in (6.18) takes more care to evaluate. Taking hO → hε gives

− 2f4
σσε

Γ(2hε)Γ(2hσ)3Γ(2hε − 2hσ)

Γ(hε)6Γ(2hσ − hε)2
lim
a→0

Γ(−a)2Sa(h) . (6.22)

The function lima→0 Γ(−a)2Sa(h) is finite, but when we insert it in a sum over blocks,

both the Casimir-singular and Casimir-regular terms are naively infinite. However, 1/a2

and 1/a poles cancel between them, leaving a finite result:

lim
a→0

∑
h=h0+`
`=0,2,...

Γ(−a)2Sa(h)k2h(1− z)

= lim
a→0

(
1

2
Γ(−a)2ya + Γ(−a)2αeven

0 [Sa](h0) log y + Γ(−a)2βeven
0 [Sa](h0)

)
+O(y)

=
1

4
log2 y +A0(h0) log y +B0(h0) +O(y) , (6.23)

where

A0(h0) ≡ lim
a→0

(
Γ(−a)2αeven

0 [Sa](h0) +
1

2a
+ γ

)
= ψ(h0 − 1) + γ , (6.24)

B0(h0) ≡ lim
a→0

(
Γ(−a)2βeven

0 [Sa](h0) +
1

2a2
+
γ

a
+ γ2 +

π2

12

)
=
π2

12
+
(
ψ(h0) + γ

)(
ψ(h0) + γ − 2

h0 − 1

)
+

1

4

(
ψ(1)

(
h0

2

)
− ψ(1)

(
h0 + 1

2

))
.

(6.25)

Here, ψ(m)(z) ≡ dm+1

dzm+1 log Γ(z) is the polygamma function, ψ(z) = ψ(0)(z), and γ = −ψ(1)

is the Euler-Mascheroni constant. (Even though we do not have a simple formula for

βeven
0 [Sa](h0) in general, the limit B0(h0) is computable in closed form and given by (6.25).)
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6.2.1 Cancellation of Casimir-singular terms

Equation (6.23) again has the form anticipated in (6.15), where the log2 y term in (6.23)

is y-Casimir-singular. Combining (6.22) and (6.23), this term is

y−hσ−hε
∑
h

fσσ[σσ]0fεε[σσ]0δ[σσ]0y
2hσ log y k2h(1− z) ∼

− 1

2
f4
σσε

Γ(2hε)Γ(2hσ)3Γ(2hε − 2hσ)

Γ(hε)6Γ(2hσ − hε)2
log2 y yhσ−hε log y (6.26)

in the σσ → εε channel.

We claimed earlier that the Casimir-singular terms in (6.15) should be canceled by

other contributions, and it is instructive to see how this works explicitly. The expres-

sion (6.26) has the correct form to match the exchange of [σε] in the σε → σε channel,

where log2 y comes from expanding yδ[σε]0 to second order in δ[σε]0 . We could have guessed

this by reinterpreting figure 11 as the second order term in the exponentiation of figure 10

(in the bottom-to-top channel).

The important terms in δ2
[σε]0

come from squaring the contribution of σ-exchange.

From (6.12) and (6.13), we have

λ2
σε[σε]0

1

2
δ2

[σε]0
∼ 1

2

(
f2
σσεV

(0)σεσε
σ,0 (h)

)2
Shσε,hεσ−hσ−hε(h)

(6.27)

=
1

2
f4
σσε

Γ(2hε)Γ(2hσ)3Γ(2hε − 2hσ)

Γ(hε)6Γ(2hσ − hε)2

(
lim
a→0

Γ(−a)Shσε,hεσhσ−hε+a(h)
)

+ . . . .

(6.28)

Using (4.47), the relevant sum over blocks is∑
h=h0+`

lim
a→0

Γ(−a)Sr,sa−s(h)k2h(1− z) = −y−s log y + [ . . . ]y ,

[ . . . ]y = −y−s
(
ψ(h0 − s) + ψ(h0 + s− 1)− ψ(s− r) + γ

)
+ y−r( . . . ) +O(y1−s, y1−r) . (6.29)

(We have written the y−s part of the Casimir-regular terms because we will need them

shortly.) Again, 1/a poles cancel between the Casimir-regular and Casimir-singular part,

leaving a finite result. It follows that∑
h=h0+`

λ2
σε[σε]0

1

2
δ2

[σε]0
log2 y khσε,hεσ

2h
(1− z) =

− 1

2
f4
σσε

Γ(2hε)Γ(2hσ)3Γ(2hε − 2hσ)

Γ(hε)6Γ(2hσ − hε)2
log2 y yhσ−hε log y + [ . . . ]y , (6.30)

which exactly matches (6.26).

Thus, the other channel indeed cancels the Casimir-singular term in (6.23). This

phenomenon, which has been explored previously in [1, 65], is a special case of a more

general result. The y-Casimir-singular part of the exchange of double-twist operators in
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h

0.995
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1.010
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numerics/analytics for fϵϵ[σσ]0

Figure 12. Ratios n/a of numerical results to the analytical prediction (6.1), (6.31) for fεε[σσ]0 .

(One must multiply by the Jacobian ∂h
∂` to relate fεε[σσ]0 to λεε[σσ]0 .) As in figure 9, we show two

sets of numerical data. The orange series are the raw OPE coefficients fεεO` of operators with twists

τ[σσ]0 . The blue series are the improved coefficients (f2εεO` + f2εεJ`)
1/2 discussed in section 6.1.

one channel matches the y-Casimir-singular part of the exchange of double-twist operators

in the other channel. Another way to say this is that box diagrams like figure 10 give the

same Casimir-singular parts when interpreted from bottom-to-top or from left-to-right.29

We prove this claim in appendix C.30

The Casimir-regular term proportional to yhσ−hε in (6.30) determines the leading cor-

rection to fεε[σσ]0 coming from [σε]0 exchange. Including also level-one descendants of σ,

which contribute at similar order in the 1/h-expansion to [σε]0, we have

λσσ[σσ]0λεε[σσ]0 ≈

2f2
σσε

(
U

(0)σσεε
σ,0 (h) + U

(0)σσεε
σ,1 (h)

)
− f4

σσε

Γ(2hε)Γ(2hσ)3Γ(2hε− 2hσ)

Γ(hε)6Γ(2hσ− hε)2

(
ψ(2hσ+ `0) + ψ(2hε+ `0 −1)− ψ(2hε− 2hσ) + γ

)
× ∂2

∂a2
Sa(h)

∣∣∣∣
a=0

, (6.31)

where `0 = 2 is the lowest spin appearing in the [σε]0 family. As we show in figure 12, (6.31)

agrees with numerics for all spins with accuracy ∼ 10−3.

29However, their Casimir-regular parts are not necessarily the same.
30We conjecture that it should be possible to prove a much more general result: that the Casimir-singular

terms in a general large-spin diagram, given by an arbitrary network of operator exchanges, are crossing-

symmetric.
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6.2.2 Putting everything together

Combining the Casimir-regular terms from (6.20) and (6.23), we have

yhσ−hε log y
∑

h=2hσ+4+`
`=0,2,...

λσσ[σσ]0(h)λεε[σσ]0(h)δ[σσ]0(h)k2h(1− z) ≈

yhσ−hε log y

(
− 2f2

σσT f
2
σσε

Γ(2hT )Γ(2hσ)3Γ(hε − hT )2Γ(2hε − 2hσ)

Γ(hT )2Γ(hε)4Γ(2hσ − hT )2

×
(
αeven

0 [ShT−hε ](2hσ + 4) log y + βeven
0 [ShT−hε ](2hσ + 4)

)
− 2f4

σσε

Γ(2hε)Γ(2hσ)3Γ(2hε− 2hσ)

Γ(hε)6Γ(2hσ− hε)2

(
A0(2hσ+ 4) log y +B0(2hσ+ 4)

))
+ Casimir-singular + O(y) . (6.32)

From the above, we can read off the contributions to λσε[σε]0 and δ[σε]0 from exchange of

the family [σσ]0. Including also the corrections from exchange of ε and Tµν , we have

λ2σε[σε]0 ≈ S
hσε,hεσ
−hσ−hε(h) + (−1)`f2σσεW

(0)σεσε
σ,0 (h)

+ fσσεfεεεW
(0)σεεσ
ε,0 (h) + fσσT fεεTW

(0)σεεσ
T,0 (h)

+

(
− 2f2σσT f

2
σσε

Γ(2hT )Γ(2hσ)3Γ(hε− hT )2Γ(2hε− 2hσ)

Γ(hT )2Γ(hε)4Γ(2hσ− hT )2
βeven
0 [ShT−hε ](2hσ+ 4)

− 2f4σσε
Γ(2hε)Γ(2hσ)3Γ(2hε− 2hσ)

Γ(hε)6Γ(2hσ− hε)2
B0(2hσ+ 4)

)
∂

∂a
Shσε,hεσhσ−hε+a(h)

∣∣∣∣
a=0

, (6.33)

λ2σε[σε]0δ[σε]0 ≈ (−1)`f2σσεV
(0)σεσε
σ,0 (h)

+ fσσεfεεεV
(0)σεεσ
ε,0 (h) + fσσT fεεTV

(0)σεεσ
T,0 (h)

+

(
− 2f2σσT f

2
σσε

Γ(2hT )Γ(2hσ)3Γ(hε− hT )2Γ(2hε− 2hσ)

Γ(hT )2Γ(hε)4Γ(2hσ− hT )2
αeven
0 [ShT−hε ](2hσ+ 4)

− 2f4σσε
Γ(2hε)Γ(2hσ)3Γ(2hε− 2hσ)

Γ(hε)6Γ(2hσ− hε)2
A0(2hσ+ 4)

)
∂

∂a
Shσε,hεσhσ−hε+a(h)

∣∣∣∣
a=0

. (6.34)

6.2.3 Comparison to numerics

We plot the twists τ[σε]0 = ∆σ + ∆ε + 2δ[σε]0 in figure 13 and OPE coefficients fσε[σε]0 in

figure 14, comparing the formulae (6.33) and (6.34) to numerical results. In both cases,

analytics matches numerics to high precision (∼ 10−4) at large h, and moderate precision

(< 10−2) for all h. The agreement is particularly impressive because the corrections are

large compared to Mean Field Theory, in contrast to the case of [σσ]0. Correctly summing

the family [σσ]0 is crucial for achieving this.

7 Operator mixing and the twist Hamiltonian

7.1 Allowing for mixing

The naive large-h expansion of section 5 describes the operators [σσ]0 and [σε]0 nicely.

However, it fails badly for [σσ]1 and [εε]0. As mentioned in the introduction, the numerics

indicate large mixing between these families. As a striking illustration, we plot the ratios
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τ[σϵ]0(h)

Figure 13. Comparison between numerical data and the analytical prediction (6.33), (6.34) for

τ[σε]0 . The blue curve and points correspond to even-spin operators and the orange curve and points

correspond to odd-spin operators. The dashed line is the asymptotic value τ = ∆σ + ∆ε.

10 20 30 40
h

0.7

0.8

0.9

1.0

1.1

1.2

1.3
fσϵ[σϵ]0/fMFT

fσϵ[σϵ]0 normalized by MFT

Figure 14. Comparison between numerical data and the analytical prediction (6.33) for fσε[σε]0 ,

both divided by the Mean Field Theory OPE coefficients fMFT = Shσε,hεσ−hσ−hε(h)1/2. The blue curve

and points correspond to even-spin operators and the orange curve and points correspond to odd-

spin operators.
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fεε[εε]0/fMFT and fεε[σσ]1/fMFT in figure 19. (We define [εε]0 as the operator with lower

twist.) For spins ` . 20, the coefficient fεε[σσ]1 is actually larger than fεε[εε]0 .

One might guess that the asymptotic large-h expansion simply breaks down earlier for

these operators — that it just doesn’t work for ` . 40. This turns out to be false. In this

section, we give a procedure that extends the validity of the large-h expansion down to

smaller values of h.

The key idea is to relax the assumption from section 5.3 that the double-twist operators

[ij]n on one side of the crossing equation map only to terms of the form yhi+hj+k on the

other side. Instead, we will compute a fully y-dependent asymptotic expansion in h and

identify operators by diagonalizing an effective “twist Hamiltonian”.

Let

H(h) =

h[σσ]0(h) 0 0

0 h[σσ]1(h) 0

0 0 h[εε]0(h)

 , (7.1)

Λ(h) =

(
λσσ[σσ]0(h) λσσ[σσ]1(h) λσσ[εε]0(h)

λεε[σσ]0(h) λεε[σσ]1(h) λεε[εε]0(h)

)
. (7.2)

Suppose that, using crossing symmetry, we can find the combination

Λ(h)yH(h)Λ(h)T =
∑

O=[σσ]0,[σσ]1,[εε]0

(
λσσO(h)2 λσσO(h)λεεO(h)

λσσO(h)λεεO(h) λεεO(h)2

)
yhO(h)

≡

(
Mσσσσ(y, h) Mσσεε(y, h)

Mσσεε(y, h) Mεεεε(y, h)

)
. (7.3)

One way to extract the twist Hamiltonian is as follows. Given the elements Mijkl(y, h), we

form the matrix

M(y, h) ≡

 Mσσσσ(y, h) ∂Mσσσσ(y, h) Mσσεε(y, h)

∂Mσσσσ(y, h) ∂
2
Mσσσσ(y, h) ∂Mσσεε(y, h)

Mσσεε(y, h) ∂Mσσεε(y, h) Mεεεε(y, h)

 , (7.4)

where for brevity, we’ve defined

∂ ≡ ∂

∂ log y
. (7.5)

The twist Hamiltonian H(h) is given by diagonalizing

M(y, h)−1∂M(y, h) . (7.6)

If M(y, h) indeed has the form (7.3), with only the twist families [σσ]0, [σσ]1, and [εε]0
contributing, then the combination (7.6) will be y-independent. In practice, we cannot

completely single out [σσ]0, [σσ]1, and [εε]0 on the other side of the crossing equation, so

our M(y, h) will have corrections from other operators in the σ × σ OPE, and we must

choose a value y = y0 at which to evaluate it.
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The families [σσ]n and [εε]n with higher n will be exponentially suppressed if we choose

a small value of y0. However, to single out [εε]0 and [σσ]1 we must also assume that other

twist families like [TT ], [TTT ], and [σσε], which contribute at similar order in y, have

small OPE coefficients in the σ × σ and ε × ε OPEs. This assumption is supported by

numerics (which likely means that it follows from unitarity). However, we do not know

how to derive it using the information in this work. Instead, we should enlarge our system

of crossing equations to include additional external operators. For example, by studying

the matrix

M =

Nij︷ ︸︸ ︷ Nkl︷ ︸︸ ︷

. . . · · · · · · · · · · · · · · · · · ·
... ∂

m+p
Mijij · · · · · · ∂

m+q
Mijkl · · · · · ·

...
...

. . . · · · · · · · · · · · ·
...

...
...

. . . · · · · · · · · ·
... ∂

n+p
Mklij

...
... ∂

n+q
Mklkl · · · · · ·

...
...

...
...

...
. . . · · ·

...
...

...
...

...
...

. . .



, (7.7)

we can obtain the twists and OPE coefficients of double-twist operators [ij]0 . . . [ij]Nij−1,

[kl]0 . . . [kl]Nkl−1, . . . . To build a more complete picture of the low-twist spectrum of the

Ising model, it will be important to study (7.7) for [εT ], [TT ], and other families, in addition

to [σσ] and [εε].

To summarize, we have

H = diag
(

eigenvalues(M−1
0 M ′0)

)
. (7.8)

whereM0 = M(y0, h) andM ′0 = ∂M(y, h)|y=y0
. The OPE coefficients Λ(h) can be obtained

as follows. Let

Λ′ =

 λσσ[σσ]0 λσσ[σσ]1 λσσ[εε]0

λσσ[σσ]0h[σσ]0 λσσ[σσ]1h[σσ]1 λσσ[εε]0h[εε]0

λεε[σσ]0 λεε[σσ]1 λεε[εε]0

 . (7.9)

(The generalization to many twist families as in (7.7) should be clear.) Note that M0 =

Λ′yH0 Λ′T and M ′0 = Λ′HyH0 Λ′T . Let us compute decompositions31

M0 = U1U
T
1 ,

M ′0 = U2U
T
2 . (7.10)

It must be the case that

U1 = Λ′y
H/2
0 QT1 ,

U2 = Λ′y
H/2
0 H1/2QT2 , (7.11)

31U1 and U2 can be obtained in several ways, for example via Cholesky decomposition, or eigenvalue

decomposition. If M0 and M ′0 are positive semidefinite, then U1,2 will be real.
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where Q1, Q2 are orthogonal matrices. To determine the Q1,2, consider the combination

U−1
1 U2 = Q1H

1/2QT2 , (7.12)

The right-hand side has the form of a singular value decomposition (SVD), so Q1, Q2 can

be obtained by from an SVD of U−1
1 U2. Finally, we solve for Λ′ (and hence Λ) using either

equation in (7.11).32 Note that this procedure gives us λij[kl]n . To determine the actual

OPE coefficients fij[kl]n , we must multiply by Jacobian factors (5.29), which are different

for each eigenvalue of the twist Hamiltonian h[kl]n .

7.2 Choice of external states

We can understand the twist-Hamiltonian prescription as follows. The four-point function

〈φi(x1)φj(x2)φk(x3)φl(x4)〉 is the amplitude for creating a state with φi(x1)φj(x2) and

annihilating it with φk(x3)φl(x4). States created by pairs of local operators are not eigen-

states of the twist-Hamiltonian H. Our task is to compute the change of basis between

pair states φi(x1)φj(x2)|0〉 and H-eigenstates (the OPE coefficients fij[ab]n), and to find

the eigenvalues h[ab]n . For this, we need matrix elements of yH between enough states to

span the Hilbert space.

Although generically any eigenstate O will appear in the span of φi(x1)φj(x2)|0〉 (when

global charges allow it), it should be easier to study O precisely if we use states that

have large overlap with O. Specifically, we expect to get a better picture of the [φiφj ]n
operators if we study matrix elements that include φi(x1)φj(x2)|0〉. Similarly, one might

learn about multi-twist operators [O1 · · · On] by performing very high-precision studies

of four-point functions. However, it may be more efficient to study matrix elements of

O1(x1) · · · On(xn)|0〉, i.e. to study higher-point correlators.

7.3 Analogy with the renormalization group

The difference between the twist-Hamiltonian approach and the approach of section 5.3

is analogous to the difference between RG-improved perturbation theory and fixed-order

calculations. In fixed-order perturbation theory at L loops, one finds powers of logarithms

log2 x, . . . , logL x (where x is some kinematic variable) whose coefficients are related by

exponentiation to coefficients at lower loop order. In RG-improved perturbation theory,

we exploit this fact by choosing a scale x0 and deriving a differential equation for the x-

dependence near x/x0 = 1. The log1 x/x0 terms at L-loops give L-th order corrections to

anomalous dimensions, beta functions, etc. .

In the context of large-spin operators, the role of L-loops is played by L-twist opera-

tors in the crossed-channel. To see exponentiation of anomalous dimensions, we must in

principle sum all multi-twist operators. Instead, in analogy with RG-improved perturba-

tion theory, we assume exponentiation works and find anomalous dimensions by working

at some scale y0. L-twist operators also give corrections to anomalous dimensions, given

32It is easy to check that the number of unknowns h[ij]n and λij[kl]n always equals the total number of

distinct entries in the matrices M0, M ′0. Thus, we can solve for Λ using either equation in (7.11) and we

will get the same result.
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by the Casimir-regular terms after summing their conformal blocks. These are analogous

to log1 x/x0 terms in L-loop perturbation theory. To compute them, we must understand

the detailed structure of the L-twist operators.

7.4 Crossing symmetry for the twist Hamilonian

To compute M(y, h), we need the following lemma.

Lemma 1. If an infinite sum of SO(d, 2) blocks has Casimir-singular part f(y, y),33

∑
`

∂h

∂`
p(h)Gh(h),h(z, 1− z) = f(y, y) + [ . . . ]y , (7.13)

then the asymptotic density of p(h)yh(h) is given by

p(h)yh(h) ∼ (Cf)(y, h) , (7.14)

where the operator C is defined as follows. Let

C : yh0ya 7→
∞∑
n=0

yh0+nC(n)
a (h0, h) , (7.15)

and extend C linearly to arbitrary sums of powers and logs of y, y. Here, C
(n)
a (h0, h) are

the coefficients defined in section 5.3.1.

Proof. By linearity, it suffices to consider f(y, y) = c(y)ya for some function c(y). Let us

assume

p(h)yh(h) ∼
∞∑
n=0

ynC(n)
a

(
∂

∂ log y
, h

)
c(y) , (7.16)

and show that the sum (7.13) has Casimir-singular part c(y)ya. Since Casimir-singular

terms uniquely determine an asymptotic h-expansion for coefficients of blocks, the claim

follows.

As before, let ∂ = ∂
∂ log y . The SO(d, 2) blocks have expansion

Gh,h(z, 1− z) =

( ∞∑
m=0

m∑
j=−m

ymAm,j(∂, h)k2(h+j)(1− z)

)
yh. (7.17)

Applying the differential operator in parentheses to (7.16), we get

p(h)Gh(h),h(z, 1− z) =

∞∑
n=0

∞∑
m=0

m∑
j=−m

ymAm,j(∂, h)ynC(n)
a (∂, h)c(y)k2(h+j)(1− z)

=

∞∑
n=0

∞∑
m=0

m∑
j=−m

yn+mAm,j(∂ + n, h)C(n)
a (∂, h)c(y)k2(h+j)(1− z)

∼
∞∑
n=0

yn
n∑

m=0

m∑
j=−m

Am,j(∂ + n−m,h− j)C(n−m)
a (∂, h− j)c(y)k2h(1− z) .

(7.18)

33We assume p(h) and h(h) depend nicely on h, and h(`) is the solution to h(`)− h
(
h(`)

)
= `.
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In the last line, “∼” indicates that the two sides give the same Casimir-singular part when

summed over h (since shifting h → h − j only affects Casimir-regular terms). Finally,

applying the recursion relation (5.19) with h0 = ∂ we get

p(h)Gh(h),h(z, 1− z) ∼ Sa(h)c(y)k2h(1− z) . (7.19)

Summing over h gives the desired result.

Lemma 1 generalizes trivially to the case of mixed blocks, where we must use the

operator

Cr,s : yh0ya 7→
∞∑
n=0

yh0+nC(n)r,s
a (h0, h) . (7.20)

Applying Ch12,h34 to the left-hand side of the crossing equation (5.12), we obtain

M1234(y, h) =
∑
i

λ12Oi(h)λ43Oi(h)yhi(h)

∼ Ch12,h34
(
yh1+h3y−h1−h3G3214(z, 1− z)

)
+ (−1)`(3↔ 4) , (7.21)

G3214(z, z) ≡
∑
O
f32Of41OG

h32,h14

hO,hO
(z, z) , (7.22)

where i runs over twist families in the 1× 2 and 3× 4 OPEs. As in section 5.3.3, we must

add (−1)`(3↔ 4) for consistency with the symmetry properties of λ43Oi .

The contribution of an individual block to (7.21) is,

Ch12,h34
(
yh1+h3y−h1−h3Gh32,h14

hO,hO
(z, 1− z)

)
=
∞∑
m=0

U1234
O,m (y, h) , (7.23)

where

U1234
O,m (y, h) ≡

∞∑
n=0

(
U

(n)1234
O,m (h)yn+h1+h2 + U

(n)3412
O,m (h)yn+h3+h4

)
. (7.24)

Using (5.37), this has a smooth limit as h1 + h2 → h3 + h4,

U1234
O,m (y, h) =

∞∑
n=0

yn+h1+h2
(
V

(n)1234
O,m (h) log y +W

(n)1234
O,m (h)

)
(h1 + h2 = h3 + h4) .

(7.25)

As a special case, the unit operator contributes

U1221
1 (y, h) = Ch12,h21(yh1+h2y−h1−h2) =

∞∑
n=0

yn+h1+h2C
(n)h12,h21

−h1−h2
(h1 + h2, h)

=
∞∑
n=0

yn+h1+h2CMFT
n,h−h1−h2−n

(2h1, 2h2) . (7.26)
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(7.27)

Figure 15. Exchange of large-spin [σσ]0 operators looks like the exponentiation of a Hamiltonian

that mixes [σσ] and [εε].

7.5 Application to [εε]0 and [σσ]1

7.5.1 Why large mixing?

Before computing the Hamiltonian for [εε]0 and [σσ]1, let us explain intuitively why the

two families exhibit large mixing at intermediate values of h. At very large h, the domi-

nant contributions to the anomalous dimensions of [εε]0 and [σσ]1 come from exchange of

the stress tensor Tµν , and mixing is negligible. However, the operators [σσ]0 have twist

only slightly larger than Tµν , so all of their contributions become important at slightly

smaller h.34

As illustrated in figure 15, exchange of large-spin [σσ]0 operators (namely operators

where the vertical distance between σ lines in figure 15 is large) looks like a product of

off-diagonal terms that transition between [εε] and [σσ], coming from σ-exchange in the

〈σεσε〉 four-point function. This is part of the exponentiation of a twist Hamiltonian with

structure

H(h) ≈

(
2hε + h

−τT h
−∆σ

h
−∆σ

(2hσ + 1) + h
−τT

)
. (7.28)

The off-diagonal terms are unimportant at very large h. (We should compare the square of

the off-diagonal terms to the diagonal terms.) However, they become important at slightly

smaller h. In fact, because 2hε ≈ 2hσ + 1, they cause the eigenvalues to repel significantly.

7.5.2 Computing the twist Hamiltonian

To find the twist Hamiltonian for [εε]0 and [σσ]1, we must compute Mσσσσ, Mεεεε, and

Mσσεε. For example,

Mσσσσ(y, h) ∼ 2 C
(
y2hσy−2hσGσσσσ(z, 1− z)

)
. (7.29)

34In a weakly-coupled theory, there is no regime where the stress-tensor completely dominates over the

first higher-spin family.
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We will take the first few terms in an asymptotic expansion in large-h, so we should truncate

powers of y (so that only low-twist operators contribute) before applying C. In the Gσσσσ
correlator, we will include terms up to order yhε . Let us describe the low-twist part of the

correlators Gσσσσ, Gεεεε, and Gεσσε in more detail.

7.5.3 Gσσσσ

We have

Gσσσσ(z, 1− z) = 1 +
∑

O=[σσ]0,`
`=2,4,...

f2
σσOy

hOk2hO
(1− z) + f2

σσεy
hεk2hε

(1− z) + . . . , (7.30)

where “ . . . ” represents terms of higher order than yhε .35 Let us split the sum over [σσ]0
into a finite part which we treat exactly and an infinite part which we expand in small

anomalous dimensions δ[σσ]0 ,

∑
O=[σσ]0,`
`=2,4,...

f2
σσOy

hOk2hO
(1− z) =

( ∑
O=[σσ]0,`

`=2,4,...,`0−2

+
∑

O=[σσ]0,`
`=`0,`0+2...

)
f2
σσOy

hOk2hO
(1− z) . (7.31)

We can make δ[σσ]0 arbitrarily small by choosing `0 large enough. Taking `0 = 6 will be

sufficient for our purposes. Thus, the finite sum in (7.31) will contain the stress tensor and

the spin-4 operator [σσ]0,4. For these contributions, we use the expansion of k2h(1− z) up

to first order in y,

yhOk2hO
(1− z) ≈ yhO

1∑
k=0

∂

∂k

(
−Γ(2hO)

Γ(hO)2
T−k−1(hO)yk

)
. (7.32)

Meanwhile, expanding the infinite sum in δ[σσ]0 , we obtain∑
O=[σσ]0,`
`=`0,`0+2,...

f2
σσOy

hOk2hO
(1− z) =

∞∑
m=0

y2hσ logm y
∑

`=`0,`0+2,...

∂h

∂`

δ[σσ]0(h)m

m!
λσσ[σσ]0(h)2k2h(1− z) . (7.33)

The quantities λσσ[σσ]0 and δ[σσ]0 are given in (6.1) and (6.2). We can compute the sums

over ` using the methods of appendix B,∑
`=`0,`0+2,...

∂h

∂`

δ[σσ]0(h)m

m!
λσσ[σσ]0(h)2k2h(1− z) =

∑
a∈Am

1

2
c(m)
a ya +

∞∑
k=0

∂

∂k

(
ykαeven

k

[
δ[σσ]0(h)m

m!
λσσ[σσ]0(h)2, δ[σσ]0

]
(2hσ+ `0)

)
,

(7.34)

35Here, we assume that no Z2-even operators other than the ones written have twist less than ∆ε. This

is supported by numerics but we cannot prove it.
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σ σ

σ σ

σ

σ

h1 h2 h3
. . .

Figure 16. The operators [σσ]0 give contributions to M(y, h) of the form yh1+···+hi+k. At large-h,

these must be matched by multi-twist operators [O1 · · · Oi]k. In the picture, we can see how multi-

twist operators must appear in the σ × σ OPE (bottom-to-top channel) because they come from

the exponentiation of the anomalous dimensions of [σσ] in the left-to-right channel.

where c
(m)
a are coefficients in the asymptotic expansion

1

m!
δ[σσ]0(h)mλσσ[σσ]0(h)2 ∼

∑
a∈Am

c(m)
a Sa(h) . (7.35)

Only the m ≥ 2 cases will survive the C operation (because logm y is Casimir-regular for

m = 0, 1). However the m = 2 term is already quite small, so it will be sufficient to

truncate the series here. The first few c
(2)
a are

1

2
δ2[σσ]0λ

2
σσ[σσ]0

∼
∑

O1,O2∈{ε,T}

f2σσO1
f2σσO2

Γ(2h1)Γ(2h2)Γ(2hσ)2Γ(2hσ− h1− h2)2

Γ(h1)2Γ(h2)2Γ(2hσ− h1)2Γ(2hσ− h2)2
Sh1+h2−2hσ (h) + . . .

=
∑

O1,O2∈{ε,T}

c
(2)
h1+h2−2hσSh1+h2−2hσ (h) + . . . . (7.36)

The S2hε−2hσ term is important because it gives a contribution to Mσσσσ(y, h) proportional

to y2hε , which contributes to mixing with [εε]0. In general, we find terms of the form

Sh1+···+hn+k−2hσ(h) where hi ∈ {hT , hε} and k ∈ Z≥0.

Here, we can see the exponentiation discussed in section 3.1.1 at work. Summing over

the family [σσ]0 gives terms of the form yh1+···+hi+k, where hi are half-twists of other

operators in the theory. These give contributions to the twist Hamiltonian proportional

to h1 + · · ·+ hi + k, which must be matched by multi-twist operators [O1 . . .Oi]k. This is

illustrated in figure 16.

– 49 –



J
H
E
P
0
3
(
2
0
1
7
)
0
8
6

Plugging in the values (6.4) and multiplying by y2hσy−2hσ , the infinite sum is

y2hσy−2hσ
∑

O=[σσ]0,`
`=6,8,...

f2
σσOy

hOk2hO
(1− z) =

1− 3.69919yhT + (3.37064 log y + 11.6413)y2hσ

+ 0.739023yhε + (28.1977 log y + 44.2112)y2hσ+1 + . . .

+ log y
(
− 1.44458yhT + (0.0173629 log y + 1.88281)y2hσ

− 0.591176yhε + (−0.267215 log y − 0.278914)y2hσ+1 + . . .
)

+ log2 y
(
(−0.0000261014 log y − 0.000146056)y2hσ

+ 4.36051·10−6y + 0.000391581yhT+hε + 0.0369549y2hε

+ 3.88489·10−6yhT+1 + (0.00506123 log y − 0.0347285)y2hσ+1

+ 1.64132·10−6yhε+1 + 2.26961·10−7yhT+2hε − 9.74836·10−7y2 + . . .
)

+ . . . (7.37)

where “ . . . ” represent terms higher order in y or log y. We stress that while we have

written the above coefficients numerically for brevity, they all have analytic formulae. For

example, the coefficient of log2 y y2hε is given by 1
2c

(2)
2hε−2hσ

in (7.36).

We have written “≈” instead of “=” because the above formula is based on the ap-

proximations (6.1) and (6.2) for λσσ[σσ]0 and δ[σσ]0 . Because those formulae match the

numerical data to high accuracy, the same is true of (7.37). However, a more sophisticated

approximation for λσσ[σσ]0 , δ[σσ]0 would include contributions from operators Oi other than

ε, T , giving rise to additional terms like yhi in (7.37).36

7.5.4 Gεεεε

The computation of Gεεεε(z, 1− z) proceeds similarly. We have

Mεεεε(y, h) = 2C
(
y2hεy−2hεGεεεε(z, 1− z)

)
,

Gεεεε(z, 1− z) = 1 +
∑

O=[σσ]0,`
`=2,4,...

f2
εεOy

hOk2hO
(1− z) + f2

εεεy
hεk2hε

(1− z) + . . . . (7.38)

36Including the contribution of the whole family [σσ]0 to itself would give logm y logn y terms, coming in

at order m+n+3 in the expansion in the small parameter 2hσ−ν. Such terms have been discussed in [62].
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The coefficient fεεε is given by (2.1). We split the sum over [σσ]0 into a finite part (` < 6)

and an infinite part (` ≥ 6) and expand the infinite part in small δ[σσ]0 , up to order m = 2.

This time all the terms m = 0, 1, 2 contribute nontrivially after the C operation. The OPE

coefficients λεε[σσ]0 can be obtained from (6.31). The infinite sum is

y2hεy−2hε
∑

O=[σσ]0,`
`=6,8,...

f2
εεOy

hOk2hO
(1− z) ≈

y2hσ−2hε
(
1.83831y2hσ + 0.0294478y2hσ+hT − 11.8305y2hσ+hε

+ (23.1945 log y + 54.9846)y2hε + 57.4846y2hσ+1

− 0.038081y2hσ+hT+hε + 0.609036y2hσ+2hε + . . .
)

+ y2hσ−2hε log y
(
− 0.0114997y2hσ+hT − 1.77142y2hσ+hε

+ (0.604068− 0.746285 log y)y2hε − 0.00171201y2hσ+1

+ 0.00526509y2hσ+hT+hε + 0.341187y2hσ+2hε + . . .
)

+ y2hσ−2hε log2 y
(
(−0.000745198 log y − 0.00496677)y2hε + 0.00016714y2hσ+1

+ 0.00187562y2hσ+hT+hε + 0.0215162y2hσ+2hε + . . .
)

+ . . . (7.39)

7.5.5 Gσεεσ

For Mσσεε, we have

Mσσεε(y, h) ∼ 2C
(
yhσ+hεy−hσ−hεGεσσε(z, 1− z)

)
,

Gεσσε(z, 1− z) = f2
σσεG

hεσ ,hσε
hσ ,hσ

(z, 1− z) +
∑

O=[σε]0,`
`=2,3,...

f2
σεOy

hOkhεσ ,hσε
2hO

(1− z) + . . . . (7.40)

Here, “ . . . ” represents higher order terms in y. We keep the terms of order yhσ and

yhσ+1 in the conformal block for σ. The sum over [σε]0 can be performed as before, by

splitting it into a finite part ` < `0 that we treat exactly and an infinite part ` ≥ `0 that

we expand in the anomalous dimension δ[σε]0 . The quantities λ2
σε[σε]0

and δ[σε]0 are given

in (6.33) and (6.34). We expand to fifth order in δ[σε]0 and take `0 = 6. The final result
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for Mσσεε(y, h) is independent of `0 to high precision. The infinite sum is

yhε+hσy−hε−hσ
∑

O=[σε]0,`
`=6,7,...

f2
σεOy

hOkhεσ ,hσε
2hO

(1− z) ≈

1− 10.0851yhT + (1.02429− 0.234943 log y)y2hσ

+ 1.07667yhε + 650.249y2hε − 884.116y2hσ+1 + . . .

+ log y
(
− 3.93834yhT + (4.06924− 0.123248 log y)y2hσ

− 0.861278yhε + 18.8077y2hε − 22.0514y2hσ+1 + . . .
)

+ log2 y
(
(−0.0170791 log y − 0.0824236)y2hσ − 0.0269513y − 0.0525874y2hσ+hT

+ 0.0409684y4hσ + 0.209787yhT+hε + 0.010682y2hσ+hε

+ (0.0911374 log y + 4.34364)y2hε + 0.629932yhT+1

+ (−0.101919 log y − 8.8983)y2hσ+1 + 2.31403y4hσ+hT

− 0.0830807y6hσ+ 0.0512032yhε+1+ 0.165984y2hσ+hT+hε− 0.0762239y4hσ+hε

− 0.000540742yhT+2hε − 0.00322981y2hσ+2hε + 0.00610087y2 + . . .
)

+ log3 y
(
− 0.0000360366y2hσ + 0.0131415y2hσ+hT − 0.00465426y4hσ

− 0.0559877y2hσ+hε + 0.217299y2hε − 0.0819986yhT+1

+ (0.0176415 log y + 0.14041)y2hσ+1 − 0.126862y4hσ+hT − 0.0592894y6hσ

− 0.013226yhε+1 − 0.0691064y2hσ+hT+hε + 0.019903y4hσ+hε

+ 0.00892839yhT+2hε + 0.0103174y2hσ+2hε + 0.000566515y2 + . . .
)

+ log4 y
(
0.0000223151y2hσ − 0.000536879y4hσ + 0.00019118y2hε

+ (0.0348547− 0.000867286 log y)y2hσ+1 − 0.0521425y4hσ+hT

+ 0.0114817y6hσ + 0.00543315y2hσ+hT+hε + 0.000922452y4hσ+hε

− 0.00202392y2hσ+2hε − 0.0000276538y2 + . . .
)

+ log5 y
(
− 4.06997·10−8y2hσ + 0.000231809y2hε − 0.00316706y2hσ+1

+ 0.00319354y4hσ+hT − 0.0000952085y6hσ − 0.000188447y4hσ+hε + . . .
)

+ . . . (7.41)

7.5.6 Choice of y0

After computing M(y, h), we must choose a value y0 at which to evaluate the twist Hamil-

tonian (7.8). This presents a trade-off. Small y0 is good because higher-twist operators are

exponentially suppressed.37

However, very small y0 is bad for the following reason. Consider the expansion

yδ = 1 + δ log y +
1

2
δ2 log2 y +

1

6
δ3 log3 y + . . . . (7.42)

As explained in section 3.1.1, if the log y term gets a contribution from exchange of O in

the crossed-channel, then log2 y comes from the exchange of double-twist operators [OO].

37Additionally, we truncate M(y, h) at order y2, which also removes the effects of higher twist families.
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τ

τ[ϵϵ]0(h) and τ[σσ]1(h)

Figure 17. Comparison between numerical data and analytical predictions for τ[σσ]1 (blue) and

τ[εε]0 (orange). Solid lines correspond to y0 = 0.1, and dotted lines correspond to y0 = 0.02. The

orange curve ramps up sharply (moving from right to left) near h ≈ 3.4 because M(y0, h) becomes

degenerate there. This coincides with the lower end of the family [εε]0.

Similarly, log3 y comes from the exchange of twiple-twist operators [OOO], and so on.

If we only include operators with bounded twist in the crossed-channel, we truncate the

series (7.42) and lose exponentiation. This becomes a problem when δ log y is large. In

other words, when |log y| & 1/δ there are large logarithms that have not been correctly

re-summed because we have not included arbitrary multi-twist operators [O · · ·O] in the

crossed-channel.

In our case, we have included double-twist operators built out of σ’s and ε’s, so we

expect to find errors that go like log3 y h−2hσ−hε and log4 y h
−4hσ

, coming from [σσε] and

[σσσσ]. For small spins, the anomalous dimensions of [σσ]1 and [εε]0 grow to ∼ 0.5,

suggesting we should not take y0 much smaller than e−1/0.5 ∼ 0.1.38

7.5.7 Comparison to numerics

We compare analytics to numerics in figures 17, 18, and 19. In figure 17, we show two

sets of curves: the solid lines correspond to y0 = 0.1, and the dotted lines correspond to

y0 = 0.02. As expected, the smaller value of y0 introduces errors that behave approximately

38It should be possible to surmount these difficulties with a more sophisticated analysis. If we include

higher-twist families [σσ]n≥1 and [εε]n≥0 in the twist Hamiltonian, there is less downside to working at larger

y0. On the other hand, we expect these higher families to have larger mixing with other families like [TT ],

[Tε], etc. . So it may be necessary to study a larger system of correlators at the same time. Alternatively,

we might try to restore exponentiation of (7.42) by approximating the contribution of multi-twist operators

[O · · ·O] in some way.
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h

-0.5

0.0

0.5

1.0

fσσ/fMFT

fσσ[σσ]1(h) and fσσ[ϵϵ]0(h) normalized by MFT

Figure 18. Comparison between numerical data and analytical predictions for fσσ[σσ]1 (blue) and

fσσ[εε]0 (orange), both divided by the Mean Field Theory coefficient fMFT =
(
2C

(1)
−2hσ (2hσ, h)

)1/2
.

We fix the signs of [σσ]n and [εε]n so that fσσ[σσ]n and fεε[εε]n are positive. With these conventions,

fσσ[εε]0 is negative.

like log4 yh
−4hσ

. The value y0 = 0.1 gives beautiful agreement with numerics for all spins

` & 2, so we take y0 = 0.1 in the remaining plots.

The results show several interesting features. Firstly, we have correctly modeled the

large mixing between the two families. For example, the fact that fεε[σσ]1 is larger than

fεε[εε]0 for ` . 26 is reproduced nicely.

We also find that M(y0, h) ceases to be positive-definite at h ≈ 3.4. This suggests that

we cannot continue one of the twist families below this value. Indeed, in the numerical

data, the family [εε]0 ends at spin 4, which is the lowest spin such that h > 3.4. It is

surprising that one can predict such a detailed fact about the low-spin spectrum using the

first few terms in an asymptotic expansion at high spin. It may be a happy coincidence.

Zeros in the determinant of M(y0, h) are responsible for the rapid oscillations and poles at

the leftmost edges of figures 17, 18, and 19.

8 Tying the knot

8.1 Where’s the magic?

By matching Casimir-singular terms on one side of the crossing equation to asymptotic

large-h expansions on the other, we can systematically solve the crossing equations order-

by-order in y, y. In particular, we can reproduce a conformal block on one side with a

particular large-h expansion on the other side. Our techniques for summing over twist

families remove the difficulties associated with accumulation points in twist space.39 If this

39See [66, 67] for another approach to this problem.
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h0.0
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0.6

0.8
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1.2

fϵϵ/fMFT

fϵϵ[σσ]1(h) and fϵϵ[ϵϵ]0(h) normalized by MFT

Figure 19. Comparison between numerical data and analytical predictions for fεε[σσ]1 (blue) and

fεε[εε]0 (orange), both divided by the Mean Field Theory coefficient fMFT =
(
2C

(0)
−2hε(2hε, h)

)1/2
.

Note that fεε[σσ]1 is larger than fεε[εε]0 for spins ` . 26.

order-by-order solution to crossing is systematic, where are the nontrivial constraints on

the spectrum?

Note that the asymptotic large-h expansion misses terms that are Casimir-regular in

both channels. That is, terms that are both Casimir-regular in y and Casimir-regular in

y. If we write the crossing equation as

y−2hσ
∑
O
f2
σσOGhO,hO(z, 1− z) = z ↔ z , (8.1)

then these are terms of the form ymyn logp y logq y with p, q ≤ 1. We call such terms

“biregular”.

We have already seen examples of biregular terms in computations: for example, the

y2hσ log y and y2hσ log y terms in the sum over [σσ]0 in (7.37) are bi-regular, as we can see

by multiplying by y−2hσ as on the right-hand side of (8.1). These are certainly nonzero,

but they map to zero in the large-h expansion in either channel because Sa(h) has a double

zero at a = 0.

It is somewhat subtle to define the biregular part of a correlator separately from the

Casimir-singular part. For example, yδ is Casimir-singular, but its expansion in small δ

contains nonzero Casimir-regular terms (1 and δ log y). Indeed, no individual term in the

sum (8.1) is biregular. However, biregular terms can appear when we evaluate the sum by

expanding in the anomalous dimensions of double-twist operators.

To make sense of this, we propose the following prescription. Let us define an “asymp-

totic solution” to crossing symmetry as a set of CFT data where the dimensions and
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OPE coefficients of multi-twist operators have the correct asymptotic large-h behavior to

reproduce all Casimir-singular terms on the other side of the crossing equation. Given

S = {fσσO,∆O, `O}, define the difference

FS(y, y) ≡ y−2hσ
∑
O
f2
σσOGhO,hO(z, 1− z)− (y ↔ y) . (8.2)

Claim. If S is an asymptotic solution to crossing, then the “biregular limit”

LS = lim
y→0

(
∂

∂ log y
− ∂

∂ log y

)
FS(y, y)

∣∣∣∣
y=y

(8.3)

is finite. Furthermore if S is a true (not just asymptotic) solution to crossing, then LS = 0.

One can define similar biregular limits to extract biregular terms of the form

ymyn logp y logq y with p, q ≤ 1. Demanding that biregular terms are crossing-symmetric

gives nontrivial constraints on the spectrum.

8.2 Constraints from low-twist operators

This suggests an interesting way to derive approximate constraints on the data of the 3d

Ising CFT. From our work in sections 6 and 7.5, we have approximate expressions for OPE

coefficients and dimensions of the twist families [σσ]0, [σσ]1, [εε]0, and [σε]0 in terms of

a finite set of initial data, namely {∆σ,∆ε, fσσε, fεεε, cT }. By plugging these expressions

back into the correlator and demanding that biregular limits vanish, we obtain constraints

on the initial data.40

Because we have not found exact asymptotic solutions to crossing, we must approx-

imate the limits LS in some way. We also do not have analytic approximations for the

lowest spin members of the families [εε]0 and [σσ]1, so we will restrict ourselves to limits

involving [σσ]0 and [σε]0.

In our expressions (6.1) and (6.2) for the dimensions and OPE coefficients of the [σσ]0
family, we treated the ε and T operators exactly. The biregular terms are approximately

given by the log y, log y terms from expanding in small anomalous dimensions of the re-

maining operators [σσ]0,`≥4,

LS ≈ 2
(
αeven

0

[
λ2
σσ[σσ]0

, δ[σσ]0

]
(2hσ + 4)− βeven

0

[
λ2
σσ[σσ]0

δ[σσ]0 , δ[σσ]0

]
(2hσ + 4)

)
, (8.4)

where αk[p, δ](h0) and βk[p, δ](h0) are defined in appendix B and λσσ[σσ]0 , δ[σσ]0 are given

by (6.1) and (6.2). Naively, these two quantities in parentheses have nothing to do with each

other. However, plugging in the numerically-determined values of {∆σ,∆ε, fσσε, fεεε, cT },
we find that they match to one part in 10−3,

αeven
0

[
λ2
σσ[σσ]0

, δ[σσ]0

]
(2hσ + 4) ≈ 1.92084 ,

βeven
0

[
λ2
σσ[σσ]0

δ[σσ]0 , δ[σσ]0

]
(2hσ + 4) ≈ 1.92280 . (8.5)

40In functional programming, defining a data structure in terms of itself is known as “tying the knot”

(https://wiki.haskell.org/Tying the Knot).
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Similarly, by demanding that the leading biregular terms cancel in the sums over [σσ]0
and [σε]0 in 〈σσεε〉, we find the conditions

L′S ≡ Aσσ1 −Aσε1 = 0 ,

L′′S ≡ Aσσ2 −Aσε2 = 0 , (8.6)

where

Aσσ1 ≡ β
even
0

[
λσσ[σσ]0λεε[σσ]0 , δ[σσ]0

]
(2hσ + 4) ≈ 6.89276 ,

Aσε1 ≡ −Γ(2hεσ)Γ(1− hεσ)2α−hεσ
[
λ2
σε[σε]0

, δ[σε]0

]
(hσ+ hε+ 2) ≈ 6.92499 , (8.7)

and

Aσσ2 ≡ αeven
0

[
λσσ[σσ]0λεε[σσ]0 , δ[σσ]0

]
(2hσ + 4) ≈ 4.36510 ,

Aσε2 ≡ −Γ(2hεσ)Γ(1− hεσ)2α−hεσ
[
λ2
σε[σε]0

δ[σε]0 , δ[σε]0

]
(hσ+ hε+ 2) ≈ 4.35102 . (8.8)

(The regularized sums α and β are defined in appendix B.1.) On the right, we show

the values of these quantities using the approximations in section 6 and the numerically-

determined {∆σ,∆ε, fσσε, fεεε, cT }. In all cases, the contributions to the limits LS , L
′
S , L

′′
S

cancel to reasonable precision.

The LS , L
′
S , L

′′
S are interesting because their dominant contributions come from the

lowest-twist operators in the theory, namely [σσ]0, [σε]0, and indirectly σ, ε, T . This is

based on our empirical observation that the contributions of these operators to the large-

spin expansion give approximations that work well for all the operators in the twist families

[σσ]0, [σε]0. Thus, we can explore them without fully understanding the larger-twist spec-

trum.

By sampling values near the actual Ising point, we find that LS is much more sensitive

to cT and fσσε than the other quantities ∆σ,∆ε, fεεε. The tangent plane to LS(cT , fσσε) at

the Ising point is given by

LS ≈ −0.3999 + 1.599cT − 1.061fσσε . (8.9)

Demanding that LS vanish gives a relationship between cT and fσσε.

In figure 20, we plot all three limits LS , L
′
S , L

′′
S as a function of cT and fσσε, with

the other quantities ∆σ,∆ε, fεεε held fixed at the values (2.1). The three quantities vanish

nearly simultaneously at the correct values of cT and fσσε. Thus, requiring that LS , L
′
S , L

′′
S

vanish gives a way to fix cT and fσσε analytically in terms of ∆σ,∆ε, fεεε, to accuracy

∼ 10−2–10−3, using only the lightcone limit!

9 Discussion

9.1 Lessons for the numerical bootstrap

Traditional numerical bootstrap methods clearly probe the lightcone limit. This might

explain why one must typically study a large number of derivatives around the Euclidean
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Figure 20. The biregular limits LS (orange), L′S (blue), and L′′S (green), plotted as a function of

fσσε and cT , with ∆σ,∆ε, fεεε set to the values (2.1). The red sphere sits at the point expected for

the 3d Ising CFT, (fσσε, cT , L
∗
S) = (1.0518539, 0.946539, 0).

point z = z = 1
2 before the bounds saturate: many derivatives are needed to reach the

lightcone limit, and the bounds may not saturate until the lightcone limit has been explored.

However, the Euclidean regime is also important. Because of the convergence proper-

ties of the conformal block expansion, the Euclidean regime effectively receives contribu-

tions from a small number of operators [70, 88, 89], and one can make surprising progress

by demanding that these contributions (almost) cancel among themselves [15, 90, 91].

This suggests the following hybrid analytical/numerical approach

1. First solve the lightcone limit analytically using the techniques in this work. The

result will be an asymptotic expansion in h, as a function of a small amount of initial

data.

This step is likely easiest for theories with a relatively sparse spectrum in twist space.

Since the spectrum becomes less sparse at high-twist, we expect mixing effects in

the twist-Hamiltonian to become more important in this regime. We may not find

an accurate picture of the high-twist spectrum without studying a large system of

crossing equations (enough to build all the necessary multi-twist operators). However,
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figures 1 and 2 suggest that we may not need a perfectly accurate high-twist spectrum

to make progress — we just need some high-twist spectrum with approximately the

right density in h-space.

2. Choose some lower cutoff h ≥ h0, and compute the dimensions and OPE coefficients

of multi-twist operators above this cutoff using the asymptotic expansion in step 1.

Larger h0 will mean more accurate expressions. However, smaller h0 will leave fewer

operators to solve for in step 3.

3. Plug the large-spin operators from step 2 back into the crossing equation and solve

for the remaining operators in the Euclidean regime using traditional numerical boot-

strap methods, the techniques of [15, 90, 91],41 or some other method. We suspect

that many fewer derivatives may be needed. It would also be interesting to see if this

hybrid method reduces the need for high-precision arithmetic.

Unfortunately, this approach sacrifices the rigor of traditional numerical bootstrap

methods because the large-h expansion is asymptotic. One must take h0 large enough that

the results saturate. (Though working with larger h0 likely requires more derivatives.) It

is encouraging that h0 ≈ 4 is good enough for most of the results in this work. Another

disadvantage is that some theories might require a large amount of initial input to compute

the large-spin spectrum. For example, in this work we used {∆σ,∆ε, fσσε, fεεε, cT } to

parameterize the large-spin spectrum of the 3d Ising CFT. We must scan over each of

these parameters to explore the space of theories. In a larger system of crossing equations,

we would have even more parameters.

On the other hand, the possibility of working with fewer derivatives, at lower precision,

with larger systems of correlators, and perhaps without imposing unitarity (using the

methods of [15, 90, 91])42 makes this hybrid approach worth exploring.

9.2 Moving towards analytics

Although we have made progress in reverse-engineering a solution to crossing symmetry

analytically, numerics were crucial throughout. Let us catalog the ways in which we used

numerics and discuss whether/how they can be replaced with analytics.

• Because the large-h expansion is asymptotic, numerics were crucial in determining

how many terms to keep in the expansion to get reasonable results. We could also see

explicitly which operators were well-described by a truncated asymptotic expansion

and which ones were not. For example, [σσ]0,`=4 fits well to the analytic predic-

tions (6.1), (6.2), while [σσ]1,`=0 does not fit the prediction in figure 17. We used this

information implicitly in several ways. For example, in section 8.2, we used that the

analytic predictions (6.1), (6.2) fit well all the operators in the family [σσ]0.

41The helpfulness of including higher spin Z2-odd operators in the “severe truncation” method of [15]

has been observed previously [92].
42Not imposing unitarity could also help in studies of boundary and defect crossing equations, which in

some cases haven’t been formulated in a way that takes advantage of positivity (even in unitary theories) [13,

91, 93].
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To understand these issues without numerics, it will be important to prove rigorous

bounds on error terms in the large-h expansion. It would also be interesting to

understand convergence properties of the twist expansion in a way analogous to the

dimension expansion [70, 88, 89, 94].

Ideally, perhaps there is a way to identify the correct representative of a given large-

h equivalence class. Consistency with causality and the chaos bound [95] may be

relevant, since it requires delicate cancellations between high-spin operators in a

certain kinematic limit, see e.g. [78, 96].43 It also implies bounds on dimensions of

operators in the lowest twist-family [97–100].

• We used numerics to discover that the contribution of other multi-twist families like

[TT ] and [εT ] to the four-point functions 〈σσσσ〉, 〈σσεε〉, 〈εεεε〉 is small. Conse-

quently, we could ignore these families when diagonalizing the twist Hamiltonian for

[σσ]1 and [εε]0 in section 7.5.

We might guess that [εT ]0 and [TT ]0 should be unimportant because the anomalous

dimension of T is small, so only the leading term in the exponentiation of yhT−2hσ

matters. However, a better treatment of this issue would involve studying correlators

with T as an external operator in addition to σ and ε. In fact, to get a full picture

of the small-twist spectrum of the 3d Ising model, we should study correlators in-

cluding all the operators in [σσ]0 as external operators. This will likely require new

techniques, since the mixing matrices will be infinite-dimensional.

• We also used numerics to help choose the value y0 at which to evaluate the twist

Hamiltonian in section 7.5. The results should become less sensitive to y0 when we

study all the twist families that could contribute to M(y, h). This includes additional

double-twist families like [εT ]0 and [TT ]0 discussed above, as well as higher-twist

towers like [σσ]2 and [εε]1. To completely recover exponentiation, we must also un-

derstand n-twist families with n ≥ 3. Although this may be possible with four-point

functions, in practice it might require studying higher-point functions, as discussed

in section 7.2.

• Although we parameterized most of the low-twist spectrum in terms of a small amount

of initial data {∆σ,∆ε, fσσε, fεεε, cT }, it would be difficult to fix this data in prac-

tice without already knowing the answer (2.1). The biregular limits in section 8

give constraints. It will be important to understand whether they can be solved

systematically.

The Euclidean regime is also important and currently the best techniques for explor-

ing it are numerical. Perhaps the hybrid approach suggested above can help. It may

also be interesting to study how recent Mellin-space approaches to the bootstrap [56–

58] interact with the results of this work.

43We thank Douglas Stanford for this suggestion.
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9.3 More future directions

A central question is: why do the truncated large-h expansions for [σσ]0, [σε]0, etc., work

so well even at small h? Perhaps our all-orders asymptotic solutions are close to an ex-

act answer. Our work in section 7 suggests the following ansatz for the conformal block

expansion: ∮ i∞

−i∞
dhΛ(h)

π

tan
(
π
(
h−H(h)

))GH(h),h(z, 1− z)Λ(h)T , (9.1)

where H(h) is the twist-Hamiltonian and Λ(h) is a matrix of OPE coefficients. We have

shown how to compute the large-h asymptotics of

Λ(h)
π

tan
(
π
(
h−H(h)

))yH(h)Λ(h)T ∼ Λ(h)yH(h)Λ(h)T (9.2)

using crossing symmetry. (Asymptotics as h→∞ along the real axis are related to asymp-

totics as h → ±i∞ for the class of functions we consider.) However, perhaps one could

compute the full function on the left-hand side of (9.2) using a crossing kernel for SO(d, 2)

conformal blocks [101]. This would remove the difficulty of working with asymptotic ex-

pansions.

One could then try to solve crossing symmetry via an iterative procedure:

1. Start with a few known operators like σ, ε, and T .

2. Compute H(h) and Λ(h) and diagonalize H(h).

3. Plug the results back in to compute corrections to H(h) and Λ(h) from multi-twist

operators.

4. Repeat until the spectrum converges.

It will be interesting to explore this program in the future.

While we have focused on multi-twist operators (in particular double-twist operators),

it is also interesting to consider other types of operator families like logarithmic Regge

trajectories in conformal gauge theories. Such trajectories can still be described using the

techniques in this work, by writing log ` = ∂
∂ε`

ε|ε=0.44 We expect that the techniques of

section 7 give the right language for studying interesting phenomena like mixing between

large-spin single- and double-trace operators in non-planar N = 4 SYM.

It would also be interesting to apply our techniques to large-N theories. Summing up

the effects of graviton exchange in the bulk is important for understanding the emergence

of geometry in AdS/CFT. While Virasoro symmetry makes this relatively simple in 2d

CFTs, it is a difficult task in d > 2. Our all-orders results for large-spin operators may

help make headway on this problem.

Finally, our new data for the 3d Ising CFT may have interesting applications to con-

densed matter and statistical physics. In [102], we used the low-dimension operators in

44This observation was also made in [66].
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table 2 to plot the Euclidean four-point function and check some inequalities from the lat-

tice Ising model. (In this work, we can see explicitly some of the non-Gaussianity discussed

in [102], from the large mixing between [εε]0 and [σσ]1.) It would be interesting if some

of the new operator dimensions and OPE coefficients in this work could be checked with

Monte-Carlo techniques, the ε-expansion, or experiment.
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A Numerical calculation of the 3d Ising spectrum

A.1 More details on the numerics

As explained in section 2.1, our strategy is to compute a partial spectrum SN (p) for several

different points p on the boundary of the allowed region AN , and then choose the operators

that are stable under varying p. To get to the boundary of AN , we can minimize or

maximize any quantity. It is not actually necessary that (∆σ,∆ε, fσσε, fεεε) themselves lie

on the boundary of (2.1), as long as they don’t lie outside (2.1) and some other quantity

is minimal or maximal.

Extremizing an OPE coefficient is technically easier than extremizing an operator

dimension because it can be done in a single optimization step.45 In [68], we chose to

maximize fσσε. In this work, we minimize cT (equivalently maximize fσσT ) as in [20].

The answers are essentially identical. We describe how to extract a partial spectrum by

extremizing an OPE coefficient in section A.2.

To get a sense of the errors in the extremal functional method, we must choose a

variety of points on the boundary of AN . The space of CFT data is infinite-dimensional,

so random sampling is imposible. We must simply try different things, and hope some

results will be invariant.

45See [47] for recent progress on speeding up operator dimension extremization.
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Let tan θσε = fεεε/fσσε. We minimize cT at the following 20 points in (∆σ,∆ε,

θσε)-space:

(∆σ,∆ε, θσε) ∈{
(0.51814898, 1.4126250, 0.9692610), (0.51814937, 1.4126306, 0.9692662),

(0.51814930, 1.4126283, 0.9692632), (0.51814807, 1.4126156, 0.9692547),

(0.51814978, 1.4126348, 0.9692687), (0.51814893, 1.4126251, 0.9692611),

(0.51814927, 1.4126283, 0.9692631), (0.51814881, 1.4126251, 0.9692623),

(0.51814835, 1.4126192, 0.9692574), (0.51814880, 1.4126253, 0.9692632),

(0.51814924, 1.4126285, 0.9692643), (0.51814951, 1.4126320, 0.9692664),

(0.51814865, 1.4126215, 0.9692583), (0.51814945, 1.4126323, 0.9692678),

(0.51814791, 1.4126142, 0.9692544), (0.51814954, 1.4126313, 0.9692654),

(0.51814819, 1.4126180, 0.9692574), (0.51814856, 1.4126210, 0.9692591),

(0.51814828, 1.4126191, 0.9692586), (0.51814931, 1.4126302, 0.9692658)
}

(A.1)

We do not specify the norm
√
f2
εεε + f2

σσε — it is an output of the spectrum computation,

together with a list of other operators.

We assume that σ and ε are the only relevant scalars in the theory. In addition, we

impose gaps in the Z2-even scalar sector (above ε) and spin-2 sector (above Tµν) of the

following form

∆min
`=0 ∈ {3, 3.5} , ∆min

`=2 ∈ {3, 4, 5} . (A.2)

When we impose a gap in the spin-2 sector, we also impose the stress-tensor Ward identity

fσσT /fεεT = ∆σ/∆ε.

The resulting spectra are mostly independent of the gaps, with one exception: in the

extremal functional method, spurious operators often appear at the gaps. Some examples

are the higher spin operators at the unitarity bound discussed in section 6.1. Similarly, the

spectra computed using the above assumptions often (not always) have scalars of dimen-

sions 3 or 3.5 or spin-2 operators of dimension 4 or 5. (In addition, there are occasionally

Z2-odd scalars with dimension 3 due to the gap in that sector.) By varying the gaps, these

operators become “unstable” in the sense that their dimensions depend on the boundary

point p. Hence, in practice we can ignore them compared to the stable operators. Their

OPE coefficients are usually quite small, so they don’t affect the crossing equations much.

We have removed these spurious operators by hand in figures 1 and 2.

We minimize cT by setting up a semidefinite program and solving it with the solver

SDPB [31]. We work with Λ = 43, corresponding to 1265 derivatives of the crossing equa-

tions, and our SDPB parameters are given in table 1.

A.2 Extracting spectra and OPE coefficients from SDPs

A system of k crossing equations for CFT four-point functions can be put in the form

0 =
∑

∆,`,R

~λT∆,`,RF
i
∆,`,R(z, z)~λ∆,`,R , (i = 1, . . . , k) . (A.3)
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Λ 43

κ 40

spins S43

precision 960

findPrimalFeasible False

findDualFeasible False

detectPrimalFeasibleJump False

detectDualFeasibleJump False

dualityGapThreshold 10−60

primalErrorThreshold 10−75

dualErrorThreshold 10−75

initialMatrixScalePrimal 1060

initialMatrixScaleDual 1060

feasibleCenteringParameter 0.1

infeasibleCenteringParameter 0.3

stepLengthReduction 0.7

choleskyStabilizeThreshold 10−200

maxComplementarity 10200

Table 1. SDPB parameters for the computations in this work. S43 is given by {0, . . . , 64} ∪
{67, 68, 71, 72, 75, 76, 79, 80, 83, 84, 87, 88}.

Here, ∆, `, R run over the dimension, spin, and symmetry representations of exchanged

operators. Each F i∆,`,R(z, z) is a matrix whose entries are combinations of conformal blocks,

and the ~λ∆,`,R are vectors of OPE coefficients. For example, for a four-point function of

identical scalars 〈φφφφ〉, k = 1 and F 1
∆,`(z, z) is a 1× 1 matrix with entry v∆φg∆,`(u, v)−

u∆φg∆,`(v, u).

For simplicity, we first consider minimizing the 0 function with respect to the con-

straints (A.3). Thus, we are simply asking when it is possible to find real ~λ∆,`,R such

that (A.3) is true. (We comment about the case where we minimize something nontrivial

later.) In [24, 31], it was shown how to reformulate this question as a Polynomial Matrix

Program (a special type of semidefinite program) of the following form:46 Find y ∈ RN

such that
N∑
n=0

αnM
n
j (x) � 0 for all x ∈ [0,∞), j = 1, . . . , J . (A.4)

where α = (1, y) ∈ RN+1. The notation “M � 0” means “M is positive semidefinite”. The

Mn
j (x) are matrices with polynomial entries

Mn
j (x) =


Pnj,11(x) · · · Pnj,1mj (x)

...
. . .

...

Pnj,mj1(x) · · · Pnj,mjmj (x)

 . (A.5)

In our case, the dual objective function b vanishes because we are minimizing the 0 function.

46We follow the notation of [31] for the rest of this appendix.
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The relation between the matrices Mn
j (x) and the functions F i∆,`,R(z, z) entering the

crossing equation is as follows. Firstly, j corresponds to tuples (`, R). Secondly, n cor-

responds to tuples (i, a, b), where i labels crossing equations and a, b are positive integers

labeling derivatives. We have

Mn
j (x) ≈ χj

(
∆(x)

)−1
∂az∂

b
zF∆(x),`,R(z, z)

∣∣
z=z= 1

2
,

∆(x) = ∆j,min + x , (A.6)

where ∆j,min is the minimum dimension for j = (`, R) (e.g., the unitarity bound for an

operator with spin ` and representation R). χj(∆) is a positive function of ∆, written

explicitly in [31]. The accuracy of the approximation (A.6) can be made arbitrarily good

by increasing the polynomial degree of Mn
j (x).

Consequently, the first N + 1 derivatives of the crossing equations (A.3) are (approxi-

mately) equivalent to

0 =
∑
j

∑
τ

~vTj,τM
n
j (τ)~vj,τ , (A.7)

where

~λ∆,`,R = χj(∆j,min + τ)~vj,τ ,

∆ = ∆j,min + τ . (A.8)

For each j, the τ -sum in (A.7) ranges over a discrete set of nonnegative real numbers.

Equation (A.7) can be rewritten as

0 =
∑
j

∑
τ

Tr
(
Vj,τM

n
j (τ)

)
, Vj,τ � 0 , (A.9)

where Vj,τ is a sum of outer products of ~v’s and is thus positive semidefinite. The vectors

~vj,τ can be recovered from Vj,τ via Cholesky decomposition.47

Thus, if we can find τ ’s and Vj,τ ’s such that (A.9) holds, then (A.8) gives a set of

dimensions and OPE coefficients that solve N + 1 derivatives of the crossing equations and

are consistent with unitarity.

It is simple to find the appropriate τ ’s. The solver SDPB returns a vector y ∈ RN which

can be assembled into α = (1, y) ∈ RN+1 satisfying the constraints (A.7). Taking the inner

product of (A.9) with α, we find

0 =
∑
j,τ

Tr
(
Vj,τ

(
α ·Mj(τ)

))
. (A.10)

47The matrix Vj,τ typically has low rank, which means that numerically it may have very small negative

eigenvalues. Thus, instead of using a Cholesky decomposition, we simply compute its eigenvectors and

throw out those with very small eigenvalues. For computations in this work, it suffices to keep only the first

eigenvector. We expect low rank matrices because a higher-rank matrix would mean that the determinant

of the functional has a higher-order zero at a fixed ∆, which is non-generic. An exception occurs if an

operator is isolated in ∆-space, which is why one can obtain stronger constraints by imposing that the

matrix associated to the ε operator is rank-1 as in [55]. We thank Slava Rychkov and Alessandro Vichi for

discussions on this point.
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This implies that each term in (A.10) vanishes individually, since each term is nonnegative.

However, this is only possible if α ·Mj(τ) is a degenerate mj ×mj matrix. Thus, τ must

be a nonnegative zero of det
(
α ·Mj(x)

)
.

The function det
(
α ·Mj(x)

)
is constrained to be positive for x ∈ [0,∞). Thus, its

positive zeros for must be double zeros. In numerical computations, it never actually attains

the value zero, but instead dips very close to to the x-axis. Thus, it’s more convenient to

compute the τ ’s as local minima of det
(
α ·Mj(x)

)
, which can be computed as zeros of its

derivative (together with a possible zero at x = 0, which must be checked separately).

The matrices Vj,τ can be obtained by solving the linear algebra problem (A.9). How-

ever, they are also already encoded in the primal solution computed by SDPB. Let

dj = maxn
[

deg
(
Mn
j (x)

)]
. The primal solution is a vector u ∈ RP where P counts the

number of tuples (j, r, s, k) with 1 ≤ r ≤ s ≤ mj , k = 0, . . . , dj .
48 We can assemble u into

symmetric matrices

Uj,k = χj(x
(j)
k )
∑
r,s

u(j,r,s,k)E
rs, (A.11)

where Ers is a symmetrized unit matrix with components

(Ers)ab ≡
1

2
(δraδ

s
b + δrbδ

s
a) . (A.12)

The primal solution satisfies the constraint49

0 =
∑
j,k

Tr
(
Uj,kM

n
j (x

(j)
k )
)
, (A.13)

where the x
(j)
k , k = 0, . . . , dj are “sample points” provided as input to SDPB. This is almost

the desired result (A.9), except that Mn
j (x) is evaluated at the sample points x

(j)
k instead

of the τ ’s. However, since since Mn
j (x) is a polynomial of degree dj , its value at τ is a

linear combination of its value at the sample points,

Mn
j (τ) =

dj∑
k=0

L(τ, x
(j)
k )Mn

j (x
(j)
k ) , (A.14)

where L(τ, x
(j)
k ) are Lagrange interpolation coefficients. Thus, we should solve the linear

algebra problem

Uj,k =
∑
τ

Vj,τL(τ, x
(j)
k ) . (A.15)

This is usually an overdetermined system, since the number of positive real zeros of det
(
α ·

Mj(x)
)

is typically smaller than the number of sample points dj + 1. We solve it with a

least-squares fit, using the singular value decomposition of L(τ, x
(j)
k ). The validity of the

fit can be verified by checking the crossing equation (A.7).

48We use the notation u instead of [31]’s x to avoid confusion with the sample points x
(j)
k .

49This is a combination of the equations BTu = 0 and c · u = 0 in [31]. The equation c · u = 0 follows

from equality of the primal and dual objective functions at a solution of the SDP.
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O Z2 ` ∆ τ = ∆− ` fσσO fεεO

ε + 0 1.412625(10) 1.412625(10) 1.0518537(41) 1.532435(19)

ε′ + 0 3.82968(23) 3.82968(23) 0.053012(55) 1.5360(16)

+ 0 6.8956(43) 6.8956(43) 0.0007338(31) 0.1279(17)

+ 0 7.2535(51) 7.2535(51) 0.000162(12) 0.1874(31)

Tµν + 2 3 1 0.32613776(45) 0.8891471(40)

T ′µν + 2 5.50915(44) 3.50915(44) 0.0105745(42) 0.69023(49)

+ 2 7.0758(58) 5.0758(58) 0.0004773(62) 0.21882(73)

Cµνρσ + 4 5.022665(28) 1.022665(28) 0.069076(43) 0.24792(20)

+ 4 6.42065(64) 2.42065(64) 0.0019552(12) −0.110247(54)

+ 4 7.38568(28) 3.38568(28) 0.00237745(44) 0.22975(10)

+ 6 7.028488(16) 1.028488(16) 0.0157416(41) 0.066136(36)

O Z2 ` ∆ τ = ∆− ` fσεO −
σ − 0 0.5181489(10) 0.5181489(10) 1.0518537(41)

σ′ − 0 5.2906(11) 5.2906(11) 0.057235(20)

− 2 4.180305(18) 2.180305(18) 0.38915941(81)

− 2 6.9873(53) 4.9873(53) 0.017413(73)

− 3 4.63804(88) 1.63804(88) 0.1385(34)

− 4 6.112674(19) 2.112674(19) 0.1077052(16)

− 5 6.709778(27) 1.709778(27) 0.04191549(88)

Table 2. Stable operators with dimensions ∆ ≤ 8. The leftmost column shows the names of the

operators from [20]. Errors in bold are rigorous. All other errors are non-rigorous. Because we

have chosen different conventions for conformal blocks, our normalization of OPE coefficients differs

from those in [20, 68] by (A.17).

We are sometimes interested in solving a program with a nonzero objective function

b ∈ RN . When this objective function is a linear combination of contributions of operators

to the crossing equation, we must simply include those operators in the resulting spectrum.

Their OPE coefficients should be multiplied by the square root of the absolute value of the

objective function at the solution.

An implementation of the algorithm described in this section is available at

https://gitlab.com/bootstrapcollaboration/spectrum-extraction.

A.3 Several operators in the 3d Ising CFT

In this section, we list dimensions and OPE coefficients of 112 stable operators obtained

from the calculation described in section A.1 (and plotted in figures 1 and 2). Most of the

stable operators fall into the families [σσ]0 (table 3), [εε]0 (table 4), [σσ]1 (table 5), and

[σε]0 (table 6).50 The rest include σ and ε, and a few low-dimension stable operators that

are not obviously part of any twist family (table 7). For convenience, we also list all stable

operators with dimension ∆ ≤ 8 in table 2.

50A unique assignment of an operator to a twist family is not actually well-defined, due to the fact that

the large-spin expansion is asymptotic, and the possibility of mixing between twist families. However, for

all the operators here, there is only one reasonable choice.
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Z2 ` ∆ τ = ∆− ` fσσO fεεO

+ 2 3 1 0.32613776(45) 0.8891471(40)

+ 4 5.022665(28) 1.022665(28) 0.069076(43) 0.24792(20)

+ 6 7.028488(16) 1.028488(16) 0.0157416(41) 0.066136(36)

+ 8 9.031023(30) 1.031023(30) 0.0036850(54) 0.017318(30)

+ 10 11.0324141(99) 1.0324141(99) 0.00087562(13) 0.0044811(15)

+ 12 13.033286(12) 1.033286(12) 0.000209920(37) 0.00115174(59)

+ 14 15.033838(15) 1.033838(15) 0.000050650(99) 0.00029484(56)

+ 16 17.034258(34) 1.034258(34) 0.000012280(18) 0.00007517(18)

+ 18 19.034564(12) 1.034564(12) 2.98935(46) · 10−6 0.0000191408(89)

+ 20 21.0347884(84) 1.0347884(84) 7.2954(10) · 10−7 4.8632(23) · 10−6

+ 22 23.034983(11) 1.034983(11) 1.78412(27) · 10−7 1.23201(72) · 10−6

+ 24 25.035122(11) 1.035122(11) 4.37261(60) · 10−8 3.1223(15) · 10−7

+ 26 27.035249(11) 1.035249(11) 1.07287(18) · 10−8 7.8948(42) · 10−8

+ 28 29.035344(19) 1.035344(19) 2.6409(19) · 10−9 1.9992(23) · 10−8

+ 30 31.035452(16) 1.035452(16) 6.447(24) · 10−10 5.003(20) · 10−9

+ 32 33.035473(28) 1.035473(28) 1.640(25) · 10−10 1.308(21) · 10−9

+ 34 35.035632(67) 1.035632(67) 3.58(22) · 10−11 2.90(19) · 10−10

+ 36 37.035610(41) 1.035610(41) 1.15(13) · 10−11 9.6(11) · 10−11

+ 38 39.035638(58) 1.035638(58) 2.26(71) · 10−12 1.93(60) · 10−11

+ 40 41.03564(13) 1.03564(13) 7.3(15) · 10−13 6.3(13) · 10−12

Table 3. Operators in the family [σσ]0. The first line is the stress tensor Tµν .

Z2 ` ∆ τ = ∆− ` fσσO fεεO

+ 4 6.42065(64) 2.42065(64) 0.0019552(12) −0.110247(54)

+ 6 8.4957(75) 2.4957(75) 0.000472(49) −0.0431(48)

+ 8 10.562(12) 2.562(12) 0.0001084(69) −0.0139(11)

+ 10 12.5659(57) 2.5659(57) 0.00002598(39) −0.004437(62)

+ 12 14.633(21) 2.633(21) 6.10(33) · 10−6 −0.001224(60)

+ 14 16.6174(75) 2.6174(75) 1.417(34) · 10−6 −0.0003791(54)

+ 16 18.678(24) 2.678(24) 3.547(59) · 10−7 −0.0000972(64)

+ 18 20.654(22) 2.654(22) 7.99(90) · 10−8 −0.0000284(26)

+ 20 22.651(27) 2.651(27) 1.83(13) · 10−8 −7.58(47) · 10−6

+ 22 24.671(18) 2.671(18) 4.55(72) · 10−9 −2.09(19) · 10−6

+ 24 26.681(20) 2.681(20) 1.168(29) · 10−9 −5.67(17) · 10−7

+ 26 28.706(24) 2.706(24) 2.81(17) · 10−10 −1.49(11) · 10−7

+ 28 30.6923(81) 2.6923(81) 6.69(36) · 10−11 −4.162(88) · 10−8

+ 30 32.702(11) 2.702(11) 1.62(16) · 10−11 −1.066(59) · 10−8

+ 32 34.718(17) 2.718(17) 4.15(42) · 10−12 −2.83(18) · 10−9

+ 34 36.717(16) 2.717(16) 9.44(77) · 10−13 −7.33(59) · 10−10

+ 36 38.697(17) 2.697(17) 2.40(39) · 10−13 −2.12(34) · 10−10

+ 38 40.701(19) 2.701(19) 5.4(17) · 10−14 −5.2(15) · 10−11

+ 40 42.726(18) 2.726(18) 1.59(49) · 10−14 −1.55(48) · 10−11

+ 42 44.729(15) 2.729(15) 4.2(12) · 10−15 −4.4(11) · 10−12

Table 4. Operators in the family [εε]0.
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Z2 ` ∆ τ = ∆− ` fσσO fεεO

+ 0 3.82968(23) 3.82968(23) 0.053012(55) 1.5360(16)

+ 2 5.50915(44) 3.50915(44) 0.0105745(42) 0.69023(49)

+ 4 7.38568(28) 3.38568(28) 0.00237745(44) 0.22975(10)

+ 6 9.32032(34) 3.32032(34) 0.00055657(42) 0.06949(11)

+ 8 11.2751(24) 3.2751(24) 0.00013251(91) 0.01980(15)

+ 10 13.2410(10) 3.2410(10) 0.00003234(15) 0.005459(39)

+ 12 15.2301(64) 3.2301(64) 7.64(14) · 10−6 0.001538(22)

+ 14 17.1944(55) 3.1944(55) 1.930(46) · 10−6 0.000386(14)

+ 16 19.1950(62) 3.1950(62) 4.568(72) · 10−7 0.0001107(16)

+ 18 21.1720(23) 3.1720(23) 1.153(27) · 10−7 0.00002798(33)

+ 20 23.167(10) 3.167(10) 2.74(11) · 10−8 7.45(52) · 10−6

+ 22 25.163(10) 3.163(10) 6.88(22) · 10−9 1.937(51) · 10−6

+ 24 27.1491(82) 3.1491(82) 1.716(45) · 10−9 4.92(42) · 10−7

+ 26 29.1460(53) 3.1460(53) 4.183(78) · 10−10 1.347(62) · 10−7

+ 28 31.1306(52) 3.1306(52) 1.056(50) · 10−10 3.35(10) · 10−8

+ 30 33.126(12) 3.126(12) 2.54(10) · 10−11 8.35(42) · 10−9

+ 32 35.1299(77) 3.1299(77) 6.71(17) · 10−12 2.36(13) · 10−9

+ 34 37.1174(64) 3.1174(64) 1.39(14) · 10−12 4.87(48) · 10−10

+ 36 39.1079(78) 3.1079(78) 4.84(56) · 10−13 1.70(17) · 10−10

+ 38 41.101(29) 3.101(29) 8.4(28) · 10−14 2.5(11) · 10−11

+ 40 43.102(18) 3.102(18) 2.63(64) · 10−14 9.0(26) · 10−12

+ 42 45.116(27) 3.116(27) 7.9(22) · 10−15 3.42(95) · 10−12

Table 5. Operators in the family [σσ]1.

We estimate errors as standard deviations in our sample set of 60 partial spectra. It

is important to remember that these error estimates are non-rigorous (in contrast to the

bounds on ∆σ,∆ε, fσσε, and fεεε, in (2.1), which are rigorous). In fact, the tables show

that this method of assigning errors is imperfect. In table 6, for example, the precision

of the OPE coefficients fσεO varies significantly at large `. For instance, the error for the

OPE coefficient of [σε]0,`=27 is 0.3%, while the error for [σε]0,`=28 is 2%. It is surprising

that these should be so different. Perhaps a wider scan of the boundary of the allowed

region AN would equalize the errors somewhat. Regardless, the reader should take the

error estimates with a grain of salt.

Because we have chosen different conventions for conformal blocks, our OPE coefficients

are normalized differently from those in [68]. Specifically, the leading terms in the conformal

block expansion are given by

f12Of43OG
r=

∆12
2
,s=

∆34
2

h= ∆−`
2
,h= ∆+`

2

(z, z) = f12Of43Oz
∆−`

2 z
∆+`

2 + . . . , (here) ,

f12Of34Og
∆12,∆34

∆,` (z, z) = f12Of34O(−1)`
(ν)`
(2ν)`

z
∆−`

2 z
∆+`

2 + . . . (in [68]) , (A.16)

where ν = d−2
2 = 1

2 . Using f43O = (−1)`Of34O, we find[
f12Of34O

]
here

=

[
f12Of34O

(ν)`O
(2ν)`O

]
in [68]

. (A.17)
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Z2 ` ∆ τ = ∆− ` fσεO

− 2 4.180305(18) 2.180305(18) 0.38915941(81)

− 3 4.63804(88) 1.63804(88) 0.1385(34)

− 4 6.112674(19) 2.112674(19) 0.1077052(16)

− 5 6.709778(27) 1.709778(27) 0.04191549(88)

− 6 8.08097(25) 2.08097(25) 0.0286902(80)

− 7 8.747293(56) 1.747293(56) 0.01161255(13)

− 8 10.0623(29) 2.0623(29) 0.00745(21)

− 9 10.77075(36) 1.77075(36) 0.003115(12)

− 10 12.0492(18) 2.0492(18) 0.001940(19)

− 11 12.787668(92) 1.787668(92) 0.000823634(82)

− 12 14.0383(33) 2.0383(33) 0.0004983(88)

− 13 14.80006(51) 1.80006(51) 0.0002150(10)

− 14 16.0305(12) 2.0305(12) 0.0001291(12)

− 15 16.81009(16) 1.81009(16) 0.000055870(15)

− 16 18.025(11) 2.025(11) 0.0000313(30)

− 17 18.81794(18) 1.81794(18) 0.0000144219(91)

− 18 20.01947(94) 2.01947(94) 8.442(28) · 10−6

− 19 20.8246(11) 1.8246(11) 3.690(54) · 10−6

− 20 22.0152(36) 2.0152(36) 2.131(28) · 10−6

− 21 22.83035(11) 1.83035(11) 9.5120(13) · 10−7

− 22 24.01143(53) 2.01143(53) 5.4746(61) · 10−7

− 23 24.83518(65) 1.83518(65) 2.428(11) · 10−7

− 24 26.00809(94) 2.00809(94) 1.3908(17) · 10−7

− 25 26.8394(13) 1.8394(13) 6.16(18) · 10−8

− 26 28.0045(17) 2.0045(17) 3.523(20) · 10−8

− 27 28.84330(31) 1.84330(31) 1.5809(50) · 10−8

− 28 30.0042(38) 2.0042(38) 8.86(18) · 10−9

− 29 30.84667(23) 1.84667(23) 4.0311(33) · 10−9

− 30 31.99996(74) 1.99996(74) 2.2555(81) · 10−9

− 31 32.84955(61) 1.84955(61) 1.0144(28) · 10−9

− 32 33.9976(28) 1.9976(28) 5.82(11) · 10−10

− 33 34.85245(50) 1.85245(50) 2.669(34) · 10−10

− 34 35.99600(99) 1.99600(99) 1.374(72) · 10−10

− 35 36.85548(90) 1.85548(90) 5.94(34) · 10−11

− 36 37.9939(12) 1.9939(12) 4.02(45) · 10−11

− 37 38.85691(49) 1.85691(49) 1.99(19) · 10−11

− 38 39.9895(17) 1.9895(17) 9.5(18) · 10−12

− 39 40.8583(11) 1.8583(11) 3.7(13) · 10−12

− 40 41.9886(15) 1.9886(15) 2.50(96) · 10−12

− 41 42.8607(14) 1.8607(14) 1.32(24) · 10−12

− 42 43.9915(21) 1.9915(21) 7.9(19) · 10−13

Table 6. Operators in the family [σε]0.
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Z2 ` ∆ τ = ∆− ` fσσO fεεO

+ 0 1.412625(10) 1.412625(10) 1.0518537(41) 1.532435(19)

+ 2 7.0758(58) 5.0758(58) 0.0004773(62) 0.21882(73)

+ 4 8.9410(99) 4.9410(99) 0.0001173(21) 0.08635(18)

+ 6 10.975(13) 4.975(13) 0.00002437(59) 0.02775(17)

+ 0 6.8956(43) 6.8956(43) 0.0007338(31) 0.1279(17)

+ 0 7.2535(51) 7.2535(51) 0.000162(12) 0.1874(31)

Z2 ` ∆ τ = ∆− ` fσεO −
− 0 0.5181489(10) 0.5181489(10) 1.0518537(41)

− 0 5.2906(11) 5.2906(11) 0.057235(20)

− 2 6.9873(53) 4.9873(53) 0.017413(73)

Table 7. Stable operators not in one of the families [σσ]0, [εε]0, [σσ]1, [σε]0. Errors in bold are

rigorous. All other errors are non-rigorous.

B Sums of SL(2,R) blocks with general coefficients and general spacing

Consider the sum∑
h=h0+`+δ(h)

`=0,1,...

∂h

∂`
p(h)k2h(1−z) =

∑
a

cay
a+

∞∑
k=0

yk
(
αk[p, δ](h0) log y+βk[p, δ](h0)

)
, (B.1)

with general coefficients p(h), and where the weights are the solutions of

h = h0 + `+ δ(h) , ` = 0, 1, . . . . (B.2)

To compute the Casimir-singular terms, we must match asymptotic expansions

p(h) ∼
∑
a∈A

caSa(h) . (B.3)

To compute Casimir-regular terms, we expand k2h(1− z) in small y and naively switch the

order of summations,

∞∑
k=0

∂

∂k

(
yk
∑
h

∂h

∂`
p(h)

(
− Γ(2h)

Γ(h)2
T−k−1(h)

))
. (B.4)

We must now regularize the sum over h. Using ∂h
∂` = 1 + ∂δ

∂h0
, one can show

∂h

∂`
p(h)

(
− Γ(2h)

Γ(h)

2

T−k−1(h)

)
=

∞∑
m=0

∂mh0

(
p(h0 + `)

δ(h0 + `)m

m!

(
−

Γ
(
2(h0 + `)

)
Γ(h0 + `)2

T−k−1(h0 + `)

))
. (B.5)

Now form the asymptotic expansions

p(h)
δ(h)m

m!
∼
∑
a∈Am

c(m)
a Sa(h) . (B.6)
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with coefficients c
(m)
a and sets Am. (When m = 0, these reduce to ca and A above.) Note

that −Γ(2h)
Γ(h)2Sa(h) = (1−2h)Ta(h) ∼ h−2a−1. The derivative ∂h0 decreases degree in ` by 1.

Thus, the combination

fk(`, h0) ≡

∂h

∂`
p(h)

(
−Γ(2h)

Γ(h)

2

T−k−1(h)

)
−

M∑
m=0

∑
a∈Am

a≤k−m/2

c(m)
a ∂mh0

((
1− 2(h0 + `)

)
Ta(h0 + `)T−k−1(h0 + `)

)
(B.7)

falls off faster than `−1, so its sum over ` converges. Here, we must choose M so that

min(Am) ≥ k−m/2 for all m > M . If δ approaches zero as h→∞, it is sufficient to take

M ≥ 2k − 2 min(A).

Summing (B.7) over ` and adding back the regularized sum of the subtractions, we find

αk[p, δ](h0) =

M∑
m=0

∑
a∈Am

a≤k−m/2

c(m)
a ∂mh0

Aa,−k−1(h0) +

∞∑
`=0

fk(`, h0) . (B.8)

Note that fk(`, h0) as we’ve defined it is analytic in k, so we can form the derivative

βk[p, δ](h0). The above result generalizes easily to the case of alternating or even sums,

where we must simply replace A → A− or A → Aeven and modify the sum over ` appro-

priately.

B.1 Special cancellations between singular and regular parts

We sometimes encounter sums where both the Casimir-singular and Casimir-regular part

naively diverge, but the divergences cancel to leave a finite quantity. This occurs in sums

over un-mixed blocks with coefficients limε→0 Γ(−ε)2Sε(h) and in sums over mixed blocks

with coefficients Γ(−ε)Sr,sε−r(h). In such sums, the naive Casimir-singular parts are propor-

tional to

lim
ε→0

Γ(−ε)2yε =
1

2
log2 y + lim

ε→0

(
1

ε2
+

log y + 2γ

ε
+ 2γ log y + 2γ2 +

π2

6

)
, (B.9)

or in the case of mixed blocks

lim
ε→0

Γ(−ε)yε−r = −y−r log y − lim
ε→0

y−r
(

1

ε
+ γ

)
. (B.10)

We define regularized quantities αk by replacing S0(h) → Sε(h) and Sr,s−r(h) → Sr,sε−r(h),

adding the quantities in parentheses in (B.9) or (B.10) to αk, and then taking the limit

ε → 0. Examples of this procedure are given in (6.22) and (6.29). In general, we must

apply it whenever the asymptotic large-h expansion of p(h) contains terms of the form

limε→0 Γ(−ε)2Sε(h) or Γ(−ε)Sr,sε−r(h).
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1 2

4 3

a

b

c

d

Figure 21. The Casimir-singular part of the above diagram is the same, whether we interpret it

as [db]n exchange in the 12→ 34 channel or [ac]m exchange in the 23→ 14 channel.

C Box diagrams

We claim that the Casimir-singular part of the box diagram in figure 21 is the same

whether we read the diagram from left-to-right or bottom-to-top. Consequently, the

Casimir-singular part of the sum of box diagrams over all possible internal legs is crossing-

symmetric.51

We can regard any CFT as a 2d theory with SL(2,R) × SL(2,R) symmetry. If our

claim holds in 2d, it holds in general dimensions. A benefit of working in 2d is that tensor

structures are extremely simple, so we can prove the claim for external operators of any

spin (not just scalars).

Some conventions in 2d theories are different from those in the main text. We have

the two and three-point functions

〈φ(z1, z1)φ(z2, z2)〉 =
1

z2h
12 z

2h
12

〈φ1(z1, z1)φ2(z2, z2)φ3(z3, z3)〉 = f123
1

zh1+h2−h3
12 zh2+h3−h1

23 zh3+h1−h2
31

× (z ↔ z) . (C.1)

In unitary theories with these conventions, operators satisfy the reality property

φ(z, z)† = (−1)`φ(z, z) . (C.2)

That is, even-spin operators are real and odd-spin operators are imaginary. The three-point

coefficients have the same reality properties as the product of operators. They satisfy the

symmetry property fabc = fbac(−1)`a+`b+`c and similarly for other permutations.

51This is equivalent to the claim that exponentiation of the twist Hamiltonian in section 7 is consistent

with crossing-symmetry at asymptotically large spin, to second order.
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Consider a four-point function 〈φ1 · · ·φ4〉 where the operators φi have weights (hi, hi)

(not necessarily equal). We have the conformal block expansion

〈φ1(z1, z2) · · ·φ4(z4, z4)〉 =
1

zh1+h2
21 zh3+h4

43

zh34
41 z

h12
32

zh12+h34
31

× (z ↔ z)

×
∑
a

f12af34ak
h12,h34

2ha
(z)kh12,h34

2ha
(z) . (C.3)

The crossing equation reads

y−h1−h3
∑
a

f12af34ak
h12,h34

2ha
(1−z)kh12,h34

2ha
(z) = y−h1−h3

∑
a

f23af41ak
h32,h14

2ha
(z)kh32,h14

2ha
(1−z) .

(C.4)

On the right-hand side, we have the expansions

yh1+h3kh32,h14

2hO
(1− z) =

∞∑
k=0

Kh32,h14

k (hO)yk+h1+h2 + (3↔ 1, 2↔ 4) , (C.5)

y−h1−h3kh32,h14

2hO
(z) =

∞∑
m=0

(hO − h32)m(hO − h14)m
(2hO)mm!

(−1)myhO+m−h1−h3 . (C.6)

On the left-hand side, this matches to the contribution of the double-twist operators [12]n.

We have

λ12[12]n(h)λ34[12]n(h) ∼
∑
a

f23af41aα
1234
a (h)β1234

a (n) + (−1)`+`1+`2(1↔ 2)

α1234
a (h) =

∞∑
m=0

(ha − h32)m(ha − h14)m
(2ha)mm!

(−1)mSh12,h34

ha+m−h1−h3
(h) (C.7)

β1234
a (n) =

n∑
k=0

Kh32,h14

k (ha)S
h12,h34

−k−h1−h2
(h1 + h2 + n) . (C.8)

As in section 5.3.3, the λ’s differ from the f ’s by a Jacobian factor ∂h
∂` . To get the first

line, we used fabc = (−1)`a+`b+`cfbac. One can check that swapping 3 ↔ 4 gives the same

quantity as swapping 1↔ 2 because

(−1)`1+`2f13af42a = (−1)`3+`4f24af31a , (C.9)

and

α2134
a (h) ∼ α1243

a (h) , (C.10)

β2134
a (n) = β1243

a (n) . (C.11)

(Here, “∼” means the two quantities have the same large-h expansion to all orders in 1/h.)
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Let us now look at the contribution of the double-twist operator [bd]n in the 12→ 34

channel. We have

λbd[bd]n(h)λ12[bd]n(h) ∼
∑
a

fd1afa2bα
bd12
a (h)βbd12

a (n) + (−1)`+`b+`d(b↔ d)

λdb[bd]n(h)λ34[bd]n(h) ∼
∑
c

fb3cfc4dα
db34
c (h)βdb34

c (n) + (−1)`+`b+`d(b↔ d)

λdb[bd]n(h)λbd[bd]n(h) ∼ Shbd,hdb−hb−hd(h)Shbd,hdb−hb−hd
(hb + hd + n) + . . . (C.12)

where we have used fabc = fcab. Thus,

λ12[bd]n(h)λ43[bd]n(h) ∼
∑
a,c

fd1afa2bfb3cfc4d
αbd12
a (h)αdb34

c (h)

Shbd,hdb−hb−hd(h)

βbd12
a (n)βdb34

c (n)

Shbd,hdb−hb−hd
(hb + hd + n)

+ (b↔ d) + . . . , (C.13)

where “ . . . ” represent terms proportional to (−1)` which do not contribute to the Casimir-

singular part.

Now we would like to compute the Casimir-singular terms in

y−h1−h3
∑
h,n

f12[bd]n(h)f43[bd]n(h)kh12,h34

2h[bd]n
(1− z)kh12,h34

2h[bd]n

(z) . (C.14)

Isolating the contribution from a, c, the sums factorize into holomorphic and antiholomor-
phic parts. The antiholomorphic sum is

∞∑
n=0

βbd12a (n)βdb34c (n)

Shbd,hdb−hb−hd
(hb + hd + n)

kh12,h34

2(hb+hd+n)
(z) (C.15)

=

∞∑
n,m=0

βbd12a (n)βdb34c (n)

Shbd,hdb−hb−hd
(hb + hd + n)

(hb + hd + n− h12)m(hb + hd + n− h34)m(
2(hb + hd + n)

)
m
m!

(−1)myhb+hd+n+m

=

∞∑
m=0

m∑
n=0

βbd12a (n)βdb34c (n)

Shbd,hdb−hb−hd
(hb+hd+n)

(hb+hd+n−h12)m−n(hb+hd+n−h34)m−n(
2(hb+hd+n)

)
m−n(m−n)!

(−1)m−nyhb+hd+m.

=

∞∑
m=0

γ1234;abcd(m)yhb+hd+m, (C.16)

where

γ1234;abcd(m) ≡
m∑
n=0

(−1)m−n
βbd12
a (n)βdb34

c (n)

Shbd,hdb−hb−hd
(hb + hd + n)

(hb + hd + n− h12)m−n(hb + hd + n− h34)m−n(
2(hb + hd + n)

)
m−n(m− n)!

.

(C.17)

Meanwhile, to do the sum over h, we must find a large-h expansion

αbd12
a (h)αdb34

c (h)

Shbd,hdb−hb−hd(h)
∼
∞∑
m=0

cmS
h12,h34

ha+hc−h1−h3+m(h) . (C.18)
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We claim that these coefficients are

cm = γ3214;badc(m) . (C.19)

That is, we have the truly remarkable identity

αbd12
a (h)αdb34

c (h)

Shbd,hdb−hb−hd(h)
∼
∞∑
m=0

γ3214;badc(m)Sh12,h34

ha+hc−h1−h3+m(h) . (C.20)

Thus, we obtain(∑
a,c

∑
m,n

fd1afa2bfb3cfc4dγ3214;badc(m)γ1234;abcd(n) + b↔ d

)
× yha+hc−h1−h3+myhb+hd−h1−h3+n (C.21)

We should sum over unordered pairs b, d, with weight 1/2 for the case b = d because

only even-spin operators are present. This is equivalent to dropping the second term and

summing over ordered pairs b, d. Overall, the Casimir-singular part in y, y is

∑
a,b,c,d

∞∑
m,n=0

fd1afa2bfb3cfc4dγ3214;badc(m)γ1234;abcd(n)yha+hc−h1−h3+myhb+hd−h1−h3+n.

(C.22)

The summand is invariant under (1, a, d, y,m) ↔ (3, b, c, y, n) and multiplication by the

phase (−1)`1+`2+`3+`4 coming from the prefactor in the crossing equation (C.4). Thus, the

above result is crossing-symmetric.

There are some special cases of this calculation that we must take care with. Each

special case will require us to modify the calculation slightly. We should check that the

results are still crossing-symmetric after these modifications.

Suppose hd + hb = h1 + h2. For simplicity we assume [bd] = [12], though this is not

actually necessary. Then in the 1, 2→ 3, 4 channel we have

y−h1−h3
∑
n,h

f12[12]n(h)f34[12]n(h)k2(h1+h2+n+γ[12]n/2)(z)kh12,h34

2h (1− z) = (C.23)

y−h1−h3
∑
n,h

f12[12]n(h)f34[12]n(h)
γ[12]n(h)

2

× 1

2

(
∂

∂h1

+
∂

∂h2

)
kh12,h34

2(h1+h2+n)
(z)kh12,h34

2h (1− z) + . . . (C.24)

The combination above is

f12[12]n(h)f34[12]n(h)
γ[12]n(h)

2
∼ lim

b,d→1,2
(hb + hd − h1 − h2)f12[bd]n(h)f34[bd]n(h) . (C.25)

Recall that we are interested in computing only the Casimir-singular terms with respect

to the crossed-channel. The Casimir-regular terms are proportional to

yk−h3+h2 , yk−h1+h4 (C.26)

– 76 –



J
H
E
P
0
3
(
2
0
1
7
)
0
8
6

Only the parts proportional to yk−h3+h2 log y or yk−h1+h4 log y are Casimir-singular. To

determine them, we can use

∂

∂h
kr,s

2h
(z) = log y kr,s

2h
(z) +

∞∑
k=1

#yk+h. (C.27)

Thus,

y−h1−h3
1

2

(
∂

∂h1

+
∂

∂h2

)
kh12,h34

2(h1+h2+n)
(z) = y−h1−h3 log y kh12,h34

2(h1+h2+n)
(z) + [ . . . ]y , (C.28)

and the Casimir-singular terms above are

y−h1−h3 log y
∑
n,h

f12[12]n(h)f34[12]n(h)
γ[12]n(h)

2
kh12,h34

2(h1+h2+n)
(z)kh12,h34

2h (1− z) =

lim
b,d→2,1

(hd + hb − h1 − h2)fd1afa2bfb3cfc4d

×
∑
m,n

γ3214;badc(m)γ1234;abcd(n)× yha+hc−h1−h3+myhb+hd−h1−h3+n log y .

(C.29)

The y-Casimir-regular terms in the 12 → 34 channel start at n = 1 (i.e. not at leading

order in y), because of the fact that k2h has leading order yh, with a coefficient that is

independent of h.

In the case where we have [db] = [12] = [34], the Casimir-singular terms are given by

expanding to second order in the anomalous dimension γ[12]n .

y−h1−h3
∑
n,h

f12[12]n(h)2k2(h1+h2+n+γ[12]n/2)(z)kh12,h34

2h (1− z) = (C.30)

y−h1−h3
∑
n,h

f12[12]n(h)2 1

2

(
γ[12]n(h)

2

)2

×

(
1

2

(
∂

∂h1

+
∂

∂h2

))2

kh12,h34

2(h1+h2+n)
(z)kh12,h34

2h (1− z) + . . . (C.31)

This time, only the log y2 terms are Casimir-singular. By similar logic as before, they are

given by

lim
b,d→2,1

1

2
(hd + hb − h1 − h2)2fd1afa2bfb3cfc4d

×
∑
m,n

γ3214;badc(m)γ1234;abcd(n)× yha+hc−h1−h3+myhb+hd−h1−h3+n log2 y , (C.32)

where 3, 4 = 1, 2 or 3, 4 = 2, 1, depending on which correlator we’re studying. The Casimir-

regular terms start at order n = 1, by the same logic as before.

Another type of special case is when ha + hc = h1 + h4 or ha + hc = h2 + h3 or

both. Naively, this leads to poles in the holomorphic part of the Casimir-singular terms.
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However, the Casimir-singular and Casimir-regular parts combine to give a finite result

in these cases. (We saw an example in section 6.2.) In the first case, we have a sum

proportional to

lim
a→−r

Γ(−a− r)
∑
h

Sr,sa (h)kr,s2h (1− z)

= lim
a→−r

Γ(−a−r)

(
ya+

π

sin
(
π(s−r)

) Γ(−a)2

Γ(−a−r)Γ(−a−s)

(
Γ(1−r)2Aa,r−1(h0)

Γ(1 + s− r)
y−r− (r ↔ s)

))
= −y−r log y + [ . . . ]y , (C.33)

where

r = h12 , s = h34 , a = ha + hc − h1 − h3 , (C.34)

and ha + hc → h1 + h4. The correct Casimir-singular term (C.33) can be obtained by

multiplying the naive answer (containing the pole in h1 + h3 − ha − hc) by

(ha + hc − h1 − h4) log y (C.35)

and then taking the limit. This is exactly the same prescription we gave for curing h poles

in (C.29), and the two special cases are related by crossing.

Finally, if ha + hc = h1 + h4 = h2 + h3, then we have

lim
a→−r

Γ(−a− r)2
∑
h

Sr,ra (h)kr,r2h (1− z) =
1

2
y−r log2 y + [ . . . ]y , (C.36)

where now [ . . . ]y includes y−r log y and y−r terms. To get the correct Casimir-singular

part, we multiply the naive answer by

(ha + hc − h1 − h4)2 1

2
log2 y (C.37)

and then take the limit. This exactly corresponds with the prescription for h double

poles (C.32), and again these cases are related by crossing.
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