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1 Introduction: some puzzles with moving mirrors and evaporating black
holes

The discovery of Hawking radiation from a black hole came at a surprise over 40 years
ago [1], since it implies that given enough time, black holes in asymptotically flat space-
times would radiate off their mass; and if no new physics comes into play, they would
eventually evaporate completely. This leads to the information paradox [2] — where did
the information that falls into a black hole disappear to, if the black hole disappears com-
pletely? Attempts to recover information from evaporating black holes continue to produce



new paradoxes, such as the firewall controversy [3-5], which threatens the conventional un-
derstanding that there should be nothing unusual — much less a diverging energy density
— at the low curvature spacetime region near the event horizon of a sufficiently massive
black hole. In fact, the situation is worse than previously thought: if a firewall does ex-
ist, then in principle it can be much further away from the event horizon [6], so that an
unexpected space traveler would hit it and be burned to death even if he is nowhere near
a black hole. While the resolution of the information paradox may require us to fully un-
derstand how to unify general relativity with quantum field theory, it is certainly possible
that progress can nevertheless be made without a working theory of quantum gravity.'
In recent years, it has become increasingly clear that we at least need to understand the
subtle “physics of information” [8-10], and how it applies to black holes [11-17], in order
to understand the information retrieval process from Hawking quanta.

In fact, a central piece of the puzzle regarding information loss, is the understanding of
entanglement entropy, S. Let us consider the formation of a black hole from a gravitational
collapse of some matter in a pure state. It is often believed that the entanglement entropy
of the Hawking radiation received at null infinity, which should be zero at the beginning
before any radiation arrives, should first increase, but then decrease at some point (known
as the “Page time”), so that eventually the entanglement entropy vanishes. Such a “Page
curve” [18-20] — the plot of the entanglement entropy against time — is crucial, since it
gives insight into how information may be retrieved from the highly scrambled Hawking
emission. There are, however, subtleties that are often overlooked. Notably, any calculation
of entanglement entropy necessitates regularizing ultraviolet divergences. One notices that
imposing a cutoff is a tricky procedure since modes that have sufficiently high energy
at some point in the spacetime can be redshifted at some other point due to spacetime
curvature. This implies that a mode that is beyond a cutoff scale can be red-shifted below
the scale, so the cutoff is not well-defined [21, 22]. Furthermore, the results obtained could
depend on the cutoff scheme. Progress has been made recently with the introduction of
the “causal-splitting regularization” scheme of Bianchi and Smerlak [23-25], which allows
one to compute the production of entanglement entropy in a cutoff-independent manner.
However, even then, there are still a few puzzles regarding the entanglement entropy of an
evaporating black hole. We list two such puzzles below.

(1) Negative Energy Flux and Negative Entropy: firstly, it has been observed, e.g. by
Bianchi and Smerlak [23, 24], that mass loss of a black hole, assuming unitarity, is not
monotonic. In other words, at some point in time, the mass of an “evaporating” black
hole actually increases. For an observer at infinity, Hawking radiation reduces the
mass of a black hole by emitting particles. This means that an asymptotic observer
sees a flux of positive energy coming out from the black hole. If the mass increases,
albeit briefly,? during the course of Hawking evaporation, this would correspond to
the emission of negative energy flux (hereinafter, “NEF”) from the black hole. (NEF

Though we should probably first agree on what counts as a resolution of the paradox. See [7].
2Abdolrahimi and Page have also shown that for asymptotically flat Schwarzschild black holes, this
increase in the mass is barely noticeable [26].



emission from evaporating black holes, at least in the case of a (1+1)-dimensional
dilaton gravity, was already known in the literature for over 20 years [27].) Curiously,
an observer equipped only with a particle detector would not be able to see any sign in
the spectrum of the Hawking quanta to know that NEF has been emitted [28]. Even
more surprising than the emission of NEF, in several models of evaporating black
holes, Bianchi and Smerlak have explicitly shown that the entanglement entropy
obtained from their causal-splitting scheme can also become negative at late times
in the course of the evaporation. The physical interpretation of negative entropy is
dependent on the particular type of entropy. Their physical relationships are subtle
and not fully clear: in the literature it has been interpreted as either the radiation
being less correlated than the vacuum [25], or the radiation being more correlated
than the vacuum [29].

(2) Unitarity and Information Recovery: secondly, even with the fully covariant cutoff-
independent regularization of Bianchi and Smerlak, it was shown that [28] their crite-
rion only requires that the entanglement entropy tends to a constant asymptotically
(both in the far past and in the late future), instead of a more stringent requirement
that the entropy should tend to zero so as to recover the pure state. In fact, it is
not so surprising that the entanglement entropy can increase monotonically. Even
with the causal-splitting regularization, as long as there is a cutoff, then modes can
be redshifted by spacetime curvature, and consequently a mode that is below the
cutoff scale at future null infinity at some late time u, when traced back to the past
null infinity, could be well-above the cutoff. Since there is no longer a one-to-one
map between early modes and late time modes, it is not surprising that one does
not obtain S(u) — 0 at late times. Note that such a phenomenon can be shown to
occur even in a simplified model involving a moving mirror in flat spacetime — as
was explicitly shown in [22, 28] — in which the quantum field theory is unitary. It
was suggested in [28] that the corresponding black hole picture might be a black hole
remnant [30, 31], and that unitarity is maintained in the sense that if one takes into
account both the exterior and the interior of a black hole, then the entire quantum
state is pure at all times. In such a picture, information remains hidden inside the
ever-shrinking black hole horizon (the interior spacetime can still have a large vol-
ume [21, 31-36], see however [37]) and the radiation is never purified. Since the end
state is a remnant, the information inside is never destroyed.® It would be interesting
to investigate if S(u) — const. # 0 at late times necessarily implies that the cor-
responding black hole model ends as a remnant. A main question here, however, is
the following: do we understand entanglement entropy enough to base the debate of
information loss paradox of black holes on it? The subtleties here suggest that we
should be more careful in dealing with this issue.

3Note that there are two types of black hole remnant in the literature: the “long-lived” or “meta-stable”
remnant, and the “eternal” remnant [31]. The former has lifetime much longer than that of a black hole,
that is, proportional to M™ where n > 3. An eternal remnant, on the other hand, lives forever. Our model
corresponds to an eternal red-shifted scenario.



While Hawking evaporation has been a mainstay of the “quantum fields under exter-
nal conditions” enterprise, the moving mirror model [38, 39] has flourished mostly as an
ancillary effect. However, we feel that it is prudent to first understand a moving mirror
model in which both issues (1) and (2) can be investigated, after all, a (141)-dimensional
flat spacetime with a mirror trajectory is much simpler than a (3+1)-dimensional black
hole spacetime with non-trivial curvature.* A trajectory of a moving mirror in spacetime
is a reflecting boundary on which field modes are constrained. A moving mirror excites the
modes, thereby producing particles. The spectrum of the emission depends on the exact
trajectory of the mirror. With a suitably chosen trajectory, we can therefore mimic the
particle production from, say, a collapsing star. (Readers who are not familiar with moving
mirrors can refer to [40] for a pedagogical exposition.)

Despite many decades of research, physical interpretations of external-potential type
problems, like the moving mirrors, have never been made entirely clear. Moreover, serious
confrontations with questions that are evaded in these non-gravitational analogs become
inevitable during the study of gravitational problems. In other words, we would like to
emphasize that one should not hope that a moving mirror model can fully resolve informa-
tion paradox of a bona fide black hole, but understanding the subtleties of quantum field
theory in a moving mirror model is a first step toward the more complicated physics of
black holes.

We have come a long way in the study of moving mirrors. Notably, Moore [41], De-
Witt [42], and later on, Davies and Fulling [38, 39] initiated a program using field theories
with external conditions, which eventually demonstrated that quantities like the expecta-
tion values of the stress-energy tensor, and the localization of particles using wave packets,
can be calculated in various physical problems and used to extract significant physical con-
sequences of the quantum fields. Indeed, there has been renewed interest [23, 24, 43-54] in
the moving mirror model in recent years due, in part, to claims of experimental verification
of the dynamical Casimir effect [55, 56]. In many of these particle production scenarios,
various systems that exploit the simple mathematical set up of the (14-1)-dimensional mov-
ing mirror model have led to novel experimental designs. (See [54] for one of the latest
proposals.)

As previously mentioned, a central advantage to the moving mirror model is its sim-
plicity. This is both in general, and in the context of the recent one-to-one correspondence
with a black hole [57-60], which found that for one concrete example, the particle produc-
tion is exactly the same in both the mirror and black hole cases in (1+1)-dimensions. The
simplicity of (1+1)-dimensions allows the crux of Hawking radiation to stand out more
clearly, separated from the specialized details associated with higher dimensional curved
geometry and back-scattering. With the one-to-one correspondence, the moving mirror
model can be treated as an even more precise analogy to Hawking’s original argument,
and therefore it is of interest to extend the one-to-one correspondence to more physically

4Einstein’s gravity is topological in (1+1)-dimensions, but with a suitable coupling to matter fields,
gravity need not be trivial in (1+1)-dimensions. This allows one to study black hole evaporation. In our
moving mirror model, of course, there is no gravity, only an accelerating mirror, so there is no complication
either.



realistic circumstances, while holding on to this fortunate simplicity. However, even as
a relatively simple theoretical model of black hole evaporation in (1+41)-dimensions, the
moving mirror model, has in practice, been very hard to extend to solutions for exact tra-
jectories where the global Bogoliubov coefficients may be evaluated. Few solutions have
been found® and finite-nonzero-energy cases are scarce.’ Nevertheless, mirror trajectories
that produce finite amount of energy are precisely those that are physically more realistic.
We are therefore interested in such trajectories.

Although there is pedagogical value associated with the reduced complexity of the
direct and straightforward calculations in the moving mirror model in (1+41)-dimensions,
one should note that there is a peculiarity in (141)-dimensions, namely that Minkowski
spacetime in (1+1)-dimensions have two sets of past and future null infinities. The right
past infinity will be denoted by .5, and the right future infinity ,ﬂg . Similarly, we also
have .#, and ,ﬂ; . That is to say, its Penrose diagram is a diamond, whereas in higher
dimensions, the Penrose diagram for Minkowski spacetime is a triangle.” The implication
is this: if we want to understand quantum field theory of a moving mirror in (141)-
dimensions, we should also take into account the left side of the mirror.

Yet another motivation to consider both sides of the mirror is the following: in (1+1)-
dimensional conformal field theory, there are left and right “temperatures”, Ty and T,
which are related to the amount of left and right-moving excitations in the field. In a
thermal ensemble of states, the thermodynamic temperature is related to these left and
right temperatures. The Cardy formula for microstate degeneracy [65],

2

Smicro - 7T?<CL,TL + CRTR)7 (11)
explicitly involves these temperatures, along with the left and right central charges ¢y, and
cr. So from this point of view of thermodynamics, it is natural to include both left and
right-moving excitations.

The most important reason to consider both sides of the mirror, however, is related
to the eventual aim to understand information loss of black holes. To do so, as we have
argued, a crucial first step is to understand how entanglement works in the simpler case
of a moving mirror. In particular, as far as unitarity is concerned, it is important that we
include the entire spacetime, this is to ensure that information is not hiding in some part
of spacetime that one might otherwise overlook.

In this work, we are mainly motivated in asking the following questions:

Is there a moving mirror in (141)-dimensions, satisfying unitarity in the sense
allowed by the Bianchi-Smerlak criterion (namely, S(u) — const. as u — +00),

For example: the case of uniform acceleration of Davies-Fulling [39]; and the case of eternal thermal
emission of Carlitz-Willey [61].

6See the first known solution found by Walker-Davies [62] and the asymptotically static case in Good-
Anderson-Evans [63] and a drifting case in Good-Ong [28].

"It is true that one often draws the Penrose diagram of Minkowski spacetime as a diamond even in higher
dimensions, but the point is that in (2+1)-dimensions and above, the two points that represent spacelike
infinity i°, are actually one and the same. This is clearer if one looks at how the conformal diagram wraps
around the Einstein cylinder (see figure 14 on page 122 of [64]). In (1+1)-dimensions, the two points are
genuinely different infinities.



that has no acceleration horizon, produces finite amount of energy, and serves as
an analog for Eddington-Finkelstein coordinate null-shell gravitational collapse
in its limiting case? Furthermore, by looking at both sides of the mirror trajec-
tory, can we understand, or at least reveal some additional features, regarding
negative energy flux and negative entropy?

We shall now explain the reason we would like to consider only trajectories that have
no acceleration horizon (hereinafter, we will simply refer to an acceleration horizon as
“horizon”, unless there is a risk of confusion). The basic utility of various trajectories ex-
amined in the moving mirror model with respect to black hole radiation has, like black hole
evaporation itself, also been well-known for over forty years. But the problem of relating
Hawking’s global construction calculation (see [66] for a stochastic route) to the physical
mechanism responsible for the particle-energy creation effect, which is safely assumed to
involve local curvature, has been mostly elucidated by various methods using the late-time
Davies-Fulling black hole-moving mirror correspondence. However, with the advent of the
all-time, exact, black hole-moving mirror correspondence [57], the physics of the boundary
condition effect is more directly related to the curved space effect than previously sup-
posed. We therefore hope to timely exploit this insight by extending the flat-space model
to one with a boundary condition that does not contain an asymptotic horizon. It is clear
from basic causality that the existence of a horizon in the future is not essential to the
production of particles and energy at early times, and in this calculation we will explicitly
demonstrate the particle production by localization of the spectra at early times. (In fact,
the same causality argument works for the case of a black hole, i.e. the event horizon is
not an essential feature for early-time particle creation. See also [67].)

Beyond this, we will demonstrate that the production process at any time need not have
an acceleration horizon in order to reach thermal equilibrium. The use of wave packets to
obtain spectral resolution of thermal Hawking radiation in such a limiting-case horizonless
model where the evaporation process stops at late times, has not been investigated before.
It is important to recognize that this model is an extension of the particular moving mirror
which has a one-to-one correspondence to the exactly solvable black hole case [57]. The
model presented here is novel, in part, because its limit is that of the exact correspondence,
which means that a certain acceleration parameter (see below) is appropriately scaled. A
novel result of the removal of the horizon, for this unique trajectory, is that the finite total
emission of energy is simple enough that it can be expressed analytically. Also important
to this solution is the introduction of a new method to find other moving mirror solutions
which may otherwise be intractable.

In this work, we are focused on the mirror model. Although the solutions and their
novel features could represent various black hole collapse scenarios, it is premature to make
any strong conclusion here. In addition, even though the moving mirrors that we investigate
below have no acceleration horizon, this does not necessary mean that the corresponding
“black holes” have no event horizon® (or at least a trapped surface of some sort). After all,

8The possibility that black holes may not have an event horizon has been investigated by many authors,
see [68, 69] and the references therein.



a main purpose of moving mirror models is to reproduce particle emission of a black hole
— it is the properties of the produced particles that are in correspondence — one should
be very careful if one wishes to identify the mirror trajectories themselves to geometric
properties of black holes such as the event horizons.”

The present work is organized in the following manner. A short introductory treatment
of the moving mirror machinery is given in section 2. It shows how to generalize the exactly
solvable “black mirror” case to remove the horizon. The subject of interest in section 3
is the explicit trajectory of our new mirror solution. In section 4 we solve for the energy
flux and the total energy production on both sides of the mirror. The energy flux is shown
to have a spike on the left side and a plateau on the right side. We also quantify the
equilibrium temperature. In section 5 we calculate the entanglement entropy flux and
confirm it remains consistent with the energy-entropy relation and unitarity. In section 6
we investigate the stress tensor correlations for the model by solving for the correlation
ratio R; exactly. This helps confirm thermal equilibrium. In section 7 we calculate the
particle production and investigate the spectral dynamics. Here we include consistency
checks to verify the total energy produced via the stress tensor, agrees with the total energy
produced from summing particle quanta. We find constant emission of particles emitted
to the observer on the right for any arbitrary long period of time. We conclude with some
discussions in section 8. Throughout this work, we use the units G =c=h=kp = 1.

2 The machinery of moving mirrors

In section 2.1, we shall first introduce some basic concepts necessary for understanding our
construction of a horizonless solution that generalizes the “black mirror”. We then discuss
the removal of the acceleration horizon in section 2.2. The solution satisfies three criteria:
the presence of a horizonless temperature, an appropriately scaled acceleration parameter,
and the termination of evaporation at late times.

2.1 Some conventions of moving mirrors

As the simplest example of the dynamical Casimir effect, the moving mirror model also
serves as a way to understand black hole evaporation by imposing an external bound-
ary condition in 1+1 dimensions on the quantum field, rather than an external curved
spacetime. Consider then, such a boundary that does not accelerate forever, starting and
ending at time-like past infinity i ~, and time-like future infinity i*, respectively; possessing
asymptotically zero acceleration in both the far past and far future, and always moving
slower than the speed of light. This fully asymptotically inertial mirror will contain no
horizon. Thus, it will contain no pathological acceleration singularity either. The plot of
such a trajectory is in figure 1. A salient pay-off for horizon-removal is that the mirror
system, in addition to being unitary (henceforth, by unitarity we always mean unitarity

9While it is true that an accelerated observer in Rindler spacetime sees Unruh temperature that is
analogous to the Hawking temperature of a black hole, it does not follow that an acceleration horizon of
a mirror always corresponds to a black hole horizon. Furthermore, the temperature in the mirror case, is
measured by observers far away from the mirror, not a Rindler-like observer on the mirror trajectory.



Figure 1. Left: in this Penrose diagram, the color curves are “Domex”, with asymptotically inertial
trajectories. The black curve is “Omex”, a horizon mirror (moving mirror with a horizon) [57]. The
different coasting speeds correspond to £ = 0.6,0.7,0.8, 0.9, for green, blue, red, purple, respectively.
Right: the asymptotically inertial trajectories (Domex) with the same final coasting speeds displayed
in the usual spacetime diagram. The dashed lines represent the light cone, and the dotted-dashed
horizon line is at vy = 0. The trajectory example here is the same as in the conformal diagram.
For comparison, the black line indicates the horizon mirror (Omex) [57], which contains a horizon
coinciding with the light cone.

in the broad sense allowed by Bianchi-Smerlak criteria), produces only a finite amount of
total energy, as we will demonstrate in section 4 and section 5.

The quantum field, ¥, is the massless scalar of the Klein-Gordon equation (JW = 0,
whose value is zero, ¥|, = 0, when evaluated at the position of the moving mirror, z(t).
The modes, ¢, and 1, are on equal footing in the sense that they can both be used to
expand the field:

U= /0 4w’ [aw/gbw/ﬂ—al,gb:/] - /0 ~ dw [bw@warqu/);]. (2.1)

The modes are orthonormal and complete and can be exactly solved in the (141)-dimen-
sional case:

¢w’ _ (47rw/)71/2 [e—iwlv _ e—iw/p(u)]’ (2'2)

Y = (47Tw)—1/2[€—iwf(v) _ e—iwu]7 (2.3)

where the functions p(u) and f(v) are the usual notation for the ray-tracing functions, which
are intimately related to the trajectory of the mirror z(¢) itself, see [63] and section 2.1.1.
The famous Bogoliubov coefficients appear by expanding one set of modes in terms of the



other set of modes,

¢w’ = /0 dw [aw’wq/)w + /Bw’ww:)] ) (24)
vo= [ folut = Aol (25)

where
Ayl = (¢w’>ww)7 Bt = _(¢w’>w2)7 (2'6)

with the flat space scalar product defined in null coordinates, (u,v), by

i) =i [ dugh dvari [ dvel b (2.7)

The Bogoliubov coefficients «,,,, and 3, also give the operators a,s and al/ in terms of
the operators b, and bI), while the orthonormality of the modes hold according to the usual
convention, see [28] for more detail.

2.1.1 The four functions of mirror physics

There are four functions, vs(u), us(v), xs(t), ts(z), which are useful for doing global calcula-
tions involving the aforementioned field modes. The first two are the ray-tracing functions
(expressed in null coordinates), where us(u) = p(u) and vs(v) = f(v), and the last two are
the associated spacetime coordinate functions. The inverses are expressed like so:

us(v) =vi (), @s(t) = (2). (2.8)

We shall collectively call all four of them, “shock wave functions” or “shock functions”
for short, after the collapse of the null shell shock wavefront description to form a black
hole. There are many other auxiliary functions, such as t5(v), vs(t), ts(u), us(t). However,
the original four functions of coordinates v, u, t, and x will prove efficient at calculating
observables. The information about how the field modes become red-shifted due to external
conditions is fully contained in these four functions. The relationships between them are
demonstrated as follows.

First consider the usual null coordinates on Minkowski spacetime u =t — x and v =
t 4+ x, and their analogous auxiliary functions as functions of time,

us(t) =t — xs(t), vs(t) =t + xs(t). (2.9)

These contain the shock function x4(¢), which is the trajectory of the mirror. The inverses
of egs. (2.9), contain the shock functions, us(v) and vs(u),

to(u) = %(vs(u) Fu), () = %(us(v) ). (2.10)

Functional inverses should be obvious from the notation. Useful auxiliary inverses are:
ts(u) = uzt(t), and ts(v) = vy (). The total energy emitted, the energy flux, and the
beta Bogoliubov coefficients have expressions that are conveniently written in terms of the
four shock functions.



2.2 How to remove a horizon

There is an easy way to remove the horizon, (recall that ¢ = 1),

Jim [3(0) =1, (2.11)
from a future asymptotically null moving mirror trajectory, 3(¢). The idea is to modify this
so that the new trajectory, z(t), has

li (t)| = 2.12
Jim [2(t)] = ¢, (2.12)
where 0 < £ < 1 is the future asymptotically drifting speed. This can be achieved by
writing the horizonless trajectory, z(t), in terms of the trajectory with a horizon (henceforth
‘horizon trajectory’), 3(t),

2(t) = &(1). (2.13)
This works if
A(t) = &) (2.14)

Taking this approach helps answer whether the particle spectra can (1) reach equilibrium
for an extended period of time, and (2) proceed to shut off. The mirror does not strictly
have a null horizon, yet as we will see, it can still achieve a “thermal plateau” (i.e. the
emission is virtually thermal for some arbitrary finite amount of time). This approach also
ensures (3) the correct scale for the acceleration parameter k£ (not to be confused with
the physical acceleration, see below). A correct scale is critical for the red-shifting of the
modes to correspond to the exactly solvable black hole case [57-60] in the limit £ — 1.
This automatically extends the mirror in the black hole-moving mirror correspondence by
promoting it to a more physical footing where the total evaporation energy is finite and
unitarity is preserved.

While we have found the mirror solution that meets these strict requirements, a possible
black hole counterpart calculation is beyond the scope of this work. In the model we are
about to present, we do not claim that it actually corresponds to any realistic evaporating
black hole spacetime. For the present work we only seek a simple mirror model in which
the three conditions presented above are met, so that we may study the energy and energy
flux, the entropy, the correlations, and the particle spectra, together in the absence of a
horizon. It may or may not have an exactly tractable black hole correspondence. In a
subsequent work this will be investigated, but as we have emphasized in the Introduction,
even if it has such a black hole correspondence, the absence of horizon in the mirror model
does not necessary entail the absence of any event horizon or trapped surface in the black
hole geometry. It is worth pointing out that this mirror solution is new — it is the first
explicit demonstration of a unitary solution with a thermal plateau'® that has limiting
red-shifting functions which correspond to the black hole-moving mirror system in [57].

00ther unitary plateau investigations exist, see section 8 for a discussion of one.
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The information contained in the trajectory equation of motion of the mirror is also
contained in the shock functions. The exactly solvable mirror case in [57] has shock func-

tions:
vs(u) ::vH-n*1m7[e“vH “} (2.15)
us(v) = v — k£ tn [k(vg — v)], (2.16)
%@:m4_<>wpﬁWﬂ (2.17)
to(x) = vg —x — K Le™/ 2, (2.18)

The W is the product log or W Lambert function, which commonly appears in thermal

equilibrium contexts, e.g. Wien’s law.'!

One way to get these is as follows: firstly, one
has the simple form wus(v) as it is a simple choice for redshifting ray-tracing f(v) function
in the mirror case (or from the spacetime matching solution in the null-shell case). This
is given. Secondly, one takes the inverse to get vs(u). While easy, as it turns out, it was
unhelpful in obtaining the other shock wave functions. The efficient approach is to notice
that us(v) has a simpler form than vs(u), so one uses us(v) again to write down ¢g(v). The
inverse of this can be calculated. It is, of course, vs(t). (Note that if one chooses vs(u) to
write down ¢s(u) instead, the inverse is not quite as straight-forward to compute, in fact it
is much more complicated.) So, using vs(t), one is set to write down x4(t) = vs(t) — t. Its
inverse is, fortuitously tractable, and gives the above expression for t4(z).

We shall interchangeably call the horizon trajectory in the mirror analog case the “black
mirror” [60] or “Omex” for short [57]. (“Om”-after the Omega constant, W (1) = Q = 0.567
where Qe®? = 1, and ‘ex’ after the exponent in W argument.) The acceleration parameter
k in the black mirror case can be identified with the surface gravity in the black hole case,
k= (4M)~L, for all times.

The new moving mirror has the following more complicated shock functions:

2k (v —u)
2% 1—¢ ¢ |2 tie
S(u) = LY 7 e, 2.1
vs(u) 1+§UH+1+£U /{W T7¢ (2.19)
2 1 ge T
us(v) = — 3 vy + +€v + §W © - , (2.20)

1-¢ 1-¢ & 1-¢

xs(t) =& <vH —t— W) , (2.21)

z 1
ts(z) = vg — c Ee%“”/g. (2.22)

While these expressions still depend on the primary parameter x, the intricacy of these
expressions arises from the introduction of a second parameter, £. Recall that vy in the
black mirror case is the location of the horizon. We retain vy for completeness, but make
no mistake: the mirror no longer asymptotes to infinite acceleration at a null horizon,

"'The maximum frequency of the (3+1)-dimensional Planck distribution, %&fijil, is fhwmax = 3 +

w [—e%], i.e. the famous displacement law Bhwmax = 2.82144.
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located at vgr. We shall therefore refer to vy as a “residual horizon”. This mirror begins at
rest in the far past, and therefore has no initial asymptotic horizon either. The absence of
horizons generates the finite total energy, akin to the notion that evaporating black holes
exhale only a finite energy flux [70-73].

3 The Domex trajectory

The motion of the mirror is given by the trajectory eq. (2.21),

2(t) = —¢ (;HW [2e727] + t> : (3.1)

where vy = 0 for simplicity, and 0 < £ < 1 is the final speed of the mirror as ¢ — co. The
motion is initially asymptotically static, limy_,_ 2(¢) = 0, and most notably, the mirror
does not approach a future asymptotically static resting state because its future asymptotic
speed is

lim |5(t)] = €, (3.2)

t—4o00
making this trajectory future asymptotically coasting. The future drifting feature of this
mirror means it is an exact model for a remnant [28, 30, 31] as described by an early
anticipation of such solutions by Wilczek in [74].
The trajectory eq. (3.1) is plotted in both the spacetime and Penrose diagrams in
figure 1. The acceleration parameter, k, is £ > 0, and to be clear, it is not the acceleration

of the mirror, a(t) # k. The rectilinear proper acceleration, a = 7%, is time-dependent:
2kEW (26201
a(t) = — Ul ) (3.3)

3/2°
W e+ 1)" (1~ i)

The negative sign on eq. (3.3) gives a mirror whose motion is to the left. The acceleration
has asymptotic behavior such that

t_l}rinoooz(t) =0, (3.4)
making this trajectory asymptotically inertial, despite the drift. As we shall now show,
this solution has several analytically tractable results. The special physical aspects of this
solution will be investigated in the following sections. We shall refer to this horizonless
mirror as Drifting-Omex (“Domex”) for short.

4 The energy production of Domex

4.1 The energy flux

The energy flux of a moving mirror was first derived by Davies and Fulling [38]. Expressed
in terms of the shock functions, it may be computed via

1 3 70/\2 o
F -~ |2 =) s 4.1
(W) = 547 |2 <v;) o | (1)
o) = =) ENCANRAE 42)
V)=l ——| % :
247 |2 \ Ul ul | w2’
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Figure 2. Left: the left observer sees energy flux that strongly peaks the faster the coasting speed
of the mirror: £ = 0.6,0.7,0.8,0.9, colored by green, blue, red, purple, respectively. Notice the
initial NEF, and the above-thermal, F(t) > 1, emission. Here x? = 487. Right: successive plots of
the energy flux observed by the right observer, F(t) = (Ty..), eq. (4.6), from smallest peak to the
largest peak, with varying limiting mirror speeds, £ = 0.6,0.7,0.8,0.9. Also included are £ = 1—-0.1%
where x = 2, 3,4, 6 colored by orange, pink, cyan, black, respectively. Thermal equilibrium occurs
only for a very fast final coasting speed. The total NEF is qualitatively unchanged at this speed.
The acceleration parameter is set to k2 = 487 so that the plateau levels out at F = 1, the dot-
dashed line.

F(t) = 1 (22 — 1) — 3zl 2" , (4.3)
127 | (2f — 1)*(zh 4+ 1)2
1 " t/2 —1) =3¢ t”2
F(:I/‘)Zi S(S ) S”S . (4'4)
127 | () — )A(t, + 1)2
In terms of a u-dependent rapidity [57], n(u) = tanh~'[2(t,)] = 2 Inv)(u), this is
1
Fu)=— (n*-1n"). 45
(u) = 75 (0% = ") (45)

Right side. The energy flux, emitted to an observer at the right side of the mirror, fg ,
using the trajectory of eq. (3.1) in eq. (4.3), is therefore easily calculated:

K2EW (26*2'%) (52 + oW (2672@)2 LW (2672,%) _ 1)
o= 3m (=€ + W (2e7261) + 1)% (€ + W (2e7261) + 1)* (4.6)

It contains a build-up phase, a thermal plateau, and an end-phase accompanied by negative
energy flux (NEF), see figure 2. The residual horizon location has been set to vg = 0.

A period of thermal emission occurs at extremely high coasting speeds, giving a thermal
plateau, which is, in the limit £ — 1, located for some time Atrp, at

F(AtTp) ~ FT = —. (47)

Interestingly, this is the same as the constant flux produced by the (eternally thermal)
Carlitz-Willey trajectory [61]. The Carlitz-Willey mirror radiates a thermal Planckian
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distribution of particles for all times, at /' = Fp. In our model, this value occurs because
in the limit & — 1, this mirror has the same shock functions as the black mirror, which
has thermal radiation at late times. However, now it is apparent that in this model, the
evaporation eventually stops, effectively decoupling the late-time approximation from the
high-frequency approximation.

Allowing ¢ to be nearly the speed of light, (for example, ¢ = 1-0.1'°, with no formal
limit), the energy flux emitted to the right observer, has a simple minimal negative value,

at some late time, tg, where

: 1
F(to)™ = -3 Fr, (4.8)

which is a fairly significant proportion of the maximum magnitude amplitude of thermal

emission.

Left side. The energy flux, emitted to an observer at the left of the mirror, .#;", using
the trajectory of eq. (3.1) by symmetry reversing the sign on &, is:

REEW (2672) (€2 4 2W (27200)% 4 W (20720) — 1)
3m (=€ + W (2e26t) + 1) (€ + W (2e25t) +1)°

Ft) = — (4.9)

The energy flux contains an initial nascent NEF, a rapid reversal to positive energy flux
and build-up to a non-thermal positive energy flux peak, and finally a rapid end-phase
that falls to zero emission, see figure 2. It is now clear that while one side of the mirror
is approaching thermal equilibrium emission, the other side is experiencing a single non-
thermal, ever-more-narrow burst, demonstrating a characteristic difference between the left
and right observers. We investigate the pulse via particle spectra in section 7.

4.2 Temperature of Domex

Domex achieves a temperature, 271 = k, to lowest order in € where £ = 1 — ¢, via a “twice
rapid acceleration” (k(u) = |p”/p'| = |21/|) approximation. The rapid acceleration, 1’ (u), is
identically constant, such that x(u) = &, for the eternally thermal mirror (Carlitz-Willey).
One finds,

21T = |21 = k(1 + W (e ™))" 2 + O(e). (4.10)

For large su, so long as, ku <& e}, then W (e™**) — 0, and to lowest order in ¢, the rapid
acceleration is constant, 27T = |27/| = k.

From the energy flux production, we can help quantify the equilibrium condition of
Domex. The simplicity of the time-space function, ts(x), allows for analytic tractability.
Finding where the radiation is most near equilibrium amplitude, F' ~ Fr = x?/(487) is
possible. Using vy = 0, and t4(z) = —x'e2"%/¢ — /¢, one has the flux as a function of
space:

2a [ dxe 2k
2k2€e € (865 o0 +52—1)

F(x,& k) = (4.11)

2K 2 2Kz 4
377(—265 +§—1) (Qes +§+1)
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Maximizing F(z,§, k) with respect to z, gives the spatial location, xg, where the flux is
maximum, F'(zg,§, k) = Fnax(&, k). Since drift speed is high, then to lowest order in e,
ignoring the imaginary component of this spatial locus, the real location is

— L oE) (4.12)

0= 6k 6

The maximum flux, to lowest order in ¢, is then

2 25
F(él?o,g,li) :Fmax(ga/{) - 4";7 |:1—3\3/6€2/3+3€+O(64/3) . (413)

Following Davies [39], eq. (3.10), or Walker [75], eq. (5.10), we consider the property that
the energy flux of a thermal trajectory has

o

d

F:/ WY _Tr (4.14)
0o 2mew/T —1 12

Temperature can be expressed as,

T(fa H) = %Fmax(fa /’f), (415)

where we have taken the positive root, T' > 0. To low order in €, the result is

K 3\ /3 25

T k) =— [1 -3 <> 4 et 0(64/3)] . (4.16)
2w 4 6

The lowest order dependence on drift speed scales as ~ (1 — {)2/ 3 indicating, e.g. that

speeds of ¢ = 1-0.1° give a millionth part deviation from equilibrium temperature. To

ensure Domex is very near equilibrium for an extended period of time, we will use speeds

far faster while investigating the time dependence of particle production in section 7.

4.3 Total energy produced by Domex

It proves possible to calculate the finite total emitted energy analytically. In terms of the
shock wave functions, the total energy to the right side of the mirror, is computed via,

E = /OO F(u) du, (4.17)
E = /Oo F(v)u, dv, (4.18)
E = /OO Ft)(1 —2))dt, (4.19)

E= / PG - 1) d, (4.20)
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or after integration by parts, where the boundary term is ignored due to asymptotic inertial

character,
1 oo i\ 2
E=— (”j) du, (4.21)
481 J_oo \ VL
1 o0 "2
E=— [ % dy, (4.22)
48 ) oo U
1 oo x//2
F=— = dt 4.23
o | e 2
1 o0 t,/2
E=— s dz 4.24
ol et oy (.24
where vy = vs(u), us = us(v), xs = x5(t) and tgs = ts(x). The primes always mean

derivatives with respect to the respective function variable. For the mirror trajectory
here with finite energy production we shall use the x4(¢) integral over d¢ and confirm it
with quanta summing of particles in section 7, where the total emitted energy is F =
fOOO dw w f()oo dw’ ’/wa’ ’2'

Note that by “total”, we mean that it is the total amount of energy that only the
observer on the right side detects. The mirror emits energy on both sides to two separate
observers: left and right. To find the energy emitted to the left, by symmetry, one can
simply reverse the motion and compute the energy on the right side again.

4.3.1 Right side
The total energy radiated to . ;{ is therefore:

o K(3—¢tanh™'(§)  r(3+2¢)
= 48m¢2 A8 (€2 + &)

Domex does not result in the emission of infinite energy to the usual observer at .# g . Note

(4.25)

that the solution here is monotonic for increasing coasting speed and never negative for
0 < ¢ < 1. Here, the lim¢_,o Fr = 0, and the lim¢_,; Fr = +o0.

4.3.2 Left side

For an observer to the left at & L+ the total energy emitted is found by simply substituting,

& — =&, into ER,

B, — k(3 + &) tanh ™1 (=¢) k(32§
4872 48w (€2 - &)’

Again, the energy is finite as long as the speed is less than the speed of light. The expression,

(4.26)

E(§) is a monotonic function of &.

4.3.3 Both sides

For the high coasting speeds we are interested in, the energy emitted to the left is always
much greater than the energy emitted to the right, £ > Epr. For small values of £ one

find
nds B,

_ .6 2
5o =1t EE+0E), (4.27)
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Figure 3. Left: energies plotted in a semi-log plot. The total energy emitted is the black line,
Er(§) = 5= ( 1_152 — %), with k = 247 in a log plot. The energy diverges as the final coasting
speed approaches the speed of light. The red line is the E and the blue line is Fr. Right: the
same energies, Fr, Ey, and ER, plotted to scale, kK = 24m.

indicating that E; > Fgr. As it turns out, £y > FEg for all values of the final drift speed,
0 < £ < 1. The total energy emitted to both observers is Er = Ej, + ER:

Er = ﬁ [cosh?(n) — ncoth(n)] (4.28)
where 7 = tanh ™! ¢, is the final rapidity. See figure 3 to see a graph of the combined total
emitted energy from both sides of the mirror. Notice the divergent behavior as the coasting
speed approaches the speed of light. The energy increases monotonically as a function of
the coasting speed.

5 The entropy of Domex

The von Neumann entanglement entropy in the unitary moving mirror case, can be found
from Bianchi-Smerlak’s formula'? [24] as a function of vs(u) = p(u),

S(u) = —%lnp'(u). (5.1)

In terms of the mirror trajectory (see Good-Ong [28]), this is

1 1
S(t) = 6 tanh~![2(¢)] = —En(t), (5.2)
where z(t) is the trajectory motion of the moving mirror, the dot represents the time

derivative and 7(t) = tanh™1[(¢)] is the time-dependent rapidity. It is simple to see that

12Here the central charge for a conformal field theory, ¢, has been set to unity without loss of generality.
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Figure 4. The von Neumann entanglement entropy, for the left and right sides of the mirror
respectively, as a function of time, with £ values and colors as the previous figure 2 but here k = 1.
The entropy approaches a constant value, underscoring the final asymptotic coasting speed of the
mirror and the eventual end of particle emission, with no turn over of the Page curve. All left
moving field modes become right moving field modes, and vice versa, preserving unitarity.

the faster the mirror moves, the greater the entropy. Unitarity in this sense strictly means
that the entropy must achieve a constant value in the far past and far future. The mirror we
consider has a non-zero asymptotic entropy, underscoring that eternally thermal radiation
is not the end state. Since evolution from a possible initially pure state, to a final mixed
state does not occur, radiation of energy flux stops and it is possible to reestablish a possible
initial pure state, preserving unitarity. This mirror’s trajectory is found to be consistent
with the Bianchi-Smerlak [24] entropy-energy relationship

21 F (u) = 65" (u)? + S” (u), (5.3)

where the entropy for Domex, expressed as a function of time, ¢, for both the right and
left sides,

1 £
SE(t) = £~ tanh ™! 5.4
B(t) =+ tan (W T 1) , (54)
approaches a constant value,
lim SE() = © tanh~1(¢) =+ (5.5)
oo 6 6

as the energy flux approaches zero. Notice the independence of x or the position of the
horizon vy for the final entropy value. Here 7 is the final coasting rapidity (¢ is the final
coasting speed). These results are in dramatic contrast to Omex [57] which has infinite
total energy and a divergent entanglement entropy in the far future, t — +oo. A plot of
the entropy (on both sides of Domex), eq. (5.4), is in figure 4.

For Domex, the entanglement entropy has no turn-over of the Page curve [18-20] as it
is monotonically increasingly approaching some constant value. Although outside the scope
of this work, it is worth mentioning that the radiation in an analogous black hole context
would never get purified. The preservation of unitarity is maintained only in the sense
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that the pure state remains pure taking into account both the exterior and interior [30]
of the black hole remnant. There are unresolved challenges associated with this type
of scenario stemming from the known infinite production problem, stability, and energy
conservation. Detailed discussions are provided in [31]. Note however, that Domex, as a
possible candidate model for a remnant, is not in conflict with Wilczek red-shifting [74] and
non-monotonic mass loss of Bianchi-Smerlak [23], as the former occurs even when Domex
is once again inertial and in the later, the non-monotonic mass loss occurs as long as the
entropy approaches a constant (not necessarily zero).

We note that the entanglement entropy of the radiation on the left side of the mir-
ror is negative. This is not unprecedented in the literature, however its interpretation is
somewhat unclear. Bianchi, De Lorenzo, and Smerlak interpreted a negative entanglement
entropy as the result of the radiation being less correlated than the vacuum [25]. On the
other hand, Holzhey, Larsen, and Wilczek were of the opinion that negative renormalized
entropy is the result of the radiation having more correlation than the vacuum [29]. We
leave open the interpretation of our results, but it is interesting to note that for any fixed
&, the positive entanglement entropy on the right side of the mirror exactly cancels the
negative entanglement entropy on the left side. Therefore, the entanglement entropy of the
radiation on the entire slice of any constant ¢ is zero.

6 The correlations in the radiation

6.1 Correlation functions

An under-appreciated lesson stressed by Ford and Roman [76], is that there is a great
deal more happening in the accelerating mirror geometry than is revealed by the expec-
tation value of the stress-energy tensor alone. There are subtle increases or reductions in
correlations between the flux along rays even where the expectation value vanishes. The
stress-energy tensor correlation function is of interest in our situation because it reveals
information about the energy flux that demonstrates the thermal character of the radiation
above and beyond that of the thermal plateau of the stress-energy tensor during equilib-
rium. The shock functions for the moving mirror are needed to compute the correlation
functions for the stress-energy tensor. It was previously shown that the ray-tracing function
p(u) is useful for delta-function pulse piece-wise mirror trajectories [76]. In this section, we
extend this work to continuous trajectories and compute the correlations with an emphasis
on the equilibrium period of Domex. The energy fluxes emitted by any moving mirror can
be positive and negative, but they are only average values. The fluctuations around this
average value are generally expected because the quantum state is not an eigenstate of the
stress-energy tensor operator.
The correlation function for the stress-energy tensor is

C;wu’u’ = <TuV(y)Tu’1/ (?//» - <TuV(y)><Tu’u’(y,)>7 (6.1)

where the spacetime points are indicated by y = (u,v) and y' = (u/,v"). The correlation
functions between two right moving rays, two left moving rays, and right and left moving
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rays are, respectively:

CRR(u,u/) = <TuU(u)Tuu(U/)> - <TuU(u)><Tuu(ul)>a (6.2)
CLL(UvU,) = <Tvv(v)Tvv(Ul)> - <Tvv(v)><Tvv(U/)>a (6.3)
CLR(U’UI) = <Tvv(U)TuU(ul)> - <Tvv(v)><Tuu(ul)>- (6.4)

Solved in terms of the ray tracing function, p(u), the results are [76]

/ u/ / U 2
Cor(o) = — (6.6)

- 8m2fo) — v

/ (u/)]Q
Crr(v,u') = [p—,
L0 W) = o) — ot

where p'(u) = dp(u)/ du and p'(v') = dp(u')/ du’.

The above expressions deal only with correlations of distinct rays. These expressions
simplify, as would be expected, in vacuum or with a static mirror present. For a static
mirror we have the condition, v = p(u) = u, and

1
CRR(%U,) = Cvac@static(u;u/) = mv (6-8)
C N=cC ; N = L 6.9
LL(U,U ) = vac@statm(U,U ) = ma ( . )
/ / 1
CLR(”) u ) = CStatiC(Ua u ) = — (610)

82! — v]d’

In vacuum Cpr(v,u’) = 0 because there can only be correlations with left and right moving
fluxes with a mirror present. The correlation limits for C'rr and Cr, 1, hold for either vacuum
or a static mirror, hence the xor, @, in the subscript. The ratios

Crr(u,u’)
= 11
= CvaCEBstatic(uy u/) 7 (6 )
and
!
R, = CLa.v) (6.12)

Cstatic(va u/) ’

can tell us about enhancement and suppression of correlations. For R; > 1 one interprets
enhancement, for R; < 1 there is suppression.
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6.2 Correlation solutions

We focus on one ratio only in order to help confirm thermal equilibrium to the right
observer. This correlation ratio, Ri, involving Crpr, associates two right moving rays.
These rays come off the mirror heading to the right observer at fg . The R; solutions for
the ratios for the three mirrors of interest,

(1) Thermal Mirror (Carlitz-Willey),
(2) Black Mirror (Omex),
(3) Horizonless Mirror (Domex),

are included here for completeness. They are respectively,

40, _ N\ 26 (utu’)
K*(u—u)%e - (6.13)

R’i[‘hermal — /
(emu — ehu )

which, illustrates thermal correlations at all times. However, for the black mirror, we have
4 14 2 2
K*(u—u)*W (e7")" W (e_"m )
Omex

R = , 6.14
' (W (e=m) +1)% (W (e=m') + 1) (W (e=ru) — W (e=~v'))* (614

which, illustrates thermal correlations at late times. Finally, we write down the Domex’s
ratio,
Rpomes it — )t (4 (E+ DWu + 1) (=€ + (E+ D)Wy + 1)

_ ! et — - o, (6.15)
(W +1)" (W +1)7 ((§ = D)(u — ') + £+ D)Wy = £(E+ 1) W)

2ru

_2zku 72141/
where W, = W <26 Hl), and W, =W <2€ ot >

E+1 &+1

All three mirrors give the same thermal correlations when comparing a ray that occurs
in the appropriate equilibrium period. This is not at very late times for Domex. When
one picks a very late time ray, then Omex and Carlitz-Willey are still thermal, but Domex
begins to break pattern to abide by the inevitable non-equilibrium completion of emission.
This is to be expected because at very late times the mirror abandons thermal character
as the radiation ceases. See figure 5.

7 The particle production of Domex

7.1 The beta Bogoliubov coefficient integrals

The distinction between energy flux and particle flux has been well-studied by Walker-
Davies [62] and Walker [75]. The key ingredient is the information of the mirror trajectory
equation of motion, which is encapsulated in the shock functions. One needs the Bogoliubov
coefficients because the particle emission detected by an observer is

(NL) = (O | N 04) = /0 B2 de. (7.1)
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Figure 5. Left: the ratio Ry for all three mirrors: Carlitz-Willey, Omex and Domex (£ = 1—1077),
where the right moving ray «’ = 0.5 (chosen for simplicity) and x? = 487 (chosen to normalize a
thermal energy flux of Fr = k?/487 = 1). Notice all three correlations stack up closely on each
other, indicating no difference in the correlations from thermal emission between all three mirrors.
With this & scale the maximum flux is near the ray uj = 0.48 =~ 0.50 for Domex. Right: the
ratio Ry for all three mirrors where the right moving ray v/ = 1 and 2 = 487. The gray line is
the thermal mirror and Omex mirror. The black line is Domex. Now we are comparing late time
correlations, so late in fact, that Domex has correlations that now deviate from thermal equilibrium.
This deviation signals the non-equilibrium completion of evaporation. Notice all three correlations
stack up closely on each other only for early values of u, indicating no difference in the correlations
from thermal emission for these rays. The ratio becomes enhanced, Ry > 1, once negative energy
radiation is emitted.

There are four ways to calculate the beta Bogoliubov coefficient using the shock functions:

B = %}m /:: duy e~ wu—iw'vs(u) <w'dvdsiu) — w) , (7.2)
Buw = 47“_/3@ /Z dv e~/ v—iwus(v) <wdu§£1}) — w') , (7.3)
B = %}m /_C: gt e i@ptticnzs(t) (wpdxgt(t) _ wn> ’ (7.4)
B = 47”_/3@ +:<> da ein@—iwpts(2) (wn dtgff) - Wp) : (7.5)

Here w, = w+w’ and w;,, = w—w’. The integration bounds also assume all light rays hit the
mirror and propagate to future null infinity on the right. For light rays that do not hit the
mirror, one must stop short the integration and add up only to the last null ray as described
by the relevant variable. All of the bounds are written for a mirror which starts at positive
spatial infinity and proceeds left to negative spatial infinity in the far future. The bounds
must be appropriately changed for mirrors which have different behaviors and/or horizons.
For Domex we use eq. (7.5) because of the simplicity of ¢s(z) function particular to Domex.
Notice the negative sign analogous to eq. (7.3) drops away because the mirror starts at
x — +oo at t = —oo. This integral can be used to obtain other trajectories when the
other integrals are intractable. We choose this integral because it will allow investigation
of particle production while avoiding integration with the product log, (see [63] for z(t)
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approach), and therefore insert Domex’s trajectory, eq. (3.1), into the integral eq. (7.5)
identifying, ts(x) = t(z). The solution is

5 eV (—i(w + o) k)~ 2 (L) ( ;
ww'E = —

27k (w + W) 21%((14'5)“"‘ (1—5)60,)) . (7.6)

This exact beta solution also contains the thermal plateau, similar to the instantaneous
energy flux which closely approaches the thermal line at F' = Fp. Both particle and energy
flux approach the thermal plateau only at high final speeds making it a salient feature of the
radiation. One should be confident the behavior shows up in both the particle production
and energy flux because the packetized particles carry signatures of the instantaneous
energy flux emission [28].

In figure 6, we construct localized beta Bogoliubov coefficients from the global beta
Bogoliubov coefficients in eq. (7.6),

Ve

These are the usual orthonormal complete wave packets [1] which are used to find the

]. (‘]+1)€ Tiwn
/Bjnw’ = / dw [62 € wa’§:| . (77)
J

time-frequency localized particle count,
> 2
Vi) = [ e
0

o0 (]—‘,—1)5 d (]—‘,—1)6 d 7i(w] —wg)n
— / dw// ﬂ / ﬂ |:€2 1e 2 BWIWI/BZZQ W' . (78)
0 Jje€ \ﬁ Je€ \E

Particles arrive at f[{ in the range of frequencies je < w < (j + 1)e and in the range of
times (2mn — 7)/e S u < (2mn + 7)/e. Details on how to construct these packets in more
general situations can be found in [63].

7.2 Global particle distribution
The horizonless beta solution eq. (7.6) of Domex has distribution,
W' 2w 1

2 _
uwrel” = — (W +w)? (L + 8w+ (1—E)u) (eg(<1+g)w+<1—5>w'> _ 1)

while the horizon beta Bogoliubov coefficients of Omex have particle count per mode-
squared,

W 1
2k (w 4 w')? e2mw/s — 17

’/wa"Q = (710)

It is easy to see that as & — 1 that the spectra coincide. The high frequency approximation,
w’' > w, applied to Omex’s distribution, eq. (7.10), gives the usual thermal result of Carlitz-
Willey and late-time Davies-Fulling trajectories,

1 1

|ﬂww’ |% = .
A |

(7.11)
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Figure 6. Left: the left observer sees a non-thermal pulse of particle production. The final drifting
speed of Domex need not be very high to see the growth of the pulse. Here £ = 0.0la where
a =1,2,3,4,5. The acceleration parameter is set to x = 1 and the lowest frequency bin j = 1 is
observed. Here ¢ = 1. The pulse of particles grossly exceeds constant Planckian emission with fast
speeds. Right: the right observer sees a plateau of particle production. The final drifting speed and
other parameters are also { =1—0.1, k =1, 5 = 1, and € = 1, where z = 10, 20, 50, 100. Increasing
the final coasting speed produces a flatter, more extended in time, thermal plateau. The particle
production colored red is Omex, which is thermal at late times ad-infinitum. The dotted-dashed
line is the approximate Planck distribution, N; = (e%s/T —1)~! where w; = (j + 1/2)e. The solid

QDT

black line is the exact Planck distribution, N; = Te~ ! In {W} — 1, see e.g. [57, 60].

One checks that the Domex distribution is thermal, \,wa/5|2 ~ | Lo |2T7 by a series expansion
that first approximates the distribution with a very fast end-state drifting mirror £ ~ 1 and
then applies the high-frequency approximation w’ > w. This approach explicitly decouples
the late-time approximation from the high-frequency approximation.

7.3 Consistency check

It is a fair claim that the total summation of the energies of each quanta should be equal
to the integral over the energy flux:

/OOO W(N,) dw = /0; F(u) du. (7.12)

Therefore, the beta Bogoliubov particle results can be confirmed to be consistent with the
stress-energy by computing the total energy, using eq. (7.1) and eq. (4.19),

/Ooow [/OOO Bt [° dw/} dw = /_Z F(t)(1 — %) dt. (7.13)

This consistency helps confirm the particles do indeed carry the energy. Explicitly, we have
numerically confirmed the beta coefficients, eq. (7.6), that for an observer to the right at
Z 7, the total energy emitted is

_ [T [ 2 KB -@tanh'(€)  K(3+26)
Er —/0 /o W | Buwre|” dw dw' = 1878 T @+ e) (7.14)
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and for an observer to the left at ,/LJF , the total energy emitted is

I Sl Sy 9 , K(3+E) tanh~!(—¢) k(3 —2¢)
EL _/0 /O w |ﬁww’§| dw dw = 4871'52 — 4871’(52 75), (715)

in agreement with the analytical results of the stress-energy tensor of section 4. We have
found the largest relative numerical error here to be less than 10! using x = 1, and
various values of 0 < £ < 1.

8 Discussions

In the Introduction we raised the following question: “is there a moving mirror in (141)-
dimensions, satisfying unitarity in the sense allowed by the Bianchi-Smerlak criterion
(namely, S(u) — const. as u — £00), that has no acceleration horizon, produces finite
amount of energy, and serves as a limiting case analog for Eddington-Finkelstein coordi-
nate null shell gravitational collapse?” We have answered this question in the affirmative,
by constructing an exact mirror solution that satisfies these properties. Furthermore, we
investigated both sides of the mirror trajectory, and found interesting features regarding
negative entropy and negative energy flux.

The hallmark trait of the solution is the fact that it is an asymptotically coasting
mirror which does not have an accelerating horizon, yet approaches arbitrarily close to
thermal equilibrium. Thermal radiation arises from a sufficiently fast final drifting speed.
The ray-tracing function is identical to the spacetime matching condition of the black hole
case in the limit that the mirror drifts to the speed of light.

The global approach to treating horizons tends to work well in fully equilibrium ther-
modynamics, especially so with a priori non-dynamical assumptions (i.e. constant energy
flux) [61]. It is well-known that the non-equilibrium cases are not so easy to formulate using
the traditional methods [66]. A practical outcome of this paper has been to show how robust
the traditional methods can be when the horizon is removed from the start. Non-equilibrium
dynamical conditions follow suit, however the system can still achieve equilibrium, for an
arbitrary extended amount of time. With a consistent scaling (x in Domex and Omex are
the same scaled parameter relative to thermal emission), we have explicitly used the global
geometric properties of the spacetime, and in the case of particle creation, only localized
after solving for the global beta Bogoliubov coefficients.

The new mirror was described in terms of its energy flux, total energy, entropy flux,
correlations, and particle flux. The temperature can be detected by asymptotic observers
with particle detectors (the radiation demonstrates a Planckian distribution for a very
fast final drift speed and the use of the high frequency approximation). The evidence for
thermality is strengthened further by the long-lived steady-state stress-energy tensor and
the correlations which match the eternally thermal equilibrium mirror of Carlitz-Willey [61].
However, a few remarks are in order comparing our analysis to Carlitz-Willey’s seperate
1987 trajectory [80] which is not eternally thermal. A notable similarity between this
apparent horizon trajectory and the one presented here is the constant rate of particle
emission during a finite period of time. We confirm the locally thermal state in both
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unitary moving mirror trajectories. One notable difference is that their trajectory is in
terms of an approximate ray-tracing function with a kink.'® The trajectory in this paper
is exact, C'°°, for all-times, and is expressed as an explicit space-time trajectory function,
eq. (3.1). A consequence of this fact is that it so happens our trajectory does not come to
rest at late times, while their trajectory requires the mirror eventually become stationary
and consequently the entire remnant mass is radiated away to leave behind a flat region of
spacetime. In other words, Carlitz-Willey consider a “meta-stable” or “long-lived” remnant
that slowly evaporates away, whereas our remnant is eternal.

Unlike the eternal thermal Carltiz-Willey mirror [61] or the black mirror [57], the
Domex mirror gives rise to negative energy flux, and by the result of Bianchi-Smerlak [23,
24], also to the non-monotonic mass loss of the any corresponding black hole. Current
efforts are being directed to explore the generalization of the tortoise coordinate from

*_ L_
r*=r+42M log (2 1) , (8.1)
to
+ § 4M§ 2e 242]?)721
1 —
* = - —2MEW | —— 2
r (f) 1 §7° 1-¢ § 1-¢ ) (8 )

which can be evident from the generalization of the shock function of eq. (2.16) to eq. (2.20),
in the null-shell case which matches spacetimes outside and inside the shell. For details
on the null shell case, see e.g. Unruh (1976) [77], Massar (1996) [78] or Fabbri (2005) [79].
The generalization eq. (8.2) and a possible coupling between the parameters & and M, may
provide clues to understanding any corresponding black hole solution of Domex, and by
necessity a different all-time collapse scenario. It is understood [1] that at very early times
of gravitational collapse, the system cannot be described by the no-hair theorem. Therefore
it is appropriate to consider the type of modifications that can provide various early time
approaches to a thermal distribution, particularly those modifications that can afford uni-
tarity and finite evaporation energy. The modifications that can take into account energy
conservation like those of the dilaton gravity models have had significant success as a labo-
ratory for studying black hole evaporation. The physical problem in 141 dilaton gravity of
the evaporating black hole and its modified emission extends to complete evaporation for
the Russo, Susskind, and Thorlacius (RST) model [81] and to partial evaporation leaving
a remnant for the Bose, Parker, and Peleg (BPP) model [82]. The similarity of the Domex
mirror to the BPP model is striking in several qualitative aspects: NEF emission as a
thunderpop, a left over remnant, and finite total energy emission. It is also interesting that
the mass of the remnant in the BPP model is independent of the mass M of the infalling
matter, since with respect to the issue of energy conservation, there is no known physical
analog for M = 1/(4k), the initial mass of the shockwave, in the mirror model.

Finally, we shall comment on the peculiar emission we find on the left side of the
mirror trajectory, in particular, its possible relevance to the black hole correspondence (if
one exists). We conjecture that the “left emission” corresponds to in-falling flux into the

13Carlitz and Willey comment that the kink can be smoothed out but it is not done because it is clear it
would not affect the conclusions much.
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black hole. As such, its associated temperature and entropy might shed some light on the
information paradox, since as we emphasized in the Introduction, unitarity is a property
of the Hilbert space defined on the entire spacetime. In fact, such a “left temperature” in
the context of black hole physics already exists in the literature, see e.g., [83]. It should
also be emphasized that the recent result in the literature [84], concerning the study of
two-dimensional model of gravitational collapse, shows that a geodesic observer on the left
side measures late time thermal radiation but zero flux. This result is drastically different
from ours. It might be interesting to conduct a comparative study between our model with
that of [84].

Ultimately, while Domex is elementary, it embraces several surprisingly interesting
traits. Since some of these traits are shared with more sophisticated systems, this solution
may be a precursor for ensuing developments (the overt example being curved spacetime
collapse). On the other hand, this solution has exposed several explicit general attributes
which are unanticipated and must be understood in order to claim a good grasp of the
dynamics of the particle creation effect in non-thermal equilibrium.

The outstanding advantage of this mirror solution is the exact expressions for quan-
tities of interest. Since one natural speculation is the direct applicability to a curved
spacetime analog, we aim to examine this pertinent and interesting follow-up topic in a
later manuscript with primary consideration to energy conservation of the black hole’s
modified evaporation emission, metric continuity across the shock boundary, and to the
Bogolubov coefficients of specific dilaton gravity models.
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