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1 Introduction

Rindler space arises generically as the near horizon approximation of non-extremal black

holes or cosmological spacetimes. Thus, if one could establish Rindler holography one may

expect it to apply universally. In particular, obtaining a microscopic understanding of

Rindler entropy could pave the way towards some of the unresolved puzzles in microscopic

state counting, like a detailed understanding of the entropy of the Schwarzschild black hole,

which classically is one of the simplest black holes we know, but quantum-mechanically

seems to be among the most complicated ones.

Our paper is motivated by this line of thought, but as we shall see the assumptions

we are going to impose turn out to have a life of their own and will take us in somewhat

unexpected directions. This is why we will label what we do in this work as “quasi-Rindler

holography” instead of “Rindler holography”.

Three-dimensional gravity. For technical reasons we consider Einstein gravity in three

spacetime dimensions [1–3]. While simpler than its higher-dimensional relatives, it is still

complex enough to exhibit many of the interesting features of gravity: black holes [4, 5],

cosmological spacetimes [6, 7] and boundary gravitons [8].

In the presence of a negative cosmological constant the seminal paper by Brown and

Henneaux [8] established one of the precursors of the AdS/CFT correspondence. The key

ingredient to their discovery that AdS3 Einstein gravity must be dual to a CFT2 was the

imposition of precise (asymptotically AdS) boundary conditions. This led to the realization

that some of the bulk first class constraints become second class at the boundary, so that

boundary states emerge and the physical Hilbert space forms a representation of the 2-

dimensional conformal algebra with specific values for the central charges determined by

the gravitational theory.

As it turned out, the Brown-Henneaux boundary conditions can be modified, in the

presence of matter [9], in the presence of higher derivative interactions [10, 11] and even in

pure Einstein gravity [12, 13]. In the present work we shall be concerned with a new type

of boundary conditions for 3-dimensional Einstein gravity without cosmological constant.

Let us therefore review some features of flat space Einstein gravity.

In the absence of a cosmological constant Barnich and Compère pioneered a Brown-

Henneaux type of analysis of asymptotically flat boundary conditions [14] and found a

specific central extension of the BMS3 algebra [15], which is isomorphic to the Galilean

conformal algebra [16–18]. Based on this, there were numerous developments in the past

few years, like the flat space chiral gravity proposal [19], the counting of flat space cosmology

microstates [20, 21], the existence of phase transitions between flat space cosmologies and

hot flat space [22, 23], higher spin generalizations of flat space gravity [24, 25], new insights

into representations and characters of the BMS3 group [26–28] with applications to the

1-loop partition function [29], flat space holographic entanglement entropy [30–32] and

numerous other aspects of flat space holography [33–46].

Quasi-Rindler gravity. As we shall show in this paper, the flat space Einstein equations,

Rµν = 0, (1.1)
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do allow for solutions that do not obey the Barnich-Compère boundary conditions but

instead exhibit asymptotically Rindler behavior,

ds2 ∼ O(r) du2 − 2 du dr + dx2 +O(1) du dx+ . . . (1.2)

The main goal of the present work is to set up these boundary conditions, to prove their con-

sistency and to discuss some of the most relevant consequences for holography, in particular

the asymptotic symmetry algebra and a comparison between macroscopic and microscopic

entropies. Some previous literature on asymptotically Rindler spacetimes is provided by

refs. [47–74]. For some previous literature on black hole entropy from a near horizon

conformal field theory perspective see [75] and references therein.

Before we delve into the relevant technicalities we address one conceptual issue that

may appear to stop any attempt to Rindler holography in its track. For extremal black

holes the usual near-horizon story works due to their infinite throat, which implies that one

can consistently replace the region near the horizon by the near-horizon geometry and apply

holography to the latter, see e.g. section 2 in [76] for a review. By contrast, non-extremal

black holes do not have an infinite throat. Therefore, the asymptotic region of Rindler

space in general has nothing to do with the near-horizon region of the original theory. So

even if one were to find some dual field theory in some asymptotic Rindler space, it may not

be clear why the corresponding physical states should be associated with the original black

hole or cosmological spacetime. However, as we shall see explicitly, the notion of a “dual

theory living at the boundary” is misleading; one could equally say that the “field theory

lives near the horizon”, since (in three dimensions) the canonical charges responsible for

the emergence of physical boundary states are independent of the radial coordinate. While

we are going to encounter a couple of obstacles to apply Rindler holography the way we

originally intended to do, we do not consider the finiteness of the throat of non-extremal

black holes as one of them.

Starting with the assumption (1.2) we are led to several consequences that we did not

anticipate. The first one is that, on-shell, the functions specifying the spacetime metric

depend on retarded time u instead of the spatial coordinate x, as do the components of the

asymptotic Killing vector fields. As a consequence, canonical charges written as integrals

over x all vanish and the asymptotic symmetries are all pure gauge. However, upon writing

surface charges as integrals over u and taking time to be periodic, the asymptotic symmetry

algebra turns out to describe a warped CFT of a type not encountered before: there is no

Virasoro central charge nor a u(1)-level; instead, there is a non-trivial cocycle in the mixed

commutator. Based on these results we determine the entropy microscopically and find

that it does not coincide with the naive Rindler entropy, as a consequence of the different

roles that u and x play in quasi-Rindler, versus Rindler, holography. In the quasi-Rindler

setting, we show that our microscopic result for entropy does match the macroscopic one.

As we shall see, the same matching occurs in our generalization to Rindler-AdS.

In summary, in this paper we describe a novel type of theory with interesting symme-

tries inspired by, but slightly different from, naive expectations of Rindler holography.

This work is organized as follows. In section 2 we state boosted Rindler boundary

conditions and provide a few consistency checks. In section 3 we derive the asymptotic
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symmetry algebra with its central extension and discuss some implications for the puta-

tive dual theory. Then, in section 4, we address quasi-Rindler thermodynamics, calculate

free energy and compare macroscopic with microscopic results for entropy, finding exact

agreement between the two. Section 5 is devoted to the generalization of the discussion to

quasi-Rindler AdS. Finally, we conclude in section 6 with some of the unresolved issues.

Along the way, we encounter novel aspects of warped conformal field theories, which we ex-

plore in appendix A. Questions related to standard Rindler thermodynamics are relegated

to appendix B.

2 Boosted Rindler boundary conditions

The 3-dimensional line-element [u, r, x ∈ (−∞,∞)]

ds2 = −2a(u) r du2 − 2 du dr + 2η(u) du dx+ dx2 (2.1)

solves the vacuum Einstein equations (1.1) for all functions a, η that depend solely on the

retarded time u. For vanishing η and constant positive a the line-element (2.1) describes

Rindler space with acceleration a. [This explains why we chose the factor −2 in the first

term in (2.1).] If η does not vanish we have boosted Rindler space. These observations

motivate us to formulate consistent boundary conditions that include all line-elements of

the form (2.1) as allowed classical states.

The gravity bulk action we are going to use is the Einstein-Hilbert action

IEH =
k

4π

∫
d3x
√
−g R , k =

1

4GN
, (2.2)

which, up to boundary terms, is equivalent to the Chern-Simons action [77, 78]

ICS =
k

4π

∫
〈A ∧ dA+

2

3
A ∧A ∧A〉 (2.3)

with an isl(2) connection A and corresponding invariant bilinear form 〈· · · 〉. Explicitly,

the isl(2) generators span the Poincaré algebra in three dimensions (n,m = 0,±1),

[Ln, Lm] = (n−m)Ln+m [Ln, Mm] = (n−m)Mn+m [Mn, Mm] = 0 , (2.4)

and their pairing with respect to the bilinear form 〈· · · 〉 is

〈L1, M−1〉 = 〈L−1, M1〉 = −2 〈L0, M0〉 = 1 (2.5)

(all bilinears not mentioned here vanish). The connection can be decomposed in compo-

nents as A = A+
LL1 + A0

LL0 + A−LL−1 + A+
MM1 + A0

MM0 + A−MM−1. In terms of these

components the line-element reads

ds2 = gµν dxµ dxν = −4A+
MA

−
M + (A0

M )2 . (2.6)

Thus, from a geometric perspective the components AnM correspond to the dreibein and

the components AnL to the (dualized) spin-connection [79, 80].

– 4 –



J
H
E
P
0
3
(
2
0
1
6
)
1
8
7

2.1 Boundary conditions

In the metric formulation, boosted Rindler boundary conditions at null infinity r → +∞
are given by

gµν =

−2a(u, x) r +O(1) −1 +O(1/r) η(u, x) +O(1/r)

gru = gur O(1/r2) O(1/r)

gxu = gux gxr = grx 1 +O(1/r)

 (2.7)

where a(u, x) and η(u, x) are arbitrary, fluctuating O(1) functions. The equations of mo-

tion (1.1) imply homogeneity of the Rindler acceleration:

∂xa(u, x) = 0. (2.8)

The function η(u, x) and subleading terms are also constrained by the equations of motion.

These constraints are solved by functions η that depend on u only:1

∂xη(u, x) = 0. (2.9)

For simplicity, from now on we always implement the asymptotic on-shell conditions (2.8),

(2.9) together with the boundary conditions (2.7), i.e., we assume both a and η depend on

the retarded time u only.

Since the x-independence of the functions a and η has important consequences we

stress that the conditions (2.8)–(2.9) are forced upon us by the Einstein equations and our

choice of boundary conditions (2.7). In fact, similar boundary conditions were proposed

already in four dimensions [63], but no attempt to identify the dual theory was made in

that paper.

For many applications it is useful to recast these boundary conditions in first order

form in terms of an isl(2) connection

A = b−1
(

d+a +O(1/r)
)
b, (2.10)

with the ISL(2) group element

b = exp
(r

2
M−1

)
(2.11)

and the auxiliary connection

a+L = 0 a+M = du (2.12a)

a0L = a(u) du a0M = dx (2.12b)

a−L = −1

2

(
η′(u) + a(u)η(u)

)
du a−M = −1

2
η(u) dx (2.12c)

where ± refers to L±1 and M±1. Explicitly,

A = a +
dr

2
M−1 +

a(u)r du

2
M−1 (2.13)

1The most general solution of these constraints (up to gauge transformations) is actually η(u, x) =

η(u)+k(x) exp [−
∫ u

a(u′) du′]. We considered this more general case but did not find relevant new features

when k(x) is non-zero. In particular, the function k(x) does not contribute to the canonical surface charges,

so we set it to zero with no loss of generality.
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where the second term comes from b−1 db and the linear term in r from applying the

Baker-Campbell-Hausdorff formula b−1ab = a− r
2 [M−1, a]. Using (2.6), this Chern-Simons

connection is equivalent to the metric (2.1).

2.2 Variational principle

For a well-defined variational principle the first variation of the full action Γ must vanish

for all variations that preserve our boundary conditions (2.7). Since we shall later employ

the Euclidean action to determine the free energy we use Euclidean signature here too.

We make the ansatz2

Γ = − 1

16πGN

∫
d3x
√
g R− α

8πGN

∫
d2x
√
γ K (2.14)

where α is some real parameter. If α = 1, we recover the Gibbons-Hawking-York action [81,

82]. If α = 1
2 , we recover an action that is consistent in flat space holography [23]. We

check now which value of α — if any — is consistent for our boosted Rindler boundary

conditions (2.7).

Dropping corner terms, the first variation of the action (2.14) reads on-shell [23]

δΓ
∣∣
EOM

=
1

16πGN

∫
d2x
√
γ
(
Kij−αKgij +(2α−1)Kninj +(1−α)γijnk∇k

)
δgij . (2.15)

We introduce now a cut-off at r = rc and place the boundary at this cut-off, with the idea

of letting rc → ∞ at the end of our calculations. Some useful asymptotic expressions are

[ni = δri
1√
2arc

+O(1/r
3/2
c ) is the outward pointing unit normal vector, γ = 2arc+O(1) the

determinant of the induced metric at the boundary and K = Ki
i =

√
a
2rc

+O(1/r
3/2
c ) the

trace of extrinsic curvature]:

√
γKij δgij = δa+O(1/rc)

√
γKgij δgij = O(1/rc) (2.16)

√
γKninj δgij = −δa+O(1/rc)

√
γγijnk∇k δgij = O(1/rc) . (2.17)

Inserting these expressions into (2.15) establishes

δΓ
∣∣
EOM

=
1

8πGN

∫
d2x

(
1− α

)
δa+O(1/rc) . (2.18)

Therefore, picking α = 1 we have a well-defined variational principle.

Demanding a well-defined variational principle for the first order action (2.3) with the

boundary conditions (2.10)–(2.12) also requires the addition of a boundary term of the form

ΓCS = ICS ±
k

4π

∫
du dx 〈AuAx〉 (2.19)

2In the Lorentzian theory the boundary is time-like (space-like) if a is positive (negative). To accommo-

date both signs one should replace K by |K|. To reduce clutter we assume positive a and moreover restrict

to zero mode solutions, a = const., η = const. It can be shown that the variational principle is satisfied for

non-zero mode solutions if it is satisfied for zero mode solutions, as long as ∂xgrx = O(1/r2). We thank

Friedrich Schöller for discussions on the variational principle and for correcting a factor two.
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where the sign depends on the conventions for the boundary volume form, εux = ∓1.

This result agrees with the general expression found in three-dimensional gravity in flat

space [79, 83, 84].

In conclusion, the full Euclidean second order action suitable for quasi-Rindler holog-

raphy is given by

Γ = − 1

16πGN

∫
d3x
√
g R− 1

8πGN

∫
d2x
√
γ K (2.20)

where the boundary contribution is the Gibbons-Hawking-York boundary term. This action

is the basis for Rindler thermodynamics discussed in section 4.

2.3 Asymptotic symmetry transformations

The allowed diffeomorphisms preserving the boundary conditions (2.7) are generated by

vector fields ξ whose components are

ξu = t(u) +O(1/r), (2.21a)

ξr = −r t′(u) +O(1), (2.21b)

ξx = p(u) +O(1/r), (2.21c)

where t(u) and p(u) are arbitrary real functions. Infinitesimally, the corresponding diffeo-

morphisms take the form

u 7→ u+ ε t(u), x 7→ x+ ε p(u) (2.22)

on the spacetime boundary at infinity. In other words, the gravitational system defined

by the boundary conditions (2.7) is invariant under time reparametrizations generated

by t(u)∂u − rt′(u)∂r and under time-dependent translations of x generated by p(u)∂x.

These symmetries are reminiscent of those of two-dimensional Galilean conformal field

theories [17].

The Lie bracket algebra of allowed diffeomorphisms (2.21) is the semi-direct sum of a

Witt algebra and a u(1) current algebra. This can be seen, for instance, by thinking of u as

a complex coordinate (which will indeed be appropriate for thermodynamical applications)

and expanding t(u) and p(u) in Laurent modes. Another way to obtain the same result is

to take u periodic, say

u ∼ u+ 2π L (2.23)

(where L is some length scale), and to expand the functions t(u) and p(u) in Fourier modes.

Introducing the generators

tn ≡ ξ|t(u)=Leinu/L, p(u)=0 and pn ≡ ξ|t(u)=0, p(u)=Leinu/L (2.24)

then yields the Lie brackets

i[tn, tm] = (n−m) tn+m , (2.25a)

i[tn, pm] = −mpn+m , (2.25b)

i[pn, pm] = 0 , (2.25c)

– 7 –
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up to subleading corrections that vanish in the limit r → +∞. Thus, quasi-Rindler bound-

ary conditions differ qualitatively from usual AdS holography, which relies on conformal

symmetry, and from flat space holography [8, 85], which relies on BMS symmetry [14, 18].

Instead, if there exists a dual theory for quasi-Rindler boundary conditions, it should be a

warped CFT [86] whose conformal symmetry is replaced by time-reparametrization invari-

ance.3 We will return to the interpretation of this symmetry in section 3.

The allowed diffeomorphisms (2.21) can also be obtained from the Chern-Simons for-

mulation: upon looking for isl(2) gauge parameters ε̂ that obey

δε̂A = dε̂+ [A, ε̂] = O(δA) (2.26)

where δA denotes the fluctuations allowed by the boundary conditions (2.10)–(2.12),

and writing

ε̂ = b−1
(
ε+O(1/r)

)
b (2.27)

[in terms of the group element (2.11)], one finds

ε = t(u)M1 + p(u)M0 + Υ(u)M−1 +
(
a(u)t(u)− t′(u)

)
L0

− 1

2

( (
η′(u) + a(u)η(u)

)
t(u) + p′(u)

)
L−1 . (2.28)

Here the functions t(u) and p(u) are those of (2.21), while Υ(u) solves the differential

equation

2Υ′(u) + 2Υ(u)a(u) + p(u)
(
η′(u) + a(u)η(u)

)
= 0 . (2.29)

Upon imposing periodicity (2.23), this solution is unique.

Using (2.26)–(2.28) and the on-shell connection (2.12), we find that the functions a

and η transform as follows under allowed diffeomorphisms:

δa = ta′ + t′a− t′′ δη = tη′ + t′η + p′ . (2.30)

(Prime denotes differentiation with respect to u.) Note in particular that translations by p

leave a invariant; note also the inhomogeneous term t′′ in the infinitesimal transformation

law of a under conformal transformations, which hints that the asymptotic symmetry

algebra has a central extension. We are now going to verify this.

3 Asymptotic symmetry group

This section is devoted to the surface charges associated with the asymptotic symme-

tries (2.21). First we show that the conventional approach leads to a trivial theory where

all asymptotic symmetries are gauge transformations, as any on-shell metric is gauge-

equivalent to Minkowski space. We then opt in subsection 3.2 for a non-standard definition

of surface charges, providing us with a centrally extended asymptotic symmetry algebra. In

subsection 3.3 we work out the finite transformations of the dual energy-momentum tensor.

3Warped CFT symmetry algebras have appeared in the context of Topologically Massive Gravity [87]

(see also [88–90]), Lobachevsky holography [91], conformal gravity with generalized AdS or flat boundary

conditions [80, 92, 93], Lower Spin Gravity [94], and Einstein gravity [12, 13]. On the field theory side

these symmetries were shown to be a consequence, under certain conditions, of translation and chiral scale

invariance [95].
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3.1 An empty theory

We saw in the previous section that asymptotic symmetries include time reparametriza-

tions. This is a somewhat ambiguous situation: on the one hand, asymptotic symmetries

are generally interpreted as global symmetries, but on the other hand, time reparametriza-

tions are usually seen as gauge symmetries. In this subsection we show how the standard

approach to surface charges in gravity selects the latter interpretation.

In the Chern-Simons formulation [79, 80, 83, 84, 96, 97], the variation of the canonical

current j associated with an asymptotic symmetry generated by ε̂ reads

δj[ε] =
k

2π
〈ε̂, δA〉 =

k

2π
〈ε, δa〉 , (3.1)

where A and a are related by (2.10) and 〈· · · 〉 denotes the invariant bilinear form (2.5).

The integral of that expression along a line or a circle at infinity gives the variation of the

corresponding surface charge [98–100]. In the present case, the region r → +∞ is spanned

by the coordinates u and x, but only the latter is space-like.4 Accordingly, the natural

surface charges are integrals over x; unfortunately the boundary conditions (2.12) [and the

ensuing asymptotic symmetries (2.28)] set to zero the x-component of the variation (3.1),

so that these charges all vanish. It follows that, from this viewpoint, all asymptotic sym-

metries are in fact gauge symmetries; there are no global symmetries whatsoever, and the

theory is empty.

While this conclusion is somewhat disappointing, it does not prevent us from studying

the group of gauge symmetries in its own right, and these considerations will in fact be

useful once we turn to an alternative interpretation. Upon integrating the infinitesimal

transformations (2.22), one obtains finite diffeomorphisms of the plane R2 (spanned by the

coordinates u and x) given by

u 7→ f(u), x 7→ x+ p(f(u)), (3.2)

where f is an orientation-preserving diffeomorphism of the real line (so that f ′(u) > 0 for

all u), and p is an arbitrary function. Such pairs (f, p) span a group

G ≡ Diff(R) n C∞(R), (3.3)

where the vector space C∞(R) is seen as an Abelian group with respect to pointwise

addition. Diffeomorphisms act on functions according to

(σf p) (u) ≡ p(f−1(u)), i.e. σf p ≡ p ◦ f−1, (3.4)

so G is a semi-direct product with a group operation

(f1, p1) · (f2, p2) ≡
(
f1 ◦ f2, p1 + σf1p2

)
. (3.5)

It is a centerless version of the symmetry group of warped conformal field theories.

4Note that the radial dependence captured by the group element b defined in (2.11) drops out of the

canonical currents (3.1). The corresponding charges can therefore be defined on any r = const. slice

(including the horizon).
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One may then ask how finite gauge transformations affect the on-shell metrics (2.1),

given that the infinitesimal transformations are (2.30). We show in appendix A.1 that,

under the action of a gauge transformation (f, p), the functions η(u) and a(u) are mapped

on new functions η̃ and ã given by

η̃
(
f(u)

)
=

1

f ′(u)

[
η(u)− (p ◦ f)′(u)

]
, ã

(
f(u)

)
=

1

f ′(u)

[
a(u) +

f ′′(u)

f ′(u)

]
. (3.6)

It is easily verified that these transformations reduce to (2.30) upon taking f(u) = u+εt(u),

replacing p(u) by εp(u) and expanding to first order in ε. This formula shows explicitly

that the phase space of the theory is empty, as any diffeomorphism f such that

f ′(u) = C exp

[
−

u∫
0

a(v) dv

]
, C > 0 (3.7)

maps a(u) on ã = 0. When combining this map with a suitable translation p(u), the whole

metric (2.1) is mapped on that of Minkoswki space, so that indeed any solution is pure

gauge. Note that the inhomogeneous term proportional to f ′′/f ′ in the transformation law

of a is crucial in order for the latter statement to be true.

In principle one can impose suitable fall-off conditions on the functions a(u) and η(u)

at future and past infinity, and study the subgroup of (3.3) that preserves these conditions.

For example, a(u) ∼ const.+O(1/|u|) would include Rindler spacetime, potentially leading

to interesting asymptotic symmetries at |u| → +∞. We will not follow this approach here;

instead, we will try to make the theory non-trivial by using an unconventional prescription

for the definition of surface charges.

3.2 Quasi-Rindler currents and charges

In the previous subsection we interpreted asymptotic symmetries as gauge symmetries, in

accordance with the fact that all surface charges written as integrals over a space-like slice

at infinity vanish. However, another interpretation is available: instead of integrating (3.1)

over x, we may decide to integrate it over retarded time u. Despite clashing with the usual

Hamiltonian formalism, this approach is indeed the most natural one suggested by the

u-dependent asymptotic Killing vector fields (2.21) and the solutions (2.1).

For convenience we will also assume that the coordinate u is periodic as in (2.23). This

condition introduces closed time-like curves and breaks Poincaré symmetry (even when

a = 0 !); it sets off our departure from the world of Rindler to that of quasi -Rindler holog-

raphy. While it seems unnatural from a gravitational/spacetime perspective, this choice is

naturally suggested by our asymptotic symmetries and our phase space. In the remainder

of this paper we explore its consequences, assuming in particular that the functions t(u),

p(u), η(u) and a(u) are 2πL-periodic. This will in fact lead us to study new aspects of

warped conformal field theories, which we believe are interesting in their own right.
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In the quasi-Rindler case, the variation of the surface charge associated with the sym-

metry transformation (t, p), evaluated on the metric (a, η), reads

δQ(a,η)[t, p] =

2πL∫
0

du δ ju . (3.8)

Using (3.1) and inserting expressions (2.12) and (2.28) yields

δQ(a,η)[t, p] =
k

2π

2πL∫
0

du
(
t(u) δT (u) + p(u) δP (u)

)
, (3.9)

where

T (u) = η′(u) + a(u)η(u), P (u) = a(u) , (3.10)

so that the charges are finite and integrable:

Q(a,η)[t, p] =
k

2π

2πL∫
0

du
(
t(u)T (u) + p(u)P (u)

)
. (3.11)

This expression shows in particular that the space of solutions (a, η) is dual to the asymp-

totic symmetry algebra5 [26, 27, 101–103]. More precisely, the pair of functions (T (u), P (u))

transforms under the coadjoint representation of the asymptotic symmetry group, with

T (u) dual to time reparametrizations and P (u) dual to translations of x. This obser-

vation will be crucial when determining the transformation law of T (u) and P (u) under

finite asymptotic symmetry transformations, which in turn will lead to a Cardy-like en-

tropy formula.

From the variations (2.30) of the functions (a, η), we deduce corresponding variations

of the functions T and P in (3.10):

δ(t,p)P = tP ′ + t′P − t′′, δ(t,p)T = tT ′ + 2t′T + p′P + p′′. (3.12)

This result contains all the information about the surface charge algebra, including its

central extensions. On account of 2πL-periodicity in the retarded time u, we can introduce

the Fourier-mode generators

Tn ≡
kL

2π

2πL∫
0

du einu/L T (u) Pn ≡
k

2π

2πL∫
0

du einu/L P (u) , (3.13)

whose Poisson brackets, defined by [Qξ, Qζ ] = −δξQζ , read

i[Tn, Tm] = (n−m)Tn+m , (3.14a)

i[Tn, Pm] = −mPn+m − iκ n2 δn+m,0 , (3.14b)

i[Pn, Pm] = 0 , (3.14c)

5Note that the change of variables (3.10) is invertible for functions on the circle: given the functions a

and η, eq. (3.10) specifies T and P uniquely; conversely, given some functions T and P , the functions a and

η ensuring that (3.10) holds are unique provided one imposes 2πL-periodicity of the coordinate u.
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with κ = k. As it must be for a consistent theory, this algebra coincides with the Lie bracket

algebra (2.25) of allowed diffeomorphisms, up to central extensions. Note that T0/L, being

the charge that generates time translations u 7→ u + const, should be interpreted as the

Hamiltonian, while P0 is the momentum operator (it generates translations x 7→ x+const).

The only central extension in (3.14) is a twist term in the mixed commutator; it is a non-

trivial 2-cocycle [104]. In particular, it cannot be removed by redefinitions of generators

since the u(1) current algebra has a vanishing level.

3.3 Warped Virasoro group and coadjoint representation

As a preliminary step towards the computation of quasi-Rindler entropy, we now work out

the finite transformation laws of the functions T and P . For the sake of generality, we will

display the result for arbitrary central extensions of the warped Virasoro group, including

a Virasoro central charge and a u(1) level. We will use a 2πL-periodic coordinate u, but

our end result (3.17)–(3.18) actually holds independently of that assumption.

Finite transformations of the stress tensor. The asymptotic symmetry group for

quasi-Rindler holography is (3.3) with R replaced by S1, and it consists of pairs (f, p),

where p is an arbitrary function on the circle and f is a diffeomorphism of the circle;

in particular,

f(u+ 2πL) = f(u) + 2πL. (3.15)

(For instance, the diffeomorphisms defined by (3.7) are generally forbidden once that con-

dition is imposed.) However, in order to accommodate for inhomogeneous terms such as

those appearing in the infinitesimal transformations (2.30), we actually need to study the

central extension of this group. We will call this central extension the warped Virasoro

group, and we will denote it by Ĝ. Its Lie algebra reads

i[Tn, Tm] = (n−m)Tn+m +
c

12
n3 δn+m,0 (3.16a)

i[Tn, Pm] = −mPn+m − iκ n2 δn+m,0 (3.16b)

i[Pn, Pm] = K nδn+m,0 , (3.16c)

and is thus an extension of (3.14) with a Virasoro central charge c and a u(1) level K.

Note that, when K 6= 0, the central term in the mixed commutator [T, P ] can be removed

by defining Ln ≡ Tn + iκ
KnPn. In terms of generators Ln and Pn, the algebra takes the

form (3.16) without central term in the mixed bracket, and with a new Virasoro central

charge c′ = c− 12κ2/K. [We will see an illustration of this in eq. (5.11), in the context of

quasi-Rindler gravity in AdS3.] But when K = 0 as in (3.14), there is no such redefinition.

We relegate to appendix A.1 the exact definition of the warped Virasoro group Ĝ,

together with computations related to its adjoint and coadjoint representations. Here we

simply state the result that is important for us, namely the finite transformation law of the

stress tensor T and the u(1) current P . By construction, these transformations coincide

with the coadjoint representation of Ĝ, written in eqs. (A.21)–(A.22); thus, under a finite
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transformation (3.2), the pair (T, P ) is mapped to a new pair (T̃ , P̃ ) with

T̃ (f(u)) =
1

(f ′(u))2

[
T (u) +

c

12k
{f ;u} − P (u)(p ◦ f)′(u)

−κ
k

(p ◦ f)′′(u) +
K

2k
((p ◦ f)′(u))2

]
(3.17)

P̃ (f(u)) =
1

f ′(u)

[
P (u) +

κ

k

f ′′(u)

f ′(u)
− K

k
(p ◦ f)′(u)

]
, (3.18)

where {f ;u} is the Schwarzian derivative (A.10) of f . These transformations extend those

of a standard warped CFT [86], which are recovered for κ = 0. In the case of quasi-Rindler

spacetimes, we have c = K = 0 and κ is non-zero, leading to

T̃ (f(u)) =
1

(f ′(u))2

[
T (u)− P (u)(p ◦ f)′(u)− κ

k
(p ◦ f)′′(u)

]
(3.19)

P̃ (f(u)) =
1

f ′(u)

[
P (u) +

κ

k

f ′′(u)

f ′(u)

]
(3.20)

which (for κ = k) actually follows from (3.6) and the definition (3.10). Note that these

formulas are valid regardless of whether u is periodic or not! In the latter case, f(u) is a

diffeomorphism of the real line.

Modified Sugawara construction. Before going further, we note the following: since

P (u) is a Kac-Moody current, one expects that a (possibly modified) Sugawara construction

might convert some quadratic combination of P ’s into a CFT stress tensor. This expecta-

tion is compatible with the fact that P (u) du is a one-form, so that P (u) du ⊗ P (u) du is

a quadratic density. Let us therefore define

M(u) ≡ k2

2κ
(P (u))2 + k P ′(u) (3.21)

and ask how it transforms under the action of (f, p), given that the transformation law of

P (u) is (3.20). Writing this transformation as M 7−→ M̃, the result is

M̃(f(u)) =
1

(f ′(u))2

[
M(u) + κ {f ;u}

]
, (3.22)

which is the transformation law of a CFT stress tensor with central charge

cM ≡ 12κ = 12k =
3

GN
. (3.23)

Once more, this observation is independent of whether the coordinate u is periodic or not.

This construction is at the core of a simple relation between the quasi-Rindler sym-

metry algebra (3.14) and the BMS3 algebra. Indeed, by quadratically recombining the

generators Pn thanks to a twisted Sugawara construction

Mn =
1

2κ

∑
q∈Z

Pn−qPq − inPn , (3.24)
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the brackets (3.14) reproduce the centrally extended BMS3 algebra [14]:

i[Tn, Tm] = (n−m)Tn+m (3.25a)

i[Tn, Mm] = (n−m)Mn+m +
cM
12

n3 δn+m, 0 (3.25b)

i[Mn, Mm] = 0. (3.25c)

This apparent coincidence implies that the representations of the warped Virasoro group

(with vanishing Kac-Moody level) are related to those of the BMS3 group, but one should

keep in mind that the similarity of group structures does not imply similarity of the physics

involved; in particular, the Hamiltonian operator in (3.25) is (proportional to) T0, while the

standard BMS3 Hamiltonian is M0. Nevertheless, unitary representations of the warped

Virasoro group with vanishing Kac-Moody level K can indeed be studied and classified

along the same lines as for BMS3 [26, 27]. As we do not use these results in the present

work we relegate this discussion to appendix A.2.

4 Quasi-Rindler thermodynamics

In this section we study quasi-Rindler thermodynamics, both microscopically and macro-

scopically, assuming throughout that surface charges are defined as integrals over time

and that the coordinate u is 2πL-periodic. We start in subsection 4.1 with a microscopic,

Cardy-inspired derivation of the entropy of zero-mode solutions. Section 4.2 is devoted to

certain geometric aspects of boosted Rindler spacetimes, for instance their global Killing

vectors, which has consequences for our analytic continuation to Euclidean signature in

subsection 4.3. In subsection 4.4 we evaluate the on-shell action to determine the free

energy, from which we then derive other thermodynamic quantities of interest, such as

macroscopic quasi-Rindler entropy. In particular, we exhibit the matching between the

Cardy-based computation and the purely gravitational one.

4.1 Modular invariance and microscopic entropy

Here, following [86], we switch on chemical potentials (temperature and velocity) and

compute the partition function in the high-temperature limit, assuming the validity of a

suitable version of modular invariance. Because the u(1) level vanishes in the present case,

the modular transformations will not be anomalous, in contrast to standard behaviour in

warped CFT [86]. (This will no longer be true in AdS3 — see section 5.)

The grand canonical partition function of a theory at temperature 1/β and velocity η is

Z(β, η) = Tr
(
e−β(H−ηP )

)
, (4.1)

where H and P are the Hamiltonian and momentum operators (respectively), and the

trace is taken over the Hilbert space of the system. In the present case, the Hamiltonian

is the (quantization of the) charge (3.11) associated with t(u) = 1 and p(u) = 0, i.e. the

zero-mode of T (u) up to normalization:

H =
k

2π

2πL∫
0

duT (u) . (4.2)
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As for the momentum operator, it is the zero-mode of P (u) (again, up to normalization).

If we denote by I the Euclidean action of the system, the partition function (4.1) can

be computed as the integral of e−I+η
∫
dτP over paths in phase space that are periodic in

Euclidean time τ with period β. Equivalently, if we assume that the phase space contains

one Lagrange variable at each point of space (i.e. that we are dealing with a field theory),

the partition function may be seen as a path integral of e−I over fields φ that satisfy

φ(τ + β, x) = φ(τ, x + iβη) since P is the generator of translations along x. Note that

both approaches require the combination H − ηP to be bounded from below; in typical

cases (such as AdS, where P is really an angular momentum operator and η is an angular

velocity), this is a restriction on the allowed velocities of the system.

Now, our goal is to find an asymptotic expression for the partition function at high

temperature. To do this, we will devise a notion of modular invariance (actually only

S-invariance), recalling that the symmetries of our theory are transformations of (the

complexification of) S1×R of the form (3.2). Seeing the partition function (4.1) as a path

integral, the variables that are integrated out live on a plane R2 spanned by coordinates u

and x subject to the identifications

(u, x) ∼ (u+ iβ, x− iβη) ∼ (u+ 2πL, x) . (4.3)

The transformations

ũ =
2πiL

β
u x̃ = x+ η u (4.4)

map these identifications on

(ũ, x̃) ∼ (ũ− 2πL, x̃) ∼
(
ũ+ i

(2πL)2

β
, x̃+ 2πLη

)
. (4.5)

While the transformations (4.4) do not belong to the group of finite asymptotic symmetry

transformations (3.2), their analogues in the case of CFT’s, BMS3-invariant theories and

warped CFT’s [20, 21, 86] apparently lead to the correct entropy formulas. We shall assume

that the same is true here, which implies that the partition function Z(β, η) satisfies a

property analogous to self-reciprocity,

Z(β, η) = Z

(
(2πL)2

β
,
iβη

2πL

)
. (4.6)

This, in turn, gives the asymptotic formula

Z(β, η)
β→0+∼ exp

[
−(2πL)2

β

(
Hvac −

iβη

2πL
Pvac

)]
, (4.7)

where Hvac and Pvac are respectively the energy and momentum of the vacuum state.

These values can be obtained from the finite transformations (3.19) [with T = P = p = 0]

and (3.20) [with P = 0] by considering the map f(u) = Leinu/L with some integer n and

declaring that the vacuum value of the functions T (u) and P (u) is zero, exactly like for

the map between the plane and the cylinder in a CFT. Accordingly, the vacuum values of

these functions “on the cylinder”, say T̃vac and P̃vac, are

T̃vac = 0 f ′(u)P̃vac =
in

L
· κ
k
, (4.8)
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so that Hvac = 0. Choosing |n| 6= 1 introduces a conical excess (see subsection 4.3), or

equivalently gives a map u 7→ Leinu/L which is not injective, so the only possible choices

are n = ±1. Using Pvac = k
2π

∫
df P̃vac(f(u)) = k

2π

∫ 2πL
0 du f ′P̃vac then establishes

Pvac = ±iκ for n = ±1 . (4.9)

The asymptotic expression (4.7) of the partition function thus becomes

Z(β, η)
β→0+∼ e2πLκ|η| , (4.10)

where the sign of the dominant vacuum value in (4.9) is determined by the sign of η. (More

precisely, the vacuum ±iκ is selected when sign(η) = ∓1.) The free energy F ≡ −T logZ

is given by

F ≈ −2πκL |η|T (4.11)

at high temperature, and the corresponding entropy is

S = −∂F
∂T

∣∣∣∣
η

≈ 2πκL|η| = 2πkL|η| = 2πL|η|
4GN

. (4.12)

In subsection 4.4 we will see that this result exactly matches that of a macroscopic (i.e.

purely gravitational) computation. Before doing so, we study Euclidean quasi-Rindler

spacetimes and elucidate the origin of the vacuum configuration (4.8).

4.2 Boosted Rindler spacetimes and their Killing vectors

Any solution of 3-dimensional Einstein gravity is locally flat and therefore locally has six

Killing vector fields. However, these vector fields may not exist globally. We now discuss

global properties of the Killing vectors of the geometry defined by the line-element (2.1)

with the identification (2.23). For simplicity, we present our results only for zero-mode

solutions, a, η = const.

The six local Killing vector fields are

ξ1 = ∂u ξ4 = eau
(
∂u − η∂x −

(
ar +

1

2
η2
)
∂r

)
(4.13a)

ξ2 = ∂x ξ5 = a(ηu+ x)ξ3 − e−au∂x (4.13b)

ξ3 = e−au∂r ξ6 = a(ηu+ x)ξ4 + eau
(
ar +

1

2
η2
)
∂x . (4.13c)

Globally, due to our identification (2.23), only the Killing vectors ξ1 and ξ2 survive for

generic values of a. The only exception arises for specific imaginary values of Rindler

acceleration,

a =
in

L
0 6= n ∈ Z , (4.14)

in which case ξ3 and ξ4 are globally well-defined as well. If in addition η = 0, then all six

Killing vector fields can be defined globally. The non-vanishing Lie brackets between the
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Killing vectors are

[ξ1, ξ3] = −[ξ2, ξ5] = −aξ3 [ξ1, ξ5] = aηξ3 − aξ5 (4.15a)

[ξ1, ξ4] = [ξ2, ξ6] = aξ4 [ξ1, ξ6] = aηξ4 + aξ6 (4.15b)

[ξ3, ξ6] = [ξ4, ξ5] = aξ2 [ξ5, ξ6] = aηξ2 − aξ1 . (4.15c)

This algebra is isomorphic to isl(2), as displayed in (2.4), with the identifications M0 = ξ2,

M+ = −2ξ4, M− = −ξ3, L0 = (−ξ1 + ηξ2)/a, L+ = 2(ξ6 + ηξ4)/a, L− = −(ξ5 + ηξ3)/a.

In terms of the generators tn, pn of the asymptotic Lie bracket algebra (2.25) we have

the identifications t0 ∼ ξ1, p0 ∼ ξ2, t1 ∼ ξ4 and p−1 ∼ ξ5; the vector field ξ3 generates

trivial symmetries, while the Killing vector ξ6 is not an asymptotic Killing vector, as

it is incompatible with the asymptotic behavior (2.21). This shows in particular that the

boundary conditions of quasi-Rindler gravity actually break Poincaré symmetry even when

the coordinate u is not periodic. Interestingly, the four generators t0, t1, p−1, p0 obey the

harmonic oscillator algebra

i[α, α†] = z i[H, α] = −α i[H, α†] = α† (4.16)

where the Hamiltonian is formally given by t0 = H = α†α+const., the annihilation/creation

operators formally by t1 = α, p−1 = α† and p0 = z commutes with the other three

generators. The algebra is written here in terms of Poisson brackets, but becomes the

standard harmonic oscillator algebra after quantization. Note, however, that t1 and p−1 are

not generally adjoint to each other.6 In the canonical realization (3.14) the first commutator

acquires an important contribution from the central extension

i[T1, P−1] = P0 − iκ . (4.17)

If we wish to identify the vacuum as the most symmetric solution then our vacuum

spacetime takes the form

ds2 = −2in r

L
du2 − 2 du dr + dx2 (4.18)

with some non-zero integer n. We shall demonstrate in subsection 4.3 that |n| = 1 is the

only choice consistent with the u-periodicity (2.23). Thus, we have uncovered yet another

unusual feature of quasi-Rindler holography: the vacuum metric (4.18) with |n| = 1 is

complex. Our vacuum is neither flat spacetime (as one might have guessed naively) nor a

specific Rindler spacetime, but instead it is a Rindler-like spacetime with a specific imagi-

nary Rindler “acceleration”, the value of which depends on the choice of the periodicity L

in (2.23). Another way to see that the solution a = η = 0 is not maximally symmetric for

finite L is to consider the six local Killing vectors ξ
(0)
i in the limit a, η → 0:

ξ
(0)
1 = ∂u ξ

(0)
4 = u∂u − r∂r (4.19a)

ξ
(0)
2 = ∂x ξ

(0)
5 = u∂x + x∂r (4.19b)

ξ
(0)
3 = ∂r ξ

(0)
6 = x∂u + r∂x (4.19c)

6More precisely, they are certainly not each other’s adjoint in a unitary representation, although we

seem to be dealing with a non-unitary representation anyway (the vacuum value of P0 is imaginary).
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Only four of them can be defined globally, because ξ
(0)
4 and ξ

(0)
5 have a linear dependence

on u that is incompatible with finite 2πL-periodicity (2.23).

While the vacuum metric (4.18) (with n = 1) is preserved by all six Killing vec-

tors (4.13c), at most three of the associated generators of the asymptotic symmetry algebra

can annihilate the vacuum; since we expect from the discussion in subsection 4.1 that P0

is non-zero we pick the vacuum by demanding that T0, T1 and P−1 annihilate it. The

generator P0 then acquires a non-zero eigenvalue due to the central term in (4.17),

T0|0〉 = T1|0〉 = P−1|0〉 = [T1, P−1]|0〉 = 0 ⇒ P0|0〉 = iκ|0〉 =
i

4GN
|0〉 (4.20)

while the remaining two Killing vectors are excluded for reasons stated above (one acts

trivially, while the other violates the boundary conditions for asymptotic Killing vectors).

In fact, upon performing a shift P0 → P0 − iκ, the symmetry algebra (3.14) becomes

i[Tn, Tm] = (n−m)Tn+m , (4.21a)

i[Tn, Pm] = −mPn+m − iκ n(n− 1) δn+m,0 , (4.21b)

i[Pn, Pm] = 0 (4.21c)

so that the vacuum is now manifestly invariant under T0, T1, P0 and P−1.

These considerations reproduce the result (4.9) and thereby provide a consistency

check. The fact that the eigenvalue of P0 is imaginary indicates that the warped Virasoro

group is represented in a non-unitary way if the assumption of self-reciprocity (4.6) holds.

4.3 Euclidean boosted Rindler

In order to prepare the ground for thermodynamics, we now study the Euclidean version

of the metrics (2.1). We consider only zero-mode solutions for simplicity. Then, defining

new coordinates

τ = u+
1

2a
ln
(
2ar + η2

)
y = x− η

2a
ln
(
2ar + η2

)
ρ = r +

η2

2a
, (4.22)

the line-element (2.1) becomes

− 2aρ dτ2 +
dρ2

2aρ
+
(

dy + η dτ
)2
. (4.23)

For non-zero Rindler acceleration, a 6= 0, there is a Killing horizon at ρh = 0, or equiva-

lently at

r = rh = −η
2

2a
. (4.24)

The patch ρ > 0 coincides with the usual Rindler patch for positive Rindler acceleration

a. For negative a the patches ρ > 0 and ρ < 0 switch their roles. We assume positive a in

this work so that τ is a timelike coordinate in the limit r →∞.

The Euclidean section of the metric (4.23) is obtained by defining

tE = −iτ (4.25)
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which yields the line-element

ds2 = 2aρ dt2E +
dρ2

2aρ
+
(

dy + iη dtE
)2
. (4.26)

Demanding the absence of a conical singularity at ρ = 0 and compatibility with (2.23)

leads to the periodicities

(tE, y) ∼ (tE + β, y − iβη) ∼ (tE − 2πiL, y) . (4.27)

which are the Euclidean version of the periodicities (4.3), with the inverse temperature

β = T−1 given by

T =
a

2π
. (4.28)

Given the periodicities (4.27), we can now ask which values of n in (4.14) give rise to

a regular spacetime with metric (4.18). Consider the Euclidean line-element (4.26) and

define another analytic continuation,

a =
in

L
τ = itE ρ̂ = −iρ sign(n) , (4.29)

which yields

ds2 =
2|n|ρ̂ dτ2

L
+
L dρ̂2

2|n|ρ̂
+
(

dy + η dτ
)2
. (4.30)

with the periodicities

(τ, y) ∼ (τ + iβ, y − iβη) ∼ (τ + 2πL, y) . (4.31)

The point now is that the Euclidean line-element (4.30) with the periodicities (4.31) has a

conical singularity at ρ̂ = 0 unless |n| = 1. Thus, we conclude that the vacuum spacetime

(in the sense of being singularity-free and maximally symmetric) is given by (4.18) with

|n| = 1, confirming our discussion in sections 4.1 and 4.2.

4.4 Macroscopic free energy and entropy

The saddle point approximation of the Euclidean path integral leads to the Euclidean

partition function, which in turn yields the free energy. The latter is given by temperature

times the Euclidean action (2.20) evaluated on-shell:

F = −T 1

8πGN

−i2πL∫
0

dtE

iβ|η|∫
0

dy
√
γK
∣∣
ρ→∞ = −2πL|η|T

4GN
, (4.32)

where we have inserted the periodicities from subsection 4.3 and used
√
γK = a+O(1/ρ).

The absolute value for η was introduced in order to ensure a positive volume form7 for

positive L and β.

7One pragmatic way to get the correct factors of i is to insert the Euclidean periodicities in the ranges

of the integrals and to demand again positive volume when integrating the function 1. In the flat space

calculation this implies integrating u from 0 to β, while here it implies integrating u from 0 to −i2πL.
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From this result we extract the entropy

S = −∂F
∂T

∣∣∣∣
η

=
2πL|η|
4GN

, (4.33)

which coincides with the Cardy-based result (4.12). As a cross-check, we derive the same

expression in the Chern-Simons formulation by analogy to the flat space results [44, 45]:

S =
k

2π

−i2πL∫
0

du

iβ|η|∫
0

dx 〈AuAx〉 = k Lβ|η| 〈auax〉 = 2πk L|η| = 2πL|η|
4GN

. (4.34)

We show in the next section that the same matching occurs in Rindler-AdS.

5 Boosted Rindler-AdS

In this section we generalize the discussion of the previous pages to the case of Rindler-

AdS spacetimes. In subsection 5.1 we establish quasi-Rindler-AdS boundary conditions and

show that the asymptotic symmetry algebra can be untwisted to yield a standard warped

CFT algebra, with a u(1) level that vanishes in the limit of infinite AdS radius. Then, in

subsection 5.2 we derive the entropy microscopically, and we show in subsection 5.3 that

the same result can be obtained macroscopically.

5.1 Boundary conditions and symmetry algebra

We can deform the metric (2.1) to obtain a solution of Einstein’s equations Rµν− 1
2 gµνR =

gµν/`
2 with a negative cosmological constant Λ = −1/`2,

ds2 = −2a(u)r du2 − 2 du dr + 2(η(u) + 2r/`) du dx+ dx2 . (5.1)

Starting from this ansatz, we now adapt our earlier discussion to the case of a non-vanishing

cosmological constant. Since the computations are very similar to those of the quasi-Rindler

case, we will simply point out the changes that arise due to the finite AdS radius. When we

do not mention a result explicitly we imply that it is the same as for the flat configuration;

in particular we assume again 2πL-periodicity in u.

The Chern-Simons formulation is based on the deformation of the isl(2) algebra to

so(2, 2), where the translation generators no longer commute so that the last bracket in (2.4)

is replaced by

[Mn, Mm] =
1

`2
(n−m)Ln+m . (5.2)

The on-shell connection (2.10)–(2.12) and the asymptotic symmetry generators (2.27)–

(2.29) are modified as

a→ a + ∆a/` , ε→ ε+ ∆ε/` and b = exp

[
r

2

(
M−1 −

1

`
L−1

)]
(5.3)
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where

∆a = duL1 − dxL0 +
1

2
η(u) dxL−1 (5.4a)

∆ε = t(u)L1 − p(u)L0 −Υ(u)L−1 . (5.4b)

The connection A changes correspondingly as compared to (2.13),

A→ A+∆A/` ∆A = ∆a−dr

2
L−1+r

(
1

`
L−1 dx−M−1 dx− 1

2
a(u)L−1 du

)
. (5.5)

Note in particular that all quadratic terms in r cancel due to the identity [L−1, [L−1, a]]−
2`[L−1, [M−1, a]] + `2[M−1, [M−1, a]] = 0. Plugging the result (5.5) into the line-

element (2.6) yields

ds2 → ds2 + ∆ ds2/` ∆ ds2 = 4r du dx (5.6)

thus reproducing the solution (5.1).

Consequently, the variations of the functions a(u) and η(u) in (2.30) are also modified,

δa(u)→ δa(u)− 2p′(u)/` , (5.7)

δη(u)→ δη(u) + 2p(u)η(u)/`+ 4Υ(u)/` . (5.8)

Using (2.29), one can show that the presence of the last term in the second line does not af-

fect the transformation of the function T (u) defined in (3.10). Moreover, the charges (3.11)

remain unchanged. In fact, in the Rindler-AdS case only the transformation of the current

P is deformed as

δpP = −2p′/` , (5.9)

which leads to the following Poisson brackets of the charges Pn defined in (3.13):

i[Pn, Pm] = −2k

`
n δn+m,0 . (5.10)

In particular, the limit `→∞ reproduces the algebra (3.14).

At finite ` the presence of the non-vanishing level in (5.10) enables us to remove the

central extension of the mixed bracket of (3.14b) thanks to a twist

Ln = Tn −
i`κ

2k
nPn (5.11)

in terms of which the asymptotic symmetry algebra reads

i[Ln, Lm] = (n−m)Ln+m +
c

12
n3 δn+m,0 (5.12a)

i[Ln, Pm] = −mPn+m (5.12b)

i[Pn, Pm] = −2k

`
n δn+m,0 (5.12c)

with the expected Brown-Henneaux central charge8 [8]

c = 6
κ2

k
` = 6k` =

3`

2GN
. (5.13)

8This central charge is expected to be shifted quantum mechanically at finite k` [92, 93]. Since we are

interested in the semi-classical limit here, we shall not take such a shift into account.
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5.2 Microscopic quasi-Rindler-AdS entropy

As in the case of a vanishing cosmological constant, it is possible to derive a Cardy-like

entropy formula that can be applied to zero-mode solutions. The only difference with

respect to subsection 4.1 is the non-vanishing u(1) level K = −2k/` that leads to a slightly

different form of modular invariance. Namely, according to [86], the self-reciprocity of the

partition function, eq. (4.6), now becomes

Z(β, η̂) = eβKLη̂
2/2Z

(
(2πL)2

β
,
iβη̂

2πL

)
(5.14)

leading to the high-temperature free energy

F ≈ (2πL)2

β2

(
Hvac −

iβη̂

2πL
Pvac

)
−KLη̂2/2 . (5.15)

(We have renamed the chemical potential conjugate to P0 as η̂ for reasons that will become

clear in subsection 5.3.) This is the same as in (4.7), up to a temperature-independent

constant proportional to the u(1) level. The vacuum values of the Hamiltonian and the

momentum operator are once more given by the arguments above (4.8); in particular, the

u(1) level plays no role for these values. Accordingly, the free energy at high temperature

T = β−1 � 1 boils down to

F ≈ −2πLk|η̂|T + kLη̂2/` (5.16)

and the corresponding entropy is again given by (4.12):

S =
2πL|η̂|
4GN

(5.17)

Notably, this is independent of the AdS radius. The same result can be obtained by absorb-

ing the twist central charge through the redefinition (5.11) and then using the Cardy-like

entropy formula derived in [86]. In the next subsection we show that this result coincides

with the gravitational entropy, as in the flat quasi-Rindler case discussed previously.

5.3 Macroscopic quasi-Rindler-AdS entropy

Generalizing the macroscopic calculations from section 4 for zero-mode solutions (5.3) with

constant a and η we find that the outermost Killing horizon is located at

rh =
`

4

(√
a2`2 + 4a`η − a`− 2η

)
= −η

2

2a
+O(1/`) (5.18)

and has a smooth limit to the quasi-Rindler result (4.24) for infinite AdS radius ` → ∞.

We assume η > −a`/4 so that rh is real and surface-gravity is non-zero.

The vacuum spacetime reads

ds2 = −2ir du2

L
− 2 du dr +

4r

`
du dx+ dx2 (5.19)
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where again we defined “vacuum” as the unique spacetime compatible with our boundary

conditions, regularity and maximal symmetry.

Making a similar analytic continuation as in subsection 4.3 we obtain the line-element

ds2 = K(r) dt2E +
dr2

K(r)
+
(

dy + i(2r/`+ η) dtE
)2

(5.20)

with the Killing norm

K(r) =
4r2

`2
+

4ηr

`
+ 2ar + η2 (5.21)

and the periodic identifications

(tE, y) ∼ (tE − 2πiL, y) ∼ (tE + β, y − iβη̂) (5.22)

where inverse temperature β = T−1 and boost parameter η̂ are given by

T =

√
a2 + 4aη/`

2π
η̂ =

√
a2`2/4 + aη`− a`/2 . (5.23)

In particular, the chemical potential η̂ no longer coincides with the parameter η appearing in

the metric. Note that the limit of infinite AdS radius is smooth and leads to the expressions

in subsection 4.3 for line-element, periodicities, temperature and boost parameter.

Converting the zero-mode solution (5.20)–(5.23) into the Chern-Simons formulation

and using formula (4.34) then yields the entropy

S =
2πL|η̂|
4GN

. (5.24)

where independence of the AdS radius follows from the fact that the connection given

by (5.4a) has no non-zero component along any of the Mn’s. This agrees with the micro-

scopic result (5.17).

The macroscopic free energy compatible with the first law dF = −S dT − P0 dη̂ is

given by

F (T, η̂) = H(S, P0)− TS − P0η̂ = −2πLk|η̂|T + kLη̂2/` (5.25)

where H is given by the zero mode charge T = aη through (4.2), H = kLaη = −F , and

P0 is given by the zero mode charge P = a through the right eq. (3.13), P0 = kLa. The

result (5.25) also coincides with the microscopic one (5.16).

6 Discussion

In this final section we highlight some of the unusual features that we unraveled in our

quest for near horizon holography. We add some comments, explanations and possible

resolutions of the open issues.

6.1 Role of retarded time

Let us summarize and discuss aspects of the dependence of Rindler acceleration on retarded

time. (Note that our whole paper can easily be sign-flipped to advanced time v, which may

be useful in some applications.)
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Rindler acceleration depends on retarded time. We started with the ansatz (1.2)

since we wanted a state-dependent Rindler acceleration to accommodate a state-dependent

temperature. We left it open whether Rindler acceleration a was a function of retarded

time u, spatial coordinate x or both. The Einstein equations forced us to conclude that

Rindler acceleration can depend on retarded time only. We give now a physical reason

why this should be expected. Namely, if the zeroth law of black hole mechanics holds then

surface gravity (and thus Rindler acceleration) must be constant along the horizon. In

particular, it cannot depend on x. If the horizon changes, e.g. due to emission of Hawking

quanta or absorption of matter, then Rindler acceleration can change, which makes the

dependence on u natural, much like the corresponding dependence of Bondi mass on the

lightlike time.

Retarded time is periodic. While many of our results are actually independent of the

choice (2.23), it was still a useful assumption for several purposes, e.g. the introduction of

Fourier modes. For some physical observables it is possible to remove this assumption by

taking the limit L→∞. We shall provide an important example in section 6.2 below.

Boundary currents are integrated over retarded time. If we wanted our theory to

be non-empty we could not use the standard definition of canonical charges integrated over

space, but instead had to consider boundary currents integrated over retarded time. We

have no further comments on this issue, except for pointing out that in four dimensions,

a bilinear in the Bondi news9 is integrated over retarded time in order to yield the ADM

mass. Thus, despite of the clash with the usual Hamilton formulation we believe that we

have made here the most natural choice, given our starting point.

6.2 Rindler entropy?

Let us finally take a step back and try to connect with our original aim of setting up Rindler

holography and microscopically calculating the Rindler entropy [52]. We summarize in

appendix B results for Rindler thermodynamics and Rindler entropy, which match the

near horizon results of BTZ black holes and flat space cosmologies.

We consider a limiting procedure starting with our result for entropy (4.33). We are

interested in a limit where simultaneously the compactification length L in (2.23) tends to

infinity, the boost parameter η tends to zero, the length of the spatial cycle x appears in

the entropy and all unusual factors of i are multiplied by something infinitesimal. In other

words, we try to construct a limit towards Rindler entropy (B.12).

Consider the identifications (4.3) with a complexified β → β0 + 2πiL and split them

into real and imaginary parts:

Re : (u, x) ∼ (u, x+ 2πLη) ∼ (u+ 2πL, x) Im : (u, x) ∼ (u+ iβ0, x− iβ0η) (6.1)

The rationale behind this shift is that the real part of the periodicities untwists. As in

appendix B we call the (real) length of the x-cycle L̃ and thus have the relation

L̃ = 2πLη . (6.2)

9Bondi news is the outgoing flux of gravitational radiation, see e.g. [105] and references therein.
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Therefore, taking the decompactification limit for retarded time, L → ∞, while keeping

fixed L̃ simultaneously achieves the desired η → 0, so that the periodicities (6.1) in this

limit simplify to

Re : (u, x) ∼ (u, x+ L̃) Im : (u, x) ∼ (u+ iβ0, x) (6.3)

which, if interpreted as independent periodicities, are standard relations for non-rotating

horizons at inverse temperature β0 and with a length of the spatial cycle given by L̃. Apart

from taking limits our only manipulation was to shift the inverse temperature β in the

complex plane. Thus, any observable that is independent from temperature should remain

unaffected by such a shift; moreover, the “compactification” of β along the imaginary axis

is then undone by taking the decompactification limit L→∞. We conclude from this that

entropy S from (4.33) should have a smooth limit under all the manipulations above and

hopefully yield the Rindler result (B.12). This is indeed the case:

limL→∞,η→L̃/(2πL)
(

limβ→β0+2πiL S
)

=
L̃

4GN
. (6.4)

Thus, we recover the usual Bekenstein-Hawking entropy law as expected from Rindler

holography. In this work we have also provided a Cardy-like derivation of this result. A

different singular limit was considered in [106], where the Rindler entropy (6.4) was derived

from a Cardy formula for holographic hyperscaling theories.

6.3 Other approaches

Relation to BMS/ultrarelativistic CFT. Using our quadratic map (3.24) of warped

CFT generators to BMS3 generators together with the result (3.23) for the central charge,

we now check what microstate counting would be given by an ultrarelativistic CFT (or

equivalently a Galilean CFT) [20, 21]. Using the “angular momentum” hL = aη, the

“mass” hM = a2/(2k), the central charge cM = 12k with k = 1/(4GN ), and introducing

an extra factor of L to accommodate our periodicity (2.23), the ultrarelativistic Cardy

formula gives

SUCFT = 2πL |hL|
√

cM
24hM

= 2πL |aη|
√
k2

a2
=

2πL|η|
4GN

. (6.5)

This entropy thus coincides with the warped CFT entropy (4.12), and matches the gravity

result (4.33).

Other Rindler-type boundary conditions. While finishing this work the paper [107]

appeared which proposes alternative Rindler boundary conditions, motivated partly by

Hawking’s claim that the information loss paradox can be resolved by considering the

supertranslation of the horizon caused by ingoing particles [108, 109].10 (See also [111,

112].) In [107] the state-dependent functions depend on the spatial coordinate and thus

allow for standard canonical charges. The corresponding Rindler acceleration (and thus

10After posting this paper, a more detailed account of the relationship between near horizon proper-

ties and supertranslations was posted by Hawking, Perry and Strominger [110], where they argue that

supertranslations generate “soft hair” on black holes, where “soft” means “zero energy”.
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temperature) is state-independent and the asymptotic symmetry algebra has no central

extension. We checked that the Rindler acceleration of that paper can be made state-

dependent, but in accordance with our discussion in section 6.1 it cannot depend on the

spatial coordinate; only dependence on retarded/advanced time is possible. Thus, we

believe that if one wants to allow for a state-dependent temperature in Rindler holography

the path described in the present work is unavoidable.

Generalizations. We finish by mentioning a couple of interesting generalizations that

should allow in several cases straightforward applications of our results, like generalizations

to higher derivative theories of (massive or partially massless) gravity, theories that include

matter and theories in higher dimensions. In particular, it would be interesting to generalize

our discussion to topologically massive gravity [113, 114] in order to see how the entropy

computation would be affected.

Acknowledgments

We are grateful to Gaston Giribet for collaboration and for sharing his insights on Rindler

holography during the first two years of this project (August 2013 — June 2015). In

addition, we thank Glenn Barnich, Diego Hofman and Friedrich Schöller for discussions.
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A On representations of the warped Virasoro group

This appendix is devoted to certain mathematical considerations regarding the warped Vi-

rasoro group. They are motivated by the questions encountered in section 3 of this paper,

although they are also interesting in their own right. First, in subsection A.1 we study the

coadjoint representation of the warped Virasoro group, which is needed to derive formu-

las (3.17)–(3.18) for the transformation law of the stress tensor. Then, in subsection A.2

we classify all irreducible, unitary representations of this group with vanishing u(1) level

using the method of induced representations. We assume throughout that the coordinate

u is 2πL-periodic.
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A.1 Coadjoint representation

We call warped Virasoro group, denoted Ĝ, the general central extension of the group

G = Diff+(S1) n C∞(S1), (A.1)

where the notation is the same as in (3.3) up to the replacement of R by S1 [so that in

particular f satisfies property (3.15)]. In this subsection we display an explicit definition of

Ĝ and work out its adjoint and coadjoint representations, using a 2πL-periodic coordinate

u to parametrize the circle. We refer to [104, 115] for more details on the Virasoro group

and its cohomology.

Since the differentiable, real-valued second cohomology space of G is three-

dimensional [104, 116], there are exactly three central extensions to be taken into account

when defining Ĝ; in other words, Ĝ ∼= G×R3 as manifolds. Accordingly, elements of Ĝ are

pairs (f, p) belonging to G, supplemented by triples of real numbers (λ, µ, ν). The group

operation in Ĝ is

(f1, p1;λ1, µ1, ν1) · (f2, p2;λ2, µ2, ν2) = (A.2)

=
(
f1 ◦ f2, p1 + σf1p2;λ1 + λ2 +B(f1, f2), µ1 + µ2 + C(f1, p2), ν1 + ν2 +D(f1, p1, p2)

)
,

where σ is the action (3.4) while B, C and D are non-trivial 2-cocycles on G given expli-

citly by

B(f1, f2) = − 1

48π

∫
S1

ln(f ′1 ◦ f2) d ln(f ′2) , (A.3)

C(f1, p2) = − 1

2π

∫
S1

p2 · d ln(f ′1) , (A.4)

D(f1, p1, p2) = − 1

4π

∫
S1

p1 · d(σf1p2) . (A.5)

In particular, B is the standard Bott-Thurston cocycle [115] defining the Virasoro group.

Adjoint representation and Lie brackets. To write down an explicit formula for

the coadjoint representation of the warped Virasoro group, we first need to work out the

adjoint representation, which acts on the Lie algebra ĝ of Ĝ. As follows from the definition

of Ĝ, that algebra consists of 5-tuples (t, p;λ, µ, ν) where t = t(u) ∂
∂u is a vector field on

the circle, p = p(u) is a function on the circle, and λ, µ, ν are real numbers. The adjoint

representation of Ĝ, which we will denote as Ad, is then defined as

Ad(f,p1;λ1,µ1,ν1)(t, p2;λ2, µ2, ν2) =

=
d

dε

[
(f, p1;λ1, µ1, ν1) ·

(
eεt, εp2; ελ2, εµ2, εν2

)
· (f, p1;λ1, µ1, ν1)−1

]∣∣
ε=0

(A.6)

where eεt is to be understood as an infinitesimal diffeomorphism eεt(u) = u+ εt(u)+O(ε2).

Given the group operation (A.2), it is easy to verify that the central terms λ1, µ1 and ν1 play
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a passive role, so we may simply set them to zero and write Ad(f,p;λ,µ,ν) ≡ Ad(f,p). Using

multiple Taylor expansions and integrations by parts, the right-hand side of (A.6) yields

Ad(f,p1)(t, p2;λ, µ, ν) =

(
Adf t, σfp2 + ΣAdf t p1; λ−

1

24π

2πL∫
0

du t(u){f ;u},

µ− 1

2π

∫
p2 · d ln(f ′) +

1

2π

2πL∫
0

du t(u)

[
(p1 ◦ f)′′ − (p1 ◦ f)′

f ′′

f ′

]∣∣∣∣
u

,

ν − 1

2π

∫
p1 · d(σfp2) +

1

4π

2πL∫
0

du t(u)
[
(p1 ◦ f)′(u)

]2)
, (A.7)

where prime denotes differentiation with respect to u. Let us explain the meaning of the

symbols appearing here:

• The symbol Ad on the right-hand side denotes the adjoint representation of the group

Diff+(S1):

(Adf t) (u) ≡ d

dε

[
f ◦ eεt ◦ f−1(u)

]∣∣
ε=0

= f ′(f−1(u)) · t(f−1(u)) . (A.8)

The far right-hand side of this equation should be seen as the component of a vector

field (Adf t)(u) d
du . Equivalently,

(Adf t) (f(u)) = f ′(u) · t(u) , (A.9)

which is the usual transformation law of vector fields on the circle under diffeomor-

phisms.

• The quantity {f ;u} is the Schwarzian derivative of the diffeomorphism f evaluated

at u:

{f ;u} ≡

[
f ′′′

f ′
− 3

2

(
f ′′

f ′

)2
]∣∣∣∣∣
u

. (A.10)

• The symbol Σ denotes the differential of the action σ of Diff+(S1) on C∞(S1). Ex-

plicitly, if t is a vector field on the circle and if p ∈ C∞(S1),

(Σt p)(u) ≡ − d

dε
[(σeεtp) (u)]|ε=0 = t(u) · p′(u) . (A.11)

It is easily verified, upon considering an infinitesimal diffeomorphism f and an infinites-

imal function p1, that the Lie brackets defined by this adjoint representation coincide with

the standard brackets of a centrally extended warped Virasoro algebra. More precisely,

upon defining the generators

Tn ≡
(
Leinu/L

∂

∂u
, 0; 0, 0, 0

)
Pn ≡

(
0, einu/L; 0, 0, 0

)
(A.12)
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and the central charges

Z1 ≡ (0, 0; 1, 0, 0) Z2 ≡ (0, 0; 0, 1, 0) Z3 ≡ (0, 0; 0, 0, 1) (A.13)

the Lie brackets defined by

[(t1, p1;λ1, µ1, ν1), (t2, p2;λ2, µ2, ν2)] ≡ −
d

dε

[
Ad(eεt1 ,εp1;ελ1,εµ1,εν1)(t2, p2;λ2, µ2, ν2)

]∣∣∣
ε=0

(A.14)

turn out to read

i[Tn, Tm] = (n−m)Tn+m +
Z1

12
n3δn+m,0 (A.15)

i[Tn, Pm] = −mPn+m − iZ2n
2δn+m,0 (A.16)

i[Pn, Pm] = Z3nδn+m,0 . (A.17)

Here we recognize the centrally extended algebra (3.16), up to the fact that the central

charges Zi are written as operators; eventually they will be multiples of the identity, with

coefficients c, κ and K corresponding to Z1, Z2 and Z3 respectively.

Coadjoint representation. The coadjoint representation of Ĝ is the dual of the adjoint

representation, and coincides with the finite transformation laws of the functions T and P

introduced in (3.10) [i.e. the stress tensor and the u(1) current]. Explicitly, the dual ĝ∗ of

the Lie algebra ĝ consists of 5-tuples

(T, P ; c, κ,K) (A.18)

where T = T (u) du ⊗ du is a quadratic density on the circle, P = P (u) du is a one-form

on the circle, and c, κ, K are real numbers — those are the values of the various central

charges. We define the pairing of ĝ∗ with ĝ by11

〈(T, P ; c, κ,K), (t, p;λ, µ, ν)〉 ≡ k

2π

2πL∫
0

du
(
T (u)t(u) +P (u)p(u)

)
+ cλ+κµ+Kν , (A.19)

so that it coincides, up to central terms, with the definition of surface charges (3.11). Note

that here c is the usual Virasoro central charge, K is the u(1) level and κ is the twist

central charge appearing in (3.16). The coadjoint representation Ad∗ of Ĝ is defined by

Ad∗(f,p)(T, P ; c, κ,K) ≡ (T, P ; c, κ,K) ◦Ad(f,p)−1 .

Using the explicit form (A.7) of the adjoint representation, one can read off the transfor-

mation law of each component in (A.18). The result is

Ad∗(f,p)(T, P ; c, κ,K) =
(

Ad∗(f,p)T,Ad∗(f,p)P ; c, κ,K
)

(A.20)

11As usual [115, 117], what we call the “dual space” here is really the smooth dual space, i.e. the space

of regular distributions on the space of functions or vector fields on the circle.
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(i.e. the central charges are left invariant by the action of G), where Ad∗(f,p)T and Ad∗(f,p)P

are a quadratic density and a one-form on the circle (respectively) whose components,

evaluated at f(u), are(
Ad∗(f,p)T

)
(f(u)) =

1

(f ′(u))2
×

×
[
T (u) +

c

12k
{f ;u} − P (u)(p ◦ f)′(u)− κ

k
(p ◦ f)′′(u) +

K

2k
((p ◦ f)′(u))2

]
(A.21)

and (
Ad∗(f,p)P

)
(f(u)) =

1

f ′(u)

[
P (u) +

κ

k

f ′′(u)

f ′(u)
− K

k
(p ◦ f)′(u)

]
. (A.22)

These are the transformation laws displayed in (3.17)–(3.18), with Ad∗(f,p)T ≡ T̃ and

Ad∗(f,p)P ≡ P̃ . They reduce to the transformations of a standard warped CFT [86] for

κ = 0. In the Rindler case, however, c = K = 0 and κ = k is non-zero.

The transformation law of the function η(u) in (3.6) under finite asymptotic symmetry

transformations can be worked out in a much simpler way. Indeed, it is easily verifed

that the left formula in (3.6) reproduces (2.30) for infinitesimal transformations, and is

compatible with the group operation (3.5) of the warped Virasoro group. One can also

check that the transformation laws (3.19) follow from (3.6) and the definition (3.10).

A.2 Induced representations

As indicated by the imaginary vacuum values (4.9) (which are actually fairly common in

the world of warped CFT’s [86]), the asymptotic symmetry group is not represented in a

unitary way in quasi-Rindler holography. Nevertheless, since the standard interpretation

of symmetries in quantum mechanics requires unitarity [118], it is illuminating to study

unitary representations of the warped Virasoro group. Here we classify such representations

for the case of vanishing Kac-Moody level K, but non-vanishing twist κ. As in the case

of the Euclidean, Poincaré or BMS groups, the semi-direct product structure (A.1) [or

similarly (3.9)] is crucial; indeed, all irreducible unitary representations of such a group

are induced à la Wigner [119–122]. We refer to [123, 124] for more details on induced

representations and we mostly use the notations of [26–28].

A lightning review of induced representations. The construction of induced rep-

resentations of the warped Virasoro group Ĝ with vanishing u(1) level follows the same

steps as for the Poincaré group [122, 125] or the BMS3 group [26, 27]. One begins by

identifying the dual space of the Abelian group C∞(S1), which in the present case consists

of currents P (u) du. [The elements of this dual space are typically called “momenta”, and

our notation P (u) is consistent with that terminology.] One then defines the orbit OP and

the little group GP of P = P (u) du as

OP ≡
{
f · P | f ∈ Diff+(S1)

}
and GP ≡

{
f ∈ Diff+(S1) | f · P = P

}
, (A.23)

where the action of f on P is given by (3.20). Then, given an orbit OP and an irreducible,

unitary representation R of its little group GP in some Hilbert space E , the corresponding
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induced representation T acts on square-integrable wave functions Ψ : OP → E : q 7→ Ψ(q)

according to [123, 124]

(T [(f, p)] Ψ) (q) ≡
[
ρf−1(q)

]1/2
ei〈q,p〉R

[
g−1q fgf−1·q

]
Ψ
(
f−1 · q

)
, (A.24)

where (f, p) belongs to Diff+(S1) n C∞(S1). Let us briefly explain the terms of this

equation:

• The real, positive function ρf on OP denotes the Radon-Nikodym derivative of the

measure used to define the scalar product of wavefunctions. It is an “anomaly” that

takes the value ρf = 1 for all f when the measure is invariant, but otherwise depends

on f and on the point q at which it is evaluated. In simple cases (e.g. the Poincaré

group), the measure is invariant and ρf (q) = 1 for all f and all q ∈ OP .

• The operator R
[
g−1q fgf−1·q

]
is a “Wigner rotation”: it is the transformation corre-

sponding to f in the space of spin degrees of freedom of the representation T . We

denote by gq the “standard boost” associated with q, that is, a group element such

that gq · P = q. For scalar representations, R is trivial and one may simply forget

about the Wigner rotation.

The classification of irreducible, unitary representations of the central extension of

Diff+(S1) n C∞(S1) with vanishing Kac-Moody level then amounts to the classifica-

tion of all possible orbits (A.23) and of all unitary representations of the corresponding

little groups.

Induced representations of Ĝ. Our goal now is to classify all irreducible, unitary

representations of the warped Virasoro group with vanishing Kac-Moody level, under the

assumption that there exists a quasi-invariant measure on all the orbits (see [126–129] for

the construction of such measures). According to the lightning review just displayed, this

amounts to the classification of orbits, as defined in (A.23). We start with two preliminary

observations:

1. For any constant current P (u) = P0 = const, the little group GP consists of rigid

time translations f(u) = u+ u0.

2. The charge Q[P ] defined as

Q[P ] ≡ k

2π

2πL∫
0

duP (u) (A.25)

is constant along any coadjoint orbit of the warped Virasoro group, regardless of

the values of the central charges c, κ and K. In other words, for any current P ,

any (orientation-preserving) diffeomorphism f of the circle and any function p, the

zero-mode of P is left invariant by the coadjoint action:

Q
[
Ad∗(f,p)P

]
= Q[P ], (A.26)
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where Ad∗(f,p)P is given by (3.18). This result holds, in particular, in the case c =

K = 0 that we wish to study, and corresponds physically to the fact that the average

value of acceleration is invariant under asymptotic symmetries.

The proof of both results is straightforward, as they can be verified by brute force. In

fact, they follow from a stronger statement: it turns out that the orbits OP foliate the

space of currents into hyperplanes of constant Q[P ], so that any current P (u) can be

brought to a constant by acting with a diffeomorphism. To prove this, note that constancy

of Q[P ] implies that that constant, if it exists, coincides with the zero-mode P0 of P (u).

The question thus boils down to whether or not there exists an orientation-preserving

diffeomorphism f such that

(f · P )|f(u)
(3.6)
=

1

f ′(u)

[
P (u) +

κ

k

f ′′(u)

f ′(u)

]
!

= P0 . (A.27)

This condition is equivalent to an inhomogeneous first-order differential equation for 1/f ′,

whose solution is

1

f ′(u)
= A exp

k
κ

u∫
0

dv P (v)

− k

κ
P0

u∫
0

dt exp

k
κ

u∫
t

dv P (v)

 (A.28)

where A is a real parameter. Since u is assumed to be 2πL-periodic, this function must

be 2πL-periodic as well. This selects a unique solution (and such a solution exists for

any value of P0), meaning that, for any P (u), there always exists a diffeomorphism f of

the circle such that f · P be a constant;12 furthermore, that diffeomorphism is uniquely

specified by P (u) up to a rigid time translation.

This proves that all orbits OP are hyperplanes specified by the value of the

charge (A.25), in accordance with the fact that P0 is a Casimir operator in (3.16). One can

then apply the usual machinery of induced representations to the warped Virasoro group,

and compute, for instance, the associated characters along the lines of [28]; however, as

the interpretation of these characters in the present context is unclear, we refrain from

displaying them.

Physical properties of unitary representations. We have just seen that unitary

representations of the warped Virasoro group [with vanishing u(1) level] can be classified

according to the possible values of the Casimir operator P0 in (3.16). Accordingly, the

orbits (A.23) are affine hyperplanes with constant zero-modes embedded in the space of

currents P (u). In particular, each orbit contains exactly one constant representative. The

physical meaning of this statement is that any (generally time-dependent) acceleration

a(u) can be brought to a constant, a0, by using a suitable reparametrization of time that

12An alternative way to prove the same result is to recall the modified Sugawara construction (3.21), by

which a coadjoint orbit of the Virasoro group with non-negative energy is associated with each orbit OP .

Since the only Virasoro orbits with non-negative energy are orbits of constants, we know that there always

exists a diffeomorphism f that brings a given Sugawara stress tensor (3.21) into a constant, which in turn

brings the corresponding current P to a constant.
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preserves 2πL-periodicity. Furthermore, a0 coincides with the Fourier zero-mode of a(u).

Note that, with the requirement of 2πL-periodicity, it is no longer true that any time-

dependent acceleration a(u) can be mapped on ã = 0 because the diffeomorphisms defined

by (3.7) generally do not preserve that requirement.

Having classified the orbits, we know, in principle, the irreducible unitary represen-

tations of the warped Virasoro group at vanishing Kac-Moody level. In three spacetime

dimensions, these representations describe the Hilbert space of metric fluctuations around

the background specified by the orbit OP and the representation R [26, 27, 29, 101, 130],

as follows from the fact that the phase space coincides with the coadjoint representation

of the asymptotic symmetry group. For instance, an induced representation of Ĝ specified

by an orbit OP and the trivial representation of the little group gives the Hilbert space of

metric fluctuations around the background

ds2 = −2P (u) r du2 − 2 du dr + dx2. (A.29)

Here u is still understood as a 2πL-periodic coordinate; in particular, the solution at a = 0

is not Minkowski spacetime because of that identification.

Note that, in any unitary representation of the type just described, the eigenvalues of

the Hamiltonian T0 are unbounded from below (and from above). There is thus a trade-off

between unitarity and boundedness of energy: if we insist that the representation be uni-

tary, then it is a (direct integral of) induced representation(s), and energy is unbounded

both from below and from above; conversely, if we insist that energy be bounded from

below, then the asymptotic symmetry group cannot act unitarily on the Hilbert space

of the putative dual theory. This property has actually been observed in representations

of the Galilean Conformal Algebra in two dimensions, gca2, and its higher-spin exten-

sions [24, 25, 131]. Indeed, when T0 is interpreted as the Hamiltonian, demanding that

energy be bounded from below amounts to considering highest-weight representations of

the symmetry algebras (3.14) or (3.25), the highest weight being the lowest eigenvalue of

T0 in the space of the representation. This representation is easily seen to be non-unitary

when the central charge of the mixed commutator is non-zero. We stress, however, that in

the more common interpretation of the warped Virasoro group [86] where P0 plays the role

of the Hamiltonian, there is no such conflict between unitarity and boundedness of energy.

B Rindler thermodynamics

We have not found a holographic setup that leads to Rindler thermodynamics, but it

is still of interest in its own right to consider it. In this appendix we describe Rindler

thermodynamics in a non-holographic context and show that it recovers the near horizon

thermodynamics of BTZ black holes and flat space cosmologies, in the sense that temper-

atures and entropies agree with each other. If a consistent version of Rindler holography

exists, it should reproduce the results of this appendix (see also [52]).

The main change as compared to the main text is that the periodicities in the Euclidean

coordinates are no longer given by (4.27), but instead by

(tE, y) ∼ (tE + β, y − iβη) ∼ (tE, y + L̃) (B.1)
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where L̃ is now the periodicity of the spatial coordinate y and β, η coincide with the

quasi-Rindler parameters. So in Rindler thermodynamics we do not identify retarded time

periodically, which is the key difference to quasi-Rindler thermodynamics.

B.1 Rindler horizon and temperature

The Euclidean metric (4.26) has a center at ρ = 0, corresponding to the Rindler horizon

in Lorentzian signature. In order for this center to be smooth, the Euclidean time tE ∼
tE + β has to have a periodicity β = 2π/a. Interpreting the inverse of this periodicity as

temperature yields the expected Unruh temperature [50, 51]

T =
a

2π
. (B.2)

The same result is obtained from surface gravity. Note that the Unruh temperature (B.2)

is independent of the boost parameter η.

There is yet another way to determine the Unruh temperature, namely starting

from rotating (non-extremal) BTZ and taking the near horizon limit. The rotating BTZ

metric [4, 5]

ds2 = −
(r2 − r2+)(r2 − r2−)

`2r2
dt2 +

`2r2

(r2 − r2+)(r2 − r2−)
dr2 + r2

(
dϕ− r+r−

`r2
dt
)2

(B.3)

leads to a Hawking temperature

TH =
r2+ − r2−
2πr+`2

. (B.4)

Now take the near horizon limit by defining ρ = (r2−r2+)/(2r+) and dropping higher order

terms in ρ, which gives

ds2 = −2aρ dt2 +
dρ2

2aρ
+
(

dx+ η dt
)2

(B.5)

with

a =
r̂2+ − r̂2−/`2

r̂+
, η = −r̂−, x = r̂+`

2ϕ, (B.6)

where r̂+ = r+/`
2 and r̂− = r−/`. Note that in the limit of infinite AdS radius, ` → ∞,

we keep fixed the rescaled parameters r̂±, and the coordinate x decompactifies. [We then

recompactify by imposing (B.1).] The Hawking temperature TH can be rewritten as

TH =
r̂2+ − r̂2−/`2

2πr̂+
=

a

2π
(B.7)

and thus coincides with the Unruh temperature (B.2). Besides verifying this expected

result, the calculation above provides expressions for the Rindler parameters a and η in

terms of BTZ parameters r±, which can be useful for other consistency checks as well.

Essentially the same conclusion holds for flat space cosmologies [6, 7], whose metric

reads

ds2 = r2+

(
1− r20

r2

)
dt2 − dr2

r2+

(
1− r20

r2

) + r2
(

dϕ− r+r0
r2

dt
)2

. (B.8)
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In the near horizon approximation, r2 = r20 + 2r0ρ, we recover the line-element (B.5) with

a = −
r2+
r0

η = −r+ x = r0ϕ . (B.9)

The cosmological temperature T = r2+/(2πr0) again coincides with the Unruh temper-

ature (B.2), up to a sign. This sign is explained by inner horizon black hole mecha-

nics [132, 133].

The fact that Hawking/cosmological temperatures coincide with the Rindler temper-

ature is not surprising but follows from kinematics. What is less clear is whether or not

extensive quantities like free energy or entropy coincide as well. We calculate these quan-

tities in the next two subsections.

B.2 Rindler free energy

Since we have no Rindler boundary conditions we do not know what the correct on-shell

action is, as we have no way of checking the variational principle. However, since the zero-

mode solutions of quasi-Rindler holography coincide with the zero-mode solutions used in

Rindler thermodynamics it is plausible that the action (2.20) can be used again. We base

our discussion of free energy and entropy on this assumption.

Evaluating the full action (2.20) on-shell and multiplying it by temperature T = β−1

yields the free energy,

F = − T

8πGN

L̃∫
0

dy

β∫
0

dtE
√
γ K

∣∣
ρ→∞ . (B.10)

The quantity L̃ denotes the range of the coordinate y and physically corresponds to the

horizon area. If L̃ tends to infinity we simply define densities of extensive quantities like

free energy or entropy by dividing all such expressions by L̃. Insertion of the boosted

Rindler metric (4.26) into the general expression for free energy (B.10) yields

F = − aL̃

8πGN
= − T L̃

4GN
. (B.11)

It is worthwhile mentioning that Rindler free energy (B.11) does not coincide with the

corresponding BTZ or FSC free energy. Using the identifications (B.6) and (B.9) we find

in both cases FBTZ = FFSC = −T L̃/(8GN ), which differs by a factor 1/2 from the Rindler

result (B.11). Nevertheless, as we shall demonstrate below, the corresponding entropies

do coincide.

B.3 Rindler entropy

Our result for free energy (B.11) implies that Rindler entropy obeys the Bekenstein-

Hawking area law,

S = −dF

dT
=

L̃

4GN
. (B.12)
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Note that entropy does not go to zero at arbitrarily small temperature. However, in that

regime one should not trust the Rindler approximation since the T → 0 limit is more

adequately modelled by extremal horizons rather than non-extremal ones.

The result for entropy (B.12) can be obtained within the first order formulation as

well. Applying the flat space results of [44, 45] to the present case yields

S =
k

2π

β∫
0

du

L̃∫
0

dx 〈AuAx〉 =
k

2π
L̃ β 〈auax〉 = k L̃ . (B.13)

Relating the Chern-Simons level with the inverse Newton constant, k = 1/(4GN ) then

reproduces precisely the Bekenstein-Hawking area law (B.12).

Interestingly, Rindler entropy (B.12) also follows from near horizon BTZ entropy. The

latter is given by

SBTZ =
2πr+
4GN

=
2πr̂+`

2

4GN
=

L̃

4GN
. (B.14)

In the last equality we identified the length of the x-interval using the last relation (B.6)

together with ϕ ∼ ϕ+ 2π. Thus, the near horizon BTZ entropy coincides with the Rindler

entropy, which provides another consistency check on the correctness of our result.

The same conclusions hold for the entropy of flat space cosmologies,

SFSC =
2πr0
4GN

=
L̃

4GN
. (B.15)

In the last equality we identified the length of the x-interval using the last relation (B.9)

together with ϕ ∼ ϕ+ 2π.

The results above confirm that entropy is a near-horizon property, whereas free energy

and the conserved charges are a property of the global spacetime.
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[4] M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time,

Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].
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