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1 Introduction

The classical conformal blocks arise in many parts of mathematical physics such as the

uniformization problem, the Fuchsian monodromy problem, the AGT correspondence with

four-dimensional supersymmetric gauge theories, etc. Quite recently, the holographic inter-

pretation of the classical conformal blocks in the context of AdS3/CFT2 correspondence was

found. It has been shown that the classical conformal blocks considered in a special pertur-

bative regime can be described as particular geodesic graphs in the conical singularity/BTZ

geometry [1–6].1 The main idea behind this interpretation is that in the semiclassical limit

two fields in the correlation function with heavy conformal dimensions produce the bulk

geometry while other fields with light conformal dimensions correspond to massive point

particles propagating in this background. It follows that the corresponding mechanical

action is identified with the classical conformal block function.

1A recent interesting development has been the study of the bulk diagram technique in the presence of the

defects [7–9], the semiclassical bootstrap [10], and conformal blocks beyond the semiclassical limit [11, 12].
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The holographic interpretation of the conformal blocks is rather new result which

certainly brings the AdS3/CFT2 correspondence to the new conceptual level of under-

standing.2 We recall that along with the characters of the symmetry algebra, conformal

blocks represent the main kinematical ingredients of any CFT while the dynamical prop-

erties of the theory encoded in the structure constants of the operator algebra. Therefore,

the holographic interpretation of conformal blocks should be supplemented by studying the

modular properties in the bulk gravity theory (for a discussion see, e.g., [14]). There are,

of course, many open problems of both conceptual and technical nature. For example, it is

not clear how to systematically analyze conformal blocks with different portions of heavy

and light fields, where heavy fields are relevant, roughly speaking, for producing AdS-like

geometry in the bulk, while light fields give rise to the dynamical content of the gravita-

tional theory. This question brings us to the study of n-point correlation functions and

respective perturbative classical blocks with any number of fields n. Naively, heavy fields

could be holographically described as a particular configuration of a number of BTZ black

holes. However, it seems that a multi-black hole solution in AdS3 gravity [15] cannot be

directly considered as a static background for propagating point particles associated with

external/intermediate fields of conformal blocks. From the CFT side our understanding is

hampered by the absence of explicit results for classical n-point conformal blocks.

In this paper we elaborate on the recent idea by Fitzpatrick, Kaplan, and Walters

(FKW) [5] about the connection between the classical conformal blocks considered in the

special perturbative regime and the global slp2,Cq conformal blocks. FKW showed that

the two types of the conformal blocks turn out to be related through the intermediate

stage of the so-called heavy-light semiclassical limit. The point is that the global block can

be explicitly calculated and thus the heavy-light limit allows one to find the perturbative

classical blocks. Here we discuss the application of these ideas to the computation of the 5-

point classical conformal blocks as a first step towards the higher-point case. In particular,

using the FKW procedure we reproduce the previously found expression for the 5-point

conformal classical block obtained within the monodromy approach [16].

To compute the 5-point global block we use the projection technique and find a particu-

lar representation of the global block function in terms of Horn hypergeometric series of two

variables. As a complementary method, we use the Casimir operator approach originally

elaborated in the 4-point case in D dimensions by Dolan and Osborn [17]. In this paper

we reformulate the approach in terms of CFT2 notation and generalize beyond the 4-point

case. In particular, we check that the 5-point global block function solves the system of two

partial differential equations which are Casimir equations in two intermediate channels.

The paper is organized as follows. In section 2 we explicitly compute the 5-point global

block using the projection technique. In section 3 we formulate the Casimir equations in

the intermediate channels. In section 4 we discuss the classical and heavy-light blocks. In

section 5 we consider the FKW procedure in the 5-point case. Finally, in section 6 we give

our conclusions. Appendix A contains technical details.

2The analogous interpretation can also be achieved in d dimensions by virtue of the geodesic Witten

diagrams [13].
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2 Global conformal block

The Virasoro algebra contains the maximal finite-dimensional subalgebra slp2,Cq Ă V ir of

projective conformal transformations which will be further referred to as the global confor-

mal algebra. Let Lm, m P Z be the V ir basis elements, then the slp2,Cq basis elements are

Lm with m “ 0,˘1. It is crucial that the global conformal algebra is also a natural trunca-

tion of Virasoro algebra in the infinite central charge limit. Indeed, rescaling Lm Ñ Lm{c,

|m| ą 1 and taking the cÑ8 we are left with the global conformal algebra only

rL˘1, L0s “ ˘L˘1 , rL1, L´1s “ 2L0 . (2.1)

In this section we consider correlation functions invariant under the global conformal al-

gebra. A field φ “ φpzq is conformal if it satisfies the slp2,Cq highest-weight relations

L1φ “ 0, and L0φ “ ∆φ, where ∆ is the conformal dimension. The same relations are

assumed to be satisfied in the anti-holomorphic sector. Fields Lm´1φ for m P N0 form an

slp2,Cq module.

Let us consider 5-point correlation function of the primary fields φipziq with dimensions

∆i, i “ 1, . . . , 5. Using the projective invariance one can fix its holomorphic dependence

as follows3

xφ1pz1q ¨ ¨ ¨φ5pz5qy “ Gpu, vq
5
ź

iăj

z
´mij
ij , (2.2)

where function Gpu, vq depends on two projective invariants

u “
z12z35

z13z25
, v “

z12z45

z14z25
, (2.3)

and

m12 “ ∆1 `∆2 ´∆3 ´∆4 ´∆5 , m13 “ 2∆3 , m14 “ 2∆4 ,

m15 “ ∆1 ´∆2 ´∆3 ´∆4 `∆5 , m25 “ ´∆1 `∆2 `∆3 `∆4 `∆5 ,
(2.4)

while m23 “ m24 “ m34 “ m35 “ m45 “ 0. Fixing z1 “ 8, z2 “ 1, z5 “ 0 we find that

u “ z3 and v “ z4. The exponents are chosen so that the 4-point function is directly

obtained from (2.2) by taking ∆3 “ 0 along with BG{Bu “ 0. Indeed, in this case the

right-hand side of (2.2) does not depend on z3, while the projective invariance remains

intact. The same is true when going further to the 3-point function: taking ∆3 “ ∆4 “ 0

along with BG{Bu “ BG{Bv “ 0 gives the standard Polyakov expression.

2.1 Projection technique

To compute the global conformal block we look at the correlation function as an expectation

value of the primary fields φ2pz2q, φ3pz3q, φ4pz4q inserted between initial and final states

φ1pz1q, φ5pz5q. Using projective invariance to fix z1 “ 8, z2 “ 1, and z5 “ 0, we have

lim
RÑ8

R2∆1 xφ1pRqφ2p1qφ3pz3qφ4pz4qφ5p0qy “ x∆1|φ2p1qφ3pz3qφ4pz4q|∆5y . (2.5)

3In what follows we omit anti-holomorphic dependence.
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8,∆1

1,∆2 z3,∆3 z4,∆4

0,∆5

r∆1
r∆2

Figure 1. Comb diagram related to the 5-point conformal block. The wavy lines correspond to the

contributions of the two highest weight representations, r∆1 and r∆2, in the intermediate channels.

A projector in the Verma module related to the primary field φ
r∆

is given by

P
r∆
“

8
ÿ

m“0

Lm´1|
r∆y xr∆|Lm1

xr∆|Lm1 L
m
´1|

r∆y
, P2

r∆
“ P

r∆
. (2.6)

Matrix element (2.5) with P
r∆1

and P
r∆2

inserted as Gpz3, z4q “ x∆1|φ2p1qP
r∆1
φ3pz3q

P
r∆2
φ4pz4q|∆5y defines the conformal block function of interest

Gpz3, z4q “

8
ÿ

k,m“0

x∆1|φ2p1qL
k
´1|

r∆1y xr∆1|L
k
1φ3pz3qL

m
´1|

r∆2y xr∆2|L
m
1 φ4pz4q|∆5y

k!m! p2r∆1qk p2r∆2qm
. (2.7)

The corresponding block diagram is depicted on the figure 1.

All matrix elements in (2.7) can be calculated explicitly (see appendix A). We find that

Gpz3, z4q “ z
r∆1´∆3´r∆2
3 z

r∆2´∆4´∆5
4 F p∆1,2,3,4,5, r∆1,2|q1, q2q , (2.8)

where new variables q1 “ z3 and q2 “ z4{z3 are introduced and

F p∆1,2,3,4,5, r∆1,2|q1, q2q “

8
ÿ

k,m“0

Fk,m q
k
1 q

m
2 , (2.9)

with the expansion coefficients

Fk,m “
1

k!m!

pr∆1 `∆2 ´∆1qk pr∆2 `∆4 ´∆5qm

p2r∆1qk p2r∆2qm
τk,m , (2.10)

where the function τk,m is given by

τk,m “ k!m!

minrk,ms
ÿ

p“0

p2r∆2`m´1qppqpr∆2`∆3´ r∆1qm´ppr∆1`∆3´ r∆2`p´mqk´p
p!pk´pq!pm´pq!

. (2.11)
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First expansion coefficients (up to the second order) of the global block are

F p∆1,2,3,4,5, r∆1,2|q1, q2q “ 1` (2.12)

`
p´∆1 `∆2 ` r∆1qp∆3 ` r∆1 ´ r∆2q

2r∆1

q1 `
p∆4 ´∆5 ` r∆2qp∆3 ´ r∆1 ` r∆2q

2r∆2

q2

`
p´∆1 `∆2 ` r∆1qp1´∆1 `∆2 ` r∆1qp∆3 ` r∆1 ´ r∆2qp1`∆3 ` r∆1 ´ r∆2q

4r∆1p1` 2r∆1q
q2

1

`
p∆1 ´∆2 ´ r∆1qp∆4 ´∆5 ` r∆2qp∆3 ´∆2

3 ´
r∆1 ` r∆2

1 ´
r∆2 ´ 2r∆1

r∆2 ` r∆2
2q

4r∆1
r∆2

q1q2

`
p∆4 ´∆5 ` r∆2qp1`∆4 ´∆5 ` r∆2qp∆3 ´ r∆1 ` r∆2qp1`∆3 ´ r∆1 ` r∆2q

4r∆2p1` 2r∆2q
q2

2 ` . . . .

We note that global block (2.9) has the finite Laurent part in z3. After changing to new

variables q1 and q2 poles in z3 disappear making the global block a formal power series.

The upper limit minrk,ms in (2.11) can be conveniently implemented using the

Pochhammer symbols of negative arguments, i.e. p´mqs and p´kqs, where the summa-

tion index s “ 0, 1, 2, . . .. It follows that the sum in (2.11) can be represented in terms of

the generalized hypergeometric function at 1 along with the gamma-function product,

τk,m “
Γp∆3 ´ r∆1 ` r∆2 `mqΓp∆3 ` r∆1 ´ r∆2 ` k ´mq

Γp∆3 ´ r∆1 ` r∆2qΓp∆3 ` r∆1 ´ r∆2 ´mq

ˆ 3F2p´k,´2r∆2´m`1,´m;´∆3` r∆1´ r∆2´m`1,∆3` r∆1´ r∆2´m|1q . (2.13)

2.2 Horn’s classification

Using the expansion coefficients of the global block Fk,m (2.10) we can define the ratios

fk,m “ Fk`1,m{Fk,m and gk,m “ Fk,m`1{Fk,m, which are rational functions of k and m.

The functions identically satisfy the relation fk,mgk`1,m “ fk,m`1gk,m, which can be taken

as the definition of a hypergeometric power series in two variables [18]. According to the

Horn’s classification, global block (2.9) belongs to the trivial class of double hypergeometric

series in the sense that its expansion coefficients are represented as Fk,m „ γk,mRk,m, where

γk,m is a particular gamma-function product, while Rk,m is some fixed rational function

of k and m (see [18] for more details). The gamma-function product is called trivial if

it is expressed either through coefficients of a single variable power series or through a

product of two hypergeometric series, each in one variable. We see that the conformal

block coefficients (2.10) are indeed of this form with trivial gamma-function product.

It follows that the global block can be represented as

F p∆1,2,3,4,5, r∆1,2|q1, q2q “ T
∆3,r∆1,2

pN1, N2q (2.14)

ˆ

”

1F1pr∆1 `∆2 ´∆1; 2r∆1|q1q 1F1pr∆2 `∆4 ´∆5, 2r∆2|q2q

ı

,

where T
∆3,r∆1,2

pN1, N2q is a rational function of Euler operators Ni “ qiB{Bqi giving rise to

coefficients (2.11).
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Note that the confluent hypergeometric (Kummer’s) function with parameters as

in (2.14) defines the OPE of two conformal fields (see, e.g., [19]). Then the Horn’s rep-

resentation (2.14) is quite natural as the 5-point conformal block comb diagram shown in

figure 1 can be cut into three pieces: two outer vertices each with two external fields and one

intermediate field, and an inner vertex with one external field and two intermediate fields.

Then the two confluent functions 1F1 in (2.14) correspond to the two outer vertices, while

T corresponds to the intermediate vertex. This structure is common for any point case.

2.3 4-point global block

As already discussed, the 4-point correlation function can be obtained from (2.2) simply by

taking one of operators to be a unit operator, for example, φ3pz3q “ I, whence ∆3 “ 0. In

this case the fusion rules for the corresponding conformal block say that the intermediate

conformal dimensions must be equated, r∆1 “ r∆2. We find

F p∆1,2,3,4,5, r∆1,2|q1, q2q

ˇ

ˇ

ˇ∆3“0
r∆1“r∆2

“ 2F1pr∆1 `∆2 ´∆1, r∆1 `∆4 ´∆5, 2r∆1|q1q2q , (2.15)

where the right-hand-side is simply the global 4-point block depending on q1q2 :“ z4 [20].

Indeed, setting ∆3 “ 0 and r∆1 “ r∆2 we can show that τk,m “ δkmpm!q2k!p2r∆1qm, and

therefore (2.9) is reduced to the hypergeometric series with parameters as in (2.15).

2.4 Vacuum global blocks

If one of intermediate fields is a unit field, then we arrive at the vacuum conformal block.

In the 4-point case the vacuum block is obtained by setting the intermediate dimension

∆ “ 0. It follows that the 4-point vacuum global block (2.15) is trivial,

F p∆1,2,3,4,∆|zq
ˇ

ˇ

ˇ

∆“0
“ 2F1p∆2 ´∆1,∆3 ´∆4, 0|zq “ 1 . (2.16)

In the 5-point case there are two vacuum blocks corresponding either to r∆1 “ 0 or to
r∆2 “ 0. In what follows we find that they are given by hypergeometric functions evaluated

at particular values of parameters and reduced to power functions. Indeed, in this case

the intermediate channel states form the trivial slp2,Cq module and therefore the 5-point

comb diagram is disconnected. The corresponding 5-point correlator function splits into

2-point and 3-point correlators given by power functions.

Vacuum block I. In this case r∆2 “ 0 and r∆1 “ ∆3, where the second condition is

guaranteed by the fusion rules for the intermediate vertex. Then,

Fk,m “
pr∆1 `∆2 ´∆1qk pr∆2 `∆4 ´∆5qm

p2r∆1qk p2r∆2qm
τk,m , (2.17)

where coefficients τk,m are read off from (2.11), namely τk,m “ δm,0m!p2r∆1qk. It follows

that the type I vacuum global block is

F Ivacp∆1,∆2,∆3|q1q “ 2F1p∆3 `∆2 ´∆1, 2∆3, 2∆3|q1q ” 1F0p∆1 ´∆2 ´∆3|q1q

“ p1´ q1q
∆1´∆2´∆3 .

(2.18)
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Vacuum block II. In this case r∆1 “ 0 and r∆2 “ ∆3, where the second condition is

guaranteed by the fusion rules for the intermediate vertex. Then,

Fk,m “
p∆2 ´∆1qk p∆3 `∆4 ´∆5qm

p2r∆1qk p2∆3qm
τk,m , (2.19)

and the coefficient τk,m can be read off from (2.11). We note that in order to avoid a pole

we have to set k “ 0 in the above formula. In this case the coefficient τ0,m “ p2∆3qm, and

finally we arrive at the type II vacuum global block

F IIvacp∆3,∆4,∆5|q2q “ 2F1p∆3 `∆4 ´∆5, 2∆3, 2∆3|q2q ” 1F0p∆5 ´∆4 ´∆3|q2q

“ p1´ q2q
∆5´∆4´∆3 .

(2.20)

2.5 Small ∆3 expansion

In our further analysis we are especially interested in the 5-point conformal block with

particular dimensions

r∆1 “ r∆2 , and ∆1 “ ∆2 , ∆4 “ ∆5 . (2.21)

In section 4 we treat 5-point functions as a deformation of 4-point functions with respect to

a small conformal dimension of the third external field [6, 16]. The deformation procedure

is consistent provided the intermediate dimensions are set equal to each other as in the

first constraint in (2.21). Then, the intermediate vertex in the limit ∆3 “ 0 is compatible

with the fusion rules. The last two constraints in (2.21) are for convenience only.

The global block with dimensions (2.21) reads

F p∆1,3,4, r∆1|q1, q2q “

8
ÿ

k,m“0

pr∆1qk pr∆1qm

p2r∆1qk p2r∆1qm

ˆ

minrk,ms
ÿ

p“0

p2r∆1 `m´ 1qppqp∆3qm´pp∆3 ` p´mqk´p
p!pk ´ pq!pm´ p!q

qk1 q
m
2 , (2.22)

and the small ∆3 expansion is naturally given by

F p∆1,3,4, r∆1|q1, q2q “ 2F1pr∆1, r∆1, 2r∆1|q1q2q `

8
ÿ

s“1

∆s
3 Cpsqp∆1,4, r∆1|q1, q2q , (2.23)

where the leading term is identified with the 4-point global block (2.15), while Cpsq are

sub-leading corrections that can be directly read off from (2.22) as particular power series.

It would be interesting to find the corrections in a closed form.4

4Compare with the 5-point heavy-light conformal block expanded up to the forth order in classical

dimension ε3 “ ∆3{c (4.2).
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3 Global conformal block: the Casimir equations

The conformal blocks are universal functions which are completely defined by the conformal

Virasoro symmetry and apart form the central charge (which in our case goes to infinity)

depend only on the conformal dimensions of the field insertions. In the case of global

blocks the conformal algebra is reduced to projective slp2,Cq subalgebra. It follows that

the global conformal blocks can be defined as eigenfunctions of the slp2,Cq Casimir operator

with eigenvalues given by the intermediate conformal dimensions. In the 4-point case the

corresponding Casimir equation reads
”

C2 ` 2∆p∆´ 1q
ı

xφ1pz1q ¨ ¨ ¨φ4pz4qy “ 0 , (3.1)

where C2 is the second-order differential Casimir operator, and ∆ is the intermediate con-

formal dimension [17] (for review see also [21]). The correlation function in (3.1) should

be understood as being restricted onto the intermediate channel thereby giving the corre-

sponding conformal block.

In what follows we introduce the Casimir equations in the 5-point case. To this end,

we recall that the global Ward identities fixing correlation function (2.2) read

”

Gp1qα ` . . .`Gp5qα

ı

xφ1pz1q ¨ ¨ ¨φ5pz5qy “ 0 , α “ 0,˘1 , (3.2)

where the symmetry generators given by G
piq
α “ pzα`1

i Bi ` pα ` 1q∆iz
α
i q form the slp2,Cq

algebra

rG
piq
´1, G

piq
0 s “ G

piq
´1 , rG

piq
´1, G

piq
1 s “ 2G

piq
0 , rG

piq
0 , G

piq
1 s “ G

piq
1 , (3.3)

cf. (2.1), while rG
piq
α , G

pjq
β s “ 0 for i ‰ j. The slp2,Cq Casimir operator is given by

C2piq “ ´2pG
piq
0 q

2 `G
piq
´1G

piq
1 `G

piq
1 G

piq
´1 . (3.4)

In our case, there are two Casimir equations in two intermediate channels
”

C2p4, 5q ` 2r∆2pr∆2 ´ 1q
ı

xφ1pz1q ¨ ¨ ¨φ5pz5qy “ 0 , (3.5)
”

C2p3, 4, 5q ` 2r∆1pr∆1 ´ 1q
ı

xφ1pz1q ¨ ¨ ¨φ5pz5qy “ 0 , (3.6)

where r∆1 and r∆2 are intermediate conformal dimensions. The Casimir operators C2p4, 5q

and C2p3, 4, 5q are defined as follows

C2p4, 5q “ ´2pG
p4q
0 `G

p5q
0 qpG

p4q
0 `G

p5q
0 q `

!

pG
p4q
1 `G

p5q
1 q, pG

p4q
´1 `G

p5q
´1q

)

,

C2p3, 4, 5q “ ´2pG
p3q
0 `G

p4q
0 `G

p5q
0 qpG

p3q
0 `G

p4q
0 `G

p5q
0 q`

`

!

pG
p3q
1 `G

p4q
1 `G

p5q
1 q, pG

p3q
´1 `G

p4q
´1 `G

p5q
´1q

)

.

(3.7)

In fact, there are two more equations related to the OPE of φ1, φ2, and φ1, φ2, φ3,

respectively. However, using Ward identities (3.2) their Casimir operators are equal to

those in (3.7), i.e. C2p4, 5q “ C2p1, 2, 3q and C2p3, 4, 5q “ C2p1, 2q.
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3.1 4-point global block

The 4-point correlation function can be chosen in the form (2.2)–(2.4),

xφ1pz1q ¨ ¨ ¨φ4pz4qy “ z13
´2∆3z14

´∆1`∆2`∆3´∆4z12
´∆1´∆2`∆3`∆4z24

∆1´∆2´∆3´∆4Gpxq ,

(3.8)

where the cross ratio is x “ pz12z34q{pz13z24q. Fixing z1 “ 8, z2 “ 1, z3 “ z, z4 “ 0, we

find that the action of the Casimir operator on the 4-point correlation function is given by

C2p3, 4qxφ1pz1q ¨ ¨ ¨φ4pz4qy

“ lim
z1Ñ8

2z´2∆1
1

´

zppz´1qzG2pzq ` p´2∆3´2∆4´∆1z`∆2z`3∆3z`∆4z`zqG
1pzqq`

`Gpzqp´p∆4´1q∆4`∆2
3p2z´1q`∆3p´2∆4´2∆1z`2∆2z`2∆4z`1qq

¯

, (3.9)

where G1pzq and G2pzq are first and second derivatives in z variable. The Casimir equation

in this case is given by (3.1). Imposing particular boundary conditions we find that the

solution is given by

xφ1pz1q ¨ ¨ ¨φ4pz4qy – z∆´∆3´∆4
2F1p∆´∆1 `∆2,∆`∆3 ´∆4, 2∆|zq , (3.10)

where – means that the correlation function is restricted to the intermediate channel with

the dimension ∆. Function (3.10) reproduces the 4-point global block [17, 20], cf. (2.15).

It is instructive to remove the exponential prefactor in (3.10) by Gpvq :“ v∆´∆3´∆4F pvq

and obtain the standard hypergeometric equation

a
B2F

Bv2
` d

BF

Bv
` eF “ 0 , (3.11)

with coefficients

a “ vpv´1q , d “ p´∆1`∆2`∆3´∆4qv`2∆pv´1q`v , e “ p∆´∆1`∆2qp∆`∆3´∆4q .

(3.12)

3.2 5-point global conformal block

The educated guess is that the Casimir equations can be conveniently represented as acting

directly on the conformal block function F p∆1,2,3,4,5, r∆1,2|z3, z4q, cf. (3.11). Following (2.8)

we redefine

xφ1pz1q ¨ ¨ ¨φ5pz5qy – z
r∆1´∆3´r∆2
3 z

r∆2´∆4´∆5
4 F p∆1,2,3,4,5, r∆1,2|z3, z4q , (3.13)

where – means that the correlation function is restricted to the intermediate channels with

dimensions r∆1,2. Denoting u “ z3 and v “ z4 (2.3) we find that the Casimir equations

for the conformal block function F “ F p∆1,2,3,4,5, r∆1,2|u, vq are given by two second order

PDEs

a
B2F

Bv2
` b

B2F

BuBv
` c
BF

Bu
` d

BF

Bv
` eF “ 0 , (3.14)

m
B2F

Bu2
` n

B2F

BuBv
` k

BF

Bu
` l
BF

Bv
` pF “ 0 , (3.15)
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where the coefficient are

a “ uvpv ´ 1q , b “ uvpu´ 1q , c “ upu´ 1qp∆4 ´∆5 ` r∆2q ,

d “ vp∆3 ´ r∆1 ` r∆2q ` uvp´∆1 `∆2 `∆4 ´∆5 ` r∆1 ` r∆2 ` 1q ´ 2ur∆2 ,

e “ p∆4 ´∆5 ` r∆2qp∆3 ´ r∆1 ` r∆2 ` up∆2 ´∆1 ` r∆1qq ,

(3.16)

and

m “ u3pu´ 1q , n “ uvpu´ 1q2 ` uvpv ´ 1q ,

k “ u3p´∆1 `∆2 `∆3 ` 2r∆1 ´ r∆2 ` 1q ´ 2u2
r∆1 ` uvpr∆2 `∆4 ´∆5q ,

l “ u2vp∆3 ` r∆1 ´ r∆2q ` 2uvpr∆2 ´ r∆1q ´ v
2p∆3 ´ r∆1 ` r∆2q ,

p “ ´u2p∆1 ´∆2 ´ r∆1qp∆3 ` r∆1 ´ r∆2q ´ vp∆4 ´∆5 ` r∆2qp∆3 ´ r∆1 ` r∆2q .

(3.17)

If ∆3 “ 0 and r∆1 “ r∆2 (cf. (2.21)), and BF {Bu “ 0, then the first equation reproduces the

4-point case equation (3.11)–(3.12), while the second equation disappears.

The 5-point global conformal block (2.9)–(2.11) solves the two Casimir equations

(3.14)–(3.17).

4 Heavy-light and linearized classical blocks

According to the original Zamolodchikov’s definition of the light field, this is one with a fixed

value of the conformal dimension ∆ in the limit cÑ8. In particular, the conformal blocks

for light fields are just the global blocks discussed in the previous sections. However, in

the context of the AdS/CFT correspondence another regime of the conformal dimensions

is more relevant. It deals with the heavy fields which are conventionally described by

the classical conformal dimensions ε “ lim
cÑ8

∆{c fixed at c Ñ 8. It is well-known that

the presence of the heavy fields in the spectrum of the boundary („ bulk) theory allows

producing localized high energy states in the bulk of AdS3 such as conical defects or BTZ

black holes. All known examples show that in the semiclassical limit cÑ8 the conformal

blocks for heavy fields are exponentiated (see, e.g., [22])

Fp∆i, r∆j |zkq “ exp

„

´
c

6
fpεi, ε̃j |zkq



, (4.1)

where εi and ε̃j stand for external and intermediate classical conformal dimensions, respec-

tively, and function fpεi, ε̃j |zkq is called the (non-perturbative) classical conformal block.

From the AdS/CFT perspective, it is instructive to study the linearized version of

the classical conformal block. In this regime the classical conformal dimensions for some

subset of fields εl ! 1 so that only lower coefficients in the εl expansion of the classical

conformal block fpεi, ε̃j |ziq are relevant. According to [23], such fields sometimes are called

perturbative heavy fields5 (or simply perturbative fields) and the corresponding block —

perturbative classical conformal block.

5Note that in some previous papers (in particular, in [6, 16]) these fields were referred to as light fields.

Such a notation leads to the obvious confusion with the initial Zamolodchikov’s definition. However, as we

discuss below, there is a non-trivial connection [5] between the conformal blocks with perturbative heavy

fields and light fields.
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In the semiclassical limit, the dual AdS3 gravity is weakly coupled and hence allows

for the saddle-point approximation described by the dual Witten type geodesic diagrams.

More precisely, the linearized classical block is described in the bulk theory by means

of classical relativistic mechanics of massive particles (corresponding to the perturbative

fields) in the asymptotically AdS geometry induced by the heavy fields. In what follows,

we are focused on the case of two heavy fields with equal classical conformal dimensions εh
producing in the bulk a conical singularity with the deficit angle α “

?
1´ 4εh, while the

other operators arising in the intermediate channels are perturbative [1–7].

Below we quote the expression of the perturbative classical conformal block found

in [16] (see also [6]). Here, function f “ fpεh, ε3, ε4, ε̃1|z3, z4q denotes the 5-point pertur-

bative classical block with ε1 “ ε2 ” εh, ε4 “ ε5 and ε̃1 “ ε̃2 (2.21) related by means

of (4.1) to the quantum block depicted on the figure 1. The power series expansion of the

perturbative classical block up to fourth order in the third dimension ε3 is given by

f “ f p0q ` ε3f
p1q ` ε23f

p2q ` ε33f
p3q ` ε43f

p4q ` . . . , (4.2)

where

f p0q “ ln

„

p1´ aq2ε4ap
1
α
´1qε4

ˆ?
a` 1

?
a´ 1

˙ε̃1

, (4.3)

f p1q “ ln

„

bp
1
α
´1q

ˆ

a´ b2
?
a

˙

, (4.4)

f p2q “
”

pa` b2qp4ab´ a´ a2 ´ b2 ´ ab2q
ı

ˆ
`

4a1{2pa´ b2q2ε̃1
˘´1

, (4.5)

f p3q “
”

p1´ bqbpa´ bqpa` b2qpa` a2 ´ 4ab` b2 ` ab2q
ı

ˆ
`

2pa´ b2q4ε̃21
˘´1

, (4.6)

f p4q “
”

a6 ´ 9a7 ´ 9a8 ` a9 ` 24a6b` 144a7b` 24a8b´ 30a5b2 ´ 546a6b2 ´ 546a7b2´

30a8b2`792a5b3`2576a6b3`792a7b3´321a4b4´4599a5b4´4599a6b4´321a7b4`

3024a4b5 ` 10080a5b5 ` 3024a6b5 ´ 580a3b6 ´ 8892a4b6 ´ 8892a5b6 ´ 580a6b6`

3024a3b7 ` 10080a4b7 ` 3024a5b7 ´ 321a2b8 ´ 4599a3b8 ´ 4599a4b8 ´ 321a5b8`

792a2b9`2576a3b9`792a4b9´30ab10´546a2b10´546a3b10´30a4b10`24ab11`

144a2b11`24a3b11`b12´9ab12´9a2b12`a3b12
ı

ˆ
`

192a3{2pa´b2q6ε̃31
˘´1

, (4.7)

and a “ p1 ´ z4q
α and b “ p1 ´ z3q

α. Note that expansion (4.2) assumes that ε3{ε̃1 ! 1,

and thus the linear approximation is still valid. The leading term here is the 4-point

perturbative classical block [1, 4]. The subleading terms with non-vanishing degrees of the

third dimension ε3 describe the order by order deformation.

So far we have discussed two possible classical limits of the conformal blocks: the

global conformal block containing only light fields and the (linearized or perturbative)

classical conformal block containing only heavy fields. Naturally, one can consider all

possible intermediate scenarios, where the conformal block contains both light and heavy

fields. This regime is known as the heavy-light limit. Below we denote by Vpεh,∆, r∆|zkq
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the heavy-light conformal block

Vpεh,∆i, r∆j |zkq – lim
cÑ8

εh,∆i,r∆j´fixed

Fpcεh,∆i, r∆j |zkq , (4.8)

where εh is the classical heavy dimension, ∆i and r∆j are the quantum external and inter-

mediate light dimensions.

An interesting observation by Fitzpatrick, Kaplan, and Walters [5] is that the global

and classical blocks are related through the heavy-light limit. It follows that the computa-

tion of the linearized classical conformal block can be reduced to that of the global block.

The algorithm consists of two steps.

Step 1. We use the fact that heavy-light conformal blocks are equivalent to global con-

formal blocks considered in some non-trivial background metric [5]. In the case of two

heavy fields with equal classical dimensions εh this is achieved by mapping the positions of

the external light fields from z to w “ zα. The crucial point is that in the new coordinates

in the limit c Ñ 8 only elements Lk´1 contribute in the matrix elements leaving us with

the global block modulo the Jacobian prefactors [5].

Step 2. The heavy-light conformal block Vpεh,∆i, r∆j |zq and the linearized classical con-

formal block f linpεh, εi, ε̃j |zq are related. Schematically, the idea is that the following two

limits can be rearranged [5]. Instead of taking first the limit c Ñ 8 with all fields be

heavy (i.e. with fixed ratios ∆i{c) and then considering some subset of the fields to be

small εi, ε̃j ! 1 as we do in order to calculate the linearized classical conformal block,

one can first take the heavy-light limit, i.e. c Ñ 8 with only a subset of fields be heavy

(with classical dimensions εh) and then take ∆i, r∆j " 1 for the light subset of the fields.

Using (4.1) we find that the linearized classical block is given by

f linpεh, εi, ε̃j |zq “

»

– lim
cÑ8

εh,εi,ε̃j´fixed

´
6

c
logFpcεh, cεi, cε̃j |zq

fi

fl

εi,ε̃j!1

, (4.9)

while the logarithm of the heavy-light block (4.8) is given by

logVpεh,∆i, r∆j |zq “ lim
cÑ8

εh,∆i,∆̃j´fixed

logFpcεh,∆i, ∆̃j |zq . (4.10)

Using the well-known properties of the conformal blocks as rational functions of the confor-

mal dimensions and the central charge, one can argue that in the large central charge limit

their coefficients obey simple homogeneity properties giving rise to the following relation

f linpεh, εi, ε̃j |zq “
”

logVpεh, εi, ε̃j |zq
ı

degpε,ε̃q“1
, (4.11)

where rgpεi, ε̃jqsdegpεi,ε̃jq“1 extracts from the function gpεi, ε̃jq homogeneous terms of degree

1 in εi and ε̃j variables around ε̃j “ 8, and quantum light dimensions in the heavy-light

block are substituted by their classical cousins.
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We note that in the 4-point case the linearized classical block is indeed a linear function

in light classical dimensions ε and ε̃. In the 5-point case, the situation is more intricate as

the linearized classical block given as the perturbative series in the third dimension ε3 also

depends on ratios pε3{ε̃1q
n of homogeneity degree 0, cf. (4.2)–(4.7). This is why in (4.11)

we extract the homogeneity degree 1 terms.

Combining the results of the two steps described above we arrive at the following

relation

f linpεh, εi, ε̃j |zq “

«

log

˜

ź

i

”

w1ipziq
ıεi
Gpεh, εi, ε̃j |wpzqq

¸ff

degpε,ε̃q“1

, (4.12)

where Gpεh, εi, ε̃j |wpzqq is the global conformal block function, w1ipziq are the Jacobians for

the change of variables of the light external fields,

p1´ zqα “ 1´ w . (4.13)

In the next section, we explicitly consider the 5-point heavy-light conformal block and

apply the transition formula (4.11) to obtain the linearized classical block given by (4.2).

In parallel, we reproduce and discuss the 4-point case.

5 5-point heavy-light block

The heavy fields with dimensions ∆h ” ∆1 “ ∆2 are placed in z1 “ 8 and z2 “ 1, while

light fields with dimensions ∆3,4,5 are in z3, z4 and z5 “ 0. Then, evaluating the light

operators in new coordinates

p1´ ziq
α “ 1´ wi , i “ 3, 4 , (5.1)

we find that the 5-point heavy-light block (modulo a coordinate-independent prefactor) is

given by

Vpεh,∆3,4,5, r∆1,2|z3, z4q (5.2)

„

”

w13pz3q

ı∆3
”

w14pz4q

ı∆4
”

w15p0q
ı∆5

Gp∆3,4,5, r∆1,2|w3pz3q, w4pz4qq

„ p1´ w3q
α´1
α

∆3p1´ w4q
α´1
α

∆4w
r∆1´∆3´r∆2
3 w

r∆2´∆4´∆5
4 F p∆3,4,5, r∆1,2|w3pz3q, w4pz4qq

where w1pzq is the Jacobian for (5.1), and

Gp∆3,4,5, r∆1,2|w3, w4q “ w
r∆1´∆3´r∆2
3 w

r∆2´∆4´∆5
4 F p∆3,4,5, r∆1,2|w3, w4q , (5.3)

is the global block contribution to the 5-point correlator (2.8). In what follows we constraint

the conformal dimensions as in (2.21). In this case the heavy-light block is given by

Vpεh,∆3,4, r∆1|z3, z4q

„ p1´ w3q
α´1
α

∆3p1´ w4q
α´1
α

∆4w´∆3
3 w

r∆1´2∆4
4 F p∆3,4, r∆1,2|w3pz3q, w4pz4qq (5.4)

where F is given by (2.22) for w3,4 “ w3,4pq1,2q.

– 13 –



J
H
E
P
0
3
(
2
0
1
6
)
1
8
4

4-point case. Setting ∆3 “ 0 in (5.4) we reproduce the 4-point heavy-light block [5]

Vpεh,∆4, r∆1|wq „ p1´ wq
α´1
α

∆4w
r∆1´2∆4

2F1pr∆1, r∆1, 2r∆1|wq . (5.5)

On the other hand, the leading contribution f p0q in (4.2) is the 4-point linearized

classical block (4.3). Using (4.9) and the change a “ 1´w, where a is defined in (4.3), the

linearized classical block can be represented as

´ f p0qpwq “ log
”

w´2ε4p1´ wq
α´1
α
ε4
ı

` log

„ˆ
?

1´ w ´ 1
?

1´ w ` 1

˙ε̃1

. (5.6)

In view of (4.11), we use (4.10) to represent the right-hand side of (5.5) as

logVpεh, ε4, ε̃1|wq “ log
”

w´2ε4p1´ wq
α´1
α
ε4
ı

` log
”

wε̃1 2F1pε̃1, ε̃1, 2ε̃1|wq
ı

. (5.7)

We see that first terms in (5.6) and (5.7) identically coincide while the second ones are

apparently different. In particular case of the vacuum block ε̃1 “ 0 the identification is

already achieved.

When ε̃1 ‰ 0 we apply the transition formula (4.11) and single out the terms of

homogeneity degree 1 in ε̃1 (i.e. linear in this case). To this end, we expand the logarithms

in w and find that the expansion coefficients are generally given by rational functions of

ε̃1. Indeed, modulo an additive constant we obtain

log

„ˆ
?

1´ w ´ 1
?

1´ w ` 1

˙ε̃1

„ ε̃1 lnw `
wε̃1
2
`

3w2ε̃1
16

`
5w3ε̃1

48
`Opw4q , (5.8)

and

log
”

wε̃1 2F1pε̃1, ε̃1, 2ε̃1|wq
ı

“ ε̃1 lnw`
ε̃1w

2
`
p3ε̃21 ` 2ε̃1qw

2

8p2ε̃1 ` 1q
`
p5ε̃21 ` 4ε̃1qw

3

24p2ε̃1 ` 1q
`Opw4q . (5.9)

According to (4.11), we expand around ε̃1 “ 8 in (5.9) and keep homogeneous terms of

order 1 (which in this simple case are linear), and find out that in a given order the resulting

series coincide with that in (5.8).

It is interesting to note that the above limiting transition can be readily seen in all

orders using the following identity

2F1pε̃1, ε̃1 ´
1

2
, 2ε̃1|wq “

ˆ

1

2
`

1

2

?
1´ w

˙1´2ε̃1

, (5.10)

considered in the ε̃1 “ 8 limit.

5-point case. Modulo a coordinate-independent prefactor, the logarithm of the heavy-

light block (5.4) in terms of variables q1 and q2 takes the form

logVpεh,∆3,4, r∆1|q1, q2q

“ log
”

p1´ q1q
α´1
α

∆3p1´ q1q2q
α´1
α

∆4q´∆3
1 pq1q2q

r∆1´2∆4F p∆3,4, r∆1|q1, q2q

ı

, (5.11)
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where F p∆3,4, r∆1|q1, q2q is given by (2.22). To compare with the linearized classical block

using the transition formula (4.11) it is convenient to represent (5.11) as a power series in

ε3 dimension

logVpεh, ε3,4, ε̃1|q1, q2q “

8
ÿ

n“0

gpnqpεh, ε4, ε̃1|q1, q2qε
n
3 , (5.12)

where the lower order coefficients are given by

gp0q “ pε̃1 ´ 2ε4q logpq1q2q `
pε̃1 ´ 2ε4qq1q2

2
`

ε̃1q
2
1q

2
2

4p1` 2ε̃1q
`

3ε̃21q
2
1q

2
2

8p1` 2ε̃1q
´
ε4q

2
1q

2
2

2
`

`
ε4q1q2

α
`
ε4q

2
1q

2
2

2α
`Opq5q , (5.13)

gp1q “ ´ logpq1q`
q2´q1

2
`

q2
2´q

2
1

4p1`2ε̃1q
´

3ε̃1q
2
1

4p1`2ε̃1q
´
q1q2

4
`

ε̃1q
2
2

4p1` 2ε̃1q
`
q1

α
`
q2

1

2α
`Opq3q ,

(5.14)

gp2q “
q2

1 ` q
2
2

8p1` 2ε̃1q
`

q3
1 ` q

3
2

8p1` 2ε̃1q
´
q1q2pq1 ` q2q

8p1` 2ε̃1q
`Opq4q , (5.15)

gp3q “
ε̃1q

4
1`eq

4
2

16p1`2ε̃1q2p3`2ε̃1q
´

3q2
1q

2
2

16p1`2ε̃1q2p3`2ε̃1q
´

ε̃1q
2
1q

2
2

8p1`2ε̃1q2p3`2ε̃1q
`Opq5q , (5.16)

gp4q “
q4

2´q
4
1

64p1`2ε̃1q2p3`2ε̃1q
´

q5
1`q

5
2

32p1`2ε̃1q2p3`2ε̃1q
`

q1q2pq
3
1 ` q

3
2q

32p1`2ε̃1q2p3`2ε̃1q
`Opq6q . (5.17)

This is to be compared to the linearized classical block coefficients (4.2) expanded in q-

variables

f p0q “ pε̃1´2ε4q logpq1q2q`
pε̃1´2ε4qq1q2

2
`

3ε̃1q
2
1q

2
2

16
´
ε4q

2
1q

2
2

2
`
ε4q1q2

α
`
ε4q

2
1q

2
2

2α
`Opq5q ,

(5.18)

f p1q “ ´ logpq1q `
q2 ´ q1

2
´

3q2
1

8
´
q1q2

4
`
q2

2

8
`
q1

α
`
q2

1

2α
`Opq3q , (5.19)

f p2q “
1

4ε̃1
`

q2
1

16ε̃1
`

q3
1

16ε̃1
´
q2

1q2

16ε̃1
`

q2
2

16ε̃1
´
q1q

2
2

16ε̃1
`

q3
2

16ε̃1
`Opq4q , (5.20)

f p3q “ ´
1

8ε̃21
`

q4
1

128ε̃21
´
q2

1q
2
2

64ε̃21
`

q4
2

128ε̃21
`Opq5q , (5.21)

f p4q “
1

96ε̃31
´

q4
1

512ε̃31
´

q5
1

256ε̃31
`

q4
1q2

256ε̃31
´

q4
2

512ε̃31
`

q1q
4
2

256ε̃31
´

q5
2

256ε̃31
`Opq6q . (5.22)

According to (4.11), we expand around ε̃1 “ 8 in (5.12) keeping homogeneous terms of

order 1 in light dimensions ε1 and ε̃1. Up to coordinate-independent terms, the resulting

series exactly reproduce those in (5.18)–(5.22). Note that the 4-point case is obtained here

by setting ε3 “ 0 that brings us back to gp0q and f p0q. Denoting w “ q1q2 we arrive at (5.6)

and (5.7) expanded in w (ε̃1-dependent terms are given by (5.8) and (5.9)).
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6 Conclusion

In this paper we have shown that the two-step method of Fitzpatrick, Kaplan, and Walters

applied to the 5-point global block yields the 5-point linearized classical block obtained

previously in [16]. To this end, we have explicitly built the 5-point global conformal block

using both the projection technique and the Casimir equations approach. Our consideration

generalizes the FKW method revealing new features in the case of n points.

It is worth noting that representing the 5-point global block in as simple a form as

possible is still an open problem. For example, in the 4-point case the global block is given

by the hypergeometric function which is known to satisfy plenty of useful relations. One of

them (5.10) explains the simple form of the 4-point linearized classical block found in [1, 4].

Among the other related questions, it would be crucial to formulate the ε3-expansion of

the 5-point classical block (4.2) in a closed form. Hopefully, the FKW trick will make

it possible to uncover the structures underlying n-point classical conformal blocks with n

being a parameter.

We note that apart from the natural questions like the holographic interpretation of the

classical conformal blocks with different portions of heavy and light fields discussed in the

introduction there are more speculative but still physically important problems requiring

the knowledge of n-point conformal blocks in a closed form. For example, having general

n-point classical conformal blocks may prove useful in the analysis of the entwinement

phenomenon in CFT and its dual interpretation [24]. In this case the classical blocks

are known to be inappropriate to measure the regions of the angle deficit/BTZ geometry

far enough from the boundary. One possible solution is to consider the so-called “long

geodesics” which wrap the defect before returning to the boundary and find corresponding

objects in CFT. On the other hand, with n arbitrary we have one more free parameter

which can be sent to infinity, thereby producing a particular network of the light particles

with total mass comparable to that of the background. Adjusting this parameter to the

central charge c may also give other physically interesting phenomena.

Finally, we may note that besides the AdS/CFT correspondence, the n-point analysis

in the semiclassical regime is interesting even staying completely inside the conformal

field theory. For example, the computation of the classical conformal blocks is sometimes

considered as complex Liouville problem in a sense that Liouville action is related to the

solution of the accessory parameters problem associated to the uniformization problem

related to the real slp2,Rq monodromy group, while in the case of the conformal blocks

we are dealing with its complexification slp2,Cq. So that the answer to the question what

classical system is behind the monodromy problem leading to the classical conformal block

can help to clarify this intriguing connection (see, e.g., [25]).
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A Global block: details of calculation

In what follows we briefly review the computation of the global conformal block of

section 2.1. To compute (2.7) we consider the basic matrix element

Y p∆1,∆2,∆3|k,m|zq :“ x∆1|L
k
1 ψpzqL

m
´1|∆3y . (A.1)

In particular, setting m “ n “ 0 expression (A.1) yields the matrix element associated to

the 3-point function,6 Y p∆1,∆2,∆3|0, 0|zq “ z∆1´∆2´∆3 .

The denominator in (2.7) is computed to be x∆̃1|rL
m
1 , L

m
´1s|∆y “ m!p2∆qm, where

paqk “ apa` 1q . . . pa` k´ 1q is the Pochhammer symbol, so that the conformal block can

be cast into the form

Gpzq “
8
ÿ

k,m“0

Y p∆1,∆2, ∆̃1|0, k|z2qY p∆̃1,∆3, ∆̃2|k,m|z3qY p∆̃2,∆4,∆5|m, 0|z4q

p2∆̃1qkp2∆̃2qm k!m!
, (A.2)

where for convenience we relaxed again the value of z2.

To compute the general matrix element (A.1) we use the slp2,Cq Ward identities

rLk, φ∆pzqs “
`

zk`1 B

Bz
` pk ` 1q∆zk

˘

φ∆pzq , k “ ´1, 0, 1 , (A.3)

to get

Y p∆1,∆2,∆3|k,m|zq “

minrk,ms
ÿ

p“0

γp Lk´p1 Y p∆1,∆2,∆3|0,m´ p|zq , (A.4)

where operator L1 (corresponding to the Ward identity with k “ 1) is defined as

L1 “ zpNz ` 2∆2q , Nz ” z
B

Bz
, (A.5)

and the coefficients are given by

γp “
k!

p!pk ´ pq!
p2∆3 `m´ 1qppqmppq , (A.6)

where the descending Pochhammer symbol paqppq “ apa´ 1q . . . pa´ p` 1q. Note that the

first factor in (A.6) is just the binomial coefficient.

On the other hand, Y p∆1,∆2,∆3|0, s|zq in (A.4) can be computed to be

Y p∆1,∆2,∆3|0, s|zq “ p´q
sLs´1Y p∆1,∆2,∆3|0, 0|zq , L´1 “

B

Bz
. (A.7)

Substituting the above formula in (A.4) we obtain

Y p∆1,∆2,∆3|k,m|zq “

minrk,ms
ÿ

p“0

p´qm´p γp Lk´p1 Lm´p´1 Y p∆1,∆2,∆3|0, 0|zq . (A.8)

6The usual normalization is fixed in order to have the leading coefficients of the series expansions of the

conformal block equal to one.
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Let us check formula (A.8). To this end we set ∆2 “ 0 and the answer in this case has

to be Y p∆1,∆2,∆3|k,m|zq “ x∆1|L
k
1L

m
´1|∆3y “ δ∆1∆3δkmx∆1|rL

k
1, L

m
´1s|∆3y “ m!p2∆1qm.

Indeed, if ∆2 “ 0 we find that the matrix element associated with the 3-point function is

x∆1|I|∆3y “ 1. It follows that differential operators L1,´1 acting on the 3-point matrix

element are to be of zeroth order which implies m “ p and k “ p whence m “ k. It

follows that Y p∆1,∆2,∆3|k,m|zq “ γm, where the coefficient (A.6) can be shown to be

γm “ m!p2∆1qm. In particular, this consistency check means that inserting the unity

operator as the third operator reduces the original 5-point correlation function to the 4-

point correlation function.

Now let us compute degrees of the differential operators L in (A.8). We find

Ls´1Y p∆1,∆2,∆3|0, 0|zq “ p´q
sp∆3 `∆2 ´∆1qs z

∆1´∆2´∆3´s , (A.9)

Lp1Y p∆1,∆2,∆3|0, 0|zq “ p∆1 `∆2 ´∆3qp z
∆1´∆2´∆3`p ,

Lp1L
s
´1Y p∆1,∆2,∆3|0, 0|zq “ p´q

sp∆3 `∆2 ´∆1qsp∆1 `∆2 ´∆3 ´ sqp z
∆1´∆2´∆3`p´s ,

Using (A.9) we find that (A.8) can be cast into the form

Y p∆1,∆2,∆3|k,m|zq “ τk,m z
∆1´∆2´∆3`k´m , (A.10)

where the coefficient is given by

τk,m “

minrk,ms
ÿ

p“0

k!

p!pk´pq!
p2∆3`m´1qppqmppqp∆3`∆2´∆1qm´pp∆1`∆2´∆3`p´mqk´p .

(A.11)

Using (A.10) we find the final expression for the matrix element (A.2):

Gpzq “
8
ÿ

k,m“0

p∆̃1 `∆2 ´∆1qk τk,m p∆̃2 `∆4 ´∆5qm

k!m! p2∆̃1qkp2∆̃2qm

ˆ z∆1´∆2´∆̃1´k
2 z∆̃1´∆3´∆̃2`k´m

3 z∆̃2´∆4´∆5`m
4 . (A.12)

To get (2.8) we set z2 “ 1.
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