
J
H
E
P
0
3
(
2
0
1
6
)
2
0
8

Published for SISSA by Springer

Received: January 22, 2016

Accepted: March 19, 2016

Published: March 31, 2016

3D holography: from discretum to continuum

Valentin Bonzoma and Bianca Dittrichb

aLIPN, UMR CNRS 7030, Institut Galilée, Université Paris 13, Sorbonne Paris Cité,
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Abstract: We study the one-loop partition function of 3D gravity without cosmological

constant on the solid torus with arbitrary metric fluctuations on the boundary. To this end

we employ the discrete approach of (quantum) Regge calculus. In contrast with similar

calculations performed directly in the continuum, we work with a boundary at finite dis-

tance from the torus axis. We show that after taking the continuum limit on the boundary

— but still keeping finite distance from the torus axis — the one-loop correction is the

same as the one recently found in the continuum in Barnich et al. for an asymptotically

flat boundary. The discrete approach taken here allows to identify the boundary degrees of

freedom which are responsible for the non-trivial structure of the one-loop correction. We

therefore calculate also the Hamilton-Jacobi function to quadratic order in the boundary

fluctuations both in the discrete set-up and directly in the continuum theory. We identify

a dual boundary field theory with a Liouville type coupling to the boundary metric. The

discrete set-up allows again to identify the dual field with degrees of freedom associated to

radial bulk edges attached to the boundary. Integrating out this dual field reproduces the

(boundary diffeomorphism invariant part of the) quadratic order of the Hamilton-Jacobi

functional. The considerations here show that bulk boundary dualities might also emerge

at finite boundaries and moreover that discrete approaches are helpful in identifying such

dualities.
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1 Introduction

The AdS/CFT correspondence [1–3] proposes a duality between gauge theories at the

boundary of an asymptotically AdS spacetime and quantum gravity in the bulk. This

correspondence has been turned into a powerful tool and has also been suggested to provide

a definition of quantum gravity through the dual theory on the boundary.

Other approaches such as loop quantum gravity [4–6] and spin foams [7] aim at defin-

ing directly a theory of quantum gravity without using an (asymptotic) background. An

interesting question is therefore whether these non-perturbative approaches are compati-

ble with AdS/CFT [8] or other forms of duality. For further work related to this question

see [9–11]. This work explores this question in the context of 3D gravity without a cosmo-

logical constant.

The exploration of AdS/CFT duality in the context of e.g. loop quantum gravity has

been hindered by mainly two issues: firstly the construction of models incorporating a neg-

ative cosmological constant is much more involved than models with vanishing or positive

cosmological constants, but recent progress can be found in [12–16]. These complications

can be avoided by turning to a generalization of the AdS/CFT duality to asymptotically

flat gravity, which has been considered in [17–20]. In particular [21] computes the one-loop

partition function with a torus boundary at asymptotic infinity, showing that it is given

by the character of a representation of the BMS group [22–25], which is the asymptotic

symmetry group of gravity without a cosmological constant. This shows also that the one-

loop partition function gives actually the exact result, i.e. that all higher order corrections

vanish (for asymptotically flat boundary data).

Secondly and more importantly, it is very involved and to some extend goes against

the philosophy of background independent approaches, to impose asymptotic boundary

conditions. Indeed, partition functions for finite regions are central in formulating and

understanding the theory [26–29] and do encode the complete dynamics of the theory [30].

Such partition functions for finite regions are actually unavoidable in non-perturbative

approaches: the size of the region is encoded in the boundary data on which the partition

function depends. Thus an asymptotic limit means to consider the partition function only

for certain, very special types of boundary data, which do not encode the full dynamics of

the theory.

The aim we pursue here is to obtain the partition function for boundary data describing

a finite region. In the example described here, 3D flat gravity with a torus boundary, we

will nevertheless find a result consistent with the one expected due to the BMS symmetry

of flat gravity and we will also identify a dual field theory, generalizing results found for

AdS gravity [31–34] to the flat case.

As mentioned one aim pursued here is to prepare the ground for calculations of the

(finite region) partition functions in non-perturbative approaches. These often involve

discretizations and we thus turn to a discrete approach, Regge calculus [35]. Here it is

so far not possible to treat the quantum partition function analytically for the full non-

linear theory — at least not in the incarnation known as quantum Regge calculus [36, 37]

— however the linear theory can be straightforwardly handled and — at least for the
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asymptotic case — is expected to give the exact result. 3D gravity and also 3D (classical)

Regge gravity is a topological theory — there are no propagating degrees of freedom. To

make it also a topological, and for 3D Regge calculus, triangulation invariant theory in the

quantum realm, one needs to identify the correct path integral measure. Such a measure

is not known for the original quantum Regge calculus, but has been identified for the

linearized theory in [38, 39].

The Ponzano-Regge model [40, 41] can be seen as a quantization of Regge calculus

based on a first order formulation of gravity (which happens to coincide with SU(2) BF

theory). As it is (at least formally) invariant under changes of triangulation [42–45], it

also has a triangulation invariant measure built in. In the semiclassical limit it moreover

coincides with the one found in [38, 39]. The Ponzano-Regge model is the first example

of a spin foam model. We expect the work in this paper to help consider the partition

function for the Ponzano-Regge model on the solid torus and to examine possible dual field

theories in a fully non-perturbative set-up.

We can thus make use of the fact that 3D Regge calculus is a topological field theory.

This allows us to work with the coarsest bulk triangulation possible, which simplifies the

calculations drastically and moreover will lead to a very geometric interpretation of the

result. Another issue is the boundary triangulation. On the one hand this can be seen

as a regulator. Indeed we will see that, despite working with a topological theory, the

Hamilton-Jacobi functional can be described by a (dual) field theory with propagating

degrees of freedom on the boundary. To this end we have to take the continuum limit for

the boundary discretization. On the other hand the discrete boundary can also be seen as

a particular choice of boundary data for the continuum theory, where the boundary metric

is piecewise flat [28]. In this case the dual field theory comes in the form of a lattice theory,

does however give the exact result for this kind of piecewise flat boundary data.

This work will show that discrete approaches are indeed useful for the exploration of

holography. The calculation of the one-loop determinant performed here is much simpler

than in the continuum and makes direct use of the topological nature of the theory. As

mentioned a crucial issue is to be able to work at finite boundary, for which we here provide

a proof of concept. Often one rather employs an asymptotic expansion, e.g. the Fefferman-

Graham expansion [46], starting from the metric at infinity, for instance in [31–34]. In

contrast, here we identify the induced boundary theory for a finite boundary (for linearized

gravity). Indeed in the case of 3D flat gravity it will turn out that it is not even necessary

to take the asymptotic limit to validate the one-loop correction.

Moreover we provide an explicit example of a discrete model leading to a boundary

field theory. A related concept are MERA tensor networks, designed to describe conformal

field theories [47, 48]. Recently a connection of these networks to AdS/CFT duality (or

other forms of duality) has been proposed and explored [49]. The discretization employed

here can also be seen as a generalized tensor network (in particular as a decorated tensor

network introduced in [50]). The dynamics incorporates directly 3D gravity and leads

indeed to a field theory on the boundary. Due to the topological nature of the theory, the

connectivity of the network, given by the choice of (bulk) discretization, is not important.

This feature does reflect the diffeomorphism invariance of the theory [51, 52], an issue that
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so far is left open in the context of the MERA approach to AdS/CFT. As we will discuss

we can choose a discretization that emulates a MERA network and thus provide a model

with a direct connection to gravity.

In section 2 we provide a short review of the work [21], which computes the one-loop

partition function for 3D gravity with vanishing cosmological constant and torus boundary.

To prepare for the corresponding computation in a discrete set-up and for finite boundary

we summarize all the necessary ingredients of Regge calculus in section 3. A particular

important role will be played by the diffeomorphism invariance of the theory, discussed

in section 3.2. We construct the partition function for Regge calculus in section 4, which

we then calculate in section 5. In particular section 5.3 discusses the one-loop determi-

nant and gives a geometric interpretation of its structure. In section 5.4 we extract the

Hamilton-Jacobi functional, or effective boundary action (for the linearized theory and)

for inhomogeneous boundary data and we perform the continuum limit in section 5.5. In

section 6 we conjecture and test a dual field theory on the boundary. This dual field theory

is coupled to the boundary curvature and integrating out the dual field will give the part

of the effective boundary action which is invariant under linearized boundary diffeomor-

phisms. This part is also responsible for the dependence of the one-loop determinant on

the topological parameters of the torus. Finally we confirm our calculation of the effective

boundary action in the discrete by computing the effective boundary action directly in the

continuum theory in section 7. In section 8 we discuss two issues left for further work:

one is the use of different discretizations, in particular one that relates to MERA tensor

networks. Such discretizations also allow to perform a continuum limit in the bulk which

would be necessary to consider for non-topological theories, for instance if one considers

gravity coupled to matter. Another issue discussed is the use of alternative boundary terms

and conditions. We close the paper with a discussion in section 9.

2 The partition function in the continuum

In [21] the one-loop partition function of three-dimensional gravity without cosmological

constant is computed. The boundary has the topology of the torus and the boundary data

coincide with asymptotic boundary condition prescribing a geometry known as thermal

spinning flat space [53]. This is a 3D flat spacetime

ds2 = dr2 + dt2 + r2dφ (2.1)

with periodic identification (r, t, φ) ∼ (r, t+β, φ+γ) in addition to the usual identification

φ ∼ φ+ 2π for the angular variable. If we consider the spacetime for 0 ≤ r ≤ R we obtain

a solid torus with contractible cycles given by t = const, r = const and non-contractible

cycles along the φ = const., r = const lines. The torus can be obtained by identifying the

top and bottom discs of a cylinder of height β, with a twisting angle (or angular potential) γ.

To compute the one-loop partition function one needs to evaluate the (Euclidean)

Einstein-Hilbert action with boundary term

SEH = − 1

16πG

∫
d3x
√
gR+B (2.2)
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on the solution. In this work we choose as boundary term the standard Gibbons-Hawking-

York term [54, 55]

BGHY = − 1

8πG

∫
d2y
√
hK (2.3)

with h the induced metric on the boundary and K = hµνKµν the trace of the intrinsic

curvature. Note that [21] uses a boundary term B′ = 1
2BGHY instead. The use of this

boundary term has been justified in [56, 57] in the asymptotic limit R → ∞ and comes

from the fall-off conditions on the metric coefficients at infinity. It is this choice B′ of

boundary term that realizes the relation of the partition function to the BMS vacuum

character. We will however stick here to BGHY. The reason is our strategy to work with

a boundary at finite radius, for which BGHY is the correct boundary term. In addition,

Regge calculus deeply relies on using the BGHY term: the actions for single building blocks

coincide with the continuum action evaluated on chunks of flat spacetime with piecewise

flat boundaries. We will also see that the one-loop correction is not affected by the choice

of boundary term. We will comment on the possible use of B′ in the context of Regge

calculus in the outlook section 8.

The bulk action vanishes on solutions and thus the zeroth order of the partition function

is given by the boundary term. The trace of the extrinsic curvature for a r = R surface

in the metric (2.1) is given by K = 1/R, which together with
√
h = R leads to a term

proportional to the area of the torus at unit radius r = 1, and hence a R-independent,

finite result. Together with all constants we have

BGHY = − β

4G
. (2.4)

The one-loop correction is given by evaluating the determinant of the second order

fluctuation matrix of the action, expanded around the given background. Such a one-loop

correction has been found first for the AdS case [58] using heat kernel techniques. In [21]

the same strategy is followed: after including the appropriate gauge-fixing and ghost terms,

the one-loop partition correction can be written as

S(1) = −1

2
ln det ∆(2) + ln det ∆(1) −

1

2
ln det ∆(0) (2.5)

where ∆(i) for i = 2, 1, 0 are the Laplacians for the traceless transverse, the vector, and the

scalar mode of a symmetric 3× 3 matrix.

The determinants can be found using the heat kernel approach. To this end one needs

to find the solutions of the heat kernel equations corresponding to the Laplacians ∆(i) on

the background under considerations. The heat kernels are known for flat space of topology

R3. One can obtain the heat kernels for the thermal spinning spacetime by applying the

method of images, which sums the R3 kernels over the images of the discrete symmetry

group generated by the mapping (r, t, φ) → (r, t + β, φ + γ). Furthermore one performs a

regularization by adding a mass term to the heat kernels, which is then removed in the

final result.
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Collecting the three contributions for the various modes, this sum (originating from

the sum over images) takes the form

S(1) =

∞∑
n=1

1

n

(
q2n

1− qn +
q̄2n

1− q̄n
)

(2.6)

where q = ei(γ+iε) with a further regulating parameter ε. After rewriting the exponential

of this sum, the one-loop partition function can be expressed as

Z(β, γ) = e−
B
~

∞∏
k=2

1

|1− qk|2 +O(~) . (2.7)

For the choice of boundary term B = 1
2BGHY = − β

8G this reproduces the 3D vacuum BMS

character constructed in [59].

Our aim is to reproduce the one-loop correction in the setup of Regge calculus, using

a boundary at finite radius. Whereas the nature of 3D gravity as a topological theory

is rather hidden in the continuum computation, we will make direct use of it. This will

make the structure of the result (2.7) transparent. It shows that the one-loop contribution

can be understood as arising from degrees of freedom residing at the boundary of the

spacetime, which are equipped with a kinetic term ∂2
t . The one-loop correction arises as

the determinant of ∂2
t on the boundary torus, where the integer k in (2.7) is found to be

the momentum (Fourier) mode in angular direction. We will also show that the product

in (2.7) starts with k = 2 due to diffeomorphism symmetry. It indeed cancels out the k = 0

and k = ±1 modes. These findings motivate us to search in section 6 for a dual field theory

describing the boundary fluctuations (after integrating out the bulk variables), which can

be understood to be responsible for the one-loop correction.

3 Review Regge calculus

In this section we provide a short review of Regge calculus and collect all material necessary

to be able to calculate the partition function for the linearized theory. An important role

is played by a discrete notion of diffeomorphism symmetry extant in 3D Regge calculus,

which we also present.

3.1 The Regge action and equations of motion

In Regge calculus one replaces the smooth manifold M with a triangulation T . The

metric data are then encoded by an assignment of length variables le to the edges e of the

triangulation T . This specifies a piecewise flat and linear geometry for T . The solutions

of the theory are determined by varying the 3D Regge action

SR = − 1

8πG

∑
e⊂T ◦

leεe −
1

8πG

∑
e⊂∂T

leωe . (3.1)

Here the first sum is over all bulk edges of T and involves the deficit angles

εe(le′) = 2π −
∑
σ⊃e

θσe (le′) , (3.2)

– 6 –
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which measure the curvature1 concentrated on a given edge e. The angle θσe is the interior

dihedral angle at the edge e in the tetrahedron σ. It is a function of the six edge lengths of σ.

The second sum in (3.1) corresponds to the Gibbons-Hawking-York boundary term

in (2.2) and involves the boundary angles

ωe(le′) = π −
∑
σ⊃e

θσe (le′) , (3.3)

which now measure the extrinsic curvature. This (discrete equivalent of the Gibbons-

Hawking-York) boundary term makes the variational principle well defined for the ac-

tion (3.1) with fixed boundary edge lengths [60].

Indeed, due to the Schläfli identity∑
e∈σ

leδθ
σ
e = 0 (3.4)

one can show that the variations δεe vanish, if varying the Regge action (3.1). One thus

obtains the equations of motion

0
!

= 8πGδeSR = −εe , (3.5)

demanding — as one expects in 3D gravity — vanishing curvature. As we will later

comment these equations might not fix the edge length in the bulk uniquely, a feature that

leads to a discrete notion of diffeomorphism symmetry [61–65].

This non-uniqueness does however not matter for finding Hamilton-Jacobi functional

(or Hamilton’s principal function or effective boundary action), that is for evaluating the

action on the solution. The equation of motions make the bulk term vanish and we are left

with the evaluation of the boundary term

SR|sol = − 1

8πG

∑
e⊂∂T

le ωe(le′ |sol) . (3.6)

Thus Hamilton’s principal function coincides with the (integrated) extrinsic curvature of a

piecewise flat 2D surface embedded into flat 3D space. Note that in this case Hamilton’s

principal function is independent of any choice of bulk triangulation: the bulk triangulation

is only needed as an auxiliary construction to determine the embedding of the 2D boundary

surface into flat 3D space. Triangulation independence of local actions leads to theories

without propagating (non-topological) degrees of freedom, that is correspond to perfect

discretizations of topological theories (see e.g. [52, 66]). Thus Regge calculus is a perfect

discretization of 3D gravity [51, 67], that is it captures exactly the continuum properties

of this (topological) theory.

Let us also remark that the embedding of the 2D surface into flat spacetime and

therefore Hamilton’s principal function might not be uniquely defined. Here we refer to

1The deficit angle agrees with the angle of rotation that a vector receives after being parallel-transported

fully around the edge. The parallel-transport can be defined locally on each pair of glued tetrahedra, as

such a pair can be embedded into flat spacetime.
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relative embedding information: that is even if we fix the position of all the neighbouring

vertices of a certain vertex v, the position of v itself might not be unique. These are however

discrete ambiguities, and are indeed connected to the sum over spacetime orientations in

the Ponzano-Regge action.2

Note that we can rewrite the Regge action as a sum over tetrahedra (plus terms that

will not contribute to the Hessian of the action)

8πGSR = −
∑
e⊂T ◦

2πle −
∑
e⊂∂T

πle +
∑
σ⊂T

Sσ (3.7)

where

Sσ −
∑
e∈σ

πle =
∑
e∈σ

leθle −
∑
e∈σ

πle (3.8)

gives Hamilton’s principal function for the boundary data of a tetrahedron. This Hamil-

ton’s principal function does coincide with the continuum Hamilton’s function if one under-

stands the boundary metric to be piecewise flat and extrinsic curvature to be distributional

concentrated on the edges of the tetrahedron. Thus Hamilton’s principal function for a

tetrahedron is also invariant under any (bulk) refinements of the tetrahedron.

The linearized theory is described by expanding the Regge action to quadratic order

in perturbations le = Le + λe:

S(2) =
1

2

∑
e,e′

∂SR
∂le∂le′ |le=Le

λe λe′

=
1

16πG

∑
e,e′

∑
σ⊃e,e′

∂θσe
∂le′ |le=Le

λeλe′ . (3.9)

Here Schläfli identity (3.4) guarantees that ∂θσe /∂le′ = ∂θσe′/∂le.

Bulk triangulation independence of the full action (or rather Hamilton’s principal

function) does also extend to the linearized case [38, 39, 67].

3.2 Diffeomorphism and scaling symmetry

The topological nature of 3D continuum gravity and also its discrete incarnation in the

form of Regge calculus is due to gauge symmetries which reduce the field variables to a few

topological degrees of freedom. Gauge symmetries lead to non-uniqueness of solutions. In

the case of Regge calculus we can easily understand this non-uniqueness: given a solution

with bulk vertices we know that this solution is 3D flat. We obtain a physically equivalent

2As an example one can consider a boundary triangle that is further subdivided into three triangles.

Given the six edge lengths involved there will be (in general) two possibilities to realized the embedding. One

case corresponds to gluing a tetrahedron onto the outer side of the triangle and therefore introducing a bulge

into the exterior. The other case is to glue the same tetrahedron onto the inner (bulk) side of the boundary

triangle. See [68–70] for a detailed discussion of how to understand such gluings as (time) evolution of the

boundary. In the continuum, these choices correspond to positive and negative lapse in the evolution of the

boundary. They are therefore also related to the question of summing over orientations for the partition

function [71]. The work [8] includes a discussion of this feature in the context of AdS/CFT duality.

– 8 –
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solution by displacing the position of a given bulk vertex in the embedding flat 3D space.

This displacement will lead to a change in the length of the edges connected to the vertex,

but clearly not to a change of the geometric properties of the bulk space.

These symmetries have been discussed in [61–65, 72, 73]. For 4D the status of gauge

symmetries depends on the solution: a vertex embedded in a flat piece of space can be

displaced whereas it has been shown in [63–65] that diffeomorphism symmetry is broken

for solutions with curvature.

The diffeomorphism symmetry in the discrete is closely connected to (bulk) triangula-

tion independence [52, 66]: if we can displace vertices one can also move a vertex on top of

another vertex which leads to a coarse-graining of the triangulation. This shows that the

coarse-graining of the triangulation does not change Hamilton’s principal function.

For the linearized action the gauge symmetries result in null vectors for the associated

Hessian matrix. We thus expect three null vectors for every bulk vertex.

There is a further (global) null vector we can expect, resulting from the Schläfli identity.

As one can see from (3.9) each tetrahedron σ contributes

Hσ
ee′ :=

∂θσe
∂le′

, Hee′ =
∑
σ⊃e,e′

Hσ
ee′ . (3.10)

Due to the Schläfli identity (3.4) the Hessian for a tetrahedron has a null vector which

extends to a null vector for the full triangulation Hessian (including boundary terms!):∑
e′⊂σ

Hσ
ee′ le′ = 0 ⇒

∑
e′

Hee′ le′ = 0 . (3.11)

The null vectors correspond to a scaling symmetry λe ∼ Le. Indeed, going back to the full

theory, if one multiplies all edge lengths of the solutions with a scaling factor, one again

obtains a solution (with also rescaled boundary data). The full Hamilton-Jacobi functional

and also action is however not invariant — it rather is multiplied by the same scaling factor.

One can argue [74] that the combination of null vectors corresponding to scaling symmetry

for each tetrahedron lead to the null vectors corresponding to diffeomorphism symmetry.

3.3 Quantum Regge calculus: the path integral measure

In quantum Regge calculus [36, 37] one considers the path integral

Z =

∫
Dµ(l) exp

(
−1

~
SR

)
(3.12)

integrating over the lengths of the bulk edges in the triangulation with some measure µ(l).

There has been considerable debate in the literature on the measure for quantum Regge

calculus [75–78]. One difficulty that makes any analytical calculations hard are the triangle

inequalities that make determining the integration range very complicated. We avoid this

issue by considering linearized Regge calculus and integrating the length perturbations over

λ ∈ R as in standard perturbative quantum field theory.

In 3D, given the invariance properties of the classical action, one can demand that the

same invariances should hold at least to one-loop order (for the linearized theory). Indeed it

– 9 –
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has been shown in [38, 39] that invariance under changes of the bulk triangulation does fix

the measure of 3D Regge calculus uniquely. This measure term does furthermore coincide

with the asymptotics [79, 80] of the Ponzano-Regge model [40, 41], which can be understood

as a quantized (first order) version of Regge calculus. This measure is given by

Dµ(l) =
∏
σ

1√
12πVσ

∏
e∈bulk

le dle√
8πG~

∏
e∈bdry

√
le√

8πG~
. (3.13)

Here invariance of the measure means, that the form of the measure does not change if

one integrates out edge variables. This integration process can be organized locally and

interpreted as changing and in fact coarse-graining the triangulation. There are two such

local changes, the so-called 4 − 1 and 3 − 2 Pachner moves, which generate (together

with their inverses) all possible (bulk) changes of the triangulation. For the 3−2 move one

integrates out one edge, and one can show explicitly that the form of the measure (3.13) does

not change. For the 4− 1 Pachner move one integrates out four edges. The corresponding

Hessian matrix has one negative eigenvalue (which thus would lead to a divergence and

reflects the conformal mode problem of gravity) and three null eigenvalues, corresponding

to the vertex-displacement gauge symmetry, that one expects. The negative eigenvalue can

be dealt with, as in the continuum [81], by ‘analytically continuing’ this mode to have a

positive eigenvalue. To deal with the three null eigenvalues one proceeds by (a) integrating

out one edge (which does not coincide with a null vector) and (b) removing a measure factor

that corresponds to the measure over the gauge orbit [82]. This latter measure factor is

only determined up to numerical constants. To achieve form invariance of (3.13) one has

to choose to remove

1

(8πG~)3/2

1

2π

∏
a=1,2,3

dxap =
1

12πV1̄

∏
i=2,3,4

l0i√
8πG~

dλ0i (3.14)

where
∏
p dx

a
v is the Euclidean measure over the position p of a vertex in R3, which gives

the gauge orbit corresponding to the vertex displacement symmetry. Here one uses the

identity [38, 39, 82]

d∏
a=1

dxa0 =
1

d!Vσ

d∏
i=1

l0idl0i (3.15)

between the d-dimensional Euclidean measure associated to the cartesian coordinates of

the vertex v = 0 and the edge lengths l0i of a d-simplex with vertices v = 0, 1, . . . , d and

volume Vσ.

The important point is, that the existence of this triangulation invariant measure in

3D allows us to choose any bulk triangulation for the evaluation of the partition function to

one-loop order, and we will choose the coarsest one possible. Such a (local) measure does

exist only in 3D. For 4D Regge calculus one can show that no local measures exist that

reproduce the amount of triangulation invariance extant in the classical action, which is

invariant under 5−1 and 4−2 Pachner moves, but not under 3−3 Pachner moves [38, 39].
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R

T

A

r(s+ 1, n)r(s, n)

d(s+ 1, n)

t(n)
d(s, n)

r(s, n+ 1) r(s+ 1, n+ 1)

Figure 1. The torus is cut open and the resulting cylinder is cut into prisms. Each prism is

triangulated with three tetrahedra. On the right panel, the bulk edges are named and labeled by

the time step n and angular position s.

4 Partition function in the discrete set-up

Having collected all the necessary preliminaries, we are going to define and compute the

partition function for linearized Regge calculus. To this end we have to (a) choose a

discretization and (b) find the linearized Regge action for this triangulation and the back-

ground geometry at hand. The linearized Regge action needs to be brought into a con-

venient form — here by a ‘twisted’ lattice Fourier transform, so that the bulk variables

can be easily integrated out. Linearized Regge calculus on a regular lattice has been first

considered in [61, 62] (see also [74] for a slightly more general set-up). Although it did not

consider a boundary, the main steps we use have been developed in [61, 62].

4.1 The triangulation

Given the bulk triangulation independence of 3D Regge calculus it is sufficient to choose

for our calculation a very coarse bulk triangulation. However we might have to take the

continuum limit for the boundary triangulation and should therefore allow for a sufficiently

general triangulation to achieve it.

The spacetime we are considering has the topology of a solid torus. We cut this

torus to a cylinder of height β and slice it into NT cylinders of smaller height T . Note

that in gluing back the cylinder to a solid torus we have to take into account the angular

potential/twist parameter. Each cylinder is furthermore cut along NA radial lines of length

R, and approximated by NA prisms (their boundary becomes piecewise linear), see figure 1.

Each of those prisms can be triangulated with three tetrahedra, see figure 1.

This introduces 6 types of edge lengths. There are three types of bulk edges:

• The bulk radial edges, forming four edges of the prism, whose background length we

denote by R and whose small deviation we denote by r. That is we write the radial

length variables as lR = R+ r.

• The bulk edges subdividing two sides of the prism diagonally with background length√
R2 + T 2. We will denote the corresponding fluctuation variable by d.

– 11 –
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τ(s, n) τ(s+ 1, n)

α(s, n+ 1)

α(s, n)

η(s, n)

Figure 2. The boundary variables on a prism.

• The edges that make up the axis of the cylinder (i.e. of radial coordinate r = 0) of

background length T and associated fluctuation variable t.

We have furthermore three types of boundary edges, see figure 2.

• The edges in angular direction, whose background length and fluctuations are denoted

by A and α respectively.

• The edges in time direction with background length T and fluctuation variables τ .

• The edges in diagonal direction with background length
√
A2 + T 2 and fluctuation

variable η.

This choice of background length variables make the deficit angles at almost all inner

edges vanish. The exception are the edges making up the time axis in the centre of the

cylinder. Requiring a vanishing deficit angle relates A,R and NA, the number of prisms

making up one time slice by

x :=
A2

2R2

!
= 1− cos

2π

NA
. (4.1)

The boundary of the solid torus is triangulated as a regular (rectangular) lattice. We

give coordinates (s, n) ∈ [0, . . . , NA−1]× [0, 1, . . . NT −1] to the vertices of this lattice. On

the cylinder (oriented in time direction) we also orient all edges so that they point either

to the right, up or right-up. We orient the bulk radial and diagonal edges to point to the

centre of the cylinder and the time axis edges to point up. We then attach the source

vertex coordinates to the fluctuation variables, e.g. we write τ(s, n) or r(s, n). To the time

axis variables we just attach the time step variable n, i.e. we use t(n).

We can now make (3.12) more precise. The quantity of interest in this study is

Z({τ(s, n), α(s, n), η(s, n)}) =

∫ ∏
n

dt(n)
∏
s,n

dd(s, n)dr(s, n) µ(l) exp

(
−1

~
SR(l)

)
(4.2)

as a function of the boundary fluctuations {τ(s, n), α(s, n), η(s, n)}. Here µ(l) is the density

of the measure Dµ(l), (3.13) evaluated on the background triangulation,

µ(l) =
RNANT TNT (R2 + T 2)NANT

(8πG~)NT (2NA+1)/2

√
ANANT TNANT (A2 + T 2)NANT /2

(8πG~)3NANT /2

1

(12πVσ)3NANT /2
,

(4.3)
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with

Vσ =
1

12
ATR

√
4− 2x (4.4)

begin the (background) volume of each tetrahedron (it is the same for all three types of

tetrahedra shown in figure 1). We will evaluate (4.2) through an expansion of the Regge

action to second order in the bulk and boundary fluctuations. The calculation gives a

result of the form

Z({τ(s, n), α(s, n), η(s, n)}) = e−
1
~SR|sol D e−F ({τ(s,n),α(s,n),η(s,n)}) , (4.5)

where SR|sol is the action evaluated on the background solution, D the 1-loop determinant

and F the part of the Hamilton-Jacobi functional which is linear and quadratic in the

boundary fluctuations. We will evaluate F by integrating the bulk fluctuations which are

coupled to the boundary fluctuations.

4.2 The Hamilton-Jacobi functional to zeroth and first orders in the boundary

fluctuations

We start with evaluating the Regge action (3.1) on the background solution. As explained

in (3.6) we need to evaluate the boundary term

SR|sol = − 1

8πG

∑
e⊂∂T

le ωe(le′ |sol) . (4.6)

For our background triangulation the only non-vanishing boundary angles reside at the

boundary edges in time direction, for which ωe = 2π
NA

. There are NA × NT such edges,

which have length T . To match the torus boundary geometry with the continuum we need

NT × T = β. We therefore obtain

SR|sol = − β

4G
(4.7)

as in the continuum. To obtain this result we do not need any kind of continuum limit.

This will change for the one-loop correction. We can also write S
(0)
HJ = − β

4G where S
(0)
HJ is

the Hamilton-Jacobi functional at zeroth order in the boundary fluctuations.

We look at the variation of the Regge action (3.1) as in section 3.1, but this time we in-

troduce variations of the boundary lengths. Denoting δle the variation of the edge length le,

δSR = − 1

8πG

(∑
e⊂T ◦

δle εe +
∑
e⊂∂T

δle ωe

)
. (4.8)

Evaluating on the flat solutions, εe = 0 for all interior edges, makes the bulk term vanish.

Moreover, since the only non-vanishing boundary angles are those hinged along the time

direction, which we denote ω(s, n),

8πGδSR|sol = −
∑
s,n

τ(s, n)ω(s, n) = − 2π

NA

∑
s,n

τ(s, n), (4.9)

where the last equality comes from ω(s, n) = 2π
NA

for our choice of discretization and

background. Here δSR|sol = S
(1)
HJ is the term of the Hamilton-Jacobi functional linear in

the fluctuations.
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4.3 The Hessians and their null vectors

4.3.1 Hessian for one prism

As explained in section 3 the Regge action and therefore its Hessian Hee′ is additive over

tetrahedra. Indeed we can consider the Hessian for any building block, e.g. for the prisms,

which are our basic (uniform) building blocks. The computation of this Hessian is explained

in further detail in the appendix A. For the Hessian of a prism we obtain a matrix of

the form3

Hpr
ee′ =

∑
σ∈pr

∑
σ⊃e,e′

∂θσe′

∂le
=
LeLe′

6Vσ
Mpr
ee′(x) (4.10)

where Mee′ is dimension free (see appendix A for the explicit expression) and the only

background length dependence that appears is as function of the ratio x = A2

2R2 = 1−cos 2π
NA

.

In the Hessian we have the background volume Vσ given in (4.4).

This scaling property of the Hessian motivates the replacement of the fluctuation

variables λe with rescaled variables

λ̂e :=
Le√
6Vσ

λe . (4.11)

As expected Hpr has a null vector λe ∼ Le that corresponds to the scaling symmetry

discussed in section 3.2. For Mee′ the corresponding null vector is given by λ̂e ∼ L2
e. In

fact as Mpr does not depend on the background time edge length T , there is a second null

vector, which corresponds to a scaling of the prism in time direction only. That is the null

vector has only components for the t and d and τ as well as η entries. This additional null

vector will lead to a null vector for the boundary theory that will correspond to (boundary)

diffeomorphism symmetry in time direction.

4.3.2 Hessian for the full triangulation

The Hessians for all the prisms can be added up to give the Hessian for the whole triangu-

lation. To make it more transparent, we perform a lattice Fourier transform. Let us first

consider a Fourier transform in angular direction only:

λ̂(k, n) =
1√
NA

∑
s

e
−i 2π

NA
k·s
λ̂(s, n) , λ̂(s, n) =

1√
NA

∑
k

e
i 2π
NA

k·s
λ̂(k, n) , (4.12)

where k ∈ {0, 1, . . . , NA − 1}. We do not (angular) Fourier transform the time variables

t̂(n) as they do not carry an angular dependence.

The Fourier transform in time direction has to take into account the angular twist,

which leads to an unusual periodic identification in time. Let us parametrize the twist

angle by Nγ through

γ = 2π
Nγ

NA
. (4.13)

3A similar scaling behaviour for the Regge action based on a regular cubical lattice has been observed

in [74]. In this case the matrix M would not depend on any length parameters.
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Then the periodic identification of the variable is given by

λ̂(s,NT ) = λ̂(s−Nγ , 0) (4.14)

which for the Fourier transformed variables translates as

λ̂(k,NT ) = e
−i 2πNγ

NA
k
λ̂(k, 0) = e−iγkλ̂(k, 0) . (4.15)

Thus, the phase shifted variables

λ̂′(k, n) = e
iγk n

NT λ̂(k, n) (4.16)

are periodic in the usual way, i.e. λ̂′(k, n+NT ) = λ̂′(k, n). We therefore define the Fourier

transform in time direction as

λ̂(k, ν) =
1√
NT

∑
n

e
−i 2π

NT
(ν− γ

2π
k)·n

λ̂(k, n) , λ̂(k, n) =
1√
NT

∑
ν

e
i 2π
NT

(ν− γ
2π
k)·n

λ̂(k, ν) ,

(4.17)

with ν ∈ {0, 1, · · · , NT − 1}. In the following we will use the shorthand notation

v := ν − γ

2π
k (4.18)

for the ‘twisted’ time frequency.

The linearized action is then encoded as follows

S(2) =
1

2

∑
e,e′

λeHee′λe′ =
1

2

∑
k,ν

(λ̂(k, ν))t · M̃(k, ν) · (λ̂(−k,−ν)) (4.19)

where (λ̂(k, ν))t stands for the transposed vector

(λ̂(k, ν))t = (t̂(ν), r̂(k, ν), d̂(k, ν), τ̂(k, ν), α̂(l, ν), η̂(l, ν)) . (4.20)

The matrix M̃(k, ν) is given as

M̃(k, ν)=



0 −2x
√
NAδk,0 0 0

√
NAδk,0 0

−2x
√
NAδk,0 ∆k −∆k+2x(1−ωv) ωv(ωk−1+2x) (ωvωk − 1) ωv(1− ωk)

0 −∆k+2x(1−ω−1
v ) ∆k (−1+ω−1

k ) (ω−1
v − ωk) (−1 + ωk)

0 ω−1
v (−1+ω−1

k +2x) (−1 + ωk) 1 1
2
(ωk−ω−1

v ) −ωk√
NAδk,0 (−1 + ω−1

k ω−1
v ) (ωv − ω−1

k ) 1
2
(ω−1
k − ωv) 1 − 1

2
(1+ωv)

0 ω−1
v (1− ω−1

k ) (−1 + ω−1
k ) −ω−1

k − 1
2
(1+ω−1

v ) 1


(4.21)

where

ωk := e
i 2π
NA

k
, ∆k = 2− ωk − ω−1

k ,

ωv := e
i 2π
NT

v
, ∆v = 2− ωv − ω−1

v . (4.22)

Note that ∆k and ∆v are the eigenvalues of the Laplacians in the angular and time direc-

tions respectively.
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From the discussion in section 3.2 we expect that the matrix M̃(k, ν) has a null vector

for each independent bulk vertex displacement. It turns out that these bulk vertex dis-

placements only affect the (spatial) frequencies k = 0 as well as k = ±1 (note that k = −1

is equivalent to k = (NA − 1)). To see that these vertex displacements do indeed lead to

null vectors it is necessary to use the explicit value (4.1) for x which amounts to

x =
1

2
∆k=1 = 1− cos

(
2π

NA

)
. (4.23)

Remember that we have only bulk vertices along the central time axis. A displacement of

a bulk vertex in time direction, leads to a null vector for Mk=0,ν given by

(nt)
t(k = 0, ν) =

(
1√
NA

(1− ωv), 0,−ωv, 0, 0, 0
)

(4.24)

i.e. only the t̂(ν) and the d̂(k = 0, ν) variables are affected (to linear order). See appendix B

for an explanation of how to derive the null vectors geometrically. Then we have two

independent displacements of a bulk vertex in the spatial hypersurface. They lead to null

vectors for Mk=±1,ν given by

(nr)
t(k = ±1, ν) = (0, ω−1

v , 1, 0, 0, 0) (4.25)

i.e. only the r̂(k = ±1, ν) and the d̂(k = ±1, ν) variables are affected.

These null vectors correspond exactly to the three independent bulk vertex displace-

ments we expect to arise from diffeomorphism symmetry. They leave the boundary vari-

ables fixed and are thus proper gauge symmetries. As they only affect the k = 0 and

k = ±1 modes it will be much simpler to factor out these gauge symmetries as compared

to the continuum treatment [21].

There are also null vectors of the Hessian which do affect the boundary variables. Thus

we have for frequencies |k| > 0 (and even keeping the value of x general) the null vector

(nτ )t(k, ν) = (0, 0, 1, 1− ωv, 0, 1− ωvωk) . (4.26)

Geometrically this null vector corresponds to making the time slice n smaller in time

direction and the time slice (n − 1) larger by the same amount. This null vector will

descend to a null vector for the boundary theory describing diffeomorphism symmetry in

time direction. It is also clear that it comes from the scaling symmetry in time direction

for the Hessian of the prism building block.

The vector (4.26) is actually also null with respect to M̃(k = 0, ν). Together with the

null vector (4.24) it gives

(nt + nτ )t(k, ν) =

(
1√
NA

(1− ωv), 0, 1− ωv, 1− ωv, 0, 1− ωvωk
)

(4.27)

and describes geometrically the same transformation as (4.26) for the case k = 0.

Finally we still have the global scaling symmetry, which for M̃(k = 0, ν = 0) corre-

sponds to a null vector

(nsc)
t(k = 0, ν = 0) =

(
T 2

√
NA

, R2, R2 + T 2, T 2, A2, A2 + T 2

)
. (4.28)
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5 Integrating out the bulk variables

In this section we are going to integrate out the bulk variables. Let us first remark that so

far it is not clear how to obtain the wished for result for the one-loop correction, which is

encoded in the determinant of the Hessian for the bulk variables. Due to its dependence on

the twist angle γ we expect that the structure of the continuum result (2.7) does require

in particular a coupling of the time slices. However these appear in the bulk Hessian only

for the non-diagonal elements and are moreover multiplied with a factor x which goes to

zero either in the limit of large radius R or in the continuum limit where A goes to zero.

It will turn out that integrating out e.g. the d̂ variables, we obtain an action that is much

more transparent. This is particularly relevant if one wants to understand the r̂ variables as

degrees of freedom which describe the position of the boundary in the embedding spacetime,

as in a proposal of Carlip in [33, 34] for the AdS case.

5.1 Treatment of gauge modes

Let us start with the Fourier modes affected by the gauge symmetries. This will be impor-

tant for the understanding of the structure of the one-loop correction.

We have seen that the Hessian for the bulk variables has three null eigenvectors per

vertex, that is per mode number ν. Those three null vectors result from the k = 0 and

k = ±1 Fourier modes respectively.

At k = 0, we have ωk=0 = 1 and the part of the matrix M̃(k, ν) describing the bulk

variables t̂(ν), r̂(k = 0, ν), d̂(k = 0, ν) is given by

M̃bulk(0, ν) =

 0 −2x
√
NA 0

−2x
√
NA 0 2x(1− ωv)

0 2x(1− ω−1
v ) 0

 . (5.1)

This matrix has one null vector. We proceed by integrating out the r̂(k = 0, ν), d̂(k = 0, ν)

variables. The corresponding sub-matrix has two eigenvalues ±2x
√

∆ν . (Here ∆ν = ∆v

with v = ν at k = 0.) The negative sign of one of the eigenvalue reflects the conformal

factor mode problem — we analytically continue it to a positive sign. We then obtain∫
dr̂(0, ν)dd̂(0, ν)dr̂(0,−ν)dd̂(0,−ν)× (5.2)

exp

(
−1

2
(t̂(ν), r̂(0, ν), d̂(0, ν)) · M̃bulk(0, ν) · (t̂(−ν), r̂(0,−ν), d̂(0,−ν))t

)
=

4π2

4x2∆ν
,

that is a t̂-independent result. This also holds if we consider in addition the boundary

variables, and the k = 0 part of the effective boundary action coincides with the result for

generic frequencies given in (5.14). Note that here we integrate over the modes (0,+ν) and

(0,−ν), thus if we take the product over the modes ν = 0, . . . , NT − 1, the contribution of

the k = 0 modes to the partition function is in fact the square root of (5.2).

At k = ±1 we have the bulk variables r̂(±1, ν), d̂(±1, ν) whose dynamics is described

by the following sub-matrix of the Hessian

M̃bulk(±1, ν) =

(
2x −2xωv

−2xω−1
v 2x

)
. (5.3)
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It has one null vector (for each of the k = ±1 modes). We integrate over the d̂(k = ±1, ν)

variable and are left with a r̂-independent result. Also the k = ±1 part of the effective

boundary action coincides with the general result given in (5.14). From the integration

over d̂(k = 1, ν) and d̂(k = −1, ν) we obtain a factor

2π

2x
. (5.4)

We now proceed by removing the remaining integration measure from the path integral.

As explained in section 3.3 the measure that needs to be removed corresponds to the

measure over the gauge orbit describing vertex translation invariance of the Regge action.

That is for each vertex p(n) on the axis of our solid torus we remove a measure factor

1

(8πG~)3/2

1

2π
dx1(n)dx2(n)dx3(n) (5.5)

where x1(n), x2(n), x3(n) are the cartesian coordinates of the vertex p(n). We thus need

to translate these coordinates to our variables t(ν) and r(±1, ν). Identifying x3 with the

t-direction we have

t(n) = x3(n+ 1)− x3(n) ⇒ t(ν) = (ωv − 1)x3(ν) (5.6)

which for the measure means ∏
n

dx3(n) =
∏
ν

1√
∆ν

dt(ν) . (5.7)

We have furthermore the vertex displacement invariance in x1 and x2 direction (at

fixed time step n). We identify the x1 axis with the edge carrying the r(s = 0, n) variable.

The displacement of the vertex p(n) is then described by

(R+ r(s, n))2 = (R cos(2πs/NA)− δx1(n))2 + (R sin(2πs/NA)− δx2(n))2 (5.8)

which to linear order in r and δx amounts to

r(s, n) ' −δx1 cos(2πs/NA)− δx2 sin(2πs/NA) . (5.9)

Multiplying by ωsk=±1 and summing over s we obtain(
r(k = +1, n)

r(k = −1, n)

)
'
√
NA

2

(
−1 +i

−1 −i

)(
δx1(n)

δx2(n)

)
. (5.10)

This leads to a Jacobian∏
n

dx1(n)dx2(n) =
∏
ν

2

NA
dr(+1, ν)dr(−1, ν) . (5.11)

In summary the measure term corresponding to the gauge orbits is∏
n

dx1(n)dx2(n)dx3(n)

2π(8πG~)3/2
=
∏
ν

1

2π(8πG~)3/2

1√
∆ν

2

NA
dr(+1, ν)dr(−1, ν)dt(ν) . (5.12)

The usual Faddeev-Popov gauge-fixing gives essentially the same result.
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5.2 The physical modes

We are thus left with the modes k ∈ {2, . . . , NA − 2}, ν ∈ {0, . . . , NT − 1} to integrate

over. Starting with the quadratic action (4.19) and integrating out the d̂ variables gives

an effective action described by the following matrix

M̃r(k, ν) = (5.13)

2x∆v(1− 2x
∆k

) (∆k−2x)
(ω−1

k
−ωv)

(1−ω−1
k

)
(1−ω−1

v )(−1+ωvωk)(1− 2x
∆k

) (∆k−2x) (−1+ωv)

(1−ω−1
k

)

(∆k − 2x)
(ωk−ω−1

v )

(1−ωk)
0 1

2

(1+ωk)(ωk−ω−1
v )

(1−ωk)
0

(1−ωv)(−1+ω−1
v ω−1

k )(1− 2x
∆k

) 1
2

(1+ω−1
k

)(ω−1
k
−ωv)

(1−ω−1
k

)

(ωkωv+ω−1
k
ω−1
v −ωk−ω

−1
k

)

∆k

1
2

(1−ωv)(1+ωk)
(1−ωk)

(∆k − 2x)
(−1+ω−1

v )

(1−ωk)
0 1

2

(1−ω−1
v )(1+ω−1

k
)

(1−ω−1
k

)
0


,

for the fluctuations (r̂, τ̂ , α̂, η̂).

Integrating out in addition the r̂ variables we get the effective action for the boundary

fluctuations described by

M̃b(k, ν) =
1

2x

−∆k∆kv

∆v

−∆kv(1−ωk)
(1−ωv)

∆k(ωk−ω−1
v )

(1−ω−1
v )

· · · −∆kv (1− ω−1
k )(1− ωkωv)

· · · · · · −∆k

+

∆kv

∆v

(1+ωv)(ω−1
v −ωk)

2(1−ωv) − (ωk−ω−1
v )

(1−ω−1
v )

· · · 1 − 1
2 (1 + ωv)

· · · · · · 1


(5.14)

where the missing entries are found imposing that M̃b(k, ν) is a hermitian matrix. Moreover

∆kv = 2− ωkωv − (ωkωv)
−1 . (5.15)

Note that the x−1 order part of the matrix will lead in the continuum limit to second order

derivatives (counting inverse derivatives with a negative sign), whereas the x0 order part

gives rise to zeroth order derivatives. The x−1 part of (5.14) is also invariant under time

and angular (linearized) diffeomorphisms, whereas the x0 order part is only invariant under

time diffeomorphisms.

5.3 The one-loop correction

Let us consider the one-loop determinant denoted D in (4.5). By definition, it is the

determinant of the Hessian restricted to the bulk variables (equivalently for vanishing

boundary fluctuations). For each mode k ≥ 2, this Hessian is the two-by-two matrix(
∆k −∆k+2x(1−ωv)

−∆k+2x(1−ω−1
v ) ∆k

)
, (5.16)

where ∆k is the eigenvalue of the Laplacian in the angular direction at frequency k.

Integrating out the variables d̂ in the above matrix leads to a scalar, which is the

diagonal r̂ entry of M̃r(k, ν) in (5.13), i.e.

2x∆v

(
1− 2x

∆k

)
. (5.17)

Before moving on and taking the product over the Fourier modes, let us comment on this

quantity.
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As the continuum result of [21] depends on the twisting angle γ, we expect that it

is essential to have a coupling between time slices in the (bulk) Hessian. This coupling

appears in a rather weak form in (4.21): firstly only in the non-diagonal matrix entries,

and secondly multiplied with the parameter x which vanishes in the continuum limit.

Somewhat surprisingly, it turns out that after integration over the d̂ variable (or the r̂

variable which would have led to the same result for the remaining bulk part of the Hessian)

the terms of zeroth order in x vanish and one is left with first and second orders in x.

Furthermore the non-local structure one expects from inverting the spatial Laplacian

∆k (in the diagonal d̂ component of M̃(k, ν) (4.21)) is restricted to the second order term

in x. We also obtain from the partial integration of the d̂ variables the Laplacian ∆v

in time direction. This Laplacian will be responsible for the γ-dependent part of the

one-loop correction.

As discussed in section 3.3 the initial measure for the path integral is

∏
e∈bdry

L
1/2
e

(8πG~)1/4

∏
e∈bulk

Le

(8πG~)1/2
dλe

∏
σ

1

(12πVσ)1/2

=

 ∏
e∈bdry

L
1/2
e

(8πG~)1/4

 (6Vσ)NANT+NT /2

(12πVσ)
3
2
NANT

1

(8πG~)NANT+NT /2

∏
e∈bulk

dλ̂e . (5.18)

We will now collect all factors arising from the integration over the various bulk vari-

ables. The interesting γ-dependent part will come from integrating out the r̂ variables,

and arise there from the determinant of the entry ∆v in the effective Hessian (where one

already integrated out the d̂ variables).

From the integration over the modes (k = 0, ν) and (k = ±1, ν) and from taking into

account the measure over the gauge orbits we obtain a factor

(8πG~)
7
2
NT

(
2π

2x

)2NT

(πNA)NT
(6Vσ)

3
2
NT

R2NT TNT
(5.19)

Note in particular that a
√

∆ν contribution from the k = 0 mode cancels with the contri-

bution from the gauge orbit measure.

Next we consider the integration over the d̂ variables for the modes k = 2, . . . , NA − 2

and ν = 0, . . . , NT − 1. The integration of

exp

(
− 1

2(8πG~)
d̂(k, ν) ∆k d̂(−k,−ν)

)
(5.20)

leads to a factor

(8πG~)
NT (NA−3)

2

NT−1∏
ν=0

NA−2∏
k=2

(2π)1/2

√
∆k

. (5.21)

Using the result

NA−1∏
k=1

∆k = N2
A ⇒

NA−2∏
k=2

∆k =
N2
A

∆2
k=1

=
N2
A

(2x)2
(5.22)
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we can rewrite this factor (5.21) into

(8πG~)
NT (NA−3)

2 (2π)
NT (NA−3)

2

(
2x

NA

)NT
. (5.23)

Finally we consider the integration over the r̂ variables, again for the modes k =

2, . . . , NA − 2 and ν = 0, . . . , NT − 1. To this end we take the product over the modes of

the (r̂, r̂) component in (5.13):

NA−2∏
k=2

NT−1∏
ν=0

2x∆v

(
1− 2x

∆k

)
= (2x)NT (NA−3)

(
NA−2∏
k=2

(
1− 2x

∆k

)NT)(NA−2∏
k=2

NT−1∏
ν=0

∆v

)
.

(5.24)

For the product involving the time frequencies we obtain

NT−1∏
ν=0

∆v =

NT−1∏
ν=0

(
2−exp

(
i

2π

NT

(
ν−γ k

2π

))
−exp

(
−i 2π

NT

(
ν−γ k

2π

)))
= 2− 2 cos(γk) .

(5.25)

For the other factor we remember that 2x = ∆k=1 and use the following identity

NA−2∏
k=2

(
1− 2− a− a−1

2− ak − a−k
)

=
1− aNA−1

(1 + a)(1− aNA−2)
(5.26)

which gives applied to our case (with ∆k = 2− ak − a−k and aNA = 1)

NA−2∏
k=2

(
1− 2x

∆k

)
=

1

4− 2x
. (5.27)

In summary we obtain

NA−2∏
k=2

NT−1∏
ν=0

2x∆v

(
1− 2x

∆k

)
=

(2x)NT (NA−3)

(4− 2x)NT

NA−2∏
k=2

(2− 2 cos(γk)) . (5.28)

This leads to the following factor from the integration over the r̂ modes

(8πG~)
NT (NA−3)

2 (2π)
NT (NA−3)

2
(4− 2x)NT /2

(2x)
1
2
NT (NA−3)

[
NA−2∏
k=2

(2− 2 cos(γk))

]−1/2

. (5.29)

Collecting all factors in (5.18), (5.19), (5.23), (5.29) and using 6Vσ = 1
2ATR

√
4− 2x

as well as 2x = A2/R2 we obtain

D = 2−NT (2π)−
NTNA

2

(
A

R

)−NT (NA−1)

(ART )−
NTNA

2 A2NT TNT
(

4− A2

R2

)−NTNA
4

+
3NT

2

×

 ∏
e∈bdry

L
1/2
e

(8πG~)1/4

(NA−1)/2∏
k=2

1

|1− qk|2

 (5.30)
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where q = exp(iγ) and we assumed that NA is odd for simplicity. Here one can use the

relation A2/(2R2) = 1− cos(2π/NA) to eliminate either R or A.

The terms which are independent of γ ensure the consistent gluing of partition functions

along discrete boundaries.

The interesting part is the γ-dependent term,
∏(NA−1)/2
k=2 |1− qk|−2, which in the limit

NA →∞ reproduces the one-loop correction in the continuum (2.7). Our discrete approach

further offers the following insights.

• We see that the one-loop correction is caused by degrees of freedom (the r̂ variables)

that connect to the boundary.

• The product over k results from a product over angular Fourier modes.

• That the product starts with k = 2 is explained by the diffeomorphism invariance

of the action. This invariance of the action means that the vertices at the axis

can be (infinitesimally) displaced without changing the value of the Hamilton-Jacobi

functional. This vertex displacement involves only length perturbations at k = 0 and

k = ±1, explaining that the one-loop determinant starts with k = 2.

Let us comment that without the regularizing shift q = exp(iγ)→ q = exp(iγ−ε), the

continuum result (2.7) is explicitly divergent for all rational angles of the form γ = 2πp/p′

with p, p′ ∈ N and gcd(p, p′) = 1. The reason is that one encounters a factor 1/0 in the

product over k when k is a multiple of p′. In the discrete case we can only deal with rational

angles. The minimal NA we can choose to accommodate such a twisting angle is NA = p′.

In this case the product in (5.30) is finite without regularizing shift. However going to a

refinement that also allows the same twisting angle, e.g. NA = 2p′ (and considering the

slight generalization of (5.30) for even NA) or NA = 3p′ we also get a divergent factor 1/0.

Thus we either have to also introduce a regularizing shift, or adjust NA to the twisting

angle and choose NA = p′.

5.4 The effective boundary action

Considering the partition function with a boundary at finite radius (encoded in the zeroth

order boundary data), we can also allow arbitrary boundary fluctuations and consider the

Hamilton-Jacobi functional, that is the action evaluated on the solution, as a function of

these boundary data. The Hamilton-Jacobi function encodes all information about the

dynamics of the system and furthermore represents the classical approximation to the

partition function. Furthermore we will see that the (boundary diffeomorphism invariant

part of the) Hamilton-Jacobi functional can be described by a dual field theory, that will

a posteriori explain the one-loop result.

We evaluated the zeroth order part of the action in (4.7) as S
(0)
HJ = −β

4G . We found that

the action has also a first order part

8πGS
(1)
HJ = − 2π

NA

∑
s,n

τ(s, n) . (5.31)
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We will consider the Hamilton-Jacobi functional for boundary data that are induced by

infinitesimal diffeomorphisms.4 In the discrete this is equivalent to infinitesimal displace-

ments of the boundary vertices, as discussed in the appendix B. There are three directions

in which a vertex can be displaced, in time, angular and radial direction. To first order

a vertex displacement in angular and radial direction does not change the edge lengths in

time direction. For vertices moved along the time direction by an amount χ(s, n), one gets

τ(s, n) = χ(s, n)− χ(s, n+ 1). (5.32)

Since each χ(s, n) appears twice in the variation SHJ , once with a positive sign and once

with a negative sign, we have the discrete equivalent of a total divergence term. Thus S
(1)
HJ

is vanishing for all possible first order displacements of boundary vertices.

The second order part of the Hamilton-Jacobi functional for the linearized theory is

encoded in the matrix M̃b(k, ν) given in (5.14), that is

8πG S
(2)
HJ =

1

2

∑
k,ν

(λ̂b(k, ν))t · M̃b(k, ν) · (λ̂b(−k,−ν)) (5.33)

where (λ̂b(k, ν))t stands for

(λ̂b(k, ν))t = (τ̂(k, ν), α̂(k, ν), η̂(k, ν)) (5.34)

with ·̂ indicating the rescaling λe → λ̂e = Le√
6Vσ

λe of the fluctuation variables.

We aim at comparing the continuum limit of the discrete results with results obtained

directly from the continuum theory. To this end we should match the variables we are

using (λ or λ̂) to metric fluctuations.

The relation between the (boundary) length fluctuations λb and the metric fluctuations

δhab are determined by

(hab + δhab)e
a
τe
b
τ = hττ + δhττ = (T + τ)2 = T 2 + 2Tτ +O(τ2) (5.35)

(hab + δhab)e
a
αe
b
α = hαα + δhαα = (A+ α)2 = A2 + 2Aα+O(α2)

(hab + δhab)(e
a
τ + eaα)(ebτ + ebα) = hαα + hττ + 2hτα + δhαα + δhττ + δ2hτα

= (
√
A2 + T 2 + η)2 = A2 + T 2 + 2

√
A2 + T 2η +O(η2) .

This fixes the background boundary metric (with respect to basis vectors (eaτ , e
a
α)) to

hab = diag(T 2, A2). Taking into account the rescaling λ̂ = Le√
6Vσ

λe we have the follow-

ing transformation between rescaled length and metric perturbations to first order:δhττδhαα
δhτα

 =
√

6Vσ

 2 0 0

0 2 0

−1 −1 1


τ̂α̂
η̂

+O(λ2). (5.36)

4Note that we consider only the change to first order in the boundary (length) variables and thus treat

the perturbation parameter as defined via the expansion of the boundary data. Alternatively one could

consider how a diffeomorphism of the background solution changes the boundary data including second

order terms and include these into the first order action. This would lead to a second order contribution.
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However the full transformation between length and metric variables is non-linear and —

as we have a non-vanishing first order action — we will need the τ variables expressed as

function of the metric variables to second order

τ =
1

2T
δhττ −

1

8T 3
(δhττ )2 +O((δhττ )3) . (5.37)

As we are dealing with different variables, which transform non-linearly, we need to

be careful with treating the order of the perturbations correctly. For instance we will have

two contributions for the effective action in metric variables: (a) One part is given by

the second order part of the effective action in length variables transformed via the linear

transformation (5.36) to the metric perturbations. (b) The second part is given by the first

order action in length variables, with the length variables expressed in metric perturbations

to second order, as in (5.37). Both contributions give

8πG S
(2)
HJ =

1

2

∑
k,ν

(δh(k, ν))t · M̃h
b (k, ν) · (δh(−k,−ν)) (5.38)

with

M̃h
b (k, ν) = − 1

8x · (6Vσ)


∆2
k

∆v
∆k 2∆k(1−ωk)

(1−ω−1
v )

· · · ∆v 2(1−ωk)(1−ωv)
· · · · · · 4∆k

+
1

8 · (6Vσ)

2∆k
∆v

(1− ωk) 4 (1−ωk)

(1−ω−1
v )

· · · ∆v 2(1−ωv)
· · · · · · 8



+
π

8NAT 3

 1 0 0

· · · 0 0

· · · · · · 0

 . (5.39)

Note that the term originating from the first order action in length variables breaks the

scaling property in T direction, and will indeed be the only one braking the invariance

under infinitesimal time diffeomorphisms.

The x−1 order term of (5.39) will again lead to second order derivatives in the con-

tinuum limit. This part is also invariant under both the angular and the time (boundary)

diffeomorphisms (by that we mean linearized diffeomorphisms, as in the rest of the paper).

The second term is not invariant under angular diffeomorphisms but is invariant under

time diffeomorphisms. The third term, which we obtained from the first order result in

length variables, is not invariant under time diffeomorphisms but is invariant under angular

diffeomorphisms. The x0 part includes terms with zero order derivatives (e.g. the (ττ, ττ)

or (ττ, τα) component) but also terms like (1 − ωk) (the (ττ, αα) component) or ∆v (the

(αα, αα) component), which seem to lead to higher order derivatives. Note however that

those terms — characterized by having at least one index being equal to αα — will actually

vanish in the continuum limit considered here, so that the x0 part will still give rise to only

zeroth order derivative terms. Thus for a perturbation whose only non-vanishing compo-

nent is δhαα, only terms from the x−1 part of the matrix (5.39) survive in the continuum

limit. This applies to the metric perturbations arising from a radial diffeomorphism (after

having taken the continuum limit). It thus turns out that the first term in (5.39) is the only
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one relevant for radial diffeomorphisms, the second term sees the angular diffeomorphisms

and the last term the diffeomorphisms in time direction.

At this point one might wonder why the (second order) effective boundary action

is not invariant under (first order) boundary diffeomorphisms. The answer is that we

are considering here linearized diffeomorphisms for the second order term of the effective

boundary action. The second order action would indeed be invariant to linear order, if the

linear order of the action would be identically vanishing. However the effective action has

also a non-vanishing first order term, for which one would need to consider diffeomorphisms

to second order. These terms cancel the terms resulting from the second order term of the

action contracted with a metric perturbation from a linearized boundary diffeomorphism.

5.5 The continuum limit

We can now take the continuum limit resulting in a continuum second order effective

boundary action. This result will be confirmed later in section 7 by a direct computation

in the continuum.

We take the continuum limit by setting

A = εA0 , T = εT0 (5.40)

and considering ε� 1. This implies for the various other quantities appearing in (5.38)

x =
A2

2R2
= ε2 A

2
0

2R2
,

NT = ε−1 β

T0
,

NA = 2π arccos−1

(
1− A2

2R2

)
= ε−1 2πR

A0
+O(ε0) ,

ωv = exp

(
2πi

NT
v

)
= 1 + ε

2πiT0

β
v +O(ε2) =: 1 + εiv̂ +O(ε2) ,

ωk = exp

(
2πi

NA
k

)
= 1 + ε

iA0

R
k +O(ε2) =: 1 + εik̂ + O(ε2),

6Vσ = ATR

√
1− x

2
= ε2A0T0R+O(ε3), (5.41)

where we defined rescaled wave vectors k̂ and v̂. We obtain for the matrix (5.39)

M̃h
b (k, ν) = − ε

−2R

4A3
0T0

 k̂4

v̂2 k̂2 −2 k̂
3

v̂

· · · v̂2 −2k̂v̂

· · · · · · 4k̂2

+
ε−2

4A0T0R

 k̂2

v̂2 0 −2k̂v̂

· · · 0 0

· · · · · · 4


+
ε−2A0

4RT 3
0

 1 0 0

· · · 0 0

· · · · · · 0

 +O(ε−1). (5.42)

We aim to compare this result to a calculation performed directly in the continuum.

There we will consider the action evaluated on perturbations of the flat metric induced by
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infinitesimal diffeomorphisms. We therefore will also evaluate in the discrete the Hamilton-

Jacobi functional encoded in (5.42) on boundary data that describe such infinitesimal

deformations. In the discrete these are given by vertex displacements and — as derived in

appendix B — the vertex displacements along the boundary, that is in time and angular

direction, lead to the following description in terms of metric perturbations δh,

(nh
b,τ )t(k, ν) = −(2(1− ωv), 0, ωv(1− ωk)) Xτ (k, ν) ,

(nh
b,α)t(k, ν) = (0, 2(1− ωk), ωk(1− ωv)) Xα(k, ν) . (5.43)

Here Xτ , Xα give the distance between old and new vertex positions. In the continuum

limit defined by (5.40), (5.41), together with Xτ = εX0
τ and Xα = εX0

α, we have

(nh
b,τ )t(k, ν) = ε2 (2iv̂, 0, ik̂) X0

τ (k, ν) +O(ε3) ,

(nh
b,α)t(k, ν) = ε2 (0, 2ik̂, iv̂)X0

α(k, ν) +O(ε3) . (5.44)

For these vectors we obtain the following action contributions

8πGS(2)[(nh
b,τ )] =

1

2

∑
k,ν

(nh
b,τ (k, ν))t · M̃h

b (k, ν) · (nh
b,τ (−k,−ν))

=
1

2

∑
k,ν

ε2 A0

RT 3
0

v̂2X0
τ (k, ν)X0

τ (−k,−ν) +O(ε3) ,

8πGS(2)[(nh
b,α)] =

1

2

∑
k,ν

(nh
b,α(k, ν))t · M̃h

b (k, ν) · (nh
b,α(−k,−ν))

=
1

2

∑
k,ν

ε2 1

RA0T0
v̂2X0

α(k, ν)X0
α(−k,−ν) +O(ε3) . (5.45)

We can furthermore consider an infinitesimal displacement of boundary vertices in

radial direction, which is described by (see appendix)

(nh
b,r)

t(k, ν) = A sin

(
π

NA

)
(0, 2(1 + ωk), (1− ω−1

v )ωvωk)Xr(k, ν) (5.46)

with Xr giving the amount of the radial (outward) displacement. In the continuum limit

(here we do not put Xr = εX0
r , as we do not take a continuum limit in r direction) we have

(nh
b,r)

t(k, ν) = ε2A
2
0

R
(0, 2, 0)Xr(k, ν) +O(ε3) . (5.47)

This leads to an action contribution

8πGS(2)[(nh
b,r)] =

1

2

∑
k,ν

(nh
b,r(k, ν))t · M̃h

b (k, ν) · (nh
b,r(−k,−ν))

= −1

2

∑
k,ν

ε2 A0

RT0
v̂2Xr(k, ν)Xr(−k,−ν) +O(ε3) . (5.48)

In summary the effective boundary action evaluated on metric perturbations induced

by diffeomorphisms has quite a simple form. Apart from scaling factors all three kinds of
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deformation are just subject to a Laplacian in time direction. The radial diffeomorphisms

come with the opposite sign as compared to the boundary diffeomorphisms. Note also that

the diffeomorphisms in the various directions are orthogonal to each other with respect to

the quadratic form defined by the second order action. This follows from the partitioning

of the matrix M̃h
b into three terms, where (in the continuum limit) each of the term is only

non-vanishing on a diffeomorphism in either radial, angular or time direction.

6 Boundary action and Liouville field theory

For the one-loop correction the terms surviving the continuum limit are those of lowest

order in the parameter x. As we have seen the contributions to the effective boundary action

split also in a part of order x−1 and a part of order x0. The part with order x−1 leads

in the continuum limit to second order derivatives. (The second order derivatives that we

obtain for the boundary diffeomorphisms are just due the fact that we did not normalize the

corresponding vectors.) This part is also invariant under the boundary diffeomorphisms,

and hence is only sensitive to the spacetime diffeomorphisms with displacement vector

normal to the boundary.

We might thus look for a dual theory of a scalar field on the boundary coupled to

boundary metric variables, such that integrating out this scalar field will regain the (second

order in derivatives part of the) effective boundary action in (5.14). Indeed such a dual

field theory, given by a Liouville field theory, can be constructed in the AdS case [31, 32].

Carlip [33, 34] derived such an action by arguing that the boundary effective action should

result from the breaking of the spacetime diffeomorphism symmetry by the presence of the

boundary. The scalar field encodes the radial distance and is thus related to the variables

r in our linearized Regge action, after integrating out the diagonal variables d. Thus

M̃r in (5.13) is a candidate for such an action. However the correspondence is spoiled

by M̃r violating invariance under the boundary diffeomorphisms. Also a discretization of

Liouville theory linearized around a vanishing field should have vanishing entries for the

entries quadratic in the boundary length fluctuations, i.e. of type λbλ
′
b. This is not the

case for (5.13). One can also look for a field transformation (adding to the r field some

linear combination of the boundary length perturbations) such that these entries do vanish.

However the most one can accomplish is that all the terms quadratic in boundary length

fluctuations do vanish except the α̂(k, ν)α̂(−k,−ν) terms.

We will indeed manage to match the λrλb terms of lowest order in x with a field of

Liouville type,5 thus confirming the interpretation of the r-variables as a Liouville type

field, whose integration gives the (boundary diffeomorphism invariant part of the) effective

boundary action.

To show this we discretize the Liouville action (without a potential term), after which

we will integrate out the Liouville field using the linearized field equations. We can then

compare the resulting boundary action to the result (5.14).

5More precisely our ansatz for the action of the field will be the action of a free scalar field coupled to

the boundary curvature as external current as for the Liouville action.
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We consider a Liouville action without potential given by

SL =

∫
d2y
√
h
(
habϕ∂a∂bϕ+ c 2DRϕ

)
(6.1)

with c defining the coupling of the 2D curvature to the scalar field ϕ. We discretize this ac-

tion for a 2D regular triangulation of the torus (coinciding with the boundary triangulation

of our 3D spacetime) and then linearize the result.

The scalar field ϕ(y) will be turned into a field ϕp associated to the vertices p of

the triangulation. The kinetic term of the scalar field is discretized using the so-called

cotangent rule for the discretization of the Laplacian (see e.g. [83]) on a triangulation∫
d2y
√
hhabϕ∂a∂bϕ →

∑
4

∑
e∈4

1

2
cot(α4e )(ϕs(e) − ϕt(e))2 (6.2)

where the sum is over the triangles 4 and α4e denotes the interior angle at the vertex p

opposite the edge e in 4, and s(e), t(e) are the source and target vertex of e respectively.

For a rectangle built from two triangles we obtain an action contribution

SK,rec =
T

2A

(
(ϕ1 − ϕ2)2 + (ϕ3 − ϕ4)2

)
+

A

2T

(
(ϕ1 − ϕ3)2 + (ϕ2 − ϕ4)2

)
. (6.3)

Here the edges between vertices p = 1, 2 and p = 3, 4 have length A and the edges between

p = 1, 3 and p = 2, 4 are of length T .

The 2D curvature is discretized as∫
d2y
√
hRϕ →

∑
p

εp ϕp (6.4)

where εp = 2π −∑4 α4p is the deficit angle at the vertex p of the triangulation.

Expanding this discrete action around the ϕ = 0 configuration with vanishing deficit

angles gives

∑
p

εp ϕp = −
∑
4

∑
p,e∈4

ϕp
∂α4p
∂le

λe +O(ε3) (6.5)

The kinetic scalar field term is already quadratic, whereas we need to expand εp to first

order in length fluctuations. This can be straightforwardly done and gives the following

contribution for a rectangle built out of two triangles

SR,rec =
1

AT

(
ϕ1

(√
A2 + T 2 η1 −Aα3 − Tτ2

)
+ ϕ3

(
Tτ1 +Aα3 −

√
A2 + T 2 η1

)
+ ϕ4

(√
A2 + T 2 η1 −Aα1 − Tτ1

)
+ ϕ2

(
Aα1 + Tτ2 −

√
A2 + T 2 η1

))
. (6.6)

Here λp with λ = τ, α, η denotes the length perturbation associated to an edge e with

source vertex p, see figure 3. The form of the action (6.6) motivates the introduction of
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ϕ1 ϕ2

ϕ3 ϕ4

τ1 τ2

α1

α3

η1

Figure 3. The Liouville field and length fluctuation variables for a boundary rectangle.

the rescaled variables λ̂e = Le√
6Vσ

λe. Using the same Fourier transform as in section 4.3.2

we can write the second order discrete action as

SL,d =
∑
rec

(SK,rec + cdSR,rec) =
1

2

∑
k,ν

((ϕ, λ̂)(k, ν))t · L̃(k, ν) · ((ϕ, λ̂)(−k,−ν)) (6.7)

with a matrix

L̃(k, ν) =


2T
A∆k + 2A

T ∆v −cd∆k
(ω−1

k −ωv)

(1−ω−1
k )

−cd(1−ω−1
v )(−1+ωvωk) −cd∆k

(−1+ωv)

(1−ω−1
k )

−cd∆k
(ωk−ω−1

v )
(1−ωk) 0 0 0

−cd(1−ωv)(−1+ω−1
v ω−1

k ) 0 0 0

−cd∆k
(−1+ω−1

v )
(1−ωk) 0 0 0


(6.8)

where we absorbed into the discrete coupling constant cd the volume factors
√

6Vσ.

Note that the matrix entries corresponding to the ϕ·λ̂b coefficients in the first row (and

thus first column) match — modulo a (−cd) factor — the λ̂r · λ̂b entries of the matrix M̃r

in (5.13), which we obtained after integrating out the variables associated to the time axis

and the diagonal bulk edges. This confirms the interpretation of the radial bulk edges as

a Liouville type field. We have however in M̃r (to the order x, which is relevant here) only

the Laplacian ∆v in time direction appearing. Indeed we will see that we have to modify

the Liouville field action (6.1) by dropping the Laplacian part for the angular direction

from the kinetic term of the Liouville field.

We transform to metric perturbations δh as defined in (5.36). The action is then

encoded in the matrix

L̃h(k, ν) =


2TA∆k + 2AT ∆v

c′d
2 ∆k

c′d
2 ∆v c

′
d(1− ωv)(1− ωk)

c′d
2 ∆k 0 0 0
c′d
2 ∆v 0 0 0

c′d(1− ω−1
v )(1− ω−1

k ) 0 0 0

 (6.9)

where again we absorb a volume factor
√

6Vσ into a new coupling constant c′d. Note that

the background length parameters A and T only appear in the Laplacian term for the

Liouville field ϕ. This field can be integrated out and gives rise to an effective action

encoded in the matrix

L̃h
b(k, ν) = − (c′d)2

8AT (A−2∆k + T−2∆v)

∆2
k ∆k∆v 2(1− ωk)(1− ωv)∆k

· · · ∆2
v 2(1− ωk)(1− ωv)∆v

· · · · · · 4∆k∆v

 . (6.10)
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We see that we match the x−1 part (or boundary diffeomorphism invariant part) of the

effective boundary action

M̃h
b (k, ν) = − 1

8x · (6Vσ)


∆2
k

∆v
∆k 2∆k(1−ωk)

(1−ω−1
v )

· · · ∆v 2(1− ωk)(1− ωv)
· · · · · · 4∆k

+ · · · (6.11)

if we omit the angular Laplacian ∆k from the kinematic term of the Liouville field action

and choose the coupling as

(c′d)
2 =

A

Tx 6Vσ
. (6.12)

Interestingly, by starting from the AdS case and taking a limit to flat spacetimes, [84]

identified a Liouville field with only time derivatives in the kinetic term as a BMS invariant

conformal field theory.

7 Boundary effective action in the continuum

In this section we will compute the effective boundary action to second order directly in

the continuum and confirm the result obtained with the help of the discretization.

To compute the boundary effective action for the linearized theory we have to expand

the Einstein-Hilbert action

8πGSEH = −1

2

∫
M
ddx
√
gR −

∫
∂M

dd−1y
√
hK . (7.1)

to second order in variations gfull
µν = gµν + δgµν . The first order variation of the Einstein-

Hilbert action is given by (see appendix C.1 for a proof)

8πGδS = −1

2

∫
M
ddx
√
g

(
1

2
Rgµν −Rµν

)
δgµν −

1

2

∫
∂M

dd−1y
√
h (Khµν −Kµν) δgµν .

(7.2)

Thus we get for a flat background and a diffeomorphism induced deformation of the metric

δgµν = ∇µξν +∇νξµ

8πGδSflat sol[∇µξν +∇νξµ] = −
∫
∂M

dd−1y
√
h (Khµν −Kµν)∇µξν (7.3)

= −
∫
∂M

dd−1y
√
h (Khµν −Kµν) (Dµ(hρνξρ) +Kµνnρξ

ρ) ,

where we used that

hαλhβτ∇λξτ = Dα(hβτξτ ) +Kαβnτξτ . (7.4)

In our case we have K2 − KµνKµν = 0 as well as DαKµν = 0 and thus (7.3) gives

an integral over a total divergence. This matches the discrete case (5.31)–(5.32) where the

boundary term evaluated on a diffeomorphism induced metric fluctuation vanishes.
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For the second order variation we do not need to expand the bulk term in (7.2), as one

can show that the variation of the bulk term vanishes,

δ

(√
g

(
1

2
Rgµν −Rµν

))
flat sol

= 0 . (7.5)

for a flat background and a variation δgµν = ∇µξν+∇νξµ. For the variation of the boundary

term in (7.2) we find (see appendix C.2)

δ(
√
h(Khµν −Kµν))

=
√
h

(
1

2
(Khµν −Kµν)gλτ −Khµτhνλ − hµνKλτ + 2hλ(µKν)τ

)
δgλτ

+
1

2

√
h
(

(hµτhνλ − hµνhλτ )nκ(∇τδgλκ +∇λδgτκ −∇κδgλτ )
)
. (7.6)

For a diffeomorphism induced variation of the metric this can be rewritten such that no

derivatives nλ∇λξτ normal to the boundary appear:

δ(
√
h(Khµν −Kµν))diffeo deform

=
√
h
(

(Khµν −Kµν)hλτ − 2Khµτhνλ − hµνKλτ + hλ(µKν)τ + 2hτ(µKν)λ
)
∇λξτ

−
√
h
(

(hµτhνλ − hµνhλτ )nκRκ(λτ)ρ ξ
ρ
)

+
√
h

(
(D(µDν) − hµνDλD

λ)(nρξρ)− (Kκ(µDν) − hµνKκλDλ)(hρκξρ)+

− (hρκξρ)(D
(µKν)κ − hµνDλK

λκ)

)
. (7.7)

Again we can convert ∇λ derivatives into Dλ derivatives using (7.4). In summary we get

for the second order of the Hamilton-Jacobi functional evaluated on boundary data induced

by an infinitesimal diffeomorphism δgµν = ∇µξν +∇νξµ

− 8πGS(2)[∇µξν +∇νξµ]

=
1

2

∫
∂M

dd−1y
√
h

((
(Khµν−Kµν)hλτ−2Khµτhνλ−hµνKλτ+hλ(µKν)τ+2hτ(µKν)λ

)
×

(Dλξ
||
τ +Kλτξ

⊥) +
(

(D(µDν) − hµνDλD
λ)ξ⊥ − (Kκ(µDν) − hµνKκλDλ)ξ||κ

))
×(

D(µξ
||
ν) +Kµνξ

⊥
)

(7.8)

where we assumed a flat background metric and vanishing boundary derivatives for the

extrinsic curvature tensor. Here we introduced the splitting ξ
||
τ = hρτξρ and ξ⊥ = nρξρ.

To compare our result to the discrete calculation in section 5.5 we consider the metric

data

gµν = diag(1, T 2, (A/R)2r2) , hµν = diag(0, T 2, (A/R)2r2) . (7.9)
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We denote the coordinates by µ = (r, t̃, φ̃) where the tilde reminds us of the rescaling

of the standard cylindrical coordinates. The extrinsic curvature is then given as

Kµν = diag(0, 0, (A/R)2r) . (7.10)

For the diffeomorphism induced variations we have the following projection onto the

boundary

hλαh
τ
β(∇λξτ +∇τξλ) = Dα(hτβξτ ) +Dβ(hταξτ ) + 2Kαβn

τξτ

(7.11)

that is

δhµν =

0 0 0

0 2∂t̃ξt̃ ∂t̃ξφ̃ + ∂φ̃ξt̃
0 ∂t̃ξφ̃ + ∂φ̃ξt̃ 2∂φ̃ξφ̃ + 2Ã2rξr

 . (7.12)

We will later translate the derivatives ∂t̃ and ∂φ̃ to the wave vectors k̂ and v̂ and indeed

see that these metric perturbations induced by diffeomorphisms in the various directions,

described by (7.12) do match the continuum limit we found for the metric perturbations

in the discrete case, see (5.44) and (5.47).

Evaluating the second order action (7.8) for such metric perturbations as in (7.12) we

obtain

8πGS(2)[∇µξν +∇νξµ] = −1

2

∫
dt̃dφ̃

(
− A

RT
ξr∂

2
t̃
ξr +

A

RT 3
ξt̃∂

2
t̃
ξt̃ +

R

ATr2
ξφ̃∂

2
t̃
ξφ̃

)
(7.13)

where we used integration by parts, that lead to the cancellation of many terms.

To finally compare to the discrete calculation in section 5.5 we define the Fourier

transform

f(k, ν) =

√
AT

2πRβ

∫ 2πR/A

0
dφ̃

∫ β/T

0
dt̃ exp

(
−i
(
A

R
φ̃k +

2π

β
T t̃
(
ν− γ

2π
k
)))

f(t̃, φ̃) . (7.14)

This again incorporates the periodicity (t̃, φ̃) ∼ (t̃+β/T, φ̃+γR/A) of the functions on the

twisted torus via the introduction of v := (ν − γ
2πk). The inverse Fourier transformation is

given as

f(t̃, φ̃) =

√
AT

2πRβ

∑
k,ν∈Z

exp

(
i

(
A

R
φ̃k +

2π

β
T t̃
(
ν − γ

2π
k
)))

f(k, ν) . (7.15)

Defining v̂ = 2π
β Tv and k̂ = (A/R)k we rewrite (7.13) into

8πGS(2)[∇µξν +∇νξµ] =
1

2

∑
k,ν∈Z

(
− A

RT
v̂2|ξr|2 +

A

RT 3
v̂2|ξt̃|2 +

R

ATr2
v̂2|ξφ̃|2

)
, (7.16)

which indeed matches the continuum limits (5.45) and (5.48) of the discrete calculation.

Thus we confirm the calculation of the effective boundary action in the discrete case.

The calculation here is easily generalizable to other boundaries and one can again ask for

a dual field theory. This will be subject for future work.

– 32 –



J
H
E
P
0
3
(
2
0
1
6
)
2
0
8

8 Outlook

Here we point out some possibilities for future work. One issue is the recourse to an al-

ternative discretization, necessary if one adds (non-topological) matter fields. Using such

an alternative discretization gives also a connection to MERA tensor networks and holo-

graphic renormalization. Another issue is the implementation of the alternative boundary

term 1
2BGHY used in [21]. To this end one also has to adapt the discretization.

8.1 Alternative discretizations: refinement by radial evolution

In this work we computed the partition function for 3D Regge calculus at one-loop, making

use of the topological nature of the theory. Thus we used a very coarse bulk triangulation,

which minimized the computational effort. Despite the topological nature of the theory

we found that the partition function with boundary can be described by a field theory.

In particular the part of the effective boundary action that is invariant under (linearized)

boundary diffeomorphisms is dual to a field theory of Liouville type.

The topological invariance of the 3D Regge action and the measure (3.13) ensures that

the results do not change if we alter the bulk triangulation. In particular we could change

our set-up and subdivide the cylinder, obtained by cutting the torus, into cylindrical rings

and a thin cylinder at the centre. For the cylinder at the centre we would use the same

triangulation as before and of course obtain the same partition function. The cylindrical

rings are again cut into time slices, and these slices are subdivided by alternating cuboids

and the same prisms as considered before. (The Hessian of the Regge action for such

cuboids has been computed in [74].)

The partition function for a cylindrical ring does now depend on two sets of boundary

data, from the inner and outer boundary. We can thus understand this partition function

as a map from the Hilbert space defined on the inner boundary to a Hilbert space defined

on the outer boundary. In the set-up considered here the outer boundary would have more

lattice sites. Note that it would not be characterized by a “small radius”, as the radius

is part of the boundary variables over which one would integrate in glueing the partition

function. The map defined by the cylindrical ring realizes therefore a refinement map, as

discussed in [28, 29, 85]. Moreover this refinement map is defined by the dynamics itself

— one uses the “radial evolution” map for the definition of this refinement map.

Also MERA tensor networks [47, 48] can be essentially seen as refinement maps be-

tween Hilbert spaces of different sizes. Moreover the two building blocks of such a MERA

networks, disentanglers and isometries, are mirrored in the cuboids and prisms, with which

one can discretize the cylindrical rings. MERA networks have been discussed lately also

in the relation to AdS/CFT holography [49]. In particular it has been proposed that the

entanglement structure encoded in the networks defines an AdS geometry. See however [86]

for alternative proposals. The Regge discretization discussed here can also be understood

in terms of tensor networks, in particular if one generalizes to so-called decorated tensor

networks introduced in [50]. This tensor network would a priori be a 3D network, as op-

posed to the MERA networks, which are two-dimensional. In fact the MERA networks

are proposed as describing stationary spacetimes. We can however produce a 2D network
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Figure 4. A cylindrical ring can be discretized using prisms and cuboids in alternating order. This

leads to a refinement of the outer boundary. Alternatively one can use cuboids with more general

choice of background lengths. These are also needed if one accommodates non-vanishing curvature

induced by an alternative boundary term.

from the 3D network by considering only one time slice and by gluing the down and up

sides of each building block. In this we can produce an example (that provides the ten-

sors explicitly) of a MERA network describing gravity. Here we are concerned with the

case without cosmological constant, however this is easily generalizable to gravity with a

(negative) cosmological constant.

The discretization of the torus using cuboids and prisms further allows to perform the

continuum limit in the bulk. This will not change the results for a topological theory, as

considered here, however it will be necessary if one considers non-topological theories, for in-

stance by adding matter field to the gravitational dynamics. Using a negative cosmological

constant the set-up is related to that of holographic renormalization [87, 88] and the maps

defined by the cylindrical rings can be understood to implement the renormalization flow.

8.2 Alternative boundary term

To connect the partition function for the torus to thermodynamical quantities, it is neces-

sary to choose a different boundary term which is 1/2 of the usual GHY boundary term

given in (2.3), [56, 57]. In particular, [56, 57] specifies asymptotic boundary conditions

at infinity which lead to a well-defined variational principle. Regge calculus, on the other

hand, incorporates naturally the GHY boundary term without the extra 1/2 [60]. One

can adjust the Regge action by adding terms so that in effect one has 1/2 of the GHY

term. This does however change the equations of motion for edges which are contained in

tetrahedra glued to the boundary.

For the triangulation at hand this does however apply for all edges. Indeed the back-

ground equations of motion get changed for the edges making up the time axis and the

radial edges, which are now required to have non-vanishing deficit angle. To avoid this we

can change to a triangulation built in the following way: we take our original triangulation

(with only prisms) and glue to it a ‘thin’ ring. This ring can be either triangulated with

only cuboids or with cuboids and prisms, as we described in the previous section.

The equations of motion will now require non-vanishing deficit angles around the time

and radial edges of the cylindrical ring. To accommodate them (that is in particular a

non-vanishing deficit angle for the radial edges) we need to allow more general background

lengths for the cuboid (and prism) building blocks, see figure 4.

In this way we can use the cylindrical ring discretization as a map which convert the

standard boundary term into the alternative boundary term. After computing the partition

function at finite radius one can then consider the infinite radius limit.
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Alternatively one can ask for boundary conditions at finite radius which are compatible

with the alternative boundary term. In general this will involve keeping a combination of

the boundary metric and the extrinsic curvature fixed. This can be also incorporated into

Regge calculus, either by working with length variables, or, by changing to a first order

version of the theory [89, 90]. In the first order version one uses both the dihedral angles

and the length variables, which translate to extrinsic curvature and metric variables in the

continuum. (Another version [91] of (4D) Regge calculus uses area and angle variables

which match the semiclassical variables of (4D) spin foams.)

In all those cases one can work with the alternative variables for the full triangulation

or use standard length variables and then transform the resulting partition function to

new boundary conditions. This transformation can again be implemented by gluing a

cylindrical ring to the triangulation, where for the inner boundary one uses the standard

boundary term and length variables and for the outer boundary the alternative boundary

term and boundary conditions.

9 Discussion

In this work we aimed at an exploration of holographic dualities in non-perturbative ap-

proaches. For that, it is important to generalize the considerations from boundaries at

asymptotic infinity to boundaries of finite size. As an example we considered 3D flat grav-

ity, as the corresponding spin foam model, the Ponzano-Regge model [40, 41], is the one

most understood and under control, in particular compared to the AdS case.

We computed the one-loop partition function using (quantum) Regge calculus, which

constitutes the semi-classical limit of the Ponzano-Regge model. We showed that it is

indeed possible to work at finite boundaries. The evaluation of the classical action is

completely independent of the (background) radius at which the boundary is situated.

The part of the one-loop determinant which depends non-trivially on the twisting angle γ

also arises for arbitrarily small radius: this part can be understood to arise from a “dual”

scalar field with a Lagrangian kinetic term φ∂2
t φ. This “dual” field can be identified with

the degrees of freedom attached to the radial edges. The γ-dependent part of the one-loop

determinant is given by the determinant of ∂2
t , which acquires a non-trivial value due to

the twisting angle. This is a topological feature, independent of the value of the radius.

Let us point out that the use of a discretization, and in particular the geometric

features of Regge calculus, allowed an immediate interpretation of the structure of the one-

loop result, as compared to the continuum. The discretization makes use of the fact that

one deals with a topological theory and makes the computation of the one-loop determinant

possible by simple algebraic means.

In general we wish to emphasize that the full dynamics of quantum gravity is encoded

in its partition function as a functional of (arbitrary) boundary data. For approaches

where quantum gravity is defined holographically via a boundary theory, the question arises

whether this can be extended to “non-asymptotic” boundaries. For discrete approaches,

the challenge is to allow a continuum limit for the boundary data. We have seen here that

this can lead to non-trivial results even in the case of topological theories.
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There are numerous further directions and open questions left for future work:

• An immediate question is to consider the partition function as given by the Ponzano-

Regge model. Work in this direction is in progress [92]. Regge calculus arises as

the semi-classical limit of the Ponzano-Regge model. Diffeomorphism symmetry is

furthermore implemented in the same way as in Regge calculus [73]. Therefore one

would expect a similar result. There are however important open questions: (a) The

semi-classical limit involves large spins, which means large lengths. The question

is whether this interferes with the continuum limit at the boundary. Therefore this

model could constitute an interesting case study for the continuum limit in spin foams

and loop quantum gravity [29, 93–96] in general. Note that the partition function

for a solid torus has been considered in [97], however in a very coarse discretization

that does not allow to capture the twisting angle. (b) The Ponzano-Regge model

is a fully quantum object which works with a priori complex weights exp(iS). It

also incorporates the sum over orientations, which in effects leads to real weights

exp(iS) + exp(−iS). This feature circumvents the conformal factor problem. An

important question is however if the sum over orientations changes the partition

function (even in a semi-classical limit) as compared to working with metric variables

or excluding orientation changes [71].

Concerning possible dual field theories, the Ponzano-Regge model is indeed related

to the Ising model defined on the boundary triangulation [10], see also [98]. Another

approach to 3D gravity is BF theory [99], of which the Ponzano-Regge model is a

direct quantization. The corresponding partition function is known to be an integral

of the Ray-Singer torsion over the moduli space of flat connections [100–102] (or of

the Reidemeister, or combnatorial, torsion at the discrete level [42–45]). For the

case considered here one needs to include a boundary and keep the B-field on the

boundary fixed.

• BTZ black holes [103] lead also to partition functions defined on a solid torus. It has

been suggested that the corresponding partition function can be obtained from the

Turaev-Viro model, which describes 3D gravity with positive cosmological constant,

by an analytical continuation [104]. Here we pointed out the importance of consid-

ering the continuum limit on the boundary, in particular if one wishes to obtain a

description in terms of a dual field. This dual field description is suggested to be

responsible for the black hole entropy [33, 34].

• We considered the case of 3D gravity without cosmological constant. An important

feature we used is that 3D (standard) Regge calculus is discretization-independent in

the bulk. This can be extended to the measure term, at least for the linearized the-

ory [38, 39]. Adding a cosmological constant term does break the triangulation inde-

pendence as well as diffeomorphism invariance of standard 3D Regge calculus [63–65].

This can however be avoided by changing to a version of Regge calculus, in which the

flat building blocks are exchanged for homogeneously curved building blocks [51, 90].
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This restores triangulation independence and diffeomorphism invariance and also the

path integral measure can be adjusted to the curved case.

• In this work we computed the Hamilton-Jacobi functional for linearized gravity for a

torus (finite) boundary. Given that in non-perturbative approaches one is interested

in the partition function for arbitrary boundaries, it is worthwhile to generalize this

study of the Hamilton-Jacobi functional to other boundaries and to also include a

cosmological constant [105]. One question is whether one can also in those cases

extract a dual field theory on the boundary.

• Here we considered a topological theory, which allowed us to employ the coarsest

possible bulk triangulation, while taking the continuum limit only on the boundary.

Adding matter fields or considering 4D gravity would change this topological nature.

A continuum limit for the bulk triangulation would then be required as well. To do so

for 3D gravity, we have to change the triangulation, for instance by using cylindrical

rings, as described in section 8. It should be still straightforward to evaluate the

corresponding partition function for linearized Regge calculus. Allowing (matter)

excitations in the bulk one can study the bulk-boundary correspondence within a

concrete model. Adding point particles as matter would still keep the topological

nature of the theory and a corresponding bulk-boundary correspondence has been

suggested in [106].

• The gravity partition function with boundary solves the Wheeler-DeWitt equation.

(On the classical level the Hamilton-Jacobi functional solves the Hamilton-Jacobi

functional equation.) On the other hand we can use the Wheeler-DeWitt equation

to characterize the partition function and derive its properties. The Wheeler-DeWitt

equation can come in different forms, as a functional differential equation in terms of

the boundary metric or as a difference equation in the spin values for the Ponzano-

Regge model. The Wheeler-DeWitt equation for the Ponzano-Regge model is pro-

vided in [107, 108] for three-valent vertices, for the example in this work we need

it for a lattice with six-valent vertices and possibly expanded on background val-

ues corresponding to a torus geometry. The Wheeler-DeWitt equation can be also

implemented by studying how the partition function changes under a change of the

boundary triangulation [68–70]. In particular one can consider a sequence of trian-

gulation changes that brings one back to the original triangulation, so-called tent

moves [68–70, 109]. Tent moves define an evolution normal to the boundary and in

this sense are again related to the Wheeler-DeWitt equation. Similarly a gluing of a

cylindrical ring to the triangulation can be translated to a (global) “radial” evolution

and a radial Hamilton-Jacobi equation, which gives the holographic renormalization

flow [87, 88]. Here one can consider a gluing of the cylindrical ring that either refines

the boundary triangulation (using prisms and cubes) or keeps the same boundary

triangulation (using only cuboids).

• A topic we did not touch in this work are the BMS symmetries at asymptotic infinity.

An interesting question is to consider the case of finite boundaries. For the AdS case,
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a first study appeared recently [110]. In addition we are using here a discretization,

and the question arises whether and how this is compatible with the BMS symmetry

(before implementing a continuum limit). That a symmetry algebra can still be

recovered for discrete geometries has been shown for the 3D hypersurface deformation

algebra in [111].
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A The Hessian for the Regge action

For the evaluation of the Hessian for the Regge action we need the length derivatives of

the dihedral angles. A general formula for the dihedral angles in a d-dimensional simplex

has been derived in [74]:

∂θ(kl)

∂lhm
=

1

d2

lhm
sin θkl

V (h)V (m)

V 2

(
(cos θ(kh) cos θ(ml) + cos θ(km) cos θ(hl))+

cos θ(kl) (cos θ(kh) cos θ(km) + cos θ(lh) cos θ(lm))
)
. (A.1)

To explain the notation we label the vertices of the d-dimensional simplex with k =

1, . . . , d + 1. The (interior) dihedral angle θ(kl) is the angle between the faces of the

simplex, obtained by removing the vertices k and l respectively. For d = 3 the angle θ(kl)

is hinging at the opposite edge to the one between the vertices k and l. The length lhm is

the length of the edge between h and m, V is the volume of the d-simplex and V (h) is the

volume of the (d− 1)-simplex obtained by removing the vertex h.

By convention we have cos θ(ii) = −1, which leads to simplifications of (A.1) in case

that one considers a derivative of a dihedral angle with respect to the length of the opposite

edge, i.e.

∂θ(kl)

∂lkl
=

lkl
d(d− 1)

V (kl)

V
(A.2)

or the derivative of a dihedral angle with respect to the length of an edge opposite to an

adjacent edge

∂θ(kl)

∂lkm
= − lkm

d(d− 1)

V (kl)

V

V (m)

V (l)
cos θ(ml) . (A.3)
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r(s+ 1, n)r(s, n)

d(s+ 1, n)

t(n)
d(s, n)

r(s, n+ 1) r(s+ 1, n+ 1)

τ(s, n) τ(s+ 1, n)

α(s, n+ 1)

α(s, n)

η(s, n)

Figure 5. The edge variables for the prism.

With the help of these formulas one can compute the Hessian of the Regge action

associated to the prism building block in figure 5:

Hpr
ee′ =

∑
σ∈pr

∑
σ⊃e,e′

∂θσe
∂le

=
LeLe′

6Vσ
Mpr
ee′(x) . (A.4)

The matrix Mpr is given as

Mpr =



1− x −1 0 0 −1 + x 1 −x 0 0 0 0 0

−1 1− x 0 0 1 −1 + x −x 0 0 0 0 0

0 0 x 0 −x 0 0 −1 + x 0 0 −1 1

0 0 0 x 0 −x 0 1 x 1 0 −1

−1 + x 1 −x 0 1 −1 0 0 1 0 1 −1

1 −1 + x 0 −x −1 1 0 0 −1 −1 0 1

−x −x 0 0 0 0 0 0 0 1 0 0

0 0 −1 + x 1 0 0 0 0 0 0 −1
2 0

0 0 0 x 1 −1 0 0 1 1
2 0 −1

0 0 0 1 0 −1 1 0 1
2

1
2 0 −1

2

0 0 −1 0 1 0 0 −1
2 0 0 1

2 −1
2

0 0 1 −1 −1 1 0 0 −1 −1
2 −1

2 1



(A.5)

with x = A2/(2R2). Here the entries of the matrix are given in the order

r(s, n), r(s+ 1, n), r(s, n+ 1), r(s+ 1, n+ 1), d(s, n), d(s+ 1, n), t(n),

τ(s, n)τ(s+ 1, n), α(s, n), α(s, n+ 1), η(s, n) (A.6)

with the edge labeling displayed in figure 5.

B Length changes induced by vertex displacements

B.1 Boundary diffeomorphisms

Let us consider the boundary geometry only and assume we translate a certain vertex (s, n)

by a length amount T−1Xτ in the positive time direction. (In this way Xτ will correspond

to the one-form (component) describing a diffeomorphism based on a vector with length√
hττXτ .) This will affect the length of the adjacent edges. To first order in Xτ edges with
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(s + 1, n + 1)(s, n + 1)

(s, n) (s + 1, n)A

T√
A2 + T 2

ρ
T−1X

Figure 6. A boundary vertex translation in time direction.

an orthogonal angle to the time direction will however not change. The induced change

for the edges in time direction is

τ(s, n) = −T−1Xτ , τ(s, n− 1) = T−1Xτ . (B.1)

Furthermore the diagonals at vertices (s, n) and (s − 1, n − 1) are affected and we have

η(s, n) = −η(s− 1, n− 1). The length change of the diagonal at (s, n) can be found using

the trigonometric relation according to the situation in figure 6(√
A2 + T 2 + η(s, n)

)2
= A2 + T 2 + T−2X2 − 2XT−1

√
A2 + T 2 cos ρ ⇒

η(s, n) = −XT−1 cos ρ+O(X2) +O(η2) (B.2)

Here ρ is the angle between the diagonal and the time edge for which we have cos ρ =
T√

A2+T 2
. Changing to the variables λ̂e = Le√

6Vσ
and Fourier transforming we find the

deformation vector

(nb,τ )t(k, ν) = − 1√
6Vσ

(1− ωv, 0, 1− ωvωk)Xτ (k, ν) . (B.3)

In metric perturbation variables δh we find

(nh
b,τ )t(k, ν) = − (2(1− ωv), 0, ωv(1− ωk)) Xτ (k, ν) . (B.4)

Likewise we find for a vertex displacement in the angular direction

(nh
b,α)t(k, ν) = − (0, 2(1− ωk), ωk(1− ωv)) Xα(k, ν) . (B.5)

B.2 A displacement orthogonal to the boundary

Consider a displacement of a vertex (s, n) on the boundary in radial (outward) direction

by some amount Xr. We embed the piecewise linear surface into 3D flat space in order to

discuss the induced length change of the boundary edges. This displacement will affect the

edges in angular direction at (s, n) and (s − 1, n) equally as well as the diagonal edges at

(s, n) and (s− 1, n− 1). The induced length change is given to first order by

α(s, n) = α(s− 1, n) = Xr sin
( π

NA

)
,

η(s, n) = η(s− 1, n− 1) = Xr sin
( π

NA

) A√
A2 + T 2

, (B.6)
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so that in variables λ̂,

(nb,r)
t(k, ν) =

A sin( π
NA

)
√

6Vσ
(0, 1 + ωk, 1 + ωvωk)Xr(k, ν) . (B.7)

In variables δh we have

(nh
b,r)

t(k, ν) = A sin

(
π

NA

)
(0, 2(1 + ωk), (1− ω−1

v )ωvωk)Xr(k, ν) . (B.8)

C Variation of the Einstein-Hilbert action with Gibbons-Hawking-York

boundary term

C.1 First order

We consider the Einstein-Hilbert action with Gibbons-Hawking-York boundary term

−8πGSEH =
1

2

∫
M
ddx
√
gR+

∫
∂M

dd−1y
√
hK . (C.1)

We will first show that the first order variation of this action is given by (see e.g. [56, 57])

− 8πGδSEH =
1

2

∫
M
ddx
√
g

(
1

2
Rgµν −Rµν

)
δgµν +

1

2

∫
∂M

dd−1y
√
h (Khµν −Kµν) δgµν .

(C.2)

The variation of the bulk term uses that

gµνδRµν = ∇µ(∇νδgµν − gνρ∇µδgνρ) (C.3)

is a total divergence. This follows from the Palatini equations (which can be proven using

Riemann normal coordinates)

δRµνρ
σ = ∇νδΓσµρ −∇µδΓσνρ ,

δRµρ = ∇σδΓσµρ −∇µδΓσσρ ,

δΓµνρ =
1

2
gµσ (∇νδgρσ +∇ρδgνσ −∇σδgνρ) . (C.4)

Together with the terms resulting from the variation of the inverse metric and the deter-

minant we obtain

δ(
√
gR) =

√
g

(
1

2
gµνR−Rµν

)
δgµν +

√
g∇µ (∇νδgµν − gνρ∇µδgνρ) . (C.5)

For the variation of the boundary term we will need the variation of the normal to the

boundary n. From

0 = δ(nµnνg
µν) = 2nµδnµ − nµnνδgµν (C.6)

we can deduce

nµδnµ =
1

2
nµnνδgµν . (C.7)
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This determines the variation of the normal parallel to the normal itself. The variation

of the normal orthogonal to the normal itself does however vanish. This follows from

the fact that we consider a fixed embedded hypersurface xµ(ya) with tangential vectors

Xµ
a := ∂xµ/∂ya. Hence

0 = δ(nµX
µ
a ) ⇒ Xµ

a δnµ = 0 . (C.8)

Thus, using nµn
ρ = gρµ − hρµ we have

δnµ =
1

2
nµn

ρnνδgρν

=
1

2
nνδgµν −

1

2
hρµn

νδgρν =:
1

2
nνδgµν −

1

2
wµ , (C.9)

where for later reference we note that the co-vector wµ is orthogonal to nµ.

With the definition

Kµν = hρµh
σ
ν∇ρnσ = hρµ∇ρnν (C.10)

we have for the variation of the extrinsic curvature trace

δK = δ(hµν∇µnν)

= δ(gµν∇µnν)

= −(∇µnσ) (hρµ + nρnµ)δgρσ + gµνδ(∇µnν)

= −Kµνδgµν − nρnµ(∇µnσ)δgρσ + gµνδ(∇µnν) . (C.11)

To evaluate δ(∇µnν) we write ∇µnν = ∂µnν −Γρµνnρ and use the Palatini equations (C.4).

After several rewritings and employing the boundary covariant derivative Dµvα =

hρµhσα∇ρvσ (for a one-form vσ with nσvσ = 0) we arrive at

δ(
√
hK) =

1

2

√
h (Khµνδgµν −Kµνδgµν − gµνnκ (∇νδgµκ −∇κδgµν)−Dµwµ) . (C.12)

In summary, converting the bulk total divergence to an integral over the boundary and

dropping the divergence term Dµwµ, we obtain for the first variation of the action (C.1)

− 8πGδS =
1

2

∫
M
ddx
√
g

(
1

2
Rgµν −Rµν

)
δgµν +

1

2

∫
∂M

dd−1y
√
h (Khµν −Kµν) δgµν .

(C.13)

C.2 Second order variation of the boundary term

We need to know the action to second order in perturbations and hence need to take a

second variational derivative of (C.13). As mentioned in the main text one can show that

the variation of the bulk term

δ

(√
g

(
1

2
gµνR−Rµν

))
(C.14)

vanishes if evaluated on a flat background and for a diffeomorphism induced perturbation

δgµν = ∇µξν +∇νξµ.
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We are thus left with the variation of the boundary term. In the following we will

show that

δ(
√
h(Khµν −Kµν))

=
√
h

(
1

2
(Khµν −Kµν)gλτ −Khµτhνλ − hµνKλτ + hµλKντ + hνλKµτ

)
δgλτ

+
1

2

√
h
(

(hµτhνλ − hµνhλτ )nκ(∇τδgλκ +∇λδgτκ −∇κδgλτ )
)
. (C.15)

To start, we have

δ(
√
h(Khµν−Kµν)) =

1

2

√
h(Khµν−Kµν)hλτδgλτ+

√
h(hµνδK+Kδhµν−δKµν) (C.16)

and thus need to find δhµν and δKµν . We found δK in (C.11).

The variation of the inverse boundary metric gives

δhµν = δ(gµρgνσ(gρσ − nρnσ))

= −hµτhνλδgλτ (C.17)

where to go from the first to the second line one uses δnµ = 1
2nµn

ρnνδgρν and δgµρ =

−gµλgρτδgλτ .

Furthermore we find for the variation of the extrinsic curvature tensor (using again

the result for the variation of the normal)

δKµν = δ(hµρhνσ∇ρnσ)

= −hµλhρτhνσ(∇ρnσ)δgλτ − hµρhνλhτσ(∇ρnσ)δgλτ + hµρhνσ∇ρ
(

1

2
nσn

λnτδgλτ

)
− hµρhνσ 1

2
nκ(∇ρδgσκ +∇σδgσκ −∇κδgρσ) . (C.18)

Using that hνσnσ = 0 for the last term in the second line of (C.18) we can rewrite this

variation into

δKµν = −Kτνhµλδgλτ −Kµτhνλδgλτ +
1

2
Kµνnλnτδgλτ

− 1

2
hµρhνσnκ(∇ρδgσκ +∇σδgσκ −∇κδgρσ) . (C.19)

We thus obtain

δ(
√
h(Khµν −Kµν))

=
√
h

(
1

2
Khµνhλτ −Khµτhνλ − 1

2
Kµνgλτ − 1

2
hµνKλτ + hµλKντ + hνλKµτ

)
δgλτ

+
1

2

√
h
(
−hµνgλτnκ(∇λδgτκ −∇κδgλτ ) + hµτhνλnκ(∇τδgλκ +∇λδgτκ −∇κδgλτ )

)
− 1

2

√
hhµνDρwρ . (C.20)

– 43 –



J
H
E
P
0
3
(
2
0
1
6
)
2
0
8

The last term can be rewritten as

Dµwµ = hµν∇µ(hρνn
λδgρλ)

= hλτnκ∇τδgλκ −Knλnτδgλτ +Kλτδgλτ (C.21)

so that we achieved to show

δ(
√
h(Khµν −Kµν))

=
√
h

(
1

2
(Khµν −Kµν)gλτ −Khµτhνλ − hµνKλτ + hµλKντ + hνλKµτ

)
δgλτ

+
1

2

√
h
(

(hµτhνλ − hµνhλτ )nκ(∇τδgλκ +∇λδgτκ −∇κδgλτ )
)

(C.22)

where we used nλnτnκ(∇λδgτκ −∇κδgλτ ) = 0.
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