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1 Introduction

Holographic theories with a local gravitational dual have several remarkable features that

can be read off by analyzing (semi-)classical gravity in Anti-de Sitter space (AdS). To un-

derstand the emergence of gravity, it is important to understand precisely in the language of

quantum field theory what mechanism is responsible for these features. Much of the work in

this direction has focused on constraints from conformal field theory (CFT). Conformality is

not an essential feature of holography. On the other hand, every holographic theory to date

can be understood as a large-N gauge theory. It is therefore natural to leverage whatever

power such a structure brings us. This brings us to the idea of Eguchi-Kawai reduction.

The proposal of Eguchi and Kawai was that large-N SU(N) lattice gauge theory could

be reduced to a matrix model living on a single site of the lattice [1]. This equivalence was

postulated through an analysis of the Migdal-Makeenko loop equations (the Schwinger-

Dyson equations for Wilson loop correlation functions) [2, 3] and assumed the preservation

of center symmetry in the gauge theory. However, it was immediately noticed [4] that the

center symmetry is spontaneously broken at weak coupling, disallowing the consistency of

the reduction with a continuum limit. The authors of [4] further proposed the first in a long

list of modifications to the gauge theory in an attempt to prevent center symmetry from

spontaneously breaking. Their proposal is known as the quenched Eguchi-Kawai model,

further studied in [5], where the eigenvalues of the link matrices were frozen to a center-

symmetric distribution. Another proposed variant is known as the twisted Eguchi-Kawai

model, wherein each plaquette in Wilson’s action is “twisted” (multiplied by) an element of

the center of the gauge group [6]. Numerical studies have shown these early modifications

fail at preserving center symmetry as well [7–10].

Let us turn to the continuum. Whether or not center symmetry is preserved is often

checked analytically by pushing the theory into a weakly coupled regime and calculating the

one-loop Coleman-Weinberg potential for the Wilson loop around the compact direction.

This is an order parameter for the center symmetry, and a nonvanishing value indicates

a breaking of center symmetry. An early analytic calculation of the Coleman-Weinberg

potential indicates the center-symmetry-breaking nature of Yang-Mills theories [11]. Nev-

ertheless, there are a few tricks that seem to work at suppressing any center-breaking phase

transitions: a variant of the original twisted Eguchi-Kawai model [12], deforming the ac-

tion by particular double-trace terms [13], or considering adjoint fermions with periodic

boundary conditions [14]. For a modern review see [15].

In this work, we will not be concerned with suppressing center-breaking phase transi-

tions. Instead, we will focus on implications of the Eguchi-Kawai mechanism within center-

symmetric phases. This will not be a restriction to the confined phase since we will be con-

sidering center symmetry with respect to spatial and thermal cycles. As we will be working

in the continuum, let us formulate the continuum version of the Eguchi-Kawai mechanism.

Consider a d-dimensional large-N gauge theory compactified onMd−k × (S1)k with center

symmetry at the Lagrangian level. If translation symmetry and center symmetry are not

spontaneously broken along a given S1, then correlation functions of appropriate single-

trace, gauge-invariant operators are independent of the size of that S1 at leading order in
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N . We will review these notions in the rest of the introduction and spend section 4 elabo-

rating on which sorts of observables are “appropriate.” This is often called large-N volume

independence, where “volume” in particular refers to the size of the center-symmetric S1s.

The Eguchi-Kawai mechanism is a robust, nonperturbative property of large-N gauge

theories that preserve certain symmetries. Famously, large-N gauge theories also play a

starring role in holographic duality. Curiously both contexts involve emergent spacetime

in radically different ways. In this work we will be interested in what predictions the

Eguchi-Kawai mechanism makes about gravity in AdS. Since the proposal concerns only

leading-in-N observables, we will be dealing exclusively with the (semi-)classical gravity

limit in AdS. A simple example illustrating the mechanism at work is the temperature-

independence of the free energy density onMd−1×S1
β at leading order in N in the confined

phase (e.g. N = 4 super Yang-Mills on S3
R × S1

β). In AdS/CFT, this occurs because the

thermal partition function is given by the contribution of thermal AdS below the Hawking-

Page phase transition, whose on-shell action has an overall factor of inverse temperature

β. When the theory deconfines, the free energy density becomes a nontrivial function

of β/R. Physically, a hot gas of confined degrees of freedom like glueballs and mesons

contributes a nontrivial function of β/R to the free energy density, but it is subleading in

1/N compared to the vacuum contribution. To look ahead to another example of large-N

volume independence, see equation (3.1).

We will spend the next section reviewing introductory material, ending with the central

tool of this work, which is that a smooth, translation-invariant gravitational description

implies center symmetry preservation along all but one cycle. Center symmetry can spon-

taneously break along a given cycle as its size is varied, but there must only ever be one

cycle which breaks the symmetry. We will refer to these transitions as center-symmetry-

swapping transitions (CSSTs). The rest of the paper will leverage this structure to learn

primarily about universal features of gravity, but also to learn about the Eguchi-Kawai

mechanism in large-N gauge theories. For some previous work exploring the Eguchi-Kawai

mechanism in holography, see [16–19].

1.1 Summary of results

Our primary tool will be that a smooth, translation-invariant gravitational description of a

state or density matrix in a toroidally compactified CFT preserves center symmetry along

all but one cycle. We will use this to produce the following universal features of gravity in

AdS: (a) an extended range of validity of the general-dimensional Cardy formula, (b) the

exact phase structure (including thermal and quantum phase transitions) with a toroidally

compactified boundary, (c) a sparse spectrum of light states on the torus, (d) leading-in-N

connected correlators will be given by the method of images under smooth quotients of the

spacetime, which reproduces the behavior of tree-level Witten diagrams, and (e) extensivity

of the entropy for spherical/hyperbolic/planar black holes which dominate the canonical

ensemble; for planar black holes this implies the Bekenstein-Hawking-Wald area law. (a)-

(c) are closely related and can be found in section 3, (d) can be found in section 4, and

(e) can be found in section 7. Using gravity to learn about the Eguchi-Kawai mechanism,
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we will find new center-stabilizing structures for strongly coupled holographic theories and

propose an extension of the mechanism to curved backgrounds in section 6.

2 Center symmetry and Wilson loops

Consider pure Yang-Mills theory on manifoldMd−1×S1
β with gauge group G (for example

SU(N)) with nontrivial center C (for example ZN ):

S = −1

4

∫
ddxF aµνF

aµν ; F aµν = ∂µA
a
ν − ∂ν Aaµ + fabcAbµA

c
ν . (2.1)

This theory is invariant under the gauge symmetry

Aµ → gAµg
−1 + g ∂µ(g−1) (2.2)

for g :Md−1×S1
β → G a map from our spacetime into the gauge group. The field strength

transforms as

F aµν → gF aµνg
−1 . (2.3)

Let us consider the function g to be periodic along the S1
β only up to an element of

the gauge group: g(x, τ + β) = g(x, τ)h for h ∈ G. For Aµ to remain periodic we need

g(x, τ+β)Aµ(x, τ+β)g−1(x, τ+β) = g(x, τ)Aµ(x, τ)g−1(x, τ), in other words Aµ(x, τ+β) =

h−1Aµ(x, τ)h. But this requires h ∈ C so we can commute it past Aµ and cancel it against

h−1. So we see that we can consistently maintain twisted gauge transformations as long as

we twist by an element of the center. The action above is invariant under these extended

gauge transformations. The space of physical states are constrained to be singlets under

the usual gauge group G but not under the twisted gauge transformations. In particular,

Wilson loops which wrap an S1, which will henceforth be referred to as Polyakov loops,

transform under the generalized gauge transformation. To see this, consider the path-

ordered exponential, i.e. the holonomy of the connection, around the S1:

Ωx(τ + β, τ) = P exp

[∫
Aµdx

µ

]
−→ g(x, τ + β)Ωx(τ + β, τ)g(x, τ)−1 . (2.4)

The P stands for path. We will refer to the trace of this object as the Polyakov loop, which

for ordinary gauge transformations causes g and g−1 to annihilate by cylicity. For twisted

gauge transformations, however, we are left with

W (C) ≡ Tr Ωx(τ + β, τ) −→ hW (C) . (2.5)

The W stands for Polyakov. Thus the expectation value of a Polyakov loop can serve as

an order parameter for the spontaneous breaking of center symmetry.

We will always take our trace in the fundamental representation, since the vanishing of

the expectation value of such a loop is necessary and sufficient for the preservation of center

symmetry, independent of the matter content. Contrast this with the case of rectangular

Wilson loops (traces of path-ordered exponentials where the path traces out a large rectan-

gle instead of wrapping an S1) where the trace needs to be evaluated in the same represen-

tation as that of the matter content to access the energy required to deconfine the matter.
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Let us now specify to gauge group SU(N). The center of the gauge group is ZN ,

consisting of elements zn = exp(2πin/N)11. Every representation of SU(N) can be classified

by which of the N representations of ZN it falls under. This is called the N -ality of the

representation, and it is determined by counting the number of boxes mod N of the Young

tableau of the representation. The addition of matter to our gauge theory explicitly breaks

the center symmetry of the Lagrangian unless the matter is in a representation of vanishing

N -ality [20]. Fundamental representations have N -ality 1 and therefore explicitly break

center symmetry. Adjoint representations, on the other hand, have vanishing N -ality and

therefore preserve center symmetry.

Even for matter in vectorlike representations that break center symmetry, there is

an effective emergence of the symmetry as N → ∞ as long as the number of vectorlike

flavors is kept finite. This is simply because quarks decouple at leading order and one is

left with the pure Yang-Mills theory. Interestingly, by orientifold dualities, even matrix

representations (which break center symmetry and for which the matter does not decouple)

have an emergent center symmetry at infinite N [21, 22].

Calculating Wilson loops in AdS. There is a simple prescription for calculating the

expectation value of a Wilson loop in the fundamental representation of the gauge theory

using classical string theory. One calculates e−SNG for the Nambu-Goto action SNG for

a Euclidean string worldsheet which ends on the contour of the Wilson loop C [23]. Let

us specify to Polyakov loops wrapping an S1 on the boundary. Notice that if this circle

is non-contractible in the interior then we have 〈W (C)〉 = 0. We now illustrate a famous

example where this criterion distinguishes confined and deconfined phases. The thermally

stable (i.e. large) AdS-Schwarzschild black hole, which has a thermal circle which caps off

in the interior, admits a string worldsheet and therefore gives a nonvanishing Polyakov

loop expectation value. This indicates a deconfined phase, which is appropriate as the

AdS-Schwarzschild black hole is the correct background for the gauge theory at high tem-

perature. Thermal global AdS, however, has a thermal circle which does not cap off in the

interior and therefore gives a vanishing Polyakov loop expectation value. This indicates

a confined phase, which is appropriate for the theory at low temperature. Indeed, the

bulk canonical phase structure for pure gravity indicates a transition between these two

backgrounds when the inverse temperature is of order the size of the sphere. Similarly, the

entropy transitions from O(1) in the confined phase (no black hole horizon) to O(N2) in

the deconfined phase (yes black hole horizon).

There is one more basic geometric fact we will need. Consider an asymptotically

Euclidean AdSd+1 spacetime with toroidal boundary conditions. Preserving translation

invariance along the non-radial directions — a necessary condition for the Eguchi-Kawai

mechanism to work — gives a metric of the form

ds2 =
dr2

r2
+ gµν(r)dφµdφν , gµν(r →∞) = r2δµν . (2.6)

To avoid conical singularities (e.g. metrics which look locally like r2(dφ2
1 + dφ2

2)), no more

than one of the boundary circles can cap off in the interior of the spacetime. While it
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may be possible that none of the boundary circles cap off in the interior (say through the

internal manifold capping off instead), I do not know of any smooth, geodesically complete

examples. We will therefore not consider this possibility, so in our context exactly one cycle

caps off and the other d− 1 circles remain finite-sized. This motivates the following simple

yet extremely powerful statement. In any smooth, translation-invariant geometric descrip-

tion, the expectation value of Polyakov loops in the fundamental representation vanish in

d − 1 of the directions. For theories with an explicit center symmetry, this means that

we will have volume independence along d− 1 directions as discussed in the introduction.

Appropriate observables will therefore be independent of the sizes of the circles. For the

gravitational description to be valid, the circles in the interior need to remain above string

scale. For a translation of this criterion into field theory language, and in particular a

discussion of Eguchi-Kawai reduction to zero size, see appendix C.

Just like the original Eguchi-Kawai example of pure Yang-Mills, our theory will of

course deconfine, as signaled by the Hawking-Page phase transition in the bulk. This is

sometimes called partial Eguchi-Kawai reduction, since the reduction only holds in the

center-symmetric phase. We will refer to the “Eguchi-Kawai mechanism” and “large-N

volume independence” to describe this state of affairs. (Large-N volume independence

refers in particular to independence of the size of center-symmetric S1s, not necessarily

the overall volume.) From our point of view, the deconfinement transition is just a center-

symmetry-swapping transition (CSST) from the thermal cycle to a spatial cycle. It remains

true that d−1 of the cycles preserve center symmetry. CSSTs can also occur between spatial

cycles as they are varied. In this case, the transition is unrelated to confinement of degrees

of freedom, since the entropy is O(1) before and after the transition. It instead signals a

quantum phase transition, which can take place at zero temperature. Interestingly, this

quantum phase transition persists up to a critical temperature.

3 Reproducing gravitational phase structure/sparse spectra/extended

range of validity of the Cardy formula

We will now show that the semiclassical phase structure of gravity in AdS is implied by our

center symmetry structure. Consider an asymptotically AdSd+1 spacetime with toroidal

boundary conditions. The cycle lengths will be denoted L1, . . . , Ld with β = L1. We will

pick thermal periodicity conditions for any bulk matter along all cycles and will comment

at the end about different periodicity conditions. Assuming a smooth and translation-

invariant description, the phase structure implied by gravity can succinctly be written in

terms of the free energy density as

f(L1, . . . , Ld) ≡ −
logZ(L1, . . . , Ld)

L1L2 · · ·Ld
= − εvac

Ldmin

, (3.1)

where εvac is a pure positive number (independent of any length scales) characterizing the

vacuum energy on S1
L×Rd−2 as Evac/V ≡ −εvac/L

d for spatial volume V [24], and Lmin is

the length of the smallest cycle. This is the phase structure independent of the precise bulk

theory of diffeomorphism-invariant gravity, as long as we maintain translation invariance
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and consider the thermal ensemble. Like in AdS3, all the data about higher curvature

terms is packaged into εvac.

Notice that the triviality of this phase structure implies highly unorthodox field theory

behavior. The phase structure (3.1) implies thermal phase transitions as the thermal cycle

β becomes the smallest cycle. There are also quantum phase transitions when two spatial

cycles are smaller than the rest of the cycles (including β), and the larger of the two is

changed to become smaller. These are quantum phase transitions because they can (and

do) occur when β → ∞, so they are not driven by thermal fluctuations. These quantum

phase transitions, however, persist at finite temperature. Finally, in any given phase the

functional form of the free energy density is independent of all cycle lengths except for one!

Much of [25] was focused on reproducing this structure in field theory, and we refer the

reader to that work to see the many nuances involved.

We now turn to the gauge theory. We will see that our framework gives (3.1) immedi-

ately, thereby locating the points where phase transitions occur and the precise functional

form of the free energy in all phases. Consider a field theory with our assumed center

symmetry structure, which is that all but one cycle preserve center symmetry. We also

have thermal periodicity conditions for the matter fields along all cycles, since this will give

thermal periodicity conditions for the bulk matter fields and preserve modular S invari-

ance between any pair of cycles. Notice that by extensivity of the free energy and modular

invariance [24, 26], we have

f(L1 → 0, L2, . . . , Ld) = −εvac

Ld1
. (3.2)

Since the free energy density is supposed to be independent of the center-symmetry pre-

serving directions, we deduce that the L1 cycle breaks center symmetry. This is consistent

with the expected deconfinement of the theory. Now let us consider varying any of the cycle

sizes. As long as there is no center-symmetry-swapping transition (CSST), f(L1, . . . , Ld)

continues to depend only on L1. Since the theory is scale invariant, this fixes the L1 depen-

dence and we continue to have the behavior (3.2). Finally, any CSST that occurs between

cycle Lα and cycle Lγ has to occur when Lα = Lγ by the modular symmetry between

all cycles. So, when cycle lengths are equal, they must be symmetric: either they both

preserve the center or they are undergoing a CSST. They cannot both break the center

since only one cycle can ever break the center in our framework.

Using the above facts that f(L1, . . . , Ld) can only change its functional form at CSSTs

and that two cycles which have equal length must have the same center-symmetry struc-

ture, we can deduce the entire phase structure. As we increase L1 from L1 = 0, due to

the symmetry between cycles there must be a CSST between L1 and the next-smallest

cycle when they become equal. As L1 is increased further, it is a center-preserving cycle

passing other center-preserving cycles, so no more CSSTs can occur and the free energy

density remains unchanged. Starting from an arbitrary torus, with an arbitrary cycle taken

asymptotically small, this argument produces for us the entire phase structure (3.1).

What about the case where we do not preserve the symmetry between cycles? An

interesting example of this is if we pick bulk fermions to be periodic along some cycles. In
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the gravitational picture these cycles are not allowed to cap off in the interior since this

would not lead to a consistent spin structure. Thus, the phase structure is just as in (3.1),

where now Lmin minimizes only over the cycles with antiperiodic bulk fermions. We will

comment more on the field theory implications of this in section 6.1. To predict this bulk

phase structure, we need to supplement our assumption of d − 1 cycles preserving center

symmetry with an assumption about which cycles preserve center symmetry for all cycle

sizes. These cycles can then never undergo CSSTs with other cycles. By repeating the

arguments above, we can reproduce this modified bulk phase structure.

3.1 Extended range of validity of Cardy formula

Holographic gauge theories, in addition to having the remarkable phase structure exhibited

above, have an extended range of validity of the general-dimensional Cardy formula. The

Cardy formula in higher dimensions was derived in [24, 26] and reproduces the entropy of

toroidally compactified black branes at asymptotically high energy:

log ρ(E →∞) ≈ d

(d− 1)
d−1
d

(εvacVd−1)
1
dE

d−1
d . (3.3)

This precisely mimics how the two-dimensional Cardy formula [27] reproduces the entropy

of BTZ black holes at asymptotically high energy [28]. Large N operates as a thermody-

namic limit that can transform our statements about the canonical partition function into

the microcanonical density of states (this is discussed for example in the appendices of [25,

29]). We find that the Cardy formula is not valid only asymptotically, but instead is valid

down to E = −(d− 1)Evac, which in canonical variables is at a symmetric point β = Li,min

where Li,min is the smallest spatial cycle. This is precisely the energy at which the Hawking-

Page phase transition between the toroidally compactified black brane and the toroidally

compactified AdS soliton occurs in the bulk! Similar arguments in the case of non-conformal

branes should give an extended range of validity for the Cardy formula of [30].

3.2 Sparse spectra in holographic CFTs

A sparse spectrum is often invoked as a fundamental requirement of holographic CFTs, and

we have several avenues of thought that lead to this conclusion. Here we will be concerned

with the sparseness necessary to reproduce the phase structure of gravity [25, 29], not with

the sparseness necessary to decouple higher-spin fields [31].

We have already reproduced the complete phase structure (3.1). By the arguments

in [25, 29] this implies a sparse low-lying spectrum

ρ(E < −(d− 1)Evac) . exp (Li,min(E − Evac)) , (3.4)

where Li,min is the smallest spatial cycle. To roughly recap the argument of [25], modular

constraints on the vacuum energy coupled with the phase structure imply vacuum domi-

nation along all cycles except the smallest one. But to be vacuum dominated means that

excited states do not contribute to the partition function. This leads to the constraint

above, which is really a constraint on the entire spectrum, but is written as above since for
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E > −(d− 1)Evac we have a precise functional form for the density of states: it takes the

higher-dimensional Cardy form, which trivially satisfies the Hagedorn bound above.

One can also access additional sparseness data by investigating different boundary

conditions. To point out the simplest case, consider super Yang-Mills theory in a given

number of dimensions with fermions having periodic boundary conditions along one cycle

and antiperiodic boundary conditions along another cycle. Then modular covariance will

equate a thermal partition function ZNS,R with a twisted partition function ZR,NS (twisted

by (−1)F ), which will access the twisted density of states ρB(E) − ρF (E). By similar

steps as performed above, one will conclude a sparseness bound for this twisted density of

states. The fact that preserving center symmetry can imply a supersymmetry-like bound

is carefully discussed in a non-supersymmetric context in [32, 33].

3.3 SL(2,Z) family of black holes

In this section and the next we will consider the case of twists between the cycles of the

torus. We will begin with three bulk dimensions, where there is an extended family of solu-

tions known as the SL(2,Z) family of black holes, first discussed in [34] and elaborated upon

in [35]. They give an infinite number of phases, instead of the two we usually consider in

Lorentzian signature, and we can check volume independence in each of the phases individu-

ally. Twists do not seem to be considered in the literature on large-N volume independence,

but we will show that volume independence continues to hold. A general SL(2,Z) black

hole has a unique contractible cycle, sometimes called an A-cycle. The non-contractible

cycle (sometimes called a B-cycle) is only additively defined, since for any B-cycle one can

construct another B-cycle by winding around the A-cycle n times (n ∈ Z) while going over

the original B cycle. The usual convention is to set this winding number to zero. Due to this

redundancy the SL(2,Z) family is really an SL(2,Z)/Z family specified by which cycle at

infinity is contractible in the interior [35]. Here Z acts as τ → τ +n for modular parameter

τ . This data is given by two relatively prime integers (c, d) with c ≥ 0. We also need to in-

clude the famous examples (0, 1) (thermal AdS3) and (1, 0) (BTZ). In the rest of this section

we will ignore numerical prefactors in the free energy density and will only track the de-

pendence on cycle lengths. Let us consider the simplest cases first, thermal AdS3 and BTZ,

both with zero angular potential. This means τ and −1/τ are pure imaginary. We have

Thermal AdS : f(β, L) ∼ β/L

βL
=

1

L2
, (3.5)

BTZ : f(β, L) ∼ L/β

βL
=

1

β2
. (3.6)

These exhibit volume independence for the center-symmetry preserving (i.e. non-

contractible) cycles. Let us now add an angular potential θ, which makes τ complex:

Thermal rotating AdS : f(β, L; θ) ∼ β/L

βL
=

1

L2
, (3.7)

Rotating BTZ : f(β, L; θ) ∼ 1

βL

β/L

θ2/L2 + β2/L2
=

1

θ2 + β2
. (3.8)
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We again get consistent results, since the lengths of the contractible cycles of thermal

rotating AdS and rotating BTZ are L and
√
θ2 + β2, respectively.

The general SL(2,Z) black hole can be given in a frame where the modular parameter is

(aτ+b)/(cτ+d), the contractible cycle z = φ+itE ∼ z+L(cτ+d) and the non-contractible

cycle z ∼ z + L(aτ + b). Their lengths are given as

|S1
A| =

√
d2L2 + 2cdLθ + c2(β2 + θ2), |S1

B| =
√
b2L2 + 2abLθ + a2(β2 + θ2) . (3.9)

The free energy density is found, for general τ = iβ/L+ θ/L, to be

f(β, L; θ) ∼ ad− bc
d2L2 + 2cdLθ + c2(β2 + θ2)

=
1

|S1
A|2

. (3.10)

Notice that a and b enter into the size of the non-contractible cycle, but the condition

ad− bc = 1 forces the free energy density to be independent of these parameters! This is as

expected since the physically distinct states should only care about c, d by the arguments

above. We therefore find for the general SL(2,Z) geometry that the free energy density

exhibits volume independence.

3.4 SL(d,Z) family of black holes

There exists an unexplored analog to the SL(2,Z) family of black holes in higher dimensions,

which I will call the SL(d,Z) family of black holes. For a review of some salient points

about conformal field theory on Td and SL(d,Z), see appendix A.

The bulk topology is that of a solid d-torus, with a unique contractible cycle. Winding

a B-cycle by an A-cycle is topologically trivial. A “small” bulk diffeomorphism, i.e. one

continuously connected to the identity, can undo this winding. However, winding a B-

cycle by another B-cycle leads to a true winding number and is topologically distinct.

This corresponds to a large diffeomorphism in the bulk. Thus, as in the two-dimensional

case, we only need to sum over a subgroup of the full SL(d,Z), because B-cycles are only

additively defined. In particular, we consider again the group SL(d,Z)/Z, where Z acts

as ~Vi → ~Vi + n~Vd for all 1 ≤ i ≤ d − 1, n ∈ Z and ~Vd the fixed contractible cycle vector.

As reviewed in appendix A, the ~Vi represent lattice vectors that define the quotient of the

plane that gives us the torus Td.
Our “seed” solution in three bulk dimensions was global AdS3 at finite temperature

and finite angular velocity. In higher dimensions our seed solution will be the AdS soliton,

with all spatial directions compactified, arbitrary twists turned on (including both twists

between spatial directions and time-space twists, interpreted as angular velocities), and the

dth direction contractible. Summing over the restricted set of SL(d,Z)/Z images of this

geometry described above should give an SL(d,Z)-invariant partition function. Ignoring

the important issue of convergence of this sum, we can see that the invariance is naively

guaranteed since the seed solution and its images are independently invariant under the

Z we mod out by. In other words, the analog of Z0,1(τ) from the previous section, call it

Z0(~V1, . . . ~Vd), and its images are invariant under shifts ~Vi → ~Vi + n~Vd.

Anyway, this restricted sum is not important for our purposes. It is sufficient to show

that an arbitrary element of the SL(d,Z) family has a free energy density that depends
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only on the contractible cycle. The simplest case is the AdS soliton at finite temperature

with spatial directions compactified, which has free energy density

f(L1, . . . , Ld) ∼
1

Ldd
, (3.11)

where Ld is the length of the contractible cycle. This is volume-independent as required.

Twisting any of the non-contractible directions by any of the other directions by any amount

does not change this answer. Thus, the general AdS soliton with arbitrary angular poten-

tials and spatial twists exhibits volume independence with respect to the non-contractible

cycles. We can now consider SL(d,Z) images of this geometry.

The general SL(d,Z) image geometry has global Killing vector fields for all the non-

radial coordinates, which reduces the on-shell action calculation to
∫
dd+1x

√
g F (r, r̃h) =

Vol(Td)
∫
drF (r, r̃h) where r̃h is a parameter fixed by the size of the dth cycle and F (r, r̃h)

is some function. Thus, twists can only enter into Vol(Td), but torus volumes are in-

variant under twists. Higher-order corrections in the Newton constant GN will bring in

a dependence on the twists, as the momentum quantization of perturbative fields on a

torus depends on the twists. In this way we see that volume-independence will break down

at subleading order in the 1/N expansion, as expected. Let us calculate the free energy

density a little more carefully.

Consider a general twisted seed geometry, with the contractible direction chosen to lie

along the dth direction, specified by lattice vectors defining the twists:

Θ =


θ11 θ12 · · · θ1,(d−1) θ1d

0 θ22 · · · θ2,(d−1) θ2d
...

...
. . .

...
...

0 0 · · · θ(d−1),(d−1) θ(d−1),d

0 0 · · · 0 θdd

 . (3.12)

This can be transformed by a general SL(d,Z) transformation (A)ij = aij ∈ Z with

det(A) = +1 to give

A ·Θ =


a11θ11 a11θ12 + a12θ22 · · ·

∑d
i=1 a1iθid

a21θ11 a21θ12 + a22θ22 · · ·
∑d

i=1 a2iθid
...

...
. . .

...

ad1θ11 ad1θ12 + ad2θ22 · · ·
∑d

i=1 adiθid

 . (3.13)

We can compose d(d − 1)/2 rotations in the d(d − 1)/2 two-planes to make this matrix

upper triangular. This will allow us to identify the new modular parameter matrix Θnew.

This will not change the lengths of the cycles, which are given as

L2
k =

d∑
j=1

(
j∑
i=1

akiθij

)2

, (3.14)
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where Ld gives the length of the contractible direction. The volume of the resulting torus

is given as

Vol(ATd) = det(A ·Θ) = det(A) det(Θ) =
d∏
i=1

θii . (3.15)

In particular, it is unchanged by the SL(d,Z) transformation. The free energy density is

given as

f(L1, . . . , Ld) ∼
1

Ldd
, (3.16)

exhibiting volume independence in the center-symmetric directions.

Notice that, like for the case d = 2, twists in the contractible direction are redundant

with the case of no twist in that direction. This is because there exists a bulk diffeomor-

phism, continuously connected to the identity, which induces this twist on the boundary.

Twists in non-contractible directions, however, correspond to large gauge transformations

and define distinct geometries. So, unlike for d = 2, uniquely defining the contractible

cycle is not sufficient. We still have a reduction in moduli, with d2− 1− (d− 1) = d(d− 1)

numbers specifying distinct geometries. Interestingly, the distinct geometries obtained by

twisting non-contractible directions by other non-contractible directions do not differ in

their classical on-shell action.

4 Correlation functions and entanglement entropy

In this section we will discuss the implications of the Eguchi-Kawai mechanism for correla-

tion functions and Renyi entropies. As usual, the statements are restricted to leading order

in N , meaning tree-level Witten diagrams in the bulk. We will only consider volume inde-

pendence with respect to a single direction for conceptual clarity; generalization to multiple

directions is straightforward. For correlation functions we will see that position space cor-

relators must be given by the method-of-images under smooth quotients, as in (4.10). The

connection between large-N reduced correlation functions and the role of the method of

images in AdS has previously been explored in the stringy (zero ’t Hooft coupling) limit

in [16, 17], although there are several points of deviation from the present work.

4.1 Correlation functions

Let us assume that we are volume-independent with respect to a single direction. Then

connected correlation functions of local, single-trace, gauge-invariant, neutral-sector

observables will be volume independent at leading order in N . Nonlocal operators like

Wilson loops can also be treated as long as they have trivial winding around the cycle.

One term that may need explanation is “neutral-sector.” We will explain briefly below;

for details see [14].

Consider the theory on Rd−1 × S1 as we vary the circle size from some length L to

some other length L′. A given operator in the theory of size L can be decomposed as

O(x) =
∞∑

n=−∞
On/Le

2πinx/L . (4.1)
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On/L for momenta n/L commensurate with those of the box of size L′ are termed “neutral-

sector” operators, and it is their correlation functions which are volume-independent. For

example, if L = xL′ for some irrational x then only correlators of O0 will be volume-

independent. While this may seem like a severe restriction, we will only be concerned with

producing finite-size results from infinite-size results, and all momenta in finite size are

commensurate with some momentum in infinite size.

For a theory of pure glue or pure adjoint fields like N = 4 super Yang-Mills, we can

write this precisely as

lim
N→∞

N2(M−1)〈On1/LOn2/L . . . OnM/L〉L = lim
N→∞

(JN2)M−1〈On1/LOn2/L . . . OnM/L〉JL
(4.2)

for J ∈ Z+ and L′ = JL. This particular limit is because the large-N counting in a

purely adjoint theory shows that the connected correlator of M single-trace operators is

O(1/N2(M−1)). For a theory with mesonic operators and therefore an expansion in 1/N ,

with connected correlators of mesons scaling as O(1/NM−1), we would take a limit with

NM−1 in front to isolate the leading contribution to the connected correlator. But the basic

point is clear: the statement is about the first order in N that is expected to have a nonvan-

ishing answer by large-N counting. If it vanishes, no statements are made about the leading

nonvanishing order. This is what the limit above makes precise in a pure adjoint theory. We

will not worry about the various cases of large-N counting, because within AdS/CFT the

leading-in-N diagrams are given by tree-level diagrams in the bulk. It is only these diagrams

we wish to make a statement about. We will therefore use as our primary tool the equality

〈On1/LOn2/L . . . OnM/L〉L = JM−1〈On1/LOn2/L . . . OnM/L〉JL (4.3)

with the caveat that this is the leading-in-N piece of a connected correlator left implicit.

To see the effect on a general correlation function of local operators, it will suffice to

consider the two-point function. We consider the Fourier representation of the finite-size

correlator:

〈O(x)O(y)〉L =
∑

(n,m)∈Z2

e−2πi(nx+my)/L〈On/LOm/L〉L (4.4)

=
∑

(n,m)∈Z2

e−2πi(nx+my)/LJ〈On/LOm/L〉JL , (4.5)

where in the second line we used (4.3). We could immediately use translation invariance to

write the correlator as a function of only the separation x− y, but to make generalization

to higher-point correlators clear we will keep the dependence until the end.

We can now simplify this expression by transforming the momentum-space correlator

in size JL to position space and evaluating the various sums and integrals:

〈O(x)O(y)〉L =
∑

(n,m)∈Z2

1

J2L2

∫ JL

0
dx′
∫ JL

0
dy′e−2πi(nx+my)/Le2πi(nx′+my′)/LJ〈O(x′)O(y′)〉JL

(4.6)
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=
1

JL2

∫ JL

0
dx′
∫ JL

0
dy′

∑
(n,m)∈Z2

e−2πi(nx+my)/Le2πi(nx′+my′)/L〈O(x′)O(y′)〉JL

(4.7)

=
1

JL2

∫ JL

0
dx′
∫ JL

0
dy′

∑
(n,m)∈Z2

L2δ(x′ − x− nL)δ(y′ − y −mL)〈O(x′)O(y′)〉JL

(4.8)

=
1

J

J−1∑
n,m=0

〈O(x+ nL)O(y +mL)〉JL . (4.9)

This generalizes to

〈O(x1) . . . O(xM )〉L =
1

J

J−1∑
ni=0

〈O(x1 + n1L) . . . O(xM + nML)〉JL . (4.10)

The converse is also true. That is, starting from the method-of-images form of a position

space correlator above, one can show (4.3). Altogether, volume-independence of neutral-

sector correlators is true if and only if finite-size correlators are obtained by the method of

images from correlators in a larger size.

4.2 Two-point functions

To focus on the simplest case, consider the equal-time two-point function in a translation-

invariant two-dimensional theory. Say we want to construct the finite-size correlator from

the infinite-size correlator. We begin from (4.10) and use translation invariance, which says

that our correlator is only a function of the distance between the two insertion points:

〈O(x)O(y)〉L = 〈O(x− y)O(0)〉L =
1

J

J−1∑
n,m=0

〈O(x− y + (n−m)L)O(0)〉JL (4.11)

=
1

J

J−1∑
n,m=0

〈O(x− y + (n+ (J −m))L)O(0)〉JL (4.12)

=
J−1∑
n=0

〈O(x− y + nL)O(0)〉JL , (4.13)

where we used the JL-periodicity of the size-JL correlator. To compare to the infinite-size

correlator we can take J →∞ in a particular way:

〈O(x− y)O(0)〉L = lim
J→∞

1

2

J−1∑
n=0

[〈O(x− y + nL)O(0)〉JL + 〈O(x− y + (n− J)L)O(0)〉JL]

(4.14)

= lim
J→∞

1

2

J−1∑
n=−(J−1)

〈O(x− y + nL)O(0)〉JL . (4.15)
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Notice that taking this limit will give us the correlator on the semi-infinite line with semi-

infinite periodicity. Doubling it (and picking up a factor of 2 just as in the factor of J

that comes from relating two-point functions in size L to size JL) gives us the real-line

correlator. We thus have our final result

〈O(x− y)O(0)〉L =

∞∑
n=−∞

〈O(x− y + nL)O(0)〉∞ . (4.16)

Now we compare to gravity in AdS. Conformal field theory correlators, at leading order

in N , are obtained by extrapolating the bulk-to-bulk propagator to the boundary. Since

the bulk-to-bulk propagator for free fields satisfies a Green function equation, we can find

the propagator after performing an arbitrary smooth quotient by the method of images.

This gives precisely the form of correlator above, which for example in the famous case of

the BTZ black hole takes the form [36]

〈O(t, φ)O(0, 0)〉 =

∞∑
n=−∞

1(
cosh

(
2πt
β

)
− cosh

(
2π(φ+nL)

β

))2∆
(4.17)

for operators of dimension ∆. Notice that this sums over spatial images but not thermal

images. For thermal AdS3, which is obtained instead as a quotient in the Euclidean time

direction, we would sum over thermal images but not over spatial images. In each case, the

correlator is given by a sum over images with respect to the center-preserving direction.

This is exactly what is predicted by our arguments above. Furthermore, we see that the

“free-ness” of large-N theories is not sufficient by itself to imply that the correlator should

be a sum over images, since there is no sum over images in the center-breaking direction.

4.3 M-point functions

For higher-point functions, recall that we focus only on diagrams in the bulk that do not

have any loops. Any given contribution to the tree-level M -point function is constructed

out of M bulk-to-boundary propagators K and n < M bulk-to-bulk propagators G. This

means there are n + 1 interaction vertices in the bulk. An illustrative case of tree-level

(leading in N) and loop level (subleading in N) diagrams is depicted in figure 1.

The position space correlation function can be written schematically as

〈O(x1) . . . O(xM )〉AdS =

∫
AdS

n+1∏
i=1

dXiG
nKM , (4.18)

where boundary points are denoted by small x and bulk points by big X. From here we

can show

〈On1/L · · ·OnM/L〉AdS/Γ = |Γ|M−1〈On1/L · · ·OnM/L〉AdS . (4.19)

Before we outline the proof of this we need the following facts. The bulk-to-bulk propagator

satisfies a Green function equation since the bulk theory is free at this order (leading in

N). The bulk-to-boundary propagator is obtained by a certain limit of the bulk-to-bulk

propagator where one of its points is pulled to the boundary. Thus, both propagators
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Figure 1. Left: a tree-level Witten diagram, which contributes at leading order in N to the

nine-point function. It is constructed out of M = 9 bulk-to-boundary propagators and n = 5 bulk-

to-bulk propagators. Since it is a contribution at tree level, there are 6 = n+ 1 interaction vertices.

There are many more diagrams contributing at this order. Right: a loop-level Witten diagram,

which contributes at first subleading order in N to the nine-point function. It is constructed out

of M = 9 bulk-to-boundary propagators and n = 8 bulk-to-bulk propagators. There are 8 6= n+ 1

interaction vertices. There are again many more diagrams contributing at this order.

can be obtained on a smooth quotient of our AdS background by the method of images.

Finally, in momentum space, the integrals over spacetime give n+1 momentum-conserving

delta functions since there are no loops in the bulk.

The general proof of (4.19) is notationally clumsy and would ruin the already regretful

aesthetics of this paper, so we will provide an outline of the general proof here and give

a sample calculation in appendix B. The left-hand-side is evaluated by an inverse Fourier

transform of the position space expression. The position space expression is written in

terms of the bulk-to-bulk and bulk-to-boundary propagators in AdS/Γ. These are replaced

by those in AdS by the method of images. These propagators are then transformed into

momentum space (with momenta now spaced according to AdS and not AdS/Γ). Sums

and integrals are re-ordered at will and this expression is simplified down to an integral

over the bulk radial interaction vertices zi. The right-hand-side is evaluated in the same

way, except its propagators are never replaced with other propagators. This leads to (4.19).

Explicit details for a four-point function can be found in appendix B.

So we see that the behavior of tree-level perturbation theory in AdSd+1 under generic,

smooth quotients of spacetime is reproduced. Notice that bulk loops are made of bulk-to-

bulk propagators as well, but their momenta are not fixed and instead are integrated over.

This leads to a non-universal answer, since there are bulk-to-bulk propagators in the AdS

space and AdS/Γ space which have explicit momentum dependence which is to be summed

over. Although the bulk-to-bulk propagator in AdS/Γ can be replaced with the one in AdS

by the usual method of images trick, the sums are over different momenta and cannot be

carried out in general.

4.4 Entanglement/Renyi entropies

Another place where volume independence crops up is in the calculation of entanglement

entropy of theories dual to gravity in AdSd+1. For simplicity I will restrict to AdS3.
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Recall that the Ryu-Takayanagi prescription dictates that the entanglement entropy

is given by the regularized area of a minimal surface that is anchored on the entangling

surface on the AdS boundary [37]. Consider a spatial interval of size ` on a spatial circle of

size L at temperature T . For entangling surfaces at fixed time for static states or density

matrices, the minimal surface will lie on a constant bulk time slice. This makes it clear

that in the confined phase, which is thermal AdS3, the Ryu-Takayanagi answer will be

independent of the center-preserving thermal circle of size T :

SEE =
c

3
log

(
L

ε
sin

(
π`

L

))
(4.20)

for UV cutoff ε. Note that it is not given as a sum over thermal images like in the case of

correlation functions. It is instead completely independent of the thermal cycle size.

In the deconfined phase, i.e. above the Hawking-Page CSST, we get an answer inde-

pendent of the center-preserving spatial circle of size L:

SEE =
c

3
log

(
β

ε
sinh

(
π`

β

))
. (4.21)

The minimization inherent in the Ryu-Takayanagi prescription is the reason why we do

not sum over images and so get exact volume independence. (There is a proposal that

the image minimal surfaces instead contribute to entanglement between internal degrees

of freedom, coined “entwinement” [38].)

Apparently, single-interval entanglement entropy is an appropriate neutral-sector “ob-

servable” that obeys large-N volume independence. As shown by a bulk calculation in [39],

volume-dependence appears at first subleading order in the central charge c (the proxy for

N in two-dimensional theories). Volume-dependence also appears at leading order in the

central charge in the Renyi entropies, but not in any trivial way as in the local correlators

of the previous section. The Renyi entropies must not be neutral-sector observables. The

Renyi entropy in this context is related to the free energy on higher-genus handlebodies; the

analytic continuation connecting to the original torus to define the entanglement entropy

is therefore special.

It is interesting that in the cases where we have a volume-independent object, it is the

entanglement entropy and not any of the higher Renyi entropies. This may be related to

the fact that it is the entanglement entropy that naturally geometrizes in the bulk, or to

the fact that it is a good ensemble observable (or these two could be the same thing).

5 Higher-spin theory as a failure of the Eguchi-Kawai mechanism

We have presented large-N volume independence along all but one cycle of toroidal com-

pactifications as a necessary condition for a field theory to have a local gravitational dual.

This is discussed further in section 8.3. Higher-spin theories are a good example of how

things go wrong if this does not occur, and provide additional evidence for this conjecture.

Higher-spin theories in AdS are nonlocal on the scale of the AdS curvature.
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There are a zoo of higher-spin theories, so let us analyze one of the simplest cases.

Consider the parity-invariant Type-A non-minimal Vasiliev theory with Neumann bound-

ary conditions for the bulk scalar field [40–42]. This is a theory that can be expanded

around an AdS4 background and has fields of all non-negative integer spin. It is proposed

to be dual to the three-dimensional, free U(N) vector model of a scalar field restricted to

the singlet sector [43]. The singlet projection is performed by weakly gauging the U(N)

symmetry with a Chern-Simons gauge field.

The Chern-Simons-matter theory does not enjoy large-N volume independence. In

fact, given that the matter is in the fundamental representation, it does not even have center

symmetry at the Lagrangian level. However, there is a simple procedure for deforming such

theories into close cousins with explicit center symmetry at the Lagrangian level. This is

discussed for example in [14]. First we add a global U(Nf ) flavor symmetry to the boundary

theory, and then we weakly gauge it and change the representation of the matter to be in

the bifundamental. Such a theory has explicit center symmetry at the Lagrangian level

and will have center-symmetric phases (as long as e.g. N = Nf + O(Nf/N)). There

now exist single-trace, gauge-invariant operators made up of arbitrarily long strings of the

bifundamental fields, which did not exist in the previous theory. These are the objects

associated to the string states in the bulk.

This procedure, with some more bells and whistles (the bells and whistles being an

appropriate amount of supersymmetry), is precisely what takes these vector models into

the more mature ABJ theory [44, 45]. The bulk interpretation of this procedure is also

straightforward and deforms the higher-spin theory into its more mature cousin, string

theory. The addition of the global flavor symmetry is the addition of Chan-Paton factors

to the higher-spin theory, which implies upgrading the spin-1 bulk gauge field to a non-

abelian U(Nf ) gauge field, with all other fields transforming in the adjoint of U(Nf ). The

gauging is then a familiar procedure in AdS/CFT whereby the boundary conditions of this

bulk gauge field are changed. In fact, this entire story is just that of the ABJ triality

beautifully painted in [46], whereby the higher-spin “bits” are conjectured to bind together

into the strings of ABJ theory. All I would like to highlight is that the deformations that

were necessary to connect to a theory with a local gravitational limit included deforming

to a theory with an explicitly center-symmetric Lagrangian and center-symmetric phases

(at leading order in N and the ’t Hooft coupling N/k). Interestingly, this deformation also

leads to a lifting [47] of the light states present in vector models [48].

It may be interesting to explore what other deformations of the vector models can

introduce center symmetry and the particular center symmetry structure that is a hallmark

of classical gravity. This may shed light on how to deform the set of proposed higher-spin

dualities for de Sitter space [49–51] to an Einstein-like dual. In the context of de Sitter, the

deformation discussed above leads to a “tachyonic catastrophe” in the bulk, as discussed

in [52], and does not seem to give a viable option.
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6 Learning about the Eguchi-Kawai mechanism from gravity

In this section, we will shift our focus and analyze what gravity teaches us about the

Eguchi-Kawai mechanism.

6.1 Center symmetry stabilization and translation symmetry breaking

Although this was discussed in previous sections, we would like to emphasize that the bulk

gravitational description gives us a way to predict whether volume independence is upheld

in particular holographic gauge theories. The first nontrivial statement is that center

symmetry can be broken along at most one cycle for any given configuration of cycle sizes.

The second nontrivial statement is that there are simple ways to preserve center symmetry

along a given cycle for any cycle size which remains larger than string scale in the bulk.

In particular, periodic bulk fermions and antiperiodic bulk scalars prevent cycles from

capping off in the bulk, as this is an inconsistent spin structure. These cases therefore

preserve center symmetry beyond the CSST points which correspond to gravitational

Hawking-Page transitions. This argument does not explicitly rely on the representation

of the boundary matter (for example it is true of N = 4 super Yang-Mills and for ABJ

theory, where the fermions are in the adjoint and the bifundamental, respectively). The

bulk matter is made of gauge-invariant combinations of the boundary fields, so the

periodicity conditions of the bulk matter will be correlated with the periodicity conditions

of the boundary fields. For example, bulk fermions are constructed by taking single-trace

gauge-invariant operators consisting of an odd number of boundary fermionic fields (e.g.

Tr [φψ]). Therefore, bulk fermions with periodic spin structure imply boundary fermions

with periodic spin structure. A similar statement is true for antiperiodic bulk scalars.

Higher-spin dualities, however, offer an interesting case where the bulk theory is purely

bosonic while the boundary theory can be purely fermionic.

The quantum-mechanically generated potentials for the gauge field holonomies can be

straightforwardly calculated at weak coupling, see for example [11, 53]. From the weakly

coupled point of view, for (3+1)-dimensional SU(N) Yang-Mills theories, preserving center

symmetry with non-adjoint periodic fermions or antiperiodic scalars of any representation

is not possible. The only choice that works is periodic adjoint fermions. Interestingly, for

periodic adjoint fermions (which we will have for super Yang-Mills theories) we seem to

preserve center symmetry at strong coupling as well. But there is a small catch. At weak

coupling, one would need to make the fermions periodic along all k cycles of Tk × Rd−k.1

At strong coupling, however, this will not give us a background well-described by gravity

alone, since it will be the toroidally compactified Poincaré patch with circles shrinking to

substringy scales near the horizon. To have a proper gravitational description, we would

need to make the fermions antiperiodic along one of the cycles (or the scalars periodic).

In this case, we will still preserve center symmetry along all the cycles that have periodic

fermions, but this does not match what happens at weak coupling.

1A calculation of the Casimir energy in N = 4 super Yang-Mills on T2 × R2 [54], for example, shows

that we lose volume independence along both cycles if the fermion is periodic along only one cycle.
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We have not made any comments about operator expectation values and correlation

functions within a grand canonical ensemble, say for turning on a chemical potential for

some global symmetry. In this case, one can spontaneously break translation invariance,

in which case the Eguchi-Kawai mechanism fails [55]. There exist holographic examples of

such spatially modulated phases [56–58].

6.2 Extending the Eguchi-Kawai mechanism to curved backgrounds

An important question about the Eguchi-Kawai mechanism is whether it extends to curved

backgrounds. The original Eguchi-Kawai mechanism, and most modern proofs of large-

N volume independence, rely on a lattice regularization which we do not have on curved

backgrounds (although see [59] for some progress in the case of spherical backgrounds).

We will set this aside for the moment as a technical issue. We will see that the natural

uplift of volume independence to curved backgrounds is what I will call “topological volume

independence.” We will make this notion precise by defining an order parameter (which will

again be the expectation value of a Polyakov loop) and checking in gravitational examples

that “topological volume independence” is indeed realized.

Hints from field theory. We already have some hints from field theory about what

the Eguchi-Kawai mechanism on curved manifolds should look like. The first hint comes

from the perturbative intuition for volume independence on torus compactifications. In

particular, mesons and glueballs form the confined phase degrees of freedom (baryons have

masses that scale with N and can be ignored for our purposes), and interactions between

these confined phase degrees of freedom are suppressed by 1/N . At leading order in N the

theory behaves as if it is free. The confined phase degrees of freedom are therefore incapable

of communicating with their images to discover they are in a toroidal box. This intuition,

however, is valid even in a curved box. This seems to suggest the size of the manifold should

again not be relevant even if it is curved. But curved backgrounds have local curvature

which can vary as you change the overall size of the background, e.g. increasing the radius

of a sphere. There is no reason the mesons and glueballs cannot feel this local curvature

at leading order in N and thereby (for maximally symmetric manifolds like a sphere of

hyperboloid) would know the overall size of the compact manifold on which they live. So

it seems we should not expect a totally general uplift to curved backgrounds.

The second hint comes from thinking about volume independence in toroidal compact-

ifications as a generalized orbifold projection, where one orbifolds by a discrete translation

group [14]. (The language of orbifolds here is conventional but everything is really a

smooth quotient.) Generic changes in the overall size of curved backgrounds cannot be

thought of this way, so we again see that we cannot expect a totally general uplift to

curved background.

Combining the two hints above provides a compelling case for what kind of setup has

a chance of maintaining a useful notion of volume independence. One begins with a curved

background and considers smooth quotients that change the volume of the manifold. Such

operations do not change the local curvature and maintain the picture of volume-changing

as an orbifold procedure. This therefore utilizes the two hints above. We can now check that
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gravity provides a calculable setup where this proposal for the Eguchi-Kawai mechanism

on curved backgrounds can be checked to be valid. The simplest case to analyze is the

conformal field theory on any simply connected manifold, like the sphere or the hyperboloid.

As an illustrative example, we will investigate the family of lens spaces formed by smooth

quotients of S3, although our results are general. For any smooth quotients of simply

connected manifolds, we will see that the Polyakov loop expectation value continues to

serve as an order parameter for center symmetry.

Holographic realization of the Eguchi-Kawai mechanism on curved manifolds.

Holographic gauge theories in the gravitational limit realize all of the intuition of the

above. They explicitly show that naive volume-independence on curved backgrounds does

not hold. Furthermore, they show that topological volume independence does hold when

interpreted in the above sense!

To see that naive volume independence on curved backgrounds does not hold, we can

consider an observable as basic as the zero-point function, or the free energy density. We

saw that for torus-compactified holographic theories, the free energy density was volume-

independent due to the thermodynamics of black branes. For holographic theories on a

sphere or the hyperboloid, this is no longer the case. The relevant bulk geometries are the

spherical and hyperbolic black holes. The key difference between these geometries and the

black brane is that the horizon radius is not proportional to the Hawking temperature.

Instead, we have

T ∼ rh + r−1
h . (6.1)

This means that the Bekenstein-Hawking area law, which scales as rd−1
h and gives the

thermal entropy of the CFT, is not extensive in field theory variables (i.e. does not scale

as T d−1). Here it is important to keep in mind that the theories we are considering are

conformal, so fixing the temperature dependence fixes the volume dependence. Moreover

changing the radius of the sphere or hyperboloid can equally well be regarded as changing

the temperature since only the ratio is meaningful. But since SCFT = SBH = rd−1
h 6= T d−1,

we do not have extensivity of the thermal entropy or the free energy, unless rh →∞ which

pushes us into the black brane limit. Furthermore, correlation functions in these back-

grounds have nontrivial volume-dependence. While the ideas of large-N volume indepen-

dence do not apply, there may still be a lower-dimensional matrix model description of the

higher-dimensional theory, see e.g. [60–62]

Both of these problems are solved by considering the smooth orbifolds suggested in

the previous section. The entropy density (or free energy density) becomes appropriately

volume-independent because smooth orbifolds of the spatial manifold cannot be interpreted

as changes in the temperature. Thus, the nonlinear relation between horizon radius and

temperature is not a problem. Said another way, we consider a setup where our field theory

is on a manifold Md−1 and its thermal ensemble at high temperature (i.e. the deconfined

theory) is dominated by a black object with horizon topologyMd−1. This is what happens

for the field theory on a sphere, plane, or hyperboloid. The quotient of the manifold Md−1
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by some freely acting group Γ changes the Bekenstein-Hawking entropy as follows:

SBH =
rd−1
h Vol(Md−1)

4GN
−→

rd−1
h Vol(Md−1/Γ)

4GN
. (6.2)

We see from this formula that the field theory’s entropy density and free energy density is

appropriately independent of such changes in volume, as long as no CSST occurs (more on

this possibility below).

How about correlation functions? As we saw before, these are constructed by bulk

Witten diagrams, whose atoms are bulk-to-bulk and bulk-to-boundary propagators. These

objects again obey a Green function equation in the bulk, meaning any orbifold of the back-

ground geometry can be dealt with by summing over orbifold images. As long as we remain

at leading order in N , meaning we do not consider bulk loops, the correlator will pick up a

trivial volume dependence fully determined by the volume-dependence before quotienting.

We have analyzed volume independence in the deconfined phase of the theory, where

the relevant bulk geometries which dominate the thermal ensemble are given by black holes

with some horizon topology. Uplifting the intuition from our torus-compactified theories,

we should expect to find nontrivial volume-dependence and temperature-independence in

the confined phase of the theory. We will address this in the next section.

It is interesting that the gravitational description and the field theory description

give the same hints as to what sort of generalization to curved backgrounds should work.

In particular, we discussed how from the field theory point of view we should expect

volume-changing orbifolds to be the natural uplift of the Eguchi-Kawai mechanism to

curved backgrounds. Gravity gives the exact same intuition, and furthermore it explicitly

demonstrates that it works, at least for the types of observables considered above.

Order parameter on curved manifolds and testing topological volume indepen-

dence. For any simply connected manifold Md−1, the quotient by some freely acting

group Γ gives a manifold with nontrivial fundamental group isomorphic to Γ. This means

that we can wrap a Polyakov loop on the existing nontrivial cycle and could reasonably

expect that its expectation value continues to serve as a good order parameter. We will

see in a concrete example that this is the case.

To illustrate the point, consider the family of lens spaces L(p, 1) which have

π1(L(p, 1)) = Zp. These can be understood in terms of the canonical metric for the Hopf

fibration:

dΩ2
3/p=

1

4

(
dψ2+dθ2+dφ2+2 cos θ dψdφ

)
, 0<θ<π, 0≤φ<2π, 0≤ψ<4π/p . (6.3)

Volume independence for lens spaces can now be stated in terms very close to that of the

generalized orbifold projections used to discuss volume independence for torus compact-

ifications. Just as we vary the size of a circle in a torus compactification by shifting its

periodicity, in this case we move between lens spaces by changing the periodicity of the ψ

coordinate. To maintain a smooth quotient we need p ∈ Z+ so these are discrete changes.

The area of a unit-radius lens space is simply 2π2/p, and its change is given immediately

by the change in the ψ circle. We can wrap a Polyakov loop around the ψ circle due to the
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nontrivial homotopy, and it is again the expectation value of this loop which we propose

serves as our order parameter.

Let us turn to the gravity picture. In the deconfined phase, the orbifolded circle is

non-contractible in the bulk, which implies a vanishing Polyakov loop expectation value

and therefore volume independence:

ds2 = −
(

1 +
r2

`2
− µ

r2

)
dt2 +

dr2(
1 + r2

`2
− µ

r2

) + r2dΩ2
3/p . (6.4)

As we showed in the previous section, topological volume independence is indeed realized

in the free energy density and correlation functions. How about the confined phase? The

naive geometry for the confined phase is obtained by taking a quotient of global AdS. This

geometry has a conical singularity at the origin which is not well-described within gravity.

For antiperiodic fermions along the orbifolded circle (with even p > 2), it has been proposed

that closed string tachyon condensation regularizes the geometry into what is called the

Eguchi-Hanson-AdS soliton [63, 64]. This geometry has the orbifolded circle smoothly

capping off in the interior, giving a nonvanishing expectation value to the Polyakov loop.

There is a deconfining CSST at inverse temperature

βc = 2π

√
−6p4 + 48p2 − 88 + (p4 − 8p2 + 20)3/2

p4 − 8p2 + 4
. (6.5)

(This corrects the expression given in (4.14) of [65].) In the confined phase, an analysis

of the Eguchi-Hanson soliton shows that we have topological volume-dependence with

respect to the spatial manifold and volume-independence with respect to the thermal circle!

This picture of topological volume independence is also found in ABJM theory through a

nontrivial calculation utilizing supersymmetric localization on lens spaces [66].

An intuitive way to understand the absence of finite-size effects is to transmute the

naive energy level spacings of 1/L to spacings 1/NL. Achieving this with nontrivial flat

connections along the orbifolded circle is discussed in e.g. [67].

The topological volume independence that we discuss seems to be controlling the rela-

tion between N = 4 super Yang-Mills on S3/Zp and (2 + 1)-dimensional super Yang-Mills

on S2, as discussed on the gravity side in [68] and the field theory side in [69]. An important

distinction we draw here from previous work is that the precise pattern of center symmetry

breaking/preservation in the gravitational picture is not realized at weak coupling.

It would be fascinating to carry out weakly coupled tests of our proposal for topological

volume independence of gauge theory on quotients of simply connected manifolds. A simple

case to analyze is that of (3 + 1)-dimensional gauge theory on a lens space. In particular,

our arguments (and weakly coupled intuition from an ordinary circle compactification of

flat space) suggest that periodic adjoint fermions along the Hopf fiber of the lens space

should lead to topological volume independence at weak coupling.
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7 Extensivity of the Bekenstein-Hawking-Wald entropy

The Bekenstein-Hawking area law is a universal formula in Einstein gravity that applies to

black hole horizons, cosmological horizons, and in a certain sense to spacetime itself. Let us

restrict the discussion to black hole horizons and focus on the scaling with area, ignoring the

factor of 1/4. This scaling was explained by Witten for asymptotically large black holes in

AdS, since this corresponds to the asymptotically high-temperature limit of the field theory

where the entropy should become extensive [70]. As discussed in the previous section, in

this limit the scaling of the field theory entropy with the spatial volume maps directly to

the scaling with the area of the horizon in the bulk. The Eguchi-Kawai mechanism, when

manifested as the volume-independence of entropy density, seems to be exactly the sort

of tool necessary to provide a general mechanism for the area law. But there are several

puzzling and ultimately insurmountable features in trying to pinpoint an exact scaling with

area purely from the Eguchi-Kawai mechanism (except for large toroidally compactified

black branes in AdS). We will instead see that the mechanism explains a more general

“area” law: the extensivity of the Bekenstein-Hawking-Wald entropy.2 Before considering

higher curvature corrections, however, let us investigate how the Bekenstein-Hawking area

law is at least consistent with the Eguchi-Kawai mechanism, even if not predicted by it.

In AdSd+1/CFTd, we may ask why toroidally compactified black branes above the

Hawking-Page phase transition have no subextensive piece in their classical entropy. Fixing

to a spatial torus, as β → 0 we expect to get an entropy scaling of the conformal field theory

as S ∼ Vd−1T
d−1. Since the bulk Hawking temperature scales as T ∼ rh, this gives S ∼

rd−1
h Vd−1 in bulk variables, which is precisely the Bekenstein-Hawking area law. However,

as the temperature is lowered we should generically expect subextensive corrections to the

thermal entropy, which would spoil the universal area law in the bulk since T ∼ rh is main-

tained for black branes at any temperature. However, the Eguchi-Kawai mechanism saves

the day, and implies that no such corrections can appear until one undergoes a CSST, whose

location can be determined as discussed in section 3. This uses the Eguchi-Kawai mecha-

nism to generalize Witten’s explanation of the Bekenstein-Hawking area law to all toroidally

compactified black branes above the Hawking-Page transition. Of course, if a periodic spin

structure is chosen for the fermions along all spatial cycles, then no such transition appears

in the gravitational regime and we can explain the area law for arbitrary toroidally com-

pactified black branes. This is just a recap of what was shown more carefully in section 3.

What about the Bekenstein-Hawking area law for black hole horizons with curva-

ture, like the spherical or hyperbolic black holes in AdS? Again adopting center-symmetry

preservation along the orbifolding cycle (up to any CSST) as our working assumption, we

deduce that the entropy density in the field theory is volume-independent in the orbifold-

2The language here and in the literature is very confusing. We refer to the Bekenstein-Hawking entropy

as extensive even though it is very famously subextensive. By this we mean extensive in horizon area

not volume. Also, the Wald entropy is sometimes referred to as providing subextensive corrections to the

Bekenstein-Hawking area law, by which it is meant terms that do not scale with the area of the event

horizon. When we refer to the extensivity of the Wald or Bekenstein-Hawking-Wald entropy, we mean the

fact that it can be written as an integral of a local quantity over the horizon of the black hole. We will

discuss this further below.
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ing direction. The orbifolding direction is a discrete direction, indexed by an integer p in

the previous section. Any potential analytic continuation to complex p is on very shaky

ground, but the Bekenstein-Hawking area law for the original spherical or hyperbolic black

hole may be understood by analytic continuation from the discrete family of quotiented

geometries. This is akin to understanding entanglement entropy through the discrete Renyi

family, although there the analytic continuation is on much firmer footing.

If these ideas are correct, then they provide a mechanism for the area law for large

black holes with horizon topology Σ which dominate the canonical ensemble for some dual

field theory on background Σ. What about small black holes? Here the interpretation in

terms of plasma balls in the dual large-N gauge theory may be useful [71]. It may then

be true that the Eguchi-Kawai mechanism applies to this deconfined plasma ball in a way

which maps to the area law in the bulk, as we saw for large black holes above.

Stringy corrections and extensivity of the Wald entropy. We can ask about sub-

leading order in the ’t Hooft coupling λ, which should correspond to bulk stringy correc-

tions. One way these stringy corrections manifest themselves is as higher-curvature correc-

tions to the bulk Einstein gravity. The Polyakov loop analysis remains the same and con-

tinues to indicate center symmetry preservation along d−1 cycles. Thus a center-symmetry

analysis in the field theory predicts that for any planar/spherical/hyperbolic black holes,

the entropy density should be volume-independent in any smooth orbifolding direction.

To check this, we can look at zero-point functions like the entropy density. Since we

have higher-curvature corrections we need to use the Wald formula for black hole entropy.

For toroidally compactified black branes, the area law is maintained although the coefficient

can change. For spherical or hyperbolic black holes, we have corrections to the Bekenstein-

Hawking area law which do not scale with the area of the horizon. This seems to be in

contradiction with the Eguchi-Kawai mechanism. To address this, let us step back for a

moment.

There is a spiritually correct but technically incorrect holographic explanation of the

Bekenstein-Hawking area law that is often given. It says that the scaling with area is

because there is a holographic dual theory in one lower dimension with the same entropy,

and its entropy is scaling with volume as it should be. This captures the holographic spirit,

but in general it is technically incorrect as can be seen in many ways. If the area maps to a

field theory volume, does the 1/GN map to temperature? This is of course wrong. Even in

the cases where the area does map rigorously to volume, like toroidally compactified black

branes, why does the field theory not exhibit any subextensive corrections to its entropy?

This we explained within our framework of large-N volume independence. Finally, what

about higher curvature corrections? In the bulk the entropy picks up what are sometimes

confusingly called “subextensive corrections to the Bekenstein-Hawking area law” from the

Wald entropy formula. This ruins the Bekenstein-Hawking area law. Interpreted as bulk

stringy corrections and therefore as corrections in the gauge coupling of a dual field theory,

why should going to weaker coupling ruin extensivity?
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These issues are clarified by recalling that the Wald entropy is an integral over the

event horizon and is therefore extensive. Consider a black hole with metric ansatz

ds2 = −f(r)dt2 +
dr2

g(r)
+ r2hµνdΣµν , (7.1)

where hµν is independent of r and t. This does not capture the most general case but

will suffice for the argument. The Wald entropy for a general diffeomorphism-invariant

higher-curvature theory of gravity with Lagrangian density L is given as an integral along

the horizon

SW = −2π

∫
dΣ
√
h rd−1

h

∂ L
∂ Rµναβ

εµνεαβ , (7.2)

where εµν is the binormal to the horizon. The corrections implied by the Wald entropy are

terms that do not scale as rd−1
h , which is the scaling of the Bekenstein-Hawking entropy.

But notice that the general theory will still scale with the volume of Σ: SW ∼ Vol(Σ). This

is what we mean by extensivity, which as before can be thought of in terms of quotients of Σ

Md−1 −→Md−1/Γ =⇒ SW → SW /|Γ| . (7.3)

In this sense the general Wald entropy — therefore the entropy in an arbitrary

diffeomorphism-invariant theory of classical gravity — is just as extensive as the

Bekenstein-Hawking entropy. For black branes this means that the Wald entropy

maintains an area law but in general modifies the Bekenstein-Hawking prefactor 1/4.

To bring this extensivity of curved horizons into clearer focus, consider quantum (sub-

leading in GN , i.e. subleading in N) corrections to the Bekenstein-Hawking-Wald entropy.

At first order, these are logarithmic in the area of the event horizon:

Stot ∼ SW + log(SW ) + . . . . (7.4)

The correction neither scales with the area of the horizon nor with Vol(Σ). It is truly

subextensive.

This discussion should make clear that the gravity that emerges from our center sym-

metry analysis is not necessarily Einstein gravity. Nevertheless, it would be fascinating

if somehow the stringency of this center symmetry structure necessitated a CFT with

an Einstein gravity dual. One way this could occur is by requiring a sparse higher spin

spectrum [31] — recently shown to give c ≈ a for the anomaly coefficients c and a in

four-dimensional CFTs [72] — just as it required a sparse spectrum of low-lying states to

reproduce the extended range of validity of the general-dimensional Cardy formula. In this

spirit, it is encouraging that restoration of a center symmetry plays an important role in

deforming higher-spin theory (within which the higher spin fields cannot be made sparse)

into ABJ theory (within which they can).

8 Discussion

8.1 Reproducing additional features of AdS gravity

We have shown that several universal features of AdS gravity can be reproduced with the

starting assumption of center symmetry preservation along all but one cycle in a large-N
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theory (and the suitable generalization of this statement to curved backgrounds as discussed

before). However, there are still several features that we would like to explain.

A powerful technical assumption in the context of reproducing universal features of

gravity in AdS3/CFT2 is that of Virasoro vacuum block domination of the four-point

function on the sphere. This is expected to be a valid assumption in large-c theories with a

sparse light spectrum and sparse low-lying operator-product-expansion (OPE) coefficients.

This suggests that it might be implied by our framework. More precisely, consider a four-

point function 〈O1(∞), O2(z)O3(1)O4(0)〉, which can be decomposed into representations

of the Virasoro algebra (i.e. into Virasoro blocks) by inserting a complete set of states. It

is believed that taking c→∞ with external and internal operator dimensions scaling with

c leads to an exponentiation of the Virasoro block [73, 74]:

F(c, hp, hi, z) ≈ exp

(
− c

6
f

(
hp
c
,
hi
c
, z

))
, i = 1, 2, 3, 4 , (8.1)

where hp is the internal operator dimension. Now taking z → 0 leads to vacuum block

dominance, which means that the hp = 0 internal channel gives the largest contribution.

This is because all blocks have an expansion around z = 0 which is dominated by the

leading OPE singularity from bringing together O2 and O4:

F(c, hp, hi, z) = zhp−h2−h4(1 +O(z)) . (8.2)

In holographic theories, vacuum block dominance — like the Cardy formula we discussed

in (3) — seems to have an extended range of validity, which in this case means for a finite

range of z beyond the asymptotic limit z → 0. This requires a sparseness bound both on

the spectrum of states and on the operator product expansion coefficients. Our framework

requires large c to begin with and reproduces a sparse light spectrum as discussed in

section 3. Data about the OPE coefficients is also accessible in this framework since tree-

level Witten diagrams have bulk interactions. Concretely, one may hope to analyze more

carefully volume independence for the blocks between the sphere and the torus, possibly

using the tools of [75–79]. An orthogonal clue that vacuum block dominance may be implied

by this framework is a calculation of the entanglement entropy in a heavy microstate on a

circle [80–82], which gives an answer independent of the size of the circle!

Accessing some quantity or feature which directly exhibits the smooth, geometric na-

ture of the bulk is another natural goal for this framework. The singularities of [83] are

one such feature that indicate a sharp geometric structure.

8.2 Reducing or blowing up models

The strong coupling description of holographic theories makes manifest that one can achieve

full volume-independence (i.e. preserve center symmetry for all cycle sizes) along directions

with periodic (antiperiodic) boundary conditions for fermions (bosons), as long as one

direction has the opposite boundary conditions and caps off in the interior. One can

then perform a large-N reduction of these theories down to matrix quantum mechanical

theories, i.e. (0 + 1)-dimensional theories. For a discussion of the validity of the reduction
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down to zero size, see appendix C. This captures physics in both confined and deconfined

phases. When describing thermal physics in the gravitational limit, there will always be

one direction that does not reduce, prohibiting the reduction to a matrix model description,

i.e. a (0 + 0)-dimensional theory. (See [84] for a discussion of subtleties in dimensionally

reducing volume-independent theories.)

Blowing up low-dimensional models is another interesting direction to pursue, espe-

cially in light of recent developments in low-dimensional models like the Sachdev-Ye-Kitaev

(SYK) model, which captures some features of AdS2 gravity. The addition of flavor to the

SYK model [85] gives it the necessary ingredient to be blown up into a higher-dimensional

model by the methods of [86, 87]. (See also [88, 89] for a different kind of blow-up.)

8.3 The necessity of the Eguchi-Kawai mechanism for holographic gauge the-

ories

I have intermittently referred to the Eguchi-Kawai mechanism as a necessary feature of

holographic gauge theories. In a certain sense, this is obviously ridiculous. Center symme-

try of e.g. N = 4 super Yang-Mills breaks explicitly with the addition of a single fundamen-

tal matter field, although we still have a controlled gravitational description of the infrared

physics. In this case, what I really mean is that there exists a theory which at large N is

equivalent to the one with a single fundamental field, but which has center symmetry at

the Lagrangian level. More simply, the fundamental matter decouples at leading order in

N , so the center symmetry is emergent at infinite N . As explored heavily in the literature

on large-N volume independence and mentioned in the introduction, orbifold/orientifold

dualities in many cases imply an emergent center symmetry at infinite N , even when center-

breaking matter does not naively decouple [21, 22]. It is this generalized emergent sense in

which the Eguchi-Kawai mechanism is necessary. In other words, there is a possibility that

center symmetry (whether existing explicitly or emergent) is playing an indispensable role

in realizing the precise form of volume independence necessary to admit a gravitational

description. Absent conclusive evidence to the contrary, I conjecture this to be the case.

It would be nice to have a formalism centered around center symmetry that does not use

the crutch of gauge theory, which may be an unnecessary redundancy of description.3

Interesting cases to study, which may teach us about large-N equivalences, are that

of the D1-D5 system and of attempts at describing unquenched flavor in AdS/CFT. At

the orbifold point, the D1-D5 theory can be thought of as a free symmetric orbifold CFT.

It is a gauge theory, but the gauge group is SN which has a trivial center. Nevertheless,

this theory seems to have at least some aspects of large-N volume independence. It

realizes the phase structure of gravity, and certain correlators can be written as a sum

over images [91]. Indeed, the physics of long strings/short strings and sharp transitions

controls finite-size effects and an effective circle size which is 1/cL instead of the naive 1/L

(see for example [92, 93]). The case of unquenched flavor requires keeping Nf/N finite as

N → ∞, which means the flavor does not decouple at leading order in N . If there is a

3It was pointed out to me by Brian Willett that center symmetry can be discussed in the language of

one-form global symmetries, without the need for a Lagrangian, as developed in [90].
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smooth gravitational description in AdS (or some similarly warped spacetime), then the

nature of finite-size effects should be analyzed.

8.4 Outlook

There are many directions to pursue with these ideas in the context of AdS/CFT, only

some of which were addressed above. Taking a broader view of the subject, it is clear that

holographic dualities which have rules like those of AdS/CFT will have similar volume-

independent structure in correlation functions and phase structures. It is remarkable that

the mechanism first introduced by Eguchi and Kawai is relevant only in the context of large-

N gauge theories, and even then only at leading order in N . It is as if it was tailor-made

to explain classical gravity, whether within AdS or with some other asymptotia. Indeed,

one universal feature of classical gravity we can hang our hats on, robust against changes

in asymptotia, is the extensivity of the Bekenstein-Gibbons-Hawking-Wald entropy. The

universality of this simple formula only exists at leading order in GN , and we saw that in

the context of AdS/CFT it maps to universal volume-independence at leading order in N

for certain black holes. It is natural to conjecture that the same mechanism is controlling

the entropy for all black holes, although as discussed in the main text this statement should

be interpreted with care. The capability of these ideas in addressing classical gravity more

generally can be whimsically summarized by the slogan GR = EKR. The extent to which

this is a useful and technically accurate perspective beyond AdS/CFT remains to be seen.
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A SL(d,Z)

In this section we will review some basic points about SL(d,Z), the mapping class group of

Td. When d is even, we will want to consider PSL(d,Z) instead, obtained by quotienting

by the center {1,−1}. For simplicity we will just refer to the group as SL(d,Z) with this

distinction implicit.

Moduli. Naively, the torus is parameterized by d arbitrary real vectors V1, . . . , Vd in d-

dimensional space. However, we can use global rotational invariance to eliminate
∑d−1

i=1 i =

d(d − 1)/2 of the angles between the vectors, and scale invariance to eliminate a single

overall size modulus. The torus now has d2−d(d−1)/2−1 = (d−1)(d+ 2)/2 real moduli.

Calling the coordinates x1, . . . , xd, we have a twist modulus θij between xi and all xj with

– 29 –



J
H
E
P
0
3
(
2
0
1
7
)
0
1
1

i < j, and a size modulus θii for d − 1 of the cycles xi. Keeping the overall size modulus

explicit, we can arrange the moduli in terms of the following lattice vectors:

V =



~V1

~V2

~V3

...
~Vd−1

~Vd


=


θ11 θ12 · · · θ1,(d−1) θ1d

0 θ22 · · · θ2,(d−1) θ2d
...

...
. . .

...
...

0 0 · · · θ(d−1),(d−1) θ(d−1),d

0 0 · · · 0 θdd

 . (A.1)

Generators. In this section we will list four sets of generators of SL(d,Z) and show them

to be equivalent. Our first two sets of generators of SL(d,Z) can be written as

u1 =


0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

(−1)d+1 0 0 · · · 0

 , u2 =


1 0 0 · · · 0

1 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 (A.2)

or

U1 =


0 0 · · · 0 (−1)d+1

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 , U2 =


1 1 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

 (A.3)

These are d × d matrices. The small u’s can be shown to generate the big U ’s and vice

versa. The relations for e.g. d = 4 are

U1 =u−1
1 , U2 =u−1

1 u2u
−2
1 u2u1u2u

−1
1 u−1

2 u1u
−1
2 u1u

−1
2 u−1

1 u2u
−1
1 u2u1u

−1
2 u−1

1 u−1
2 u3

1 . (A.4)

Generating the small u’s by the big U ’s is obtained by swapping u↔ U . We will henceforth

stick with the big U ’s. U1 cyclically permutes all the entries of a vector while U2 twists the

first vector by an integer amount in the direction of the second vector. The power d+ 1 on

the top right element of U1 is necessary to keep det(U1) = +1 and thus stay within SL(d,Z).

Another set of generators can be given by a simple generalization of the usual S and T

generators familiar from SL(2,Z). In this case, we simply have Sij and Tij along any pair

of directions i < j. Beware the notation: Sij is a d × d matrix for any given i, j, not the

{i, j}th element of a matrix S. Confusingly, S Transposes and T Shears! Better to think of

it as S Swaps and T Twists. So we have the elementary row switching (with a minus sign,

conventionally placed in the upper triangular part) and upper-triangular row addition (with

integer entry) transformations. To see their action more explicitly as matrix multiplication,

imagine arranging the lattice vectors row by row into a d-dimensional matrix. Then, for

example, T25 twists direction two by an integer in direction five ~V2 → ~V2 + ~V5, and S13

transposes lattice vectors as ~V1 → −~V3 and ~V3 → ~V1.
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Figure 2. Left: a tree-level Witten diagram, which contributes at leading order in N to the four-

point function. It is constructed out of M = 4 bulk-to-boundary propagators and n = 1 bulk-to-bulk

propagator. Since it is a contribution at tree level, there are 2 = n+ 1 interaction vertices. There

are more diagrams contributing at this order, including the one with the four bulk-to-boundary

propagators meeting at a single interaction vertex in the interior.

Finally, we can consider as generators the set Tij for generic i 6= j. These make up

twists in any direction. These include the upper-triangular Tij from the previous section

and generate the swaps Sij = Tji(Tij)
−1Tji. Conversely, these lower-triangular twists can

be generated by the previous set of generators as Tji = (Tij)(Sij)(Tij). The set of swaps

and upper-twists can also generate U1 and U2 as U1 = (S12)(S23) · · · (Sd−1,d) and U2 = T12.

B Four-point function sample calculation

Here we calculate the tree-level contribution to the four-point function illustrated in fig-

ure 2. We will calculate it in an AdS background where one direction has size L and another

AdS background where the same direction has size JL for J ∈ Z+. We will suppress all

other directions.

We first calculate the correlator in size JL. We have

〈O(x1) · · ·O(x4)〉JL =

∫
dz5 dz6

∫ JL

0
dx5

∫ JL

0
dx6K(x1 − x5) · · ·K(x4 − x6)G(x5 − x6) .

(B.1)

Fourier transforming gives∫
dz5 dz6

∫ JL

0
dx5

∫ JL

0
dx6

∑
si∈Z

e
2πi
JL

(s1(x1−x5)+···+s4(x4−x6)+s5(x5−x6)) (B.2)

×K(s1/JL) · · ·K(s4/JL)G(s5/JL),

where i = 1, . . . , 5. Evaluating the x5 and x6 integrals gives∫
dz5 dz6 J

2L2
∑
si∈Z

δs1+s2,s5δs3+s4,−s5e
2πi
JL

(s1x1+···+s4x4)K(s1/JL) · · ·K(s4/JL)G(s5/JL) .

(B.3)
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Performing the sum over s5 gives∫
dz5 dz6

∑
si∈Z

J2L2δs1+s2+s3+s4,0e
2πi
JL

(s1x1+···+s4x4)K(s1/JL) · · ·K(s4/JL)G((s1+s2)/JL) ,

(B.4)

where now i = 1, . . . , 4. To obtain the momentum space correlator, we do the discrete

transform with respect to the variables xi. Recall that the discrete transforms in finite size

look like

f(x) =
∑
n∈Z

e2πinx/Lf(n/L) =⇒ f(n/L) =
1

L

∫ L

0
dx e−2πinx/Lf(x) . (B.5)

So we have

〈O(n1/L) . . . O(n4/L)〉JL =
J2L2

J4L4

∫ JL

0
dx1 . . . dx4

∫
dz5 dz6 (B.6)

×
∑
si∈Z

e
2πi
JL

(s1x1+...s4x4)+ 2πi
L

(n1x1+···+n4x4)K(s1/JL) · · ·K(s4/JL)G((s1 + s2)/JL) .

(B.7)

Evaluating the integrals and then the sum gives

J2L2

∫
dz5 dz6K(n1/L) . . .K(n4/L)G((n1 + n2)/L)δn1+n2+n3+n4,0 . (B.8)

Now we consider the correlator in size L, where we replace the bulk-to-bulk propagator

and the bulk-to-boundary propagators with those of size JL by the method of images:

〈O(x1) · · ·O(x4)〉L =

∫
dz5 dz6

∫ L

0
dx5

∫ L

0
dx6

J−1∑
ni=0

K(x1 + n1L− x5)K(x2 + n2L− x5)

(B.9)

×K(x3 + n3L− x6)K(x4 + n4L− x6)G(x5 + n5L− x6) , (B.10)

where i = 1, . . . , 5. We Fourier transform these propagators, which have periodicity JL, to

get∫
dz5 dz6

∫ L

0
dx5

∫ L

0
dx6

J−1∑
ni=0

∞∑
n′i=−∞

(B.11)

× e
2πi
JL (n′1(x1+n1L−x5)+···+n′4(x4+n4L−x6)+n′5(x5+n5L−x6))K(n′1/JL) · · ·K(n′4/JL)G(n′5/JL) .

(B.12)

Switching the two sums and evaluating the sums over ni gives∫
dz5 dz6

∫ L

0
dx5

∫ L

0
dx6

∞∑
n′i=−∞

δn′1,Js1 · · · δn′4,Js4δn′5,Js5J
5 (B.13)

× e
2πi
JL (n′1(x1−x5)+···+n′4(x4−x6)+n′5(x5−x6))K(n′1/JL) · · ·K(n′4/JL)G(n′5/JL) (B.14)
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for arbitrary integer si. Evaluating the sums over n′i gives∫
dz5 dz6

∫ L

0
dx5

∫ L

0
dx6 J

5
∞∑

si=−∞
(B.15)

× e
2πi
L

(s1(x1−x5)+···+s4(x4−x6)+s5(x5−x6))K(s1/L) · · ·K(s4/L)G(s5/L) . (B.16)

Performing the x5 and x6 integrals gives∫
dz5 dz6 J

5L2
∞∑

si=−∞
δs1+s2,s5δs3+s4,−s5e

2πi
L

(s1x1+···+s4x4+s5x5)K(s1/L) · · ·K(s4/L)G(s5/L) .

(B.17)

Performing the sum over s5 gives∫
dz5dz6 J

5L2
∞∑

si=−∞
δs1+s2+s3+s4,0 e

2πi
L

(s1x1+···+s4x4)K(s1/L) · · ·K(s4/L)G((s1 + s2)/L) .

(B.18)

where now i = 1, . . . , 4. The momentum-space correlator is obtained as before:

〈O(n1/L) · · ·O(n4/L)〉L=
1

L4

∫ L

0
dx1 . . . dx4 〈O(x1) · · ·O(x4)〉L e−

2πi
L

(n1x1+···+n4x4) (B.19)

= J5L2

∫
dz5 dz6K(n1/L) · · ·K(n4/L)G((n1 + n2)/L)δn1+n2+n3+n4,0 . (B.20)

This is our final answer for the correlator in size L. Comparing this answer to (B.8) gives us

〈O(n1/L) · · ·O(n4/L)〉L = J3〈O(n1/L) · · ·O(n4/L)〉JL (B.21)

as predicted by (4.19).

This calculation should make clear that (4.19) is correct diagram-by-diagram in the

bulk. Moreover, any bulk-to-bulk propagator with momenta that need to be integrated

over, as would be the case for loop diagrams, would ruin this structure. This is expected

since the presence of such propagators signals a subleading-in-N Witten diagram, for which

volume-independence does not apply.

C Validity of gravitational description

For our gravitational description to be valid, we need to deal with smooth geometries and

keep cycle sizes larger than string scale. The first criterion is simply because singularities

are not well-described within gravity. The second criterion is because stringy excitations

(e.g. strings that wrap the cycles) will become important for cycles that are string scale.

In this case, one needs to T-dualize along the small cycle to blow it up. The language here

is a bit confusing, as T-dualizing takes us from a valid IIB gravity description to a valid

IIA gravity description, but we are concerned with maintaining a valid gravity description

in the same frame throughout.

Maintaining validity of the gravitational description depends on the periodicity condi-

tions chosen for the matter fields. To be very concrete, let us consider the duality between

– 33 –



J
H
E
P
0
3
(
2
0
1
7
)
0
1
1

Type IIB string theory in AdS5×S5 and (3+1)-dimensional N = 4 super Yang-Mills com-

pactified on a spatial three-torus of cycle lengths Li. First consider the case where the

matter fields are given supersymmetry-preserving boundary conditions along the spatial

cycles. In this case the ground state geometry is given by the Poincaré patch with periodic

identifications in the spatial directions. But this means that the cycles become arbitrarily

small as the horizon is approached, necessitating a breakdown of the IIB gravity description.

This was the case analyzed in [18]. However, finite temperature is different and necessitates

a discussion of the order of limits taken. The Euclidean geometry is that of the black brane:

ds2 =
f(r)dt2E
`2AdS

+`2AdS

dr2

r2
+

r2

`2AdS

dφidφ
i , f(r) = r2(1−(rh/r))

4, β =
π`2AdS

rh
, (C.1)

where r ≥ rh, the S5 is suppressed, and tE ∼ tE + β gives the inverse temperature. The

minimum proper size of a given cycle φi occurs at rh. This size must be bigger than the

string scale `s, which gives us the condition

rhLi
`AdS

� `s =⇒ `AdS

`s
∼ λ1/4 � β

Li
. (C.2)

Here we have brought in the ’t Hooft coupling λ. We see that we can make Li arbitrarily

small and maintain validity of the gravitational description as long as we take λ → ∞
first. In other words, we do not scale any cycle sizes with the ’t Hooft coupling as we take

the strong coupling limit λ→∞.

The case we were more preoccupied with in the text, especially in section 3, is that of

modular U1-invariant boundary conditions. This means supersymmetry-breaking boundary

conditions along all cycles. As we saw, this implies that when a cycle size is the smallest,

it caps off in the interior. The geometry that dominates is either the black brane or the

AdS soliton, whose Euclidean continuations are identical. The condition above therefore

generalizes to

`AdS

`s
� Lµ,min

Li
, (C.3)

where Lµ,min is the minimum cycle size. By definition we have
Lµ,min

Li
< 1, so this condition

is satisfied trivially. Any time a cycle tries to become substringy, it instead caps off.

Mixed boundary conditions which preserve some subgroup of the full modular U1

invariance are analyzed similarly. The final conclusion is that the gravitational description

will remain valid for all cycle sizes as long as at least one cycle has supersymmetry-breaking

boundary conditions and remains finite sized in the CFT. The one caveat is that any

supersymmetry-preserving cycles are not taken to zero size as an inverse power of the ’t

Hooft coupling λ.
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[53] M. Shifman and M. Ünsal, QCD-like theories on R3 × S1: a smooth journey from small to

large r(S1) with double-trace deformations, Phys. Rev. D 78 (2008) 065004

[arXiv:0802.1232] [INSPIRE].

[54] R.C. Myers, Stress tensors and Casimir energies in the AdS/CFT correspondence, Phys.

Rev. D 60 (1999) 046002 [hep-th/9903203] [INSPIRE].

[55] M. Ünsal and L.G. Yaffe, Large-N volume independence in conformal and confining gauge

theories, JHEP 08 (2010) 030 [arXiv:1006.2101] [INSPIRE].

[56] S. Nakamura, H. Ooguri and C.-S. Park, Gravity dual of spatially modulated phase, Phys.

Rev. D 81 (2010) 044018 [arXiv:0911.0679] [INSPIRE].

[57] A. Donos and J.P. Gauntlett, Holographic striped phases, JHEP 08 (2011) 140

[arXiv:1106.2004] [INSPIRE].

– 37 –

http://dx.doi.org/10.1007/JHEP09(2013)109
https://arxiv.org/abs/1306.4682
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4682
http://dx.doi.org/10.1016/0550-3213(87)90469-X
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B291,141%22
http://dx.doi.org/10.1016/0370-2693(87)91275-5
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B189,89%22
https://arxiv.org/abs/hep-th/9910096
http://inspirehep.net/search?p=find+EPRINT+hep-th/9910096
http://dx.doi.org/10.1016/S0370-2693(02)02980-5
http://dx.doi.org/10.1016/S0370-2693(02)02980-5
https://arxiv.org/abs/hep-th/0210114
http://inspirehep.net/search?p=find+EPRINT+hep-th/0210114
http://dx.doi.org/10.1088/1126-6708/2008/10/091
https://arxiv.org/abs/0806.1218
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.1218
http://dx.doi.org/10.1088/1126-6708/2008/11/043
https://arxiv.org/abs/0807.4924
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.4924
http://dx.doi.org/10.1088/1751-8113/46/21/214009
https://arxiv.org/abs/1207.4485
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.4485
http://dx.doi.org/10.1007/JHEP06(2014)168
http://dx.doi.org/10.1007/JHEP06(2014)168
https://arxiv.org/abs/1308.2077
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.2077
http://dx.doi.org/10.1007/JHEP03(2013)097
https://arxiv.org/abs/1207.4195
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.4195
http://dx.doi.org/10.1088/1361-6382/34/1/015009
https://arxiv.org/abs/1108.5735
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.5735
https://arxiv.org/abs/1309.7413
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.7413
http://dx.doi.org/10.1007/JHEP01(2015)074
https://arxiv.org/abs/1405.1424
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.1424
http://dx.doi.org/10.1007/JHEP02(2014)007
https://arxiv.org/abs/1305.6321
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.6321
http://dx.doi.org/10.1103/PhysRevD.78.065004
https://arxiv.org/abs/0802.1232
http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.1232
http://dx.doi.org/10.1103/PhysRevD.60.046002
http://dx.doi.org/10.1103/PhysRevD.60.046002
https://arxiv.org/abs/hep-th/9903203
http://inspirehep.net/search?p=find+EPRINT+hep-th/9903203
http://dx.doi.org/10.1007/JHEP08(2010)030
https://arxiv.org/abs/1006.2101
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.2101
http://dx.doi.org/10.1103/PhysRevD.81.044018
http://dx.doi.org/10.1103/PhysRevD.81.044018
https://arxiv.org/abs/0911.0679
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.0679
http://dx.doi.org/10.1007/JHEP08(2011)140
https://arxiv.org/abs/1106.2004
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.2004


J
H
E
P
0
3
(
2
0
1
7
)
0
1
1

[58] D. Anninos, T. Anous, F. Denef and L. Peeters, Holographic vitrification, JHEP 04 (2015)

027 [arXiv:1309.0146] [INSPIRE].

[59] R.C. Brower, G.T. Fleming and H. Neuberger, Lattice radial quantization: 3D Ising, Phys.

Lett. B 721 (2013) 299 [arXiv:1212.6190] [INSPIRE].

[60] T. Ishii, G. Ishiki, S. Shimasaki and A. Tsuchiya, N = 4 super Yang-Mills from the plane

wave matrix model, Phys. Rev. D 78 (2008) 106001 [arXiv:0807.2352] [INSPIRE].

[61] H. Kawai, S. Shimasaki and A. Tsuchiya, Large-N reduction on group manifolds, Int. J.

Mod. Phys. A 25 (2010) 3389 [arXiv:0912.1456] [INSPIRE].

[62] M. Honda and Y. Yoshida, Localization and large-N reduction on S3 for the planar and

M-theory limit, Nucl. Phys. B 865 (2012) 21 [arXiv:1203.1016] [INSPIRE].

[63] R. Clarkson and R.B. Mann, Eguchi-Hanson solitons in odd dimensions, Class. Quant. Grav.

23 (2006) 1507 [hep-th/0508200] [INSPIRE].

[64] R. Clarkson and R.B. Mann, Soliton solutions to the Einstein equations in five dimensions,

Phys. Rev. Lett. 96 (2006) 051104 [hep-th/0508109] [INSPIRE].

[65] Y. Hikida, Phase transitions of large-N orbifold gauge theories, JHEP 12 (2006) 042

[hep-th/0610119] [INSPIRE].

[66] L.F. Alday, M. Fluder and J. Sparks, The large-N limit of M2-branes on lens spaces, JHEP

10 (2012) 057 [arXiv:1204.1280] [INSPIRE].

[67] G.T. Horowitz and T. Jacobson, Note on gauge theories on M/Γ and the AdS/CFT

correspondence, JHEP 01 (2002) 013 [hep-th/0112131] [INSPIRE].

[68] H. Lin and J.M. Maldacena, Fivebranes from gauge theory, Phys. Rev. D 74 (2006) 084014

[hep-th/0509235] [INSPIRE].

[69] G. Ishiki, S. Shimasaki, Y. Takayama and A. Tsuchiya, Embedding of theories with SU(2|4)

symmetry into the plane wave matrix model, JHEP 11 (2006) 089 [hep-th/0610038]

[INSPIRE].

[70] E. Witten, Anti-de Sitter space, thermal phase transition and confinement in gauge theories,

Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

[71] O. Aharony, S. Minwalla and T. Wiseman, Plasma-balls in large-N gauge theories and

localized black holes, Class. Quant. Grav. 23 (2006) 2171 [hep-th/0507219] [INSPIRE].

[72] N. Afkhami-Jeddi, T. Hartman, S. Kundu and A. Tajdini, Einstein gravity 3-point functions

from conformal field theory, arXiv:1610.09378 [INSPIRE].

[73] A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in

two-dimensional quantum field theory, Nucl. Phys. B 241 (1984) 333 [INSPIRE].

[74] Al.B. Zamolodchikov, Conformal symmetry in two-dimensional space: recursion

representation of conformal block, Theor. Math. Phys. 73 (1987) 1088 [Teor. Mat. Fiz. 73

(1987) 103].

[75] A.L. Fitzpatrick, J. Kaplan and M.T. Walters, Universality of long-distance AdS physics

from the CFT bootstrap, JHEP 08 (2014) 145 [arXiv:1403.6829] [INSPIRE].

[76] E. Hijano, P. Kraus and R. Snively, Worldline approach to semi-classical conformal blocks,

JHEP 07 (2015) 131 [arXiv:1501.02260] [INSPIRE].

– 38 –

http://dx.doi.org/10.1007/JHEP04(2015)027
http://dx.doi.org/10.1007/JHEP04(2015)027
https://arxiv.org/abs/1309.0146
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.0146
http://dx.doi.org/10.1016/j.physletb.2013.03.009
http://dx.doi.org/10.1016/j.physletb.2013.03.009
https://arxiv.org/abs/1212.6190
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.6190
http://dx.doi.org/10.1103/PhysRevD.78.106001
https://arxiv.org/abs/0807.2352
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.2352
http://dx.doi.org/10.1142/S0217751X10049396
http://dx.doi.org/10.1142/S0217751X10049396
https://arxiv.org/abs/0912.1456
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.1456
http://dx.doi.org/10.1016/j.nuclphysb.2012.07.022
https://arxiv.org/abs/1203.1016
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.1016
http://dx.doi.org/10.1088/0264-9381/23/5/005
http://dx.doi.org/10.1088/0264-9381/23/5/005
https://arxiv.org/abs/hep-th/0508200
http://inspirehep.net/search?p=find+EPRINT+hep-th/0508200
http://dx.doi.org/10.1103/PhysRevLett.96.051104
https://arxiv.org/abs/hep-th/0508109
http://inspirehep.net/search?p=find+EPRINT+hep-th/0508109
http://dx.doi.org/10.1088/1126-6708/2006/12/042
https://arxiv.org/abs/hep-th/0610119
http://inspirehep.net/search?p=find+EPRINT+hep-th/0610119
http://dx.doi.org/10.1007/JHEP10(2012)057
http://dx.doi.org/10.1007/JHEP10(2012)057
https://arxiv.org/abs/1204.1280
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.1280
http://dx.doi.org/10.1088/1126-6708/2002/01/013
https://arxiv.org/abs/hep-th/0112131
http://inspirehep.net/search?p=find+EPRINT+hep-th/0112131
http://dx.doi.org/10.1103/PhysRevD.74.084014
https://arxiv.org/abs/hep-th/0509235
http://inspirehep.net/search?p=find+EPRINT+hep-th/0509235
http://dx.doi.org/10.1088/1126-6708/2006/11/089
https://arxiv.org/abs/hep-th/0610038
http://inspirehep.net/search?p=find+EPRINT+hep-th/0610038
https://arxiv.org/abs/hep-th/9803131
http://inspirehep.net/search?p=find+EPRINT+hep-th/9803131
http://dx.doi.org/10.1088/0264-9381/23/7/001
https://arxiv.org/abs/hep-th/0507219
http://inspirehep.net/search?p=find+EPRINT+hep-th/0507219
https://arxiv.org/abs/1610.09378
http://inspirehep.net/search?p=find+EPRINT+arXiv:1610.09378
http://dx.doi.org/10.1016/0550-3213(84)90052-X
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B241,333%22
http://dx.doi.org/10.1007/BF01022967
http://dx.doi.org/10.1007/JHEP08(2014)145
https://arxiv.org/abs/1403.6829
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.6829
http://dx.doi.org/10.1007/JHEP07(2015)131
https://arxiv.org/abs/1501.02260
http://inspirehep.net/search?p=find+EPRINT+arXiv:1501.02260


J
H
E
P
0
3
(
2
0
1
7
)
0
1
1

[77] E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Witten diagrams revisited: the AdS

geometry of conformal blocks, JHEP 01 (2016) 146 [arXiv:1508.00501] [INSPIRE].

[78] E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Semiclassical Virasoro blocks from AdS3

gravity, JHEP 12 (2015) 077 [arXiv:1508.04987] [INSPIRE].

[79] K.B. Alkalaev and V.A. Belavin, Classical conformal blocks via AdS/CFT correspondence,

JHEP 08 (2015) 049 [arXiv:1504.05943] [INSPIRE].

[80] C.T. Asplund, A. Bernamonti, F. Galli and T. Hartman, Holographic entanglement entropy

from 2d CFT: heavy states and local quenches, JHEP 02 (2015) 171 [arXiv:1410.1392]

[INSPIRE].
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[86] P. Kovtun, M. Ünsal and L.G. Yaffe, Nonperturbative equivalences among large-Nc gauge

theories with adjoint and bifundamental matter fields, JHEP 12 (2003) 034

[hep-th/0311098] [INSPIRE].
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