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Abstract: A framework has been presented for theoretical interpretation of various mod-

ified gravitational models which is based on the group theoretical approach and unitary

irreducible representations (UIR’s) of de Sitter (dS) group. In order to illustrate the ap-

plication of the proposed method, a model of modified gravity has been investigated. The

background field method has been utilized and the linearized modified gravitational field

equation has been obtained in the 4-dimensional dS space-time as the background. The

field equation has been written as the eigne-value equation of the Casimir operators of

dS space using the flat 5-dimensional ambient space notations. The Minkowskian corre-

spondence of the theory has been obtained by taking the zero curvature limit. It has been

shown that under some simple conditions, the linearized modified field equation transforms

according to two of the UIR’s of dS group labeled by Π±2,1 and Π±2,2 in the discrete series. It

means that the proposed modified gravitational theory can be a suitable one to describe the

quantum gravitational effects in its linear approximation on dS space. The field equation

has been solved and the solution has been written as the multiplication of a symmetric

rank-2 polarization tensor and a massless scalar field using the ambient space notations.

Also the two-point function has been calculated in the ambient space formalism. It is dS

invariant and free of any theoretical problems.

Keywords: Classical Theories of Gravity, Models of Quantum Gravity

ArXiv ePrint: 1601.03946

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP03(2016)203

mailto:m.dehghani@ilam.ac.ir
http://arxiv.org/abs/1601.03946
http://dx.doi.org/10.1007/JHEP03(2016)203


J
H
E
P
0
3
(
2
0
1
6
)
2
0
3

Contents

1 Introduction 1

2 The field equation 2

2.1 Linear field equation in dS space 3

2.2 dS group and Casimir operators in the field equation 5

3 Solution to the conformal field equation 9

4 The conformal two-point function 12

5 Conclusion 13

A Some useful mathematical relations 14

B Details of derivation of eq. (2.2) 15

C Details of derivation of eq. (2.7) 16

D Details of derivation of eq. (2.9) 17

E Details of derivation of eq. (2.11) 17

F Details of derivation of eq. (3.3) 18

1 Introduction

It is well known that there are many good reasons to consider the Einstein general relativity

as the best theory for the gravitational interaction, but according to the recent cosmological

observations it seems that this theory may be incomplete. In addition to the well known

problems of the Einstein general relativity in explaining the astrophysical phenomenology

(i.e., the galactic rotation curves and small scale structure formation), recent cosmological

data indicate an underlying cosmic acceleration of the universe which cannot be recast in

the framework of the Einstein general relativity.

It is for these reasons and some other issues such as cosmic microwave background

anisotropies [1, 2], large scale structure formation [3, 4], baryon oscillations [5] and weak

lensing [6] that in recent years many authors are interested to generalize standard Einstein

gravity. Among alternative proposed models the so-called extended theory of gravitation

and, in particular, the gravity theories stem from nonlinear actions or higher-order theories

of gravity have provided interesting results [7–19]. These models are based on gravitational
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actions which are non-linear in the Ricci curvature R and/ or contain terms involving

combinations of derivatives of R [20–23].

Recent astronomical observations of supernova and cosmic microwave background [24–

27] indicate that the universe is accelerating and can be well approximated by a world with

a positive cosmological constant. If the universe accelerates indefinitely, the standard cos-

mology leads to an asymptotic dS universe. In addition, dS space-time plays an important

role in the inflationary scenario where an exponentially expanding approximately dS space-

time is employed to solve a number of problems in standard cosmology. Furthermore, the

quantum field theory on dS space-time is also of considerable interest.

Furthermore, the gravitational field in the linear approximation behaves like a massless

spin-2 particle which propagates on the background space-time. Following the Wigner’s

theorem, a linear gravitational field should transform according to the UIR’s of the symmet-

ric group of the background space-time. In this paper, dS space-time has been considered

as the background. It has been shown that the proposed generalized Einstein’s theory, in

its linear approximation, can be associated with the UIR’s of dS group.

The main goal of this work is to propose a theoretical framework for validity interpre-

tation of the modified gravity theories, from group theoretical point of view, in dS space.

The idea is that if a proposed model of modified gravity corresponds to the UIR,s of dS

group it can be considered as a possible successful model.

The organization of this paper is based on the following order. In section-2, a gener-

alized Einstein-Hilbert gravitational action has been introduced and corresponding linear

generalized Einstein gravitational field equation has been obtained in terms of the intrinsic

dS coordinates as the background. Details of derivations have been given in appendices.

Next, the linearized field equation has been written in terms of the Casimir operators of

dS group making use of the five-dimensional ambient space formalism. The physical sector

of the theory has been obtained by imposing the divergenceless and traceless conditions

and the possible relations between this field equation and the UIR’s of dS group have been

investigated. By imposing a simple condition the conformally invariant theory of gravity is

reproduced. In section-3, we obtained the solution to the conformally invariant field equa-

tion, using the ambient space notations. The solution can be written as the multiplication

of a symmetric generalized polarization rank-2 tensor and a massless minimally coupled

scalar field in dS space. In section-4, we have calculated the conformally invariant two-

point function, in terms of the massless minimally coupled scalar two-point function, using

the ambient space formalism. It is dS invariant, symmetric and satisfies the traceless and

divergenceless conditions. The results are summarized and discussed in section-5. Some

useful mathematical relations and details of derivations of equations have been given in the

appendices.

2 The field equation

The terms containing fourth order derivatives of the metric may be constructed out by

curvature invariants (other than the cosmological constant), that is

R, R2, RabRab, RabcdRabcd.
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Therefore, the gravitational action for the modified field equation in the 4-dimensional

dS space-time with the metric signature (−,+,+,+) can be written in the following gen-

eral form

I =
1

16πG

∫
d4x
√
−g
[
a0(R− 2Λ) + a1R2 + a2RabRab + a3RabcdRabcd

]
,

where Λ = 3H2 is the positive cosmological constant. Rabcd is the Riemann tensor, Rab is

the Ricci tensor and R = gabRab is the Ricci scalar of the space-time under consideration.

a0, a1, a2 and a3 are constant coefficients. The coefficients a1, a2 and a3 are positive with

the dimension of (Length)2.

Taking note the fact that the Gauss-Bonnet action

1

16πG

∫
d4x
√
−g
(
R2 − 4RabRab +RabcdRabcd

)
is a total divergence. Adding it to the action will not contribute to the field equations and

enable us to simplify the action somewhat and rewrite it as

I =
1

16πG

∫
d4x
√
−g
[
a0(R− 2Λ) + aR2 + bRabRab

]
, (2.1)

with new coefficients. Therefore, including an RabcdRabcd term is equivalent to altering

the coefficients. The theory described by this action is referred to as fourth-order gravity,

since it leads to fourth order equations. Numerous papers have been devoted to the study

of fourth-order gravity.

Varying the action (2.1) with respect to the metric tensor gab the modified gravitational

field equation is obtained as (appendix B)

a0H(0)
ab + aH(1)

ab + bH(2)
ab = 0, (2.2)

where H(0)
ab = Gab + Λgab and Gab = Rab − 1

2Rgab is the Einstein tensor and

H(1)
ab = 2RRab − 2∇a∇bR−

1

2
gab(R2 − 4�R), (2.3)

H(2)
ab = �Rab −∇c∇aRcb −∇c∇bRca + 2RcaRcb −

1

2
gab(RcdRcd − 2∇c∇dRcd). (2.4)

Making use of the relations [∇c ,∇a]Rcb = RdaRdb−RdbcaRcd, ∇cRcb = 1/2∇bR, ∇c∇dRcd =

1/2�R and other symmetry properties of the Riemann tensor [19], it is easy to show that

the field equation (2.2) is agree with eq. (2.3) of ref. [28] with γ = 0.

2.1 Linear field equation in dS space

In order to obtain the linearized form of the field equation (2.2), one can use the background

field method. That is gab = g
(BG)
ab + hab, in which g

(BG)
ab is the background metric and hab

is its fluctuations. Indices are raised and lowered by the background metric. We suppose

that g
(BG)
ab = g

(ds)
ab ≡ g̃ab. So one can write

gab = g̃ab + hab and gab = g̃ab − hab. (2.5)
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The metric g̃ab is a solution to Einstein’s field equation with the positive cosmological

constant Λ = 3H2:

R̃ab −
1

2
R̃g̃ab + 3H2g̃ab = 0. (2.6)

Using the approximations given in eq. (2.5), in eq. (2.3), we have (appendix C)

H(0)
ab = H̃

(0)
ab +H

(0)
ab , (2.7)

where H̃
(0)
ab is the dS correspondent to H(0)

ab and

H
(0)
ab =

1

2
(∇a∇chbc +∇b∇chac −�hab −∇a∇bh′ + 2H2hab)

+
1

2
g̃ab(�h

′ −∇c∇dhcd +H2h′), (2.8)

in which h′ = haa is the trace of hab with respect to the background metric and ∇b is the

background covariant derivative. It is easy to show that (appendix D)

H(1)
ab = H̃

(1)
ab +H

(1)
ab (2.9)

where H̃
(1)
ab is the correspondent to H(1)

ab in dS space and

H
(1)
ab = + 12H2 (∇a∇chbc +∇b∇chac −�hab)− 2∇a∇b

(
∇c∇dhcd −�h′ + 3H2h′

)
+ 24H4hab − 2g̃ab

(
3H2∇c∇dhcd + 3H4h′ −�∇c∇dhcd + �2h′

)
. (2.10)

It is easy to show that (appendix E)

H(2)
ab = H̃

(2)
ab +H

(2)
ab (2.11)

where H̃
(2)
ab is the correspondent to H(2)

ab in dS space and

H
(2)
ab =

1

2

[
� (∇a∇chcb +∇b∇chca)− 2H2�hab −�2hab +∇a∇b�h′

]
+ 2H2 (∇a∇chcb +∇b∇chca)−∇a∇b∇c∇dhcd − 3H2∇a∇bh′ + 4H4hab

+
1

2
g̃ab

(
2H2∇c∇dhcd − 2H4h′ + 7H2�h′ + �∇c∇dhcd −�2h′

)
. (2.12)

Substituting eqs. (2.8), (2.10) and (2.12) in eq. (2.2), we have

a0H
(0)
ab + aH

(1)
ab + bH

(2)
ab = 0. (2.13)

eq. (2.13) is the linearized modified gravitational field equation in dS background, which has

been written in terms of the intrinsic coordinates Xa of the 4-dimensional dS space-time.
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The linear field equation (2.13) can be written in the following explicit form

− b

2
�2hab −

(a0
2

+ 12aH2 + bH2
)
�hab +H2(a0 + 24aH2 + 4bH2)hab

+

(
2a+

b

2

)
∇a∇b�h′ −

(a0
2

+ 6aH2 + 3bH2
)
∇a∇bh′ − (2a+ b)∇a∇b∇c∇dhcd

+

(
a0
2

+ 12aH2 + 2bH2 +
b

2
�

)
(∇a∇chbc +∇b∇chac)

+
1

2
g̃ab

[(
−a0 − 12aH2 − 2bH2

)
∇c∇dhcd +

(
a0 − bH2

)
�h′

+
(
a0 − 12aH2 − 2bH2

)
H2h′ + (4a+ b)

(
�∇c∇dhcd −�2h′

)]
= 0. (2.14)

The Minkowskian correspondence of the theory can be obtained by taking the zero

curvature (i.e. H → 0) of eq. (2.14), it is

− 1

2

[
b�2hab + a0�hab − (4a+ b) ∂a∂b�h

′ − (a0 + b�) (∂a∂
chbc + ∂b∂

chac) + a0∂a∂bh
′]

+
1

2
ηab

[
a0

(
�h′ − ∂c∂dhcd

)
+ (4a+ b)

(
�∂c∂dh

cd −�2h′
)]
− (2a+ b)∂a∂b∂c∂dh

cd = 0,

(2.15)

where ηab is the metric and � = ηab∂
a∂b = ∂a∂a is the wave operator in the flat space.

In order to obtain the physical sector of the model, one must to impose the physical

conditions ∇ahab = 0 = ∇bhab and h′ = 0. In this case following Takook et al. [29] we

obtain [
− b

2
�2 −

(a0
2

+ 12aH2 + bH2
)
� +H2(a0 + 24aH2 + 4bH2)

]
hab = 0, (2.16)

fore the metric signature (−,+,+,+), and[
− b

2
�2 +

(a0
2

+ 12aH2 + bH2
)
� +H2(a0 + 24aH2 + 4bH2)

]
hab = 0, (2.17)

fore the metric signature (+,−,−,−).

In the following subsection, in order to consider the possible relations between the

field equation and the UIR’s of the dS group, the linearized field equation (2.17) will be

written in terms of the Casimir operators of dS group, using the 5-dimensional ambient

space notations.

2.2 dS group and Casimir operators in the field equation

The dS space-time is a maximally symmetric space-time having a positive constant curva-

ture. It can be easily represented as a four-dimensional hyperboloid

ηαβx
αxβ = −H−2, α, β, . . . = 0, 1, 2, 3, 4, (2.18)

embedded in a flat five-dimensional space with metric ηαβ =diag(1,−1,−1,−1,−1). The

dS metrics is

ds2 = ηαβdx
αdxβ |x2=−H−2 = g̃abdX

adXb, a, b, . . . = 0, 1, 2, 3, (2.19)
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where Xa’s are the 4 space-time intrinsic coordinates in dS hyperboloid. Different coordi-

nate systems can be chosen [30, 31]. Any geometrical object in this space can be written

in terms of the four local intrinsic coordinates Xa or in terms of the five global ambient

space coordinates xα.

In order to express eq. (2.17) in terms of the ambient space notations, originally de-

veloped by Christian Fronsdal [32], we adopt the tensor field Kαβ(x) in ambient space

notations. Note that the “intrinsic” field hab(X) is locally determined by the transverse

tensor field Kαβ(x) through

hab(X) =
∂xα

∂Xa

∂xβ

∂Xb
Kαβ(x(X)). (2.20)

In these notations, the solutions to the field equations are easily written out in terms of

scalar fields. The reader how is not familiar to the ambient space notations is referred to [39]

and references therein. The symmetric tensor field Kαβ(x) is defined on dS space-time and

satisfies the transversality condition [33, 34]

x · K(x) = 0, i.e. xαKαβ(x) = 0, and xβKαβ(x) = 0. (2.21)

The covariant derivative in the ambient space notations is

DβTα1...αi...αn = ∂̄βTα1...αi...αn −H2
n∑
i=1

xαiTα1...β...αn , (2.22)

where ∂̄ is tangential (or transverse) derivative in dS space

∂̄α = θαβ∂
β = ∂α +H2xαx · ∂, x · ∂̄ = 0, (2.23)

θαβ = ηαβ + H2xαxβ is the transverse projector. It is easily shown that the metric g̃ab
corresponds to the transverse projector θαβ that is

g̃ab(X) =
∂xα

∂Xa

∂xβ

∂Xb
θαβ(x). (2.24)

The kinematical group of dS space is the 10-parameter group SO0(1, 4) which is one

of the two possible deformations of the Poincaré group. There are two Casimir operators

Q(1)
s = −1

2
LαβL

αβ , Q(2)
s = −WαW

α, (2.25)

where

Wα = −1

8
εαβγδηL

βγLδη, with 10 infinitesimal generators Lαβ = Mαβ + Sαβ . (2.26)

The subscript s in Q
(1)
s , Q

(2)
s reminds that the carrier space is constituted by tensors of

rank s. The orbital part Mαβ , and the action of the spinorial part Sαβ on a rank-2 tensor

field K defined on the ambient space read respectively [34]

Mαβ = −i(xα∂β − xβ∂α), SαβKγδ = −i(ηαγKβδ − ηβγKαδ + ηαδKβγ − ηβδKαγ). (2.27)

– 6 –
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The symbol εαβγδη holds for the usual antisymmetrical tensor. The action of the

Casimir operator Q
(1)
2 on K can be written in the more explicit form

Q
(1)
2 K(x) =

(
Q

(1)
0 − 6

)
K(x) + 2ηK′ + 2Sx∂ · K(x)− 2S∂x · K(x), (2.28)

where, Q
(1)
0 = −1

2MαβM
αβ = −H−2(∂̄)2 is the scalar Casimir operator. The symmetrizer

S is defined for two vectors ξα and ωβ by S(ξαωβ) = ξαωβ + ξβωα. K′ is the trace of the

tensor K and the action of the Casimir operator Q
(1)
1 on the vector K can be written in

the more explicit form

Q
(1)
1 K(x) =

(
Q

(1)
0 − 2

)
K(x) + 2x∂̄ ·K(x) + 2H2x x ·K(x)− 2∂̄ x ·K(x). (2.29)

As shown by Dixmier [35], the UIR,s of dS group have a classification scheme in

terms of a pair of parameters (p, q). The Casimir operators take the following possible

spectral values:

〈Q(1)
p 〉 = −p(p+ 1)− (q + 1)(q − 2), 〈Q(2)

p 〉 = −p(p+ 1)q(q − 1) . (2.30)

Depending on the different values of the pair of parameters (p, q), three different series

of representations are distinguishable: the principal, the complementary and the discrete

series [35, 36]. Mathematical details of the group contraction and the physical principles un-

derlying the relationship between dS and Poincaré groups can be found in refs. [37] and [38]

respectively. The spin-2 tensor representations relevant to the present work are [39]:

i) The UIR’s of the principal series labeled by U2,ν with p = s = 2 and q = 1
2 + iν

correspond to the Casimir spectral values:

〈Q(1)
2 〉 = ν2 − 15

4
, ν ∈ IR, (2.31)

note that U2,ν and U2,−ν are equivalent.

ii) The UIR’s of the complementary series denoted by V 2,q with p = s = 2 and q−q2 = µ,

correspond to the following spectral values

〈Q(1)
2 〉 = q − q2 − 4 ≡ µ− 4, 0 < µ <

1

4
. (2.32)

iii) The UIR’s of the discrete series conventionally labeled by Π±2,q in which p = s = 2

and takes the following spectral values

〈Q(1)
2 〉 = −6− (q + 1)(q − 2), q = 1, 2. (2.33)

The “massless” spin-2 field in dS space corresponds to the Π±2,2 and Π±2,1 cases in which the

sign ±, stands for the helicity. In these cases, the two representations Π±2,2, in the discrete

series with p = q = 2, have a Minkowskian interpretation. It is important to note that the

representations Π±2,1 do not have corresponding flat limit [39]. (More details can be found

in [34] and references therein.)
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We now attempt to express the wave equation (2.17) in terms of the Casimir operators

of dS group. The d’Alembertian operator becomes [40]

�hab = ∇c∇chab =
∂xα

∂Xa

∂xβ

∂Xb

[
−H2Q

(1)
0 − 2H2

]
Kαβ , (2.34)

and

�2hab = ∇c∇c∇d∇dhab =
∂xα

∂Xa

∂xβ

∂Xb

[
H4
(
Q

(1)
0

)2
+ 4H4Q

(1)
0 + 4H4

]
Kαβ , (2.35)

where, the conditions of tracelessness and divergence free (e.i. ∂̄.K = 0 = K′), have

been imposed to the physical states. By use of the above equations in eq. (2.17) we have[
b

2
H2
(
Q

(1)
0

)2
+
(a0

2
+ 12aH2 + 3bH2

)
Q

(1)
0

]
Kαβ = 0. (2.36)

In terms of different choice of coefficients in the proposed action (2.1) different gravitational

theories may be achieved. Now the following various choices are considerable

• By choosing a = 0 and b = 0 we return to the physical linear pure dS theory, that is

Q
(1)
0 Kαβ = 0, or

(
Q

(1)
2 + 6

)
Kαβ = 0. (2.37)

This is an eigen-value equation with the eigen-value 〈Q(1)
2 〉 = −6. From the group

theoretical point of view this corresponds to UIR’s of dS group labeled by Π±2,2 in the

discrete series which reduces to the physical representations of the Poincaré group in

the zero curvature limit. This is why it is called as the physical state. It has been

discussed in [39], for the gauge-fixed value equal to zero, [41] for the gauge-fixed value

equal to 2
5 and the extended discussions are given in [42].

• Letting a0 = 1, b = 0, the model reduces to a f(R) theory model with f(R) =

R+aR2. It is known as a relatively successful model, which explains the inflation and

positive acceleration of the universe [43–46]. Under these conditions, the linearized

field equation (2.36) reduces to

(1 + 24aH2)Q
(1)
0 Kαβ = 0, or (1 + 24aH2)

(
Q

(1)
2 + 6

)
Kαβ = 0. (2.38)

It corresponds to the UIR’s of dS group labeled by Π±2,2 in the discrete series too. This

is why the model is a successful one. The field equation (2.38) has been considered

in ref. [47].

• One may set a0 = 0, a = −1
3 and b = 1, by which the theory reduces to the Weyl

conformal theory with the linearized field equation

Q
(1)
0

(
Q

(1)
0 − 2

)
Kαβ = 0, or

(
Q

(1)
2 + 6

)(
Q

(1)
2 + 4

)
Kαβ = 0. (2.39)

The same equation has been obtained by Dehghani, et al. from a different ap-

proach in [39].

– 8 –



J
H
E
P
0
3
(
2
0
1
6
)
2
0
3

The field equation (Q
(1)
2 + 4)Kαβ = 0, is also an eigen-value equation with the eigen-

value 〈Q(1)
2 〉 = −4. It corresponds to one of the UIR’s of dS group denoted by Π±2,1 in

the discrete series with the same Poincaré correspondence as Π±2,2 in the zero curvature

limit. Indeed two of UIR’s of dS group have only one Poincaré correspondence. It has been

discussed in [48].

As it is clear with the help of above-mentioned examples, we believe that it is necessary

for any successful theory of gravity to transform according to the UIR,s of dS group. In

other words if a model of modified gravity theory does not correspond to the UIR,s of dS

group in its linear approximations it can not produce valid and helpful physical results.

For the general discussion on the proposed modified gravity theory, let A = aH2 and

B = bH2. In terms of these dimensionless coefficients the field equation (2.36) can be

written as [(
Q

(1)
0

)2
+

(
a0
B

+ 24
A

B
+ 6

)
Q

(1)
0

]
Kαβ = 0, B 6= 0. (2.40)

As a direct mathematical result, the proposed model in it’s linear approximation, generally

transforms according to the UIR’s of dS group and it is a suitable candidate model of

gravitation on dS space if the characteristic equation

a0
B

+ 24
A

B
+ 8 = 0, B 6= 0, (2.41)

is satisfied. Under this condition it describes a massless spin-2 particle (the graviton, if it

exists) in it’s linear approximation and transforms according to two of UIR,s of dS group.

We therefore believe that it can be a successful modified gravity theory. For more clarity,

in the following sections, we solve the field equation (2.40), with the condition (2.41), using

the ambient space formalism. Also we obtain the two-point function for the linearized

theory of gravitation making use of the ambient space notations, and show that the results

are free of any theoretical problems.

3 Solution to the conformal field equation

A general solution of to the conformall field equation can be constructed from the combina-

tion of a scalar field and two vector fields. Let us first introduce a traceless and transverse

tensor field K in terms of a five-dimensional constant vector Z1 = (Z1α) and a scalar field

φ1 and two vector fields K and Kg by putting [34, 39, 41, 42, 48, 49]

K = θφ1 + SZ̄1K +D2Kg, (3.1)

where D2 is the generalized gradient operator defined by D2K = S(D1 + x)K, D1α =

H−2∂̄α and Z̄1α = θαβZ
β
1 . Taking the trace of Kαβ we have

K′ = 4φ1 + 2Z1.K + 2H2(x.Z1)x.K + 2D1.Kg − 2x.Kg = 0, (3.2)

Using the ansatz (3.1) to the field equation we have (appendix F)
(Q

(1)
0 + 4)(Q

(1)
0 + 6)φ1 + 8(Q

(1)
0 + 2)Z1.K = 0, (a)

Q
(1)
1

(
Q

(1)
1 + 2

)
K = 0, or Q

(1)
1 Q

(1)
0 K = 0, ∂.K = 0 = x.K, (b)

(Q
(1)
1 + 4)(Q

(1)
1 + 6)Kg = 4H2

[
(Q

(1)
1 + 5)x.Z1K + Z1.D1K − xZ1.K

]
. (c)

(3.3)

– 9 –



J
H
E
P
0
3
(
2
0
1
6
)
2
0
3

The vector field K can be written in the following general form

Kα = Z̄2αφ2 +D1αφ3, (3.4)

where Z2 is another constant 5-vector and φ2 and φ3 are two arbitrary scalar fields, should

be determined. Using the divergenceless condition we have

Q
(1)
0 φ3 = Z2.∂̄φ2 + 4H2(x.Z2)φ2, (3.5)

and substituting eq. (3.4) in eq. (3.3)(b) leads to the following two equations

Q
(1)
0 (Q

(1)
0 − 2)φ2 = 0, (3.6)

Q
(1)
0 (Q

(1)
0 + 2)φ3 = 4H2Q

(1)
0 [(x.Z2)φ2] + 8H2(x.Z2)φ2 + 4Z2.∂̄φ2. (3.7)

The eq. (3.6) has a dS plane wave solution of the form

φ2 = (Hx.ξ)σ, ξ2 = 0, with σ(σ + 3)(σ + 2)(σ + 1) = 0. (3.8)

Note that φ2 is the minimally coupled scalar field for σ = 0,−3. In that case it obeys

the field equation Q
(1)
0 φ2 = 0 [39, 50]. Also φ2 is the conformally coupled scalar field for

σ = −1,−2 and satisfies the field equation (Q
(1)
0 − 2)φ2 = 0 [51].

Substituting Q
(1)
0 φ3 and (Q

(1)
0 )2φ3 from eq. (3.5) into eq. (3.7), we obtain

Q
(1)
0 Z2.∂̄φ2 = 2Z2.∂̄φ2. (3.9)

Now regarding eqs. (3.6) and (3.9) and using the identity

Q
(1)
0 [(x.Z2)φ2] = (x.Z2)Q

(1)
0 φ2 − 4(x.Z2)φ2 − 2Z2.D1φ2, (3.10)

we obtain

Q
(1)
0 [(x.Z2)Q

(1)
0 φ2] = 2Q

(1)
0 [(x.Z2)φ2] + 8(x.Z2)φ2 + 4Z2.D1φ2. (3.11)

Combining eqs. (3.9) and (3.11) we have

(x.Z2)φ2 =
1

8
Q

(1)
0

[
(x.Z2)Q

(1)
0 φ2 − 2(x.Z2)φ2 − 2Z2.D1φ2

]
. (3.12)

Substituting eqs. (3.9) and (3.12) in eq. (3.5) we have

φ3 =
1

2

[
H2(x.Z2)Q

(1)
0 φ2 − Z2.∂̄φ2 − 2H2(x.Z2)φ2

]
. (3.13)

Now the solution to eq. (3.3)(b) can be written in terms of the dS massless scalar field

φ2 ≡ φs as

Kα = Z̄2αφs +
1

2
D1α

[
H2(x.Z2)Q

(1)
0 − Z2.∂̄ − 2H2x.Z2

]
φs. (3.14)

The explicit form of the vector field Kα is

K =
σ

2

[
(σ + 2)Z̄2 + (σ2 + 2σ − 2)

x.Z2

x.ξ
ξ̄

]
φs, (3.15)
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and the condition of ∂̄.Kα = 0 can be written in the following explicit form

∂̄.K =
1

2
σ2(σ + 3)(σ + 4)(x.Z1)(x.Z2)φs = 0. (3.16)

Noting eq. (3.8), it is valid only for σ = 0,−3. As pointed out before we can treat the

scalar field φs as the massless minimally coupled scalar field. Furthermore under these

circumstances the vector field Kα satisfies the relation

Q
(1)
0 Kα = 0, or

(
Q

(1)
1 + 2

)
K = 0. (3.17)

It is easy to show that eq. (3.3)(a) has a solution of the form

φ1 = −2

3
Z1.K, Q

(1)
0 (Q

(1)
0 − 2)φ1 = 0. (3.18)

It means that φ1 satisfies the massless minimally coupled scalar field equation in dS

space [50, 51]. Now eq. (3.2) can be written as

∂̄.Kg =
1

3
H2Z1.K, x.Kg = 0. (3.19)

Making use of the relation

(Q
(1)
1 + 5)x.Z1K = 2x(Z1.K)− 2(Z1.D1)K − (x.Z1)K,

eq. (3.3)(c) can be written as

(Q
(1)
1 + 4)(Q

(1)
1 + 6)Kg = 4H2 [xZ1.K − x.Z1K − Z1.D1K] . (3.20)

Now using the identities

6(x.Z1)K = (Q
(1)
1 + 6)

[
(x.Z1)K +

1

9
D1(Z1.K)

]
,

2(xZ1.K − Z1.D1K) = (Q
(1)
1 + 6)(x.Z1K),

in eq. (3.20) we obtain

(Q
(1)
1 + 4)Kg =

4

3
H2

[
(x.Z1)K −

1

18
D1(Z1.K)

]
. (3.21)

It is easy to show that

4D1(Z1.K) = (Q
(1)
1 + 4)D1(Z1.K), (3.22)

4(x.Z1)K = (Q
(1)
1 + 4)

[
(x.Z1)K +

1

6
D1(Z1.K)

]
. (3.23)

Combining eqs. (3.21)–(3.23) results in

Kg =
1

3
H2

[
(x.Z1)K +

1

9
D1(Z1.K)

]
. (3.24)

It satisfies the conditions given in eq. (3.19).
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Substituting eqs. (3.15), (3.18) and (3.24) in eq. (3.1) one can show that

Kαβ(x) = Eαβ(x, ξ, Z1, Z2)φs, (3.25)

where φs is a massless scalar field in dS space and E is a generalized symmetric polariza-

tion tensor,

E =
σ

2

[
−2

3
θZ1.+ SZ̄1 +H2 1

3
D2

(
x.Z1 +

1

9
D1Z1.

)][
(σ + 2)Z̄2 + (σ2 + 2σ − 2)

x.Z2

x.ξ
ξ̄

]
.

(3.26)

It is consistent with the results in [39] and [42] with c = 0.

4 The conformal two-point function

The two-point functionWαβα′β′(x, x
′), which is a solution of the wave equation with respect

to x or x′, can be found simply in terms of the scalar two-point function. Very similar to

the recurrence formula (3.1) let us try the following possibility [34, 39, 41, 42, 48, 49]

W(x, x′) = θθ′W0(x, x
′) + SS ′θ.θ′W1(x, x

′) +D2D
′
2Wg(x, x

′), (4.1)

where W, W1 and Wg are transverse bi-vectors, W0 is bi-scalar and D2D
′
2 = D′2D2.

Substituting the two-point function (4.1) in the field equation with respect to x, we have
(Q

(1)
0 + 4)(Q

(1)
0 + 6)θ′W0 + 8(Q

(1)
0 + 2)S ′θ′.W1, (a)

Q
(1)
1 (Q

(1)
1 + 2)W1 = 0, or Q

(1)
1 Q

(1)
0 W1 = 0, ∂.W1 = 0, (b)

(Q
(1)
1 + 4)(Q

(1)
1 + 6)D′2Wg = 4H2S ′

[
(Q

(1)
1 + 5)(x.θ′)W1 + θ′.D1W1 + xθ′.W1

]
. (c)

(4.2)

The solution to eq. (4.2)(b) has the following general form

W1 = θ.θ′W2 +D1D
′
1W3, and D′1W3 =

1

2

[
H2(x.θ′)Q

(1)
0 − θ

′.∂̄ − 2H2x.θ′
]
W2,

(4.3)

in which W2 ≡ Ws is the massless minimally coupled scalar two-point function. The

dS-invariance two-point function for the massless minimally coupled scalar field in the

“Gupta-Bleuler vacuum” state is [52]

Ws(x, x
′) =

iH2

8π2
ε(x0 − x′0)[δ(1−Z(x, x′)) + ϑ(Z(x, x′)− 1)], (4.4)

with

Z = −H2x.x′, and ε(x0 − x′0) =


1 x0 > x′0,

0 x0 = x′0,

−1 x0 < x′0.

(4.5)

In summary, the solution to the above system of equations is

W1 =

[
θ.θ′ +

1

2
D1

(
H2x.θ′Q

(1)
0 − θ

′.∂̄ − 2H2x.θ′
)]
Ws, (4.6)

θ′W0(x, x
′) = −2

3
S ′θ′.W1(x, x

′), (4.7)

D′2Wg(x, x
′) =

1

3
H2S ′

[
(x.θ′)W1 +

1

9
D1(θ

′.W1)

]
. (4.8)
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The two-point function (4.1) also satisfies the field equation with respect to x′, in this case

one can obtain

(Q
′(1)
0 + 4)(Q

′(1)
0 + 6)θW0 + 8(Q

′(1)
0 + 2)Sθ.W1, (a)

Q
′(1)
1 (Q

′(1)
1 + 2)W1 = 0, or Q

′(1)
1 Q

′(1)
0 W1 = 0, ∂′.W1 = 0, (b)

(Q
′(1)
1 + 4)(Q

′(1)
1 + 6)D2Wg = 4H2S

[
(Q
′(1)
1 + 5)(x′.θ)W1 + θ.D′1W1 − x′θ.W1

]
. (c)

(4.9)

with the solutions

W1 =

[
θ′.θ +

1

2
D′1

(
H2x′.θQ

′(1)
0 − θ.∂̄′ − 2H2x′.θ

)]
Ws, (4.10)

θW0(x, x
′) = −2

3
Sθ.W1(x, x

′), (4.11)

D2Wg(x, x
′) =

1

3
H2S

[
(x′.θ)W1 +

1

9
D′1(θ.W1)

]
. (4.12)

Note that the primed operators act on the primed coordinates only.

Making use of eqs. (4.6)–(4.8) or (4.10)–(4.12) one can show that the conformal two-

point function can be written as

Wαβα′β′ = ∆αβα′β′Ws, (4.13)

where

∆ =
1

6

[
−2θS ′θ′.+ SS ′θ.θ′ +H2D2S ′

(
x.θ′ +

1

3
D1θ

′.

)]
×
[
2θ.θ′ +D1

(
H2x.θ′Q

(1)
0 − θ

′.∂̄ − 2H2x.θ′
)]
. (4.14)

It agrees with the results in [39] and [42] with c = 0.

5 Conclusion

According to the recent cosmological observations it seems that the standard Einstein

theory of gravity may be incomplete and many attempts have been made to modify this

theory. The so-called modified theory of gravitation and, in particular, non-linear gravity

theories or higher-order theories of gravity have provided interesting results. The proposed

models are based on gravitational actions which are non-linear in the Ricci curvature and

constructed out by curvature invariants.

This work is devoted to an extension of the Einstein-Hilbert gravitational action, which

is constructed out by the linear combination of Ricci scalar and Ricci tensor invariants in dS

space. Varying the proposed action with respect to metric tensor leads to a fourth order

gravitational field equation, conventionally named as the modified gravitational theory.

The background field method is utilized and the linearized field equation is obtained in

terms of intrinsic coordinates in the 4-dimensional dS space as the background.
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The gravitational field in the linear approximation behaves like a massless spin-2 par-

ticle which propagates on the background space-time. According to Wigner’s theorem, a

linear gravitational field should transform according to the UIR’s of the symmetry group

of the background space-time. In order to investigate the possible relations between the

field equation and the UIR’s of dS group it is transformed into the flat five-dimensional

ambient space and the linearized field equation is written in terms of the Casimir operators

of dS group. We obtained the Minkowskian correspondence of the theory by taking the

zero curvature limit. The physical sector of the theory is obtained by imposing the diver-

genceless and traceless conditions. Some interesting theories are reproduced as the special

cases of the theory and their validity and successfulness are discussed from group theoret-

ical point of view. We demonstrated that it is necessary for a theory to be successful, in

dS space-time, if it transforms according to the UIR’s of dS group. We showed that the

proposed theory transforms according to the UIR,s of dS group if the constant coefficients

satisfy some simple conditions. As a result this theory can be used as a successful model

for solving the problems in the framework of quantum gravity.

As an special case of the theory the linearized Weyl theory of gravity is reproduced

which transforms according to two of the UIR’s of dS group denoted by Π±2,2 and Π±2,1
in discrete series. We obtained the solution to the conformally invariant field equation,

using the ambient space notations. The solution can be written as the multiplication of a

symmetric rank-2 generalized polarization tensor and a massless minimally coupled scalar

field in dS space. Also we have calculated the conformally invariant two-point function,

in terms of the basic bi-vectors of the ambient space. It is dS invariant, symmetric and

satisfies the traceless and divergenceless conditions. We therefore claim that the proposed

modified gravity theory under the given restrictions is a successful one and the introduced

procedure can be used as a theoretical testing for the validity and successfulness of any

given modified theory of gravity.

A Some useful mathematical relations

The following relations have been used in deriving the linearized field equations.

R̃abcd = H2(g̃acg̃bd − g̃adg̃bc), (A.1)

R̃ab = 3H2g̃ab, (A.2)

R̃ = 12H2, (A.3)

(Rc dab)L ≡ δRc dab =
1

2

[
∇a (∇dhcb +∇bhcd −∇chdb)

−∇b (∇dhca +∇ahcd −∇chad)
]
. (A.4)

(Rab)L ≡ δRab =
1

2

(
∇a∇chcb +∇b∇chca + 8H2hab

− 2H2h′g̃ab −�hab −∇a∇bh′
)
. (A.5)

(R)L ≡ δR = ∇c∇bhcb −�h′ − 3H2h′. (A.6)
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(Rcd)L ≡ δRcd =
1

2

(
∇c∇ahad +∇d∇ahac + 8H2hcd

− 2H2h′g̃cd −�hcd −∇c∇dh′
)
− 3H2hcd. (A.7)

(Rbc)L ≡ δRbc =
1

2

(
∇c∇ahab +∇b∇ahac + 8H2hbc

− 2H2h′g̃bc −�hbc −∇c∇bh′
)
− 6H2hbc. (A.8)

(∇a∇bR)L ≡ δ∇a∇bR = ∇a∇bδR = ∇a∇b
(
∇c∇dhcd −�h′ − 3H2h′

)
. (A.9)

(�R)L ≡ δ�R = �δR = �
(
∇c∇dhcd −�h′ − 3H2h′

)
. (A.10)

(∇a∇bRcd)L ≡ δ∇a∇bRcd =
1

2
∇a∇b

(
∇c∇ehed +∇d∇ehec

+ 2H2hcd − 2H2h′g̃cd −�hcd −∇c∇dh′
)
. (A.11)

(∇a∇bRcd)L ≡ δ∇a∇bRcd =
1

2
∇a∇b

(
∇c∇ehed +∇d∇ehce

+ 2H2hcd − 2H2h′g̃cd −�hcd −∇c∇dh′
)
, (A.12)

(∇a∇bRcd)L ≡ δ∇a∇bRcd =
1

2
∇a∇b

(
∇c∇ehed +∇d∇ehce

+ 2H2hcd − 2H2h′g̃cd −�hcd −∇c∇dh′
)
. (A.13)

(�Rcd)L ≡ δ�Rcd =
1

2
�
(
∇c∇ehed +∇d∇ehec

+ 2H2hcd − 2H2h′g̃cd −�hcd −∇c∇dh′
)
. (A.14)

B Details of derivation of eq. (2.2)

In this subsection we obtain the field equation through variation of the action. The action

(2.1) can be written as

I =
1

16πG

∫
d4x
√
−g
[
f(R)+bRabRab

]
, f(R) = a0(R−2Λ) + aR2, (B.1)

δ
[√
−gf(R)

]
= f(R)δ

√
−g +

√
−gf ′(R)δR, (B.2)

δ
√
−g = − 1

2

√
−ggabδgab, (B.3)

δR = δ
(
gabRab

)
= Rabδgab + gabδRab, (B.4)

δRab = ∇cδΓcab −∇bδΓcac. (B.5)

The statement in eq. (B.5) is the difference of two connections, it transforms as a tensor.

one can show that

δΓcab =
1

2
gcd (∇aδgbd +∇bδgad −∇dδgab) , (B.6)

and substituting in eq. (B.5)we have

δRab =
1

2

(
∇c∇aδgbc +∇c∇bδgac −∇a∇bgcdδgcd −�δgab

)
. (B.7)
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Now return to eq. (B.4) we have

δR = Rabδgab + gab�δg
ab −∇a∇bδgab. (B.8)

Using eq. (B.3) and eq. (B.8) in eq. (B.2) we have

δ
[√
−gf(R)

]
=
√
−g
[
f ′(R)Rab −

1

2
gabf(R) + f ′(R) (gab�−∇a∇b)

]
δgab. (B.9)

δ
(
RabRab

)
= δ

(
gcagbdRcdRab

)
= 2

(
RacRabδgbc +RabδRab

)
, (B.10)

and noting eq. (B.7) we can show

δ
(
RabRab

)
= 2RacRabδgbc +Rab

(
∇c∇aδgbc +∇c∇bδgac −∇a∇bgcdδgcd −�δgab

)
.

(B.11)

Now it is easy to show that

δ
(√
−gRabRab

)
=
√
−g
[
−1

2
gabRcdRcd + 2RcaRcb −Rca∇b∇c

−Rcb∇a∇c +Rcd∇c∇dgab +Rab�
]
δgab. (B.12)

δI =
1

16πG

∫
d4x
√
−g
[
f ′(R)Rab −

1

2
gabf(R)− b

2
gabRcdRcd

+2bRcaRcb + f ′(R)gab�− f ′(R)∇a∇b − bRca∇b∇c

−bRcb∇a∇c + bRcd∇c∇dgab + bRab�
]
δgab. (B.13)

Doing integration by part on the last six terms two times leads to

δI =
1

16πG

∫
d4x
√
−g
[
f ′(R)Rab −

1

2
gabf(R)− b

2
gabRcdRcd

+2bRcaRcb + gab�f
′(R)−∇a∇bf ′(R)− b∇c∇bRca

−b∇c∇aRcb + b∇c∇dRcdgab + b�Rab
]
δgab. (B.14)

Noting that action remains invariant under variation of the metric and putting δI = 0,

results in eq. (2.2).

C Details of derivation of eq. (2.7)

Now H(0)
ab can be written as

H(0)
ab = R̃ab + δRab −

1

2
(R̃+ δR)(g̃ab + hab) + Λ(g̃ab + hab)

= H̃
(0)
ab + δRab −

1

2
(R̃hab + g̃abδR) + Λhab + nonlinear terms. (C.1)

Using eqs. (A.3), (A.5) and (A.6) in (C.1) leads to the expression presented in eq. (2.7).
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D Details of derivation of eq. (2.9)

Now, H(1)
ab can be written as

H(1)
ab + 2(R̃+ δR)(R̃ab + δRab)− 2(∇a∇bR̃+ δ∇a∇bR)

−1

2
(g̃ab + hab)

[
(R̃2 + 2R̃δR)− 4(�R̃+ δ�R)

]
, (D.1)

which may be written as

H(1)
ab = H̃

(1)
ab − 2

(
δ∇a∇bR− R̃δRab − R̃abδR

)
−g̃ab(R̃δR− 2δ�R)− 1

2
habR̃

2 + nonlinear terms.

Making use of eqs. (A.5), (A.6), (A.9) and (A.10) we have H(1)
ab = H̃

(1)
ab + H

(1)
ab , and H

(1)
ab

is the same as given in eq. (2.9).

E Details of derivation of eq. (2.11)

Eq. (2.4) can be written in the following form

H(2)
ab =

(
�R̃ab + δ�Rab

)
−
(
∇c∇aR̃cb + δ∇c∇aRcb

)
−
(
∇c∇bR̃ca + δ∇c∇bRca

)
−1

2
(g̃ab + hab)

[
(R̃cd + δRcd)(R̃cd + δRcd)− 2(∇c∇dR̃cd + δ∇c∇dRcd)

]
+2
(
R̃ca + δRca

)(
R̃cb + δRcb

)
. (E.1)

It can be written as

H(2)
ab = H̃

(2)
ab + δ�Rab − δ∇c∇aRcb − δ∇c∇bRca + 2(R̃caδRcb + R̃cbδR

c
a)

−1

2
g̃ab(R̃

cdδRcd + R̃cdδR
cd − 2δ∇c∇dRcd)

−1

2
habR̃

cdR̃cd + nonlinear terms. (E.2)

Now using the relations given in appendix A we can show that

R̃caδRcb =
3

2
H2
(
∇a∇chcb +∇b∇chca + 8H2hab − 2H2h′g̃ab −�hab −∇a∇bh′

)
, (E.3)

R̃cbδR
c
a =

3

2
H2
(
∇a∇chcb +∇b∇chca + 2H2hab − 2H2h′g̃ab −�hab −∇a∇bh′

)
, (E.4)

δ∇c∇dRcd = ∇c∇d(∇c∇fhfd +∇d∇fhfc) + 2H2∇c∇dhcd

−2H2�h′ −∇c∇d�hcd −∇c�∇ch′, (E.5)

R̃cdδRcd = 3H2
(
∇c∇dhcd −�h′

)
, (E.6)

R̃cdδR
cd = 3H2

(
∇c∇dhcd −�h′ − 6H2h′

)
. (E.7)

Substituting in eq. (E.2) we obtain H(2)
ab = H̃

(2)
ab +H

(2)
ab and H

(2)
ab is the statement given

in eq. (2.11).
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In derivation steps, the following identities have been used

∇c∇a�hcb = �∇a∇chcb + 2H2∇a∇chcb − 2H2∇b∇chca + 2H2g̃ab∇c∇dhcd

−2H2∇a∇bh′ + 4H2�hab −H2g̃ab�h
′, (E.8)

∇c∇a∇c∇dhdb = �∇a∇dhdb −H2∇b∇dhdc +H2g̃ab∇c∇dhcd, (E.9)

∇c∇a∇b∇ch′ = �∇a∇bh′ −H2∇a∇bh′ +H2g̃ab�h
′, (E.10)

∇c∇a∇b∇dhcd = ∇a∇b∇c∇dhcd + 4H2∇a∇chcb + 3H2∇b∇chca −H2g̃ab∇c∇dhcd, (E.11)

�∇a∇bh′ = ∇a∇b�h′ + 8H2∇a∇bh′ − 2H2g̃ab�h
′. (E.12)

F Details of derivation of eq. (3.3)

By imposing the tensor field

K = θφ1 + SZ̄1K +D2Kg, (F.1)

to obey the field equation

(Q
(1)
2 + 4)(Q

(1)
2 + 6)K = 0, (F.2)

and making use of the following identities [34],

Q
(1)
2 (θφ) = θQ

(1)
0 φ, (F.3)

Q
(1)
2 D2Kg = D2Q

(1)
1 Kg, (F.4)

Q
(1)
2 S(Z̄K) = S

[
Z̄(Q

(1)
1 − 4)K

]
− 2H2D2(x.Z)K + 4θZ.K, (F.5)

we have

(Q
(1)
2 + 4)

([
(Q

(1)
0 + 6)φ1 + 4Z1.K

]
θ

+S
[
Z̄1(Q

(1)
1 + 2)K

]
+D2

[
(Q

(1)
1 + 6)Kg − 2H2(x.Z1)K

])
= 0. (F.6)

Making use of eqs. (F.3)–(F.5) in eq. (F.6) once again, we obtain

θ
[
(Q

(1)
0 + 4)(Q

(1)
0 + 6)φ1 + 4Q

(1)
0 Z1.K + 4(Q

(1)
1 + 2)x.Z1K + 16Z1.K

]
+SZ̄1

[
Q

(1)
1 (Q

(1)
1 + 2)K

]
+D2

[
(Q

(1)
1 + 4)(Q

(1)
1 + 6)Kg

−2H2(x.Z1)(Q
(1)
1 + 6)K − 2H2Q

(1)
1 (x.Z1K)

]
= 0. (F.7)

Using the conditions x.K = 0 = ∂.K in eq. (2.29) we have

(Q
(1)
1 + 2)K = Q

(1)
0 K, (F.8)

from which we can write

Q
(1)
0 (Z1.K) = (Q

(1)
1 + 2)Z1.K. (F.9)
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Substituting (F.9) in eq. (F.7) results in

θ
[
(Q

(1)
0 + 4)(Q

(1)
0 + 6)φ1 + 8Q

(1)
0 Z1.K + 16Z1.K

]
+ SZ̄1

[
Q

(1)
1 (Q

(1)
1 + 2)K

]
+D2

[
(Q

(1)
1 + 4)(Q

(1)
1 + 6)Kg − 2H2(x.Z1)(Q

(1)
1 + 6)K − 2H2Q

(1)
1 (x.Z1K)

]
= 0.

(F.10)

It is easy to show that

Q
(1)
1 (x.Z1K) = x.Z1(Q

(1)
1 − 4)K − 2Z1.D1K + 2xZ1.K. (F.11)

Now combining eqs. (F.10) and (F.11) leads to the following equation

θ
[
(Q

(1)
0 + 4)(Q

(1)
0 + 6)φ1 + 8(Q

(1)
0 + 2)Z1.K

]
+ SZ̄1

[
Q

(1)
1 (Q

(1)
1 + 2)K

]
+D2

[
(Q

(1)
1 + 4)(Q

(1)
1 + 6)Kg − 4H2

(
(Q

(1)
1 + 5)(x.Z1K) + Z1.D1K − xZ1.K

)]
= 0,

(F.12)

which results in eq. (3.3).
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[28] Z.-Y. Fan and H. Lü, Thermodynamical first laws of black holes in quadratically-extended

gravities, Phys. Rev. D 91 (2015) 064009 [arXiv:1501.00006] [INSPIRE].

[29] M.V. Takook, M.R. Tanhayi and S. Fatemi, Conformal linear gravity in de Sitter space, J.

Math. Phys. 51 (2010) 032503 [arXiv:0903.5249] [INSPIRE].

[30] E. Mottola, Particle creation in de Sitter space, Phys. Rev. D 31 (1985) 754 [INSPIRE].

[31] B. Allen and A. Folacci, The massless minimally coupled scalar field in de Sitter space, Phys.

Rev. D 35 (1987) 3771 [INSPIRE].

[32] C. Fronsdal, Singletons and massless, integral spin fields on de Sitter space (Elementary

particles in a curved space. 7), Phys. Rev. D 20 (1979) 848 [INSPIRE].

[33] P.A.M. Dirac, The electron wave equation in de-Sitter space, Annals Math. 36 (1935) 657

[INSPIRE].

[34] T. Garidi, J.P. Gazeau and M.V. Takook, ‘Massive’ spin two field in de Sitter space, J.

Math. Phys. 44 (2003) 3838 [hep-th/0302022] [INSPIRE].
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