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1 Introduction

In models with linear symmetries there are well-known Ward identities constraining the

physical observables, both at tree level and regarding quantum corrections, in the absence

of anomalies. In the case of nonlinear symmetries, often associated with some coset space

G/H, it is known that certain soft theorems relate on-shell amplitudes with different num-

ber of legs to each other. However, until recently there was no general analogue of the

Ward identities for the case of nonlinear, spontaneously broken symmetries, for example

in Volkov-Akulov (VA) theory [1]. Such a general analysis of nonlinear symmetries was

performed at tree level in [2], where the relevant Ward type identities were derived through

a generalization of the background field method in the abstract formalism of DeWitt [3–5].

The construction provides an initial method for analyses, with a possible, later continuation

to loops. The new identities in [2] should be applicable to any model with nonlinear sym-

metry1 where the action and its nonlinear symmetries are known, and the transformation

rule has a constant field-independent part as well as various powers of the fields beyond

the linear dependence. Examples for which the new identities should be valid include the

VA theory with fermionic, nonlinear supersymmetry [1], N = 8 supergravity with bosonic,

nonlinear E7(7) symmetry [9], and the Dirac-Born-Infeld-Volkov-Akulov (DBI-VA) model

with 16 linear + 16 nonlinear supersymmetries, as presented in [10].

The purpose of this article is to test these new, general identities, applicable to such

different examples, in the simplest setting possible: the VA model. We will study the

nonlinear supersymmetry and the relation between the symmetry and the soft limits for

1The background field method for NSM (nonlinear sigma models) was developed in [6]. General models

with single and multiple Nambu-Goldstone bosons were studied recently in [7, 8].
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the on-shell amplitudes in the VA theory, to lowest order in the free fields, guided by the

general identities derived in [2].

In [11], it was shown that the S-matrix in the fermionic VA theory satisfies Adler’s prin-

ciple, i.e. that elements of the on-shell S matrix tend to zero when any of the four-momenta

of the fermionic goldstino tend to zero. Subsequently, the VA low-energy theorems, includ-

ing the single and double soft limits, were studied in [12], and it was shown that the VA

double soft limit is given by the supersymmetry algebra. The single and double soft limits

in the case of a bosonic, nonlinear E7(7) symmetry in N = 8 supergravity were studied

in [13–15]. However, it was only recently realized [16] that the double soft limits in those

two theories are of the same nature [13, 15]. Namely, that the double soft limit is defined

by an algebra of the spontaneously broken symmetry generators G resulting in an unbroken

symmetry H, symbolically

[G,G] = H, (1.1)

with G the generators of E7(7) and H the generators of SU(8), or, in the VA model, G the

fermionic super-Poincaré and H a bosonic translation [11].

Prior to [2], this universality of the double soft limit was an observation on the struc-

ture of amplitudes explicitly constructed either using Feynman rules as in [16], recursion

relations as in [17], or the CHY scattering equations, as in [18, 19]. In [2], an explanation

of the universality was provided: it was shown why the algebras of these symmetries show

up in the double soft limit in the solution for a background field, as a functional of the free

fields.

In the context of string theory the Volkov-Akulov Lagrangian can be obtained by gauge

fixing the κ-symmetric D3 brane action, which makes that model very interesting, as it is

related to a fundamental way of spontaneous supersymmetry breaking in string theory.

2 The VA model

The Lagrangian in the D = 4, N = 1 VA model2 is

L = −1

2
detA , (2.1)

where the vierbein A is3

Aµ
ν ≡ δµν + iψ∂µσ

νψ̄ − i∂µψσνψ̄ ≡ δµν + iψ
←→
∂µσ

νψ̄ . (2.2)

The Lagrangian (2.1) is invariant under the nonlinear supersymmetry variations

δQ(ε, ε̄)ψa = εa − i(ψσµε̄− εσµψ̄)∂µψ
a, (2.3a)

δQ(ε, ε̄)ψ̄ȧ = ε̄ȧ − i(ψσµε̄− εσµψ̄)∂µψ̄ȧ , (2.3b)

2The notation follows [20], except that we have set the goldstino decay constant κ = 1 for simplicity. In

addition, we use the unconstrained field ψ in the action and reserve λ for the on-shell, free field, as it is often

used in amplitudes. Our spinor indices will be (a, ȧ) to avoid a confusion with the symmetry parameters

ξα of the background field method.
3Throughout the article, Greek letters will denote spacetime (Lorentz) indices, as in ∂µ.
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where (εa, ε̄ȧ) are infinitesimal Weyl spinor transformation parameters. The transforma-

tions form the algebra [
δQ(ε, ε̄), δQ(η, η̄)

]
= −2i(εσρη̄ − ησρε̄)∂ρ . (2.4)

The variations of the action are given by

δS

δψa
= i Tµν(σν∂µψ̄)a + i∂µ

[
Tµν(σνψ̄)a

]
, (2.5a)

δS

δψ̄ȧ
= i Tµν(∂νψσµ)ȧ + i ∂µ

[
T νµ(ψσν)ȧ

]
, (2.5b)

where Tµν is the on-shell conserved Noether energy-momentum tensor associated with

translation invariance

Tµν = ∂νψa
∂L

∂∂µψa
+

∂L
∂∂µψ̄ȧ

∂νψ̄ȧ − ηµνL

= −1

2
detA(A−1)νµ = −1

2
ηµν + T̃µν .

(2.6)

The Volkov-Akulov Lagrangian transforms as a total derivative under the supersym-

metry transformations in (2.3)

δQ(ε, ε̄)L = − i
2
∂µ
[

detA(ψσµε̄− εσµψ̄)
]
≡ ∂µJ µ, (2.7)

and hence the action S =
∫
d4xL is invariant under those transformations.

2.1 The VA model and the background field method

To relate the VA model to the general background field method [3] adapted to nonlinear

symmetries in [2], we use the follolwing dictionary: the set of all fields in the model (φi)

includes the VA goldstino (ψ, ψ̄), and the symmetry parameters (ξα) include the constant

fermions (ε, ε̄):

φi = (ψa, ψ̄ȧ) , ξα = (εa, ε̄ȧ) . (2.8)

The solutions to the free field equations, special cases of (ψ, ψ̄), are denoted by (λ, λ̄):

− i(∂µλσµ)ȧ = 0 , −i(σµ∂µλ̄)a = 0 . (2.9)

The symmetries of the action S(φ) shown in (2.1), in abstract form given as

δφi = Riα(φ)ξα, (2.10)

and detailed in (2.3), form the algebra[
Riα,j(φ),Rjβ(φ)

}
= fγαβR

i
γ(φ) . (2.11)

The functional derivative of the action has two components

S,i ≡
δS

δφi
=

(
δS

δψa
,
δS

δψ̄ȧ

)
, (2.12)
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and for the action to have a symmetry under some global transformation of the fields, the

corresponding variation of the Lagrangian must be a total derivative, compare with (2.7):

δL =
δS

δφi
Riα(φ)ξα + ∂µ(J N )µ = ∂µJ µ. (2.13)

Here, the Noether current is

(J N )µ ≡ ∂L
∂∂µφi

Riα(φ)ξα, (2.14)

and when the equations of motion given by the action are satisfied, S,i = 0, the current

conservation follows:

∂µ(J N )µ − ∂µJ µ = 0 . (2.15)

The equations of motion for the background fields (ψ, ψ̄), given in (2.5), each has a

free part, linear in the fields, as well as a nonlinear part

δS

δψa
= −i(σµ∂µψ̄)a + i T̃µν(σν∂µψ̄)a + i∂µ

[
T̃µν(σνψ̄)a

]
, (2.16a)

δS

δψ̄ȧ
= −i(∂µψ σµ)ȧ + i T̃µν(∂µψσν)ȧ + i∂µ

[
T̃µν(ψσν)ȧ

]
. (2.16b)

Defining the Green’s function of the goldstino as the inverse of the linear term differential

operator

− iσµ∂µG(x, y) = −δ4(x− y) , (2.17)

the solution for ψ is [2]

ψ(x) = λ(x) +

∫
d4y G(x, y)

δSint

δψ̄
, (2.18)

where δSint

δψ̄
starts with three fields. The corresponding general background field equations

in DeWitt’s formalism are

φi = φi0 +GijSint
,j (φ) . (2.19)

Note that, ignoring derivatives, the VA theory is characterized by

Sint ∼ (ψψ̄)2 + (ψψ̄)3 ⇒ δSint

δψ
∼ ψψ̄ψ̄ + (ψψ̄)2ψ̄ . (2.20)

It is interesting that higher order terms with eight spinors (ψψ̄)4 which one would expect

in the VA action (2.1) are, in fact, absent. The proof of this non-trivial fact is given in

appendix A of [21]. On the other hand, the Komargodski-Seiberg action [22], related to

the VA action (2.1) by a non-linear change of variables, does not have terms (ψψ̄)3 but has

terms (ψψ̄)4, as established in [23].

Returning to the VA action, the way to solve (2.18) is by iteration, taking into account

that the solution starts with the free field, and continues by higher powers of (λ, λ̄), as

illustrated in figure 1.
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Figure 1. Decomposition of the background field into tree diagrams (a) inspired by the depiction

in [6] of how, in an NLSM model of the VA theory, the nonlocal functional defines ψ as a functional

of λ. The figure shows the background field ψ solving the nonlinear equations of motion (2.18).

The thick line is the background field ψ, the thin lines are free fields (λ, λ̄), and the green lines

are free propagators. An explicit expression for the cubic in λ term with one propagator is derived

in (3.12). The generic interaction term is illustrated in (b).

In the general class of models with nonlinear symmetry the following identity was

established [2] in the background field method(
S,ji1i2Ri1αR

i2
β + S,ji1Ri1γ f

γ
αβ + · · ·

)
ξαξ

′β = 0 . (2.21)

Here, an approximation where the first term has S,ji1i2 linear in λ and Ri1αR
i2
β ξ

αξ
′β ∼ ε′aε̄ȧ

represents the double soft limit of the cubic approximation in the background field solution,

and the unspecified terms vanish on shell. The identity (2.21) therefore predicts that the

double soft limit in the background field has to be described by the structure constants

of the supersymmy algebra, fγαβ . In the VA model, the corresponding algebra is the one

in (2.4). We will proceed by testing this identity by finding a solution for the background

field as a functional of the free field, and by studying its properties.

3 Iterative solution for the background field in the VA model

For convenience, we will use the expression for the VA action, quadratic and quartic in

fermions, on the form given in [21, 23]. With κ = 1 and neglecting terms containing fields

to a total, higher power than four in the action, which is sufficient for an analysis of the

supersymmetry variations and of the double soft limit, we have

S2 = −1

2

∫
d4x〈v + v̄〉 , (3.1)

S4 = −
∫

d4x
(
〈v〉〈v̄〉 − 〈vv̄〉

)
, (3.2)

where the brackets denote trace and the derivatives only act on the nearest spinor, and

vµ
ν = iψσν∂µψ̄ , v̄µ

ν = −i∂µψσνψ̄ , (3.3)

is such that

〈v + v̄〉 = i(ψσµ∂µψ̄ − ∂µψσµψ̄) , (3.4a)

〈v〉〈v̄〉 − 〈vv̄〉 = (ψσµ∂µψ̄)(∂νψσ
νψ̄)− (ψσν∂µψ̄)(∂νψσ

µψ̄) . (3.4b)
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We have

δS2

δψ̄ȧ
= − i

2
(∂µψσ

µ + ∂µψσ
µ)ȧ = −i(∂µψσµ)ȧ , (3.5)

δS4

δψ̄ȧ
= 2
[
(ψσν

↔
∂ [ν ψ̄)(∂µ]ψσ

µ)ȧ + (∂[µψσ
ν∂ν]ψ̄)(ψσµ)ȧ

]
= −(ψσν

↔
∂ µ ψ̄)(∂νψσ

µ)ȧ , (3.6)

where, in the last step, the second variation has been simplified by a removal of terms

containing the equation of motion that do not connect to the free spinor index. In (3.5),

with ψ → λ we get (2.9), the equation of motion for the corresponding free field. The

latter provides the part due to interactions

δSint

δψ̄ȧ
= −(ψσν

↔
∂ µ ψ̄)(∂νψσ

µ)ȧ + · · · , (3.7)

with the ellipses denoting terms with fields satisfying the free field equation as well as terms

with five powers of the fields, originating from S6.

Keeping free spinor indices implicit, letting σ̄ be implied where applicable, and follow-

ing [20] we will use the identity

σ(µσ̄ν) =
1

2
(σµσ̄ν + σν σ̄µ) = −ηµν . (3.8)

Proceeding according to (2.18) and acting on (3.7) with G, set by (2.17) to be

G = i/∂
−1

= i
/∂

∂2
, (3.9)

we get, in the first iteration of (2.18) where the approximation is such that each of the

three spinor fields ψ are taken as free fields

i
δS4

δψ̄

←
/∂ −1

∣∣∣∣
(ψ,ψ̄)→(λ,λ̄)

= − i

∂2
∂δ
[
(λσν

↔
∂ µ λ̄)(∂νλσ

µσδ)
]

=
i

∂2

[
−
[
∂δ, (λσ

ν
↔
∂ µ λ̄)

]
(∂νλσ

µσδ) + 2(λσν
↔
∂ µ λ̄)(∂ν∂

µλ)
]

(3.10)

where the last term has been simplified through the addition of a term

− i

∂2
(λσν

↔
∂ µ λ̄)(∂ν∂δλσ

δσµ) , (3.11)

which contains λ
←
/∂ , vanishing in the absence of more contractions with /∂

−1
.

Thus, following [2], we find the following solution for the background field ψ

ψ = λ+
2i

∂2

[
− 1

2

[
∂δ, (λσ

ν
↔
∂ µ λ̄)

]
(∂νλσ

µσδ) + (λσν
↔
∂ µ λ̄)(∂ν∂

µλ)

]
+ · · · (3.12)

where the ellipses represent terms with fields satisfying free field equations as well as

terms to higher powers than three in the free fields (λ, λ̄). In momentum space, with

– 6 –
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(
λ̄(p), λ(q), λ(k)

)
, ∂ = ip̂ and P = (p+ q + k), this is

ψ(P ) = λ(P ) +
2

P 2

[
1

2
(p+ q)δ(p− q)µkνλ(k)σµσδ

− (p− q)µkµ kνλ(k)

](
λ(q)σν λ̄(p)

)
+ . . . (3.13)

4 Properties of the VA model background field

4.1 The supersymmetry rules

A supersymmetry variation of ψ in the approximation above can be studied by, as explained

in general in [2], using δλ = ε to find δψ. For the free fields, we find

δψ = ε+
2i

∂2

[
− 1

2

[
(εσν∂δ∂µλ̄)

]
(∂νλσ

µσδ) + (εσν∂µλ̄)(∂ν∂
µλ)

]
+ · · · , (4.1)

leaving the field connected to the free index intact. Here, the first term vanishes due to

∂2λ̄ = 0, which follows from (2.9). The second term becomes

2i

∂2
(εσν∂µλ̄)(∂ν∂

µλ) = i
∂2

∂2
(εσν λ̄)(∂νλ) = i(εσν λ̄)∂νλ . (4.2)

If we add the corresponding for δλ̄ = ε̄ of (3.12) to the above, we get a local expression for

the supersymmetry transformation

δQ(ε, ε̄)ψ = ε− i(λσν ε̄− εσν λ̄)∂νλ+ · · · , (4.3)

despite that the solution for the background field is nonlocal.

Alternatively, the analysis can be performed in momentum space. Taking q → 0 and

λ(q)→ ε in the term cubic in λ in (3.13), that term simplifies to

2

(p+ k)2

[
1

2
pδpµkνλ(k)σµσδ − (p · k)kνλ(k)

](
εσν λ̄(p)

)
. (4.4)

Here, with account of p2 = k2 = 0, the first term vanishes and the second term is

− 2

(p+ k)2

[
(p · k)kνλ(k)

][
εσν λ̄(p)

]
= −

[
εσν λ̄(p)

]
kνλ(k) . (4.5)

If we instead consider p→ 0 and λ̄(p)→ ε, we get

[
λ(q)σν ε̄

]
kνλ(k) . (4.6)

Together, these two terms reproduce (4.3) in momentum space.

– 7 –
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4.2 The double soft limit

The double soft limit of a background field in the approximation up to cubic terms is given

by (3.13) and

λ̄(p)→ ε̄ , λ(q)→ ε′, p, q → 0 : (4.7a)

ψ(k) = λ(k)− k · (p− q)
k · (p+ q)

(ε′σν ε̄)kνλ(k) . (4.7b)

The first term in the square brackets in (3.13) has an extra softness compared to the

second one as it depends on (p+ q)δ(p− q)µ rather than (p− q)µ alone. The second term,

as predicted by the background field method in [2], shows up as a consequence of the

algebra given in (2.4). Thus, we have shown that the identity (2.21), defining the double

soft limit of the background field, is valid in the VA model to lowest order in the free fields.

5 Discussion

There is an increasing interest in nonlinear supersymmetries since they are helpful in build-

ing cosmological models, but also since the LHC at present has not yet discovered the

superpartners of the known particles. The first model of nonlinear supersymmetries were

discovered by Volkov and Akulov at about the same time as models with linear supersym-

metry. However, the nonlinear models were not studied as much as the linear ones.

In this paper we have made a step towards such a study by detailing in the exam-

ple of the VA model the general background field method developed in [2] for nonlinear

symmetries. We have solved the equation of motion for the background field up to cubic

approximation in the free fields, and we have studied the solution, finding it consistent with

the expected nonlinear supersymmetry and that the variation of the nonlocal background

field in our approximation produces the expected local nonlinear supersymmetry transfor-

mations. We have also studied the double soft limit of the background field and found

an agreement with the prediction for a double soft limit following from general identities

derived in [2]. More studies of this kind will be possible in the future. Of relevance is,

for example, to study different models, and the multi soft behaviour of the amplitudes. A

more important venue of research is to develop the background field techniques for models

with nonlinear symmetries beyond tree level.
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