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1 Introduction

There are two main applications of two dimensional conformal invariance [1]. The first
consists in using Ward identities associated to infinitesimal symmetry transformations in
order to constrain correlation functions. In the second application, starting from known
quantities in a given domain, the finite transformations are used to generate the corre-
sponding quantities pertaining to the transformed domain (see e.g. [2]). In this case, the
Schwarzian derivative occuring in the transformation law of the energy-momentum tensor
plays a crucial role.



For four-dimensional asymptotically flat spacetimes at null infinity, an extension of
the globally well-defined symmetry group [3-5] in terms of locally defined infinitesimal
transformations has been proposed and studied in [6-10]. In particular, their relevance
for gravitational scattering has been conjectured. Physical implications in terms of Ward
identities for soft gravitons have subsequently been developed in [11-14].

The aim of the present paper is to derive the finite transformations necessary for the
second application. In particular for instance, if one knows the theory in the form of an
asymptotic solution to classical general relativity for the standard topology S? x R of £+,
one can use the transformation laws to get the solution on a cylinder times a line. Par-
ticular aspects of such mappings in general relativity have been discussed previously for
instance in [15-17]. More concretely, in the present paper we will work out the transfor-
mation laws of asymptotic solution space and the analog of the Schwarzian derivative for
finite extended BMS, transformations and local time-dependent complex Weyl rescalings.
Whereas the former corresponds to the residual symmetry group, the latter represents the
natural ambiguity in the definition of asymptotically flat spacetimes in terms of conformal
compactifications [18, 19].

As a warm-up, we start by re-deriving the known finite transformations in three dimen-
sions in the asymptotically anti-de Sitter and flat cases. In the former case, one recovers
the Schwarzian derivative as an application of the AdS3/CFTy correspondence [20, 21].
In the latter case, one obtains the finite transformation laws for the Bondi mass and an-
gular momentum aspects that have been previously obtained by directly integrating the
infinitesimal transformations [22]. In both these three dimensional cases, these results are
generalized to include local Weyl transformations. In other words, we are working out the
action of finite Penrose-Brown-Henneaux transformations in the terminology of [23, 24].

Explicit computations are done in the framework of the Newman-Penrose formal-
ism [25, 26|, as applied to asymptotically flat four dimensional spacetimes at null infinity
in [27, 28]. Standard reviews are [29-33].

To summarize the results for the simplest case when computations are done with
respect to the Riemann sphere, i.e., when the metric on .#1 is taken as ds? = 0du? —2d(dC,

the extended BMS,4 group consists of superrotations ¢ = ¢(¢’),( = Z(Z/) together with
— 1
supertranslations v’ = (% 85/) “[@ + B(¢.C)) In particular, the asymptotic part of the
0]

shear, the news, and the Bondi mass aspect transform as

ol = (35/)2((2@2{0%525*;{575}(“5) , (D)
aCc\* 1,
= (55) | 3100, (12)
ameh = (5555 ) [4mGMe + 7025+ ST Tk + 0%

QR+ 0 + (T Q@B (13)

where {-, -} denotes the Schwarzian derivative.



2 Adapted Cartan formulation

In the Cartan formulation of general relativity, the fundamental fields are on the one hand, a
vielbein, e,*, together with its inverse e, and associated metric g, = eaunabeb,,, where 7,4
is constant and, on the other hand, a Lorentz connection satisfying the metricity condition
Vanbe = 0, Tape = Naal % = I'(apje- Indices are lowered and raised with 7, and g, and
their inverses. The associated connection 1-form is I'*, = I'%.e¢ with e = e ,dx#. The
torsion and curvature 2-forms are given by T% = de® +I'% A e, R% = d I'%, + "%, AT¢,.

Local Lorentz transformations are described by matrices A,’(z) with A%.Ay¢ = §¢. Un-
der combined frame and coordinate transformations, referred to as gauge transformations
below, the basic variables transform as

e () = <Aabeb”%if ) (z), (2.1)

@) = (M (A Taes + e (M) A ) (),

where the last expression is equivalent to the transformation law for the connection 1-form,
F,ab = A“CFCdAbd + Aachbc and €q = ea“%.
Equations of motion deriving from the variational principle

1

Sle. T = 167G

/ddx e(Rabcdn“cnbd —2A), (2.2)

are equivalent to 7% = de® +T'%e’ = 0 and Einstein’s equations, Gaj + Ang, = 0. Together
with the metricity condition, the former implies

1
Fabc = §(Dbac + Dcab - Dabc)a (23)

where the structure functions are defined by D€ e, = (eq(ep*) — eb(ea“))a%. Conversely,
T* =0 is equivalent to Deap = —2I (g

3 Newman-Penrose formalism in 3d

In three dimensions with (4, —, —) signature, we use
0 1 0
Nab = 1 0 0 , (3.1)
00 —3

and the triad e, = (I,n,m) with associated directional covariant derivatives denoted by
(D, A, ). Note that this choice of 7,, implies different conventions and normalizations
than used in previous works. In particular,

g =1"n" +1"n" = 2m*mY, V4 =n.D + 1A — 2m,0. (3.2)



In this case, the spin connection can be dualized, w., = %F“bueabc, Fabu = e“bcww with
€123 = 1 and € = pedpbencle,, 7. The 9 real spin coefficients are defined by
\% m*Vli, n*Vli, —m*Vng,
D|rk=T31=w? | e=Tg11 =—w3 | 7=-T3 =w!'
311 21 211 31 321 11 (3.3)
AlT=T32=w |[y=Ta2=-w’ | v=-"Tsn=w
6 | o=Ta3=w?3 | f=To3=—w’3 | p=—T33=w's
(see also e.g. [34] for slightly different conventions). It follows that
Dl = el — 2km, Al =~l —21m, 0l = Bl — 20m,
Dn = —en + 27m, An = —yn + 2vm, on = —pn + 2um, (3.4)
Dm = nl — kn, Am = vl — Tn, om = ul — on.

In order to describe Lorentz transformations, one associates to a real vector v = v%e,
a 2 X 2 symmetric matrix v = v%j,, where j, are chosen as

~ 10\ ~ 00\ -~ 1(01
= o = )3 = — 3.5
N <0 0>a]2 (0 1)7]3 2 (1 0)7 ( )

~ o~ 1 PPN 1~

1 N -~ A .
det v = §nabv“vb, Ja€lp = i(nabe —€abed),  JIvda = S €Ibe; (3.6)

01
- (_1 O) | 57

For g € SL(2,R), one considers the transformation

so that

where

97097 v = Juh%?,  gTe=eg™h. (3.8)

9= (Z Z) : (3.9)

with ad — bc =1 and a,b,c,d € R, then

More explicitly, if

a? b2 ab 2 2 —2cd
ANy=| ¢ d&® «od A= a2 —2ab |, (3.10)
2ac 2bd ad + be —bd —ac ad + be

where the first index is the lign index. SL(2,R) group elements will be parametrized as

1 0\ (1—-A\[e®? 0 e—E/2 _AeE/? .
9= \-B1)\o 1 0 ef2)  \=Be B2 (1+ AB)eP/2 )" (3:11)

Using w® = %eabcf‘bc and the transformation law of the Lorentz connection given be-
low (2.1), we have

1
W' = A%w® + §e“bcAbddAcd. (3.12)



In terms of & = jaw“, this is equivalent to
&' = ggt — gedg” (3.13)

Explicitly, for the spin coefficients encoded in

one finds
~ 1

Wb = A Cgdeg” — geel (g7). (3.15)
In this case, Einstein’s equations are equivalent to
s o o A
dé —20eé =0, do— wew — Seee= 0. (3.16)

Alternatively, one can use ¥ = ¢ in order to describe real vectors by traceless 2 x 2
matrices. The associated basis is

- 01\ -~ 00\ ~ 1(-10

~ ~

so that

~ o~ o~ 1~

o -~ 1 ~ TR .
tr 9% = v’ Jajy = _i(nab +€abed )y " Ibda = 3Jb- (3.18)

In this case, we have

9Jag 0" = JaA0b, & = gg Tt —dggTt, @ = AdSgRegTt —el(g)gTt,  (3.19)
where
1 1 1
o e T o 5 v o =0
w1 = 2 1 , W2 = 27 1 , W3 = 2 lf y (320)
—K —3¢€ —T —57 -0 —30
and

A
dE — 2% =0, dis — & — S& = 0. (3.21)

4 3d asymptotically AdS spacetimes at spatial infinity

4.1 Fefferman-Graham solution space

In the AdS3 case, A = —L™2 # 0, we start by rederiving the general solution to the
equations of motion in the context of the Newman-Penrose formalism. We will recover
the on-shell bulk metric of [35], but with an arbitrary conformal factor for the boundary
metric [21] (see also section 2 of [7] in the current context).

The analog of the Fefferman-Graham gauge fixing is to assume that

p=p8=0=0. (4.1)

which is equivalent to I'yp3 = 0 and can be achieved by a local Lorentz transformation.
This means that the triad is parallely transported along m and that m is the generator of



an affinely parametrized spatial geodesic. In this case, Viomy = np,ly (m + 7) so that m is
hypersurface orthonormal if and only it is a gradient, which in turn is equivalent to

= —T. (4.2)

This condition will also be imposed in the following.

Introducing coordinates z# = (z*,z7,p), u = 1,2,3 such that m is normal to the
surfaces p = cte and the coordinate p is the suitably normalized affine parameter on the
geodesic generated by m, the triad takes the form

0 0 0
= =] =n? . 4.3
" op’ dza’ T " fra (43)
where a = (4, —). The associated cotriad is
1 eapnldx® 9 €apl@da® 3 b
e =—— e =—— € =dp, e=c¢euln’, (4.4)
e e
where e, =1 = —e_; and ex+ = 0. In order to compare with the general solution given
_pP_
in [7], one introduces an alternative radial coordinate r = e V2L, in terms of which
0 L
m = L—, et =V2=dr. (4.5)
V2L Or r

Under these assumptions, the Newman-Penrose field equations (A.1)—(A.12) can be
solved exactly. Indeed, the three equations (A.1), (A.7) and (A.9) reduce to the system

2 1

=2 =2 =T — kv — o5 4.
0k = 27K, OV TV, 0T =T°— KV 572" (4.6)

which is solved by introducing the complex combinations £; = 7 + ¢y/vk. The general
solution is given by

-1 4 2 —\/5027‘2 \&03?“2
Mo CE 4 CaCh), k= 2 = ,
VALE 100y Lk (4.7)

Lk
k=rt—20C1r° + C} — 0yC3.

T = —T7T =

The last two radial equations involving the spin coefficients, equations (A.3) and (A.8),
simplify to

0e =Te+ Ky, Oy=TYy— Ve, (4.8)
and are solved through
5 C C s—C C
€:c4¥+05727", N = C5" - Lo ;’T. (4.9)

The last radial equations are (A.11) and (A.12). Their r-component are trivially satisfied
while their components along z* are of the same form than (4.8),

OIF = 71 + kn*,  on* =1 —ulF, (4.10)



which leads to

r—Cir Cor
I* = KfT - KQiT

3¢ C
. ont=KkEL Ty gEDSD (4.11)
k k
In these equations, Cj, K li, K;E are functions of z* = z* alone.
Note that asymptotic invertibility of the triad is controlled by the invertibility of the

matrix formed by these functions,

K K
(Ki_ Kz‘) e KEKS 0. (4.12)

Using the radial form of the various quantities, equations (A.2) and (A.6) are equivalent to

Kf&aCl — KS(‘)GC’Q +2C5C5 =0,

K%9,C5 — K$8,C, +2C5C, = 0, (4.13)
which then implies that equation (A.4) reduces to
K{0,C5 — K§0,Cy + 2C4C5 + %C’l =0, (4.14)
while the components along z& of equation (A.10) become
K0, Ky — K§0,Ki + CsKi + C4KF = 0. (4.15)

Because of invertibility of the matrix (4.12), equations (4.15) and (4.14) can be used to
express Cy4,Cs and Cj in terms of K{ and K. The two equations in (4.13) then become
dynamical equations for Cy and Cs. Since we now have treated all Newman-Penrose equa-
tions, the solution space is parametrized by K{, K§ and by initial conditions for C and C’.

In the limit r going to infinity, the triad elements | and n given in (4.11) take the
form I* = 7 KT 4+ O(r=2), n* =+~ KF + O(r—3). With a change of coordinates on the
cylinder, we can make the associated asymptotic metric explicitly conformally flat. This
amounts to the choice

K =0, K =v2% Kj=+v2% K;=0. (4.16)
Introducing this into equations (4.14) and (4.15), we get
Cy=V2e%0_p, Cs=—V2e%0rp, C=L%20_0,¢, (4.17)
while the dynamical equations (4.13) reduce to

a+02 + 28+QOC2 = L28_ (6_2908_84_@) y

4.18
0-C3+20_¢Cs = L*0, (e72%0_0,). (4.18)

With the extra conditions (4.16), the space of solutions is parametrised by three func-
tions ¢, Cy and C3 defined on the cylinder with coordinates x* such that equations (4.18)
are valid. These two equations can be integrated directly but we will derive the explicit form
of Cy and (5 in a different way using the action of the asymptotic symmetry group below.



4.2 Residual gauge symmetries

The residual gauge transformations are the finite gauge transformations that preserve the
set of asymptotic solutions. Since these transformations map solutions to solutions, once
the conditions that determine the asymptotic solution space are preserved, no further
restrictions can arise. A gauge transformation is a combination of a local Lorentz trans-
formation and a change of coordinates of the form

+ i(

r=r(, %), 2t =20, 2F). (4.19)

The unknowns are A, B, E,r and z* as functions of 7/, z/*.

Using the a = 3 component of the transformation law of the triad,

Oox"
et pi Albel, (4.20)

,r,/
V2L

/

V2L

Expanding for each coordinate, we get

o dxt  V2r o
= e

the requirement m/* = 6% is equivalent to

Oprat = =bdl* — acn* + (ad + be)mH. (4.21)

(A1 + AB)e®Co + Be F(r* — (1)) ,

V2L ok
/ —

T %i, = f (A(L+ AB)e® (r? = Cy) + Be™FCs), (4.22)
r’ or r

———— =(14+24B)——.

Varar ~ U T2AB AT

In order to implement the gauge fixing condition on the new spin coefficients &5 = 0, we
first rewrite the last equation of (3.19) as

gL (9) = MGy — g~ g (4.23)

When a = 3 this becomes
97169 = A", (4.24)

and is equivalent to three conditions on the Lorentz parameters,
d(S’a — 55/0 = A3b(&3b)11, dé’b — bd’d = Agb(&ljb)lg, a(5’c — C(S,CL = A3b((r)b>21. (4.25)

When suitably combining these equations, one finds

/
B
\/%L(;w = A(1+ AB)e*"x + Br,
o4 —2E 3 oF 2
TaLon = A1+ AB)m — Be Py + A(1+ AB)e* ki + A°Br, (4.26)
r OF 5 B ) .
ﬂL%:A(l—l—AB)e € —Be "y —2A°(1+ AB)e*"k — 2ABT.



The set of equations (4.22) and (4.26) forms a system of differential equations for the
radial dependence of the unknown functions. In order to solve it asymptotically, we will
assume that the functions have the following asymptotic behavior,

r=0("), ztE=0(1), A B=0(""). (4.27)
Inserting this into the equations, we easily get

B = By(@™t)r' ™ +0(r' %), A= Ao(a"*)r' T+ 00",
E = Ey(2™*) — (Le ?0_pAg + Le ¥9,.¢0By + AgBo)r' 2 + O(r'™*),

= 0@ )y _ AgBoe™r' ™t + O(r'73), (4.28)
x+ — xa—(xli) . LBoefaprofrOT,/72 + O(rlfll),
T = xa (x/:t) _ LAOe—L,D+E0—r0r/—2 + O(’IJ_4),

where we have assumed 7 > 0 asymptotically. At this stage, we have fixed the radial
dependence of all the unknown functions and we are left with six functions Ag, By, Eo,
ro, azg of z'*.

\fL(;T

: : r_ 8
However, since we have inmposed m’ = NOTRLE
. This follows from m'T, = A3bebl, %’fj on the one hand and from

We now have to require m/

V2L

7,/

©w

we already have m/, =

\/%/L %f: = A3e.” on the other. For the remaining components of mL it is enough to verify

that m/_, = o(r’ 0) since solutions are transformed into solutions under local Lorentz and
coordinate transformations. Indeed, de’® + "%’ = 0, and for a =3, d63 + F3be = 0.

Contracting with e5" then implies that \[La My \[L VAL 4 T el —The, =0,

which reduces to 9,.m], = ‘fL (5’" Extracting the leading order from
ox” x¥
13 2
M—2aceya /i—|—2bd v 5k + (ad + be)e? €y gt (4.29)
we then get
Bpe Eotrote 220 Iy Age Eo+ro+e 710 a950 - I dro 4.30
0€ Or'E + ort ~ T ot (4.30)

The last condition we have to require is the asymptotically conformally flat form of
the new triad. This can be done by imposing

/ (p/ / 90/
L — T\jﬁ d'~ + 0@ Y, &2 = %dw +Oo(' ). (4.31)

The leading terms of e/} = Al _e? 9z and ef? = A? el or" ield

a Maz”’ a Maax”’
+ — —_
Oz — 0= Oz — e~ Botrote Oz, —_ ¥ — oEotrote Y0 Oy (4.32)
ox'~ ox't+ ’ ox'~ ox't’

Combining with equation (4.30), allows one to extract Ag, By, Fp in terms of the other
functions,

1 (9 0 ay e~ ¥To org e~ ¥To 8r0

\/a/—l‘o g O

(4.33)

7 Jr’
2 8/ /a/_xaag_xa- ox'



It thus follows that the residual gauge symmetries are determined (i) by the change of
variables z* = a:éc(:c’ +) at infinity, each depending on a single variable, which we assume
to be orientation preserving &, xzj >0 < &z, and (ii) by ro(z'", 2'7).

For notational simplicity, we drop the subscript 0 on the change of variables at infinity
and on the Weyl parameter in the next section.

4.3 Action of conformal and Weyl group

The group obtained in the previous section is the combined conformal and Weyl group and
is parametrized by

(x'+ (@), 2"~ (z7), r(z', :c'_)) : (4.34)

The last equation of (4.32) encodes the transformation law of ¢,
1
@)y =plat a7) +r(@@T 2T + 3 In (& at0 a™). (4.35)

Note that, as a consequence, if r(z/*,2'~), r*(z"*, 2"~ ) and r°(2"*,2"~) are associated to
a first, a second successive and the combined transformation respectively, the composition
law is

ré(z" T, 2" 7Y =5 (2" ") (2T, 2. (4.36)

This group reduces to the conformal group for fixed conformal factor of the boundary
metric: when ¢ = ¢’ it follows from (4.35) that r is determined by the change of variables
at infinity, r = —%ln( 270 7). When freezing the coordinate transformations, one
remains with the additive group of Weyl rescalings that amount here to arbitrary shifts of ¢.

As discussed in section 4.1, the on-shell metric, triads and spin connections are en-
tirely determined by the arbitrary conformal factor ¢(z,z~) and the integration functions
Co(xt,27),C3(xt, z7) satisfying (4.18). To obtain the action of the group on the latter,
we can extract the subleading terms of I'(z+) = A %¢; and n/(z~) = A,%e, . This gives

oz~ /
Ch— e 8,—; Co+ L2 27 (0%2r + (0r)® — 2010 ) ,
_l’_
- | (4.37)
Ch=e " Cs+ L% 27 (92r + (9,r)* — 2010 ),

0 x

which can also be written in terms of ¢ using equation (4.35). Note that, by construction,
the transformed C)(2/*,2/7), C3(2’",2’~) have to satisfy the transformed equations, i.e.,
equations (4.18) where all quantities, Co, Cs3, ¢, xT, 01 are primed.

In the particular case where ¢ = 0, equations (4.18) reduce to 9;Cor =0, 0_C3r =0
so that Cop = (87GL)T-_ (2~ ) and C3g = (87GL)T4(z"). Applying the particular Weyl
transformation z'* = 2%, r = ¢/, and removing all primes, we obtain from (4.37) that the

general solution to the dynamical equations (4.18) for arbitrary ¢ is given by

81
L

_ 8
G =1 BT ) + e - 0107

Cy = e 212 [ T _(x7)+0%¢— (8_g0)2] )

(4.38)

~10 -



Solution space can thus also be parametrized by the conformal factor ¢ and the two
integration functions T+ (z%) depending on a single variable each. The action of the
asymptotic symmetry group on the latter can be extracted from equations (4.37),

C
Ty (@) = (0™ Tes (0) - 5= fot %),

= Tho(2"F) = (022" 72| Tus(2®) + cfi{ac’i zt) cy = 3L (439)
++ + ++ 247‘( 9 9 + 2G 9
in terms of the Schwarzian derivative for a function F' of x,
1
{F,2} = 0?In 0, F — i(a“"” In 9, F)?, (4.40)

and with the characteristic values of the central charges for asymptotically AdSs grav-
ity [36]. In other words, the integration functions 7%+ are Weyl invariant, while under the
centrally extended conformal group, one recovers the well-known coadjoint action, i.e., the
standard transformation law of an energy-momentum tensor.

5 3d asymptotically flat spacetimes at null infinity

5.1 Solution space

The first gauge fixing conditions that we will assume are
heemm0. (5.1

This is equivalent to I'yy;7 = 0 which can be achieved by a suitable Lorentz rotation. It
implies that the tetrad is parallely transported along [ and that [ is the generator of an
affinely parametrized null geodesic. In this case, Vil = —2lumy) (T — ), so that [ is
always hypersurface orthornormal. It is a gradient if and only if

=2, (5.2)

a condition which will also be imposed in the following.

Introducing Bondi coordinates z# = (u,r, ¢), u = 0, 1,2 such that the surfaces u = cte
are null with normal vector [, [, = 52 and such that r is the suitably normalized affine
parameter on the null geodesics generated by [, the triad takes the form

2 2 R 9 0o
L IR VL L S .
o "o Vo Ve mTVa e, (5:3)

The associated cotriad is
et =(-W+TWUV)du+dr —T7Udp, € =du e3=-T"'Vdu+T 'dp. (5.4)

Under these assumptions, the Newman-Penrose equations (A.1)—(A.6) fix the r depen-
dence of all spin coefficients according to

11 Gy

“Tarro T Tria P 55

G 2GR G 20:G '
T+Cl7 T‘-I-C'l7 T—l-Cl'

- 11 -



for C; = C;(u,¢). When used in equations (A.10) and (A.11), the r dependence of the
triad is

K 2K, C K
= V="K, U=—Cot ——,
r+ Ch r+ Cy r+Cy
90 K (5.6)
W= — Cayr+ Ky — =23
37+ A r+Ci’
with K, = K,(u, ¢).
In order to solve the remaining equations, we will assume in addition that
1
o=— + O(r_g), T= O(T_Q), V= 0(7"_1). (5.7)
r

The first condition can be satsified by changing the affine parameter r — r + C;. We
can then do a Lorentz transformation with a = d = 1, ¢ = 0 and b = C5 in order to
impose Cy = 0, and finally a change of coordinates 9,¢' = —K20,¢’ to obtain Ky = 0.
Note however that both of these last two transformations are only valid asymptotically.
Requiring them to preserve the gauge fixing conditions will require subleading terms in a
similar way as in the computation of section 5.2. On the level of solutions, the additional
conditions simply amount to setting

Cr=Cy=Ky=0. (5.8)

Redefining K7 = ™%, the remaining equations, i.e., (A.7)-(A.9) and (A.12), are equiv-
alent to

Cy = %Kz;, C3=0yp, Cs5= eﬂpauaqs(p, (5.9)

where

OuK4 4+ 20,0 Ky = 2672@(31683590 — 8¢g03ua¢90),

(5.10)
Oy K3 + 20,pK3 = €_¢8¢K4.

These equations can be integrated directly, but we will again generate the solution by using
the asymptotic symmetry group below.
In this case, (5.5) and (5.6) simplify to

1 K
o=-5, T=6=0 v = Oup, M:f’ v=e 0.4,
i x " (5.11)
e
T="—, W=-0yor+Ky, U==2 V=0
T T

5.2 Residual gauge symmetries

The residual gauge symmetries again consist of the subset of gauge transformations that
preserve the set of conditions determining the asymptotic solution space. We will consider
a general change of coordinates of the form

U = u(ularlv¢/)7 r= T(UI)T/7¢/)7 (;5 = ¢(UI’T/7¢/)7 (512)
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combined with an arbitrary local Lorentz transformation. The unknowns are A, B, E, u, 1, ¢
as functions of u/,r’, ¢'.
Using the a = 1 component of the transformation law for the triad

ox" y
oo = Aley”, (5.13)
it follows that imposing I’* = 5f, is equivalent to the radial equations,
Ou 2 —E
o -
0
a—f =2B(1+ AB)T, (5.14)
0
a—rl = (1+ AB)2® + B2e~EW + 2B(1 + AB)U.
,

The gauge fixing on the new spin coefficients takes the form &} = 0. The component a = 1
of the last equation of (3.19) can be rewritten as

g 0 g = NGy (5.15)

This is equivalent to three conditions on the rotation parameters, which can be suitably
combined to yield

gf, =2B(1 + AB)e"o,
%:—B e “"v—2B(1+ AB)e “u+2A°B(1+ AB)e” o, (5.16)
gbj = —B% Py —4AB(1 + AB)e"0.

”

The set of equations (5.14) and (5.16) forms a system of differential equations for the
radial dependence of the unknown functions. In order to solve it asymptotically, we assume
that the functions have the following asymptotic behavior,

r=0("), A Eu¢=0(1), B=0(1). (5.17)
The unknown r can be traded for x = re™* = O(r') satisfying
% =1-A2B?2+ B2 2Pk, + 2fu + AB)e K3 =14 0(1'7?). (5.18)
The solution is given by
x =7+ xo(u, ¢) + O(' ), (5.19)

which, when introduced into the other radial equations, gives

B = By(u,¢)r'""" + (AoBf — Boxo)r'> + O(r'™),

A = Ag(u, ¢) + (Bje 790,050 + ByKae > + AFBo)r' ™' + O(r' ),
E = Ey(u, ) + (Bie ™ up — 2A40Bo)r' ™! + O(r'72),

u = uglu, ¢) - Bye o'~ + 00" ),

¢ = do(u, d) — 2Bpe” ¢~ For’ =1 L O('72).
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At this stage, we have fixed the radial dependence of all the unknowns and are left with

six functions Ag, By, Eo, ug, ¢o, Xo of v’ and ¢'.

We now have to require [j, = 5}5. After having imposed I’ = %, one has in particular

that I/, = 0. This follows from the combination of I/, = A%peb, %ff,/ and %”7{7 = A;%.”. For

the remaining components of [}, it is enough to verify that I/, = 1+ o(r"”), Ly, = o(r’ %) since

the equation of motion de’® + I"*,e’® = 0 for a = 2 implies 9/l — 8,/%,61“/ + F’lble’bl/ —
I);,, = 0. This reduces to 91!, = 9,1, and thus to Opll, = 0 = (%lfb. Extracting the
leading order from

ou or 1 9¢
2 20 4 42 2 2

e;;, = (—C + d )8x/# + C ax/# + (_C U + Cd)fax/ua (520)

we get
_ ou 0 ou 1))

By _ U0 _ p 0990 e R - SR hea'a 21

e D S 0 99/ e 99 (5.21)

We still have to impose three conditions: V' = O(r'~1), o’ = —T}n, +0("73), 7' =0("?).

The first one is a condition on the triad and can be imposed by requiring €/3 = O(1). More
generally, we have

ou or 1 0¢
B _ -
i = (—2acW + 2bd) Bl + 2acaxm + (—2acU + ad + bc)T@:z’“’

and, requiring the new cotriads to have the same form in the new coordinate system than

e (5.22)

they had in the old one, the leading terms of €3 and eg’ yield

) e~ Eote' _ 6@%
o'’ o¢'

0=¢e"

(5.23)

Note in particular that our choice of parametrization for the Lorentz rotations leads to

gﬁ? > 0. The first equation is equivalent to V/ = O(r'~!) while the second one gives the

transformation law of ¢. Combining (5.23) with (5.21), we obtain

0po Oup g, _ —o( 990 ~'dug o _ Eote9%0
=0 =e ™ By=e 99/ 99" e =e 99 (5.24)

ou’ %
To implement the last two conditions, we will use the transformation law of &3 given in
the last equation of (3.19). Imposing (&04)11 = O('~2) and (@})a1 = 5 + O(r'~3), we get

1 1
57 (Boe P00, — Ag) + 30+ BYA = O(r'2),
1

1
7 <—2X0 +2A0By — Bge_E(W) (5.25)

—B?’A—-B(1+AB)YE+ 6B =0("3).

From the general solution, we have ¢’ = U’0, + 179, where U’ = O(1) and 7" = ety
O(r'2). Inserting this into the two equations we can extract the value of Ay and Yo,

1 OF 0 0B
0+ Boe*EO—(p, X0 = 24¢By + 2¢ ¥ =)

— ¥
Ado=e7 %55 o ag'

(5.26)
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The asymptotic symmetry group is thus parametrised by three functions wug(u’, @),
do(u',¢') and Ey(u/, ¢') satisfying the constraints

0 ou _
50 =0 gi=c (5.27)

Note that, when taking these into account, the Jacobian matrices for the change of coor-

dinates at infinity are

uy _ —Ep Qug Quy _ Eo Ouy _ _ 2F0—¢'+p dug
o’ 96’ Ju 76 96’ (5.28)
Ogo _ 0 9o — 64P/—4P—E0 ’ ap A, — eEo—gp’—i—cp '

o’ ¢’

oy = 0 D¢

For notational simplicity, we will drop the subscript 0 on the functions determining
the change of coordinates at infinity and on the Weyl parameter in the next two section.

5.3 Combined BMS3 and Weyl group

From equation (5.27), it follows that F(u', ¢’) is determined by the function u(u’, ¢') and,
conversely, that the knowledge of such a function E allows one to recover the complete
change of coordinates, up to an arbitrary function @'(¢’),

/

u(u', @) = /“ dv' e F. (5.29)

Note that the point with coordinates (@'(¢'), ¢’') in the new coordinate system is described
by (0, ¢) in the original coordinate system. When considering the inverse transformation,
we can write,

u'(u, @) = /u dv e, (5.30)

where Fy is now considered as a function of the original coordinate system through
Eo(u'(u, d), ¢ (u,¢)) and the point with coordinates (u(¢), ) is described by (0,¢’) in
the new coordinate system.
Equation (5.24) is equivalent to the transformation law of field ¢,
9¢

¢'(u',¢') = p(u,¢) + E(W,¢') +1In o (5.31)

This can be used to trade @(¢) for

0
8(6) = [ dveeled), (5.32)

u

which can be inverted since the integrand is positive.
The combined BMS3 and Weyl group can be parametrized by

(¢6(9), B(¢), E(u',¢')). (5.33)
Note that the transformation law of

i) = [ dve e, 5.34

u(u, @) /0 ve (5.34)
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is
09’

W, o) = Fo [, 0) + (&), (5.35)

In particular, if

B(#), E(,¢), B°(¢), E°(u",¢"), B(), E°(u", "),

are associated to a first, a second successive and their combined transformation respectively,
equations (5.31) and (5.34) imply that

5(6) = (%ﬁw) + B(6), a0

EC(u//7¢//) — ES(U”,QZ)”) +E(u,,¢,).

For fixed diffeomorphism on the circle, ¢ = ¢, the first of (5.36) describes the abelian
subgroup of supertranslations, while, if in addition one restricts to the subgroup without
supertranslations, i.e., when all 3’s vanish, so do the 4’s and u is unchanged. The second
of (5.36) then describes the abelian subgroup of Weyl rescalings.

Alternatively, one can define

U(’U,, ¢) = e’u, a(“? (b) =e¥p, (537)
and parametrize the combined BMS3 and Weyl group by

(¢'(9), au, 0), B(u', ¢')). (5.38)
In this case, equation (5.35) and the first of equation (5.36) are replaced by

U@, ¢) =P Uu, ¢) + alu, 9)],

5.39
a’(u,¢) = e E s (! ¢') + alu, ). (539

Note that if ¢ does not depend on u then U = e ?u, f = —e ?a(¢) whereas U = u
and a(¢) = —a. If furthermore ¢’ does not depend on u’, then neither does E and
w'(u,¢) = eP@)(u + ). The standard definition of the BMS3 group is then recovered

when the conformal factor is fixed to be zero, i.e., when p(u,¢) =0 = ¢'(v/,¢’), in which

case it follows from equation (5.31) that the Weyl transformations are frozen to e = %%:.

5.4 Action on solution space

Solution space is parametrized by the three functions ¢, K3, Ky satisfying the evolution
equations (5.10). The action of the group on the conformal factor ¢ has already been
computed in the previous section. We can extract the transformation law of K4 from
(05)12 and the one of K3 from the second order of eg,

Kfl = 6_2EK4 + A% + 26_@/8¢/A0 + 2306_2E_¢8¢8u(p,
Ky = e 2PK3 + 27 2P BoKy — 2¢7% 0y (e7% 9 By) (5.40)
— 2A06_§0/8¢/BO + 2B§e‘2E—§"6¢8ugo.
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By construction, the transformed quantities have to satisfy the transformed equations, i.e.,
equations (5.10) where all quantities, K3, K4, ¢, u, ¢, 0y, 0y are primed.

In the particular case where ¢ = 0, equations (5.10) reduce to 9, Kyr = 0, 0, K3r =
0pK 4R, so that Kyp = (167G)p(¢), K3r = (167G)(j(¢) + udep). Applying the particular
Weyl transformation ¢' = ¢, v/ = [ dv e, BE(u,¢') = ¢'(u/, ¢'), with inverse transforma-
tion u = foul dv'e=#'(""¢") we obtain from (5.40) that

Kfl — 2 [K4g + 28;40’ — (8¢/g0,)2], Ké — 2 (KR + 20y uKyr — 262/11]. (5.41)

After removing all primes and writing the inverse transformation as in (5.34), it follows
that the general solution to the dynamical equations (5.10) for arbitray ¢ is given by

1
Ky = (167G)e 2 |p(¢) + —— (2020 — (94)°) |,
[ 167G "? ] 1 (5.42)

K3 = (167G)e”?? [j(@ + u0yp(d) + 205up(¢) — Wagﬁ} :

The final parametrisation of the solution space studied in section 5.1 is given by the
conformal factor ¢ and the two functions p(¢) and j(¢). Their transformation laws under
the combined BMS3 and Weyl group is given by

)= () [+ o) a=o w=l, 5.3

2
J'(9) = (3;’) [j(qs) — 20(6)048 — OppB+ 5038 + 5-{¥, ¢>}] .
The central charges have the characteristic values for asymptotically flat three-dimensional
Einstein gravity [37]. These quantities are thus Weyl invariant, which needs to be the case
by construction since a Weyl transformation applied to K3, K4 amounts to applying the
combined Weyl transformation to p,j with the associated change of u. Their transforma-
tions under the BMS3 group agree with those derived by different methods in [22, 38].

6 4d asymptotically flat spacetimes at null infinity

6.1 Newman-Penrose formalism in 4d

In four dimensions with signature (4, —, —, —), we use
01 0 O
10 0 O
= 6.1
Tlab 00 0 —1 ( )
00-10

The different elements of the null tetrad are denoted by e, = (I, n,m,m), with the associ-
ated directional covariant derivatives denoted by (D, A, 4, 3). In particular,

g = 1PV +1Pn* — mPTRY — mPTP, Ve = neD + LA — mgd — Migd. (6.2)
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The 24 independent I'y;.’s are parametrized through 12 complex scalars,

v m*Vli, %(n“Vla —m*Vmyg) —m*Vn,
D | k=Tg1 | e=4To1 —Tug1) | 7= —Tum
A | 7=Tg2 | v=3T22-Tuz) | v=—Tuw (6.3)
§ | o0=Ts13 | B=73T213—Tuss) | p=—Tos
5 | p=Tsuu | a=3T24—Tuzs) | A=-Tun

where the associated complex conjugates are obtained by exchanging the indices 3 and 4.

In order to describe Lorentz transformations in four dimensions in terms of a null
tetrad, one associates to a real vector v = v%,, with v',0v2 € R,v* = 03 € C, a 2 x 2
hermitian matrix ¥ = v“}a, where the ja are chosen as

~ 10 -~ 00 -~ 01 -~ 00
1 = y o — y ja — 5 14 = . 64
J1 (0 0) J2 (0 1) J3 (0 0) J4 (1 0) ( )

det v = §nabv“vb, G G0+ 7 0 = Naves TbEIL + Ja€it = Nave, 1%y + JL)JE =0, (6.5)

01
- (_1 O) | (66)

For an element g € SL(2,C), one considers the transformation

In this case

where

g}agTv“ = ;aA“bvb, et =g le (6.7)

with ad — bc = 1 and a,b,c,d € C, then

More explicitly, if

aa bb ab ba dd cé —de —cd
cc dd cd de bb aa —ba —ab
A% = ~ = AL = _ - .
b ac bd ad be |7 @ —db —ca da b |’ (6:9)
ca db cb da —bd —a¢ be ad

where the first index is the lign index.
The standard three classes of rotations [30] are then given by

e class I for which I’ =1,m/ = m + Al =m + Al,n' =n + Am + Am + AAl:
a=1=d,¢=0,b=—A4, AcC,

e class II for which n/ =n,m’ = m + Bn,m =m+ Bn,l' =1+ Bm + Bm + BBn:
a=1=d,b=0,c=—-B, BeC(C,
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e class III for which I’ = e Prl,n' = ePrn,m/ = ePrm, m = e Frm:
a=e B2 d=eE2 p=0=¢, E=FEp+iE; €C.

Finally, the SL(2,C) group element corresponding to a combined rotation 7ol o II]

is given by
—E/2 _AE/2
g=1_ —E/2 = B2 | (6.10)
—Be B2 (1 + AB)eP/
Defining
. I~ ~roa —I'yo —2 (T2 — Ty3)
i 2 , 6.11
W 2]a6.7b (_%(le _ F43) Ty ( )

the transformation law of Lorentz connection becomes
&' = gwg’ — gedg”. (6.12)

More explicitly, for the spin coefficients encoded in

) = (i ‘;) Dy = (_”V ‘j) , D3 = ( _"ﬁ ‘f) By = (_Aa ‘p“) . (613)

one finds
@ = NCgBegT — geel (g7). (6.14)
Alternatively, one can use U = ve in order to describe real vectors. The associated
basis is
- 01 ~ 0 0\ ~ —-10\ ~ 00
1= jo = i3 = = 6.15
J1 (O())?j? (_10>7]3 (0 0>7.74 (01)7 ( )
so that

det T = Snap0™v", Jy €ja + Ja €Jb = Nabes Joca + Jacly = Naves J* (b +Jy )ja = 0. (6.16)

In this case, we have

1 1 1

—dgg™, &= AN9Deg

9Jag 0" = Ju At & = gig™ —eh(9)g,  (6.17)

where

JJ1=<E ”),5)2:(7 ”),@,:(5 “),@:("‘ A). (6.18)
—K —€ —T —7 —o —f3 —p —o

For the Weyl scalars, we follow the conventions of [33, 39|, which differ by a sign from
those of [30] and those of [25, 27] (when taking into account in addition the correction for
Uy given in [26, 29]). If Cypeq denote the components of the Weyl tensor and ¥ g4pcp the
associated Weyl spinor,

Vo = Ci313 <> Yoooo, Y1 = Ci213 < Yooo1, W2 = Cizaz < Yoou1, (6.19)
U3 = Crog2 <> Yor11, Py = Coyq < V1111.
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Their transformations law under Lorentz rotations can be either worked out directly by
using C(,zlagaga4
in [30] for the individual rotations of type I, II,I11I. A faster way is to use the correspon-
dence with the Weyl spinor: with our choice of Infeld-van der Waerden symbols in (6.4)
(cf. (3.1.50) of [39]), eq = (I,n,m, M) <+ €4€; = (€00, €1€1, €0€1, €1€0), € = Aglep with Agb
as in (6.9) corresponds to €, = gaPep with

—d ¢ ab

B A

= = 2
gA <b a>7 9 B (C d) (6 O)

When taking into account the complete symmetry of the Weyl spinor, one gets directly
from \IIC41A2A3A4 =94 B 'gA4B4\IIBlBQB3B4 that

= Aalb1 .. .Aa4b4Cb1b2b3b4 and the symmetries of the Weyl tensor, as done

V) = a’Wy — 463603 + 606> Uy — 4ab> Ty + b1,

U = —a’cWy + (a®d + 3a%be) U3 — 3(ab’c + a®bd) W,
+ (bPc 4 3ab®d) Ty — b3dT,,

U = Wy — 2(abc® + acd) V3 + (b*c* + dabed + a*d®) Uy
—2(b%cd + abd®) Wy + b?d* Uy,

U = —ac®Uy + (be® + 3ac®d) U3 — 3(bcd + acd®) Uy
+ (3bed? + ad®) Uy — bd> W,

Ul = Wy — 4c3dWs 4 6¢2d> Uy — 4ed® Uy + d Wy,

(6.21)

6.2 Newman-Unti solution space

The gauge fixing conditions at null infinity! that are usually assumed correspond to im-
posing the six real conditions encoded in kK = ¢ = m = 0. This is equivalent to requiring
w1 = 0 and can be achieved by a suitable Lorentz rotation. According to the definition
of the Newman-Penrose scalars, it implies that the whole tetrad is parallely transported
along [, DI = 0 = Dn = Dm = Dm. In particular, this means that [ is the generator of
affinely parametrized null geodesics. One then requires in addition that [ is hypersurface
orthonormal and a gradient, which yields 3 more conditions, p = p and 7 = @ + 3, see,
e.g., section 1.9 of [30].

This allows one to choose Bondi coordinates z# = (u,r, xA), w=0,...,3 A=23,
z? = (¢, () such that the surfaces u = cte are null with normal vector [, I, = 52 and that
r is the suitably normalized affine parameter on the null geodesics generated by [. The
tetrad then takes the form

(6.22)

which implies that

g =1, g =2U —ww), ¢ = XA — @ +wé

'We restrict the discussion to £ 7.
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w|—-1|-1|-1|-2|-2|-1|-2|-3|-3|-3|-3]|-3

Table 1. Spin and conformal weights.

Note furthermore that if £4 = gap&®? with gap the two dimensional metric inverse to g%,
then €464 = —1, €464 = 0 = £4€4. The associated cotetrad is given by

el = —[U+ XM (wEs + @E)]du + dr + (w4 +WEa)da, (6.2
e =du, € =X du—Eda?, et = XA du — Eada?
On a space-like cut of .#, we use coordinates ¢, ¢, and the metric
d5? = —7 ypda’dz? = —2(PP)~td¢dC, (6.25)

with PP > 0. For the unit sphere, we have ¢ = cot gew in terms of standard spherical

coordinates and 1

V2

The covariant derivative on the 2 surface is then encoded in the operator

Ps(¢,¢) = —=(1+¢C). (6.26)

on®* = PP "9(P°n®), on® = PPO(P~*n®), (6.27)

where 3,0 raise respectively lower the spin weight by one unit. The weights of the various
quantities used here are given in table 1. Complex conjugation transforms the spin weight
into its opposite and leaves the conformal weight unchanged. Note that P is of spin weight
1 and “holomorphic”, 3P = 0 and that

[0,0)n° = ans, (6.28)
with R = 2PP90In(PP) = 200 In(PP), Rg = 2. We also have
[0u,0]n° = (0, In PO + 500, In P)n®. (6.29)

According to [25-27], once the conditions kK = € = m = 0 are fixed and coordinates
u,r,¢,¢ such that I, = 6%, ¥ = 6% are chosen, which implies in particular also that
p—p=0=r71—a— [, the leading part of the asymptotic behaviour given in (6.30)
follows from the equations of motion, the condition ¥y = ¥3r=> + O(r~5) and uniform
smoothness, i.e., a standard restriction on the functional space imposing how the fall-off
conditions in r behave with respect to differentiation. In addition, the choice of a suitable
radial coordinate is used to put to zero the term in p of order »—2, while by a choice of
coordinates z#, the leading part 72 of the spatial metric is set to be conformally flat, and
the constant part of X4 to vanish. Finally, the leading order 7! of 7 is set to zero by a
suitable null rotation. As will be explicitly seen below, these conditions guarantee that the
asymptotic symmetry group is the extended BMS group combined with complex rescalings.
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For the explicit form of asymptotic solution space, we will follow closely [27] (see
also [25, 26]), except that the complex P used here is twice the P used there and the O
operator is taken to agree with the definition used in [33]. Furthermore, ¢ = 2% + iz* and
V = 20. More details can be found for instance in the reviews [29, 31, 33, 39] and also
in [40], where a translation to results in the BMS gauge as used in [7] can be found. Note
also that, as compared to [7, 9, 10, 40], we have changed the signature of the metric in
order to agree with the standard conventions used in the context of the Newman-Penrose
formalism and that 2% — —z.

The asymptotic expansion of on-shell spin coefficients, tetrads and the associated com-

ponents of the Weyl tensor are given by
Vo = Wgr—° +0(r™%),
Uy =0t -85 "+ 0

(r%
Uy = 093 301 + O(r™9),
(r™)
O(r—)

r )

Uy = 02 - 509 —3+0r Y,
Uy =0 B0l 2 r3), (6.30)

p=—rt =o' 3 L0,

1
o=0c"r2+ (500000 — 2\I/8>r_4 +0(r™),
a=a% 1 +3%% 2 4 6%% 3 + O(r ™Y,
1
g=—a’rt—5%"%2 - (c"3%° + 5\11(1))1"_3 +0(r ),
1 1/1 =0 =
= — 034 = 700\11(1) +00) )rt +O(r™),
2 3\ 2
1
A= A0"1 — 050- 2 4 (UOEO)\O + 230\Ilg>r_3 +0(r™),
= 0 = (6000 4 w)2 ( 050,0 4 5\I,O> =3 L 0@ Y,
1 _
v =70 — 7\1;0 7 5 (200] + a0 — @)+ 0(r ),
v=20— 0! 4 55‘11ng2 +0(r3), (6.31)
1 — 1 =

U=~ (" +73)r 44’ = S(W3+Ty)r ! + (009 + 00 + 0 ),
x¢=x¢ = 613\1/0 B Lo,

€ =8 =P+ 07

€= =P +0%%r ) + O(r Y,

w=00"%"1— (00550 + 2\1'(1])7“_2 +0(r™), (6.32)
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9| (PP) 20, | 70 | 20 || &0 | A°| ®9 | 99| W9 | WO | WY
hl0 1/2 1/213/2| 1| -1/2| 2 |5/2| 2 [3/2] 1 |1/2
hill 1/2 /2 11/2] 1 3/2 0 |1/2] 1 |3/2] 2 |5/2
Table 2. Conformal dimensions.
where
o_ 15 0 1 5]
« ziPalnP, v :—iaulnP,
1- _ ] [— _ R
o = — 563 In(PP) = —§PP88111(PP) = (6.33)
AV = (0, + 37" = 7%)5°, V0 =0(7" +7),
0 — T =560 — 9%5° + 70" — 00N,
W)= — N 4 5.°, WY =800 — (0, +4YN)N\°, (6.34)

and

(D + 7 +57°) 8] = 809 + 30°09,
(D 4 27° 4+ 47°) 00 = 50 + 26009, (6.35)
(Ou + 37" + 37°) ¥ = 00§ + oW
In this approach to the characteristic initial value problem, freely specifiable initial data at
fixed ug is given by Wo(ug,r,(, ) in the bulk (with the assumed asymptotics given above)
and by (99 —l—@g)(uo, ¢,C), ¥9(up, ¢, ¢) at #+. The asymptotic part of the shear ¢°(u, ¢, ¢)

is free data at .#T for all u and determines, together with the other initial data at .,
the would-be conserved BMS currents.

As in [41] (see also [42]), for a field n** of spin and conformal weights (s,w), one can
associate a field 77" of conformal dimensions (h,h) through

p = PPt (b h) = ( - %(s +w), %(5 - w)). (6.36)

The conformal dimensions of the various quantities used here are given in table 2.
When expressed in these quantities, (6.34) and (6.35) become

= - Z(PP)"28,InP, 70 = (a + ;aln(P?)> 3 +7),

X = (PP)28,5,

00— %851n (PP), 3
~0 =0 9 1 9 — 1 =\ 2 ~0
-0y = (82— [0 (PP) + S(@m(PP)?| )7

— . _ _ _ — =0 ~
- (82 - % [82 In(PP) + ;(8ln(PP))2DEO +X 5 — 2050,
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W)= — X\ + (04 0In(PP))i,
Y = <a + Z’amwﬁ)aﬂ — (PP)"20,\°, (6.37)

and

(PP)" 20,19 = (3 + 20In(PP)) Y + 35°%Y,
(PP) 29,19 = <5 + géln(PF)> WY + 25009, (6.38)

(PP)" 20,99 = (3 + 9In(PP))¥Y + 509,

Below, during the construction of the solution to the evolution equations (6.34) and (6.35),
we will construct improved fields of this type that take due care both of the additional
u-dependence and of the inhomogeneous parts of the transformation laws.

6.3 Residual gauge symmetries

The residual gauge symmetries are the combined Lorentz transformations and coordinate
changes that leave on-shell spin coefficients and tetrads invariant. Since these transforma-
tions map solutions to solutions, once the conditions that determine asymptotic solution
space are preserved, no further restrictions can arise. The change of coordinates is of

the form
u= u(u’,r’,x'A), r= r(u’,r’,x'A), A = a:A(u’,r’, :c'A), (6.39)

and the unknowns are A, A, B, B, E, E,u,r,z* as functions of u/, 7, z'4.

Using the a = 1 component of the transformation law

14
O

b = A’ (6.40)

it follows that imposing I'* = 67{‘/ is equivalent to replacing the Lh.s. by %”ff,j. This gives

%:ff/l = ddl” + cen” — (dem” + c.c.), or more explicitly,

ou — B
W = BBe R,
oA - —EpvA AR\ AEr A 6.41
57 = BBe PrX A+ [B(1+ AB)e™ ¢ + ce ] (6.41)
0 — _ — .
a—r/ = |1 + AB|*¢"® + BBe PRU + [B(1 + AB)e"F'w + c.c.] .
r

In order to implement the gauge fixing conditions in the new coordinate system, or equiv-
alently &) = 0, we rewrite the last of (6.17) as

g7 e (9) = MTy — g7, (6.42)

and require, for a = 1,
g—179 = A"y (6.43)
or' ' )
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More explicitly, the conditions on the rotation parameters are
dD'a —bD'c = A*(@p)11, dD'b — bD'd = A*(@)12, aD'c — eD'a = A" (@ )an,
where
M*(@)11 = eey — def — cda = BBe™ "y + B(1+ AB)e'™ 3 + B(1+ AB)e "o,
AP @y)s = v — dep — cd\ = BBe~Pry + B(1 + AB)eP u+ B + AB)e—P1 ),
A (@)o1 = —cer +deo + edp = —BBe " — B(1+ AB)e'™ o — B(1+ AB)e™'".

Note that the additional equation involving Alb(&?b)gg = —Alb(cf)b)n on the r.h.s. fol-
lows from the first equation when using ad — bc = 1. When suitably combining these
equations, one finds

OB 5
97 = " eB A0 (a1,

HA _ 5 - _

o AP N (@Gy)o1 — € A (@) 12 (6.44)
OE o b 5

o 24" Ay (@p)21 — 201" () 11

The set of equations (6.41) and (6.44) forms a system of differential equations for the radial
dependence of the unknown functions. In order to solve it asymptotically, we assume that
the functions have the following asymptotic behavior,

r=0("), AEu¢=0(1), B=0(""1). (6.45)
We can now trade the unknown 7 in the last of (6.41) for y = re F® satisfying

% — 1 + AB]? + BBe2EnU + [B(1 + AB)e Fu

+ XAlb({IJb)H — XZ@EAlb((I)b)Ql) + C.C.] =1+ O(T/_2). (646)

Note that the vanishing of the O(r'~!) terms follows from non trivial cancellations. Except
for the equation for r, which we have just discussed, the r.h.s. of (6.41) and (6.44) are all
O(r'=2%). We thus have

A=Ag+0("), B = By +0(r' "), E=Ey+ 0,
U = ug + O(r,o/—l)’ I’A _ x64 + O(T‘/_l), (647)
r=efrr 4+ 00 = x =1t + (),

where Ag, By, Eg, ug, xf)“, 1, x1 are all functions of u’, 2’4, These fall-offs allow us to write

3 - 0 g~ ~ ]
gilfg =Ny, — g(u',r’,x’A) — o= 7 di (AP gi) (v 7z A)gg(u’,x’A),

or'

Ozt b, v wipho A Wil 1A Oo~bu/~/A

57 =MN"e" <~ MW, r ) = 2P (v, 00, ™) — dr (A ep?)(u', 7y '),
Tl
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for pn = u, A, and where go(u',2'4) = g(u/, 00,2'), zf = (', 00,2'1). Even though it
will not be explicitly needed in the sequel, equations (6.41) and (6.44) can be used to work

out the next to leading orders,
w = ug — BoBoe Frop/~1 4 O(r’_z),
¢ = (o — Boe oPr'~t 1+ 0(+'7?),
B = Byr' '+ 0(r'7?),
A=Ay + [6_2ER0+7;EIOB()§050 + G_ZEROBoﬁO + 6_2E0§0X0 + AgEO]T,_l + 0(7“/_2),
E=EFEy+ 2[BQ§06_ERO’}/O + Boe_ano — Eoe_Ean - Z()BU]T/_I + O(’r‘,_z).

At this stage, the unknowns are fixed up to AO,BO,EO,,Rl(Xl),uo,mS‘ as functions of

oA

We now have to require l; = 5“ After having imposed I’ = a 7, one has in particular

that I/, = 0. This follows from I/, = A% eb, %f, on the one hand and from %r, = A{%,."” on
the other. For the remaining components of I, it is enough to verify that I;, = 1+ o(r’ 0y,
Uy =o(r 0) since solutions are transformed into solutions under local Lorentz and coordinate
transformations. In particular, de'® + I'%e® = 0, and for a = 2, de} + Flbe/ = 0.
Contracting with €}" then implies that 9.1, — 8,,/lu/61” + Flble v — Iy, = 0. This
reduces to Op1!, = 0,1, and thus to 0,l!, = 0 = O l'y. Extracting the leading order from

: . 9
€% = [ = celU + XA (wEa +TEa)] + dd + cdX Ty + deXM¢a] 5o
_ or x4
+ g+ [ce(wé 4 +WEA) — cdE 4 — de€a] RRTE (6.48)
we get
1= eERO auo — B0P_1€EO% — FUF_IQEO %7
o o ou’ (6.49)
o D0 ~1,F 3(0 — ——1 5 0 )
= P00 g pleBo 950 Tt B 050
0= oc’ 0 ac! of” ¢ ac’’

together with the complex conjugate of the last equation. When using that the change of
coordinates needs to be invertible at infinity, these relations are equivalent to

ouy _B
efro — 8—5, By = —e Poduy, (6.50)

together with the complex conjugate of the last relation.
We now need the transformation laws of 7, ¢ and p, which are obtained from the
matrix components 21 of the last equation of (6.17) for a = 2,3,4. This gives

7' = aa(d*t + v — 2cdy) — ba(d?c + Ep — 2¢dB) — ab(d?p + A\ — 2cda)

+dA'(c) — cA'(d), (6.51)
o = — ca(d*r + v — 2cdy) + da(d*o + P p — 2cdf) + cb(d?p + A\ — 2cda)
+dd'(c) — ' (d), (6.52)
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pl = —ac(d®1 + v — 2cdy) + be(d*o + P — 2¢dB) + ad(d*p + A\ — 2cda)
+dd'(¢) — ¢8'(d). (6.53)

. . -/ . /
In order to proceed we need the asymptotic behavior of A,d",8 . Using et = Ayle” %f: -

for a = 2,3, we get

n'* = bbD(2'") + aaA(x'*) — [bad(z™) + c.c.],

_ — 6.54
m'" = — dbD(z™) — caA(z") + dad(z™) + cbd(x'). (6.54)
Explicitly, this gives
/ ouy
nlu — e—ERoﬂ +O(r1—1) — 1 + O(T/_l),
ou
’ 1 _
n" =U = e Frog, <2 In PP — ER0> ' 4+ O0(r"),
A
nA — x'A — o=Ero agf) +O@r' Y,
“ (6.55)

’

m/u — O(T,lfl)7

’ 1 _ _
m" = ' = Ay + Boe Frog, (2 In(PP) — ERO> — e By ER + O(' Y,
o 1A _
m/A — é—/A — (Boe—ERo axg + e_EO6CC6A> T‘/_l + O(T’/_z).

On-shell the new tetrads need to have the same form in the new coordinates than they had
in the old. This implies in particular

9G

ou
. 1 _ —

Ay = e 2FrotiEI0g, <2 In(PP) — ER0> Oufy + e FOOER,

=0, P'=eoag,
(6.56)

together with the complex conjugates of these equations. In addition the requirement that
the leading part of the metric remains conformally flat implies

oG 28
— =0=—=". 6.57
o o (6.57)
When used in (6.49) this leads to
dup _ _pn, Ouy g 0¢ Oug
S € e e B e (6.58)

In order to work out the term on the r.h.s. of 7/ in (6.51) of order O(r'~!), one needs
in particular n’" above. Requiring this term to vanish gives

1 P
Ay = —dwBo + By (i&u/Em +5¢ M0, I F)' (6.59)

When using (6.50), this coincides with the second of (6.56).
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Requiring that the tems of order 7/~2 in p’ in equation (6.53) vanish yields
X1 = BoBoe P09, In(PP) + AgBo + 240By + 9 By — 2Byd Ero. (6.60)
Finally, to leading order, the transformation law of o in (6.52) yields
o0 = e Frot2iEr050 _ A B, — &' By. (6.61)

In summary, we see that all the unknowns Ag, Ag, Bo, Bo, x1(R1), Ego are determined
by the change of coordinates at infinity and by Ej. The Jacobian matrices are given by

uy — e~ Fro s Oug
u
_ a¢

% _g 2 BD

('911 ¢ _ P B 8< R

%o _ Gy _ 8Co:e—E’o£

au/ ac/ 82/ P/

) , , , — (6.62)
Quy _ Fro %—_eERO%% %—_eEROLCOLu(l)

= = 0 220 — >0 W

% = O % = eE()i aic_(l) =

ou ¢ P BC

— — —

G _ 0 Gy _ 0 G _ eEo P’

ou o 6Z - P

Note that here and in the following, when considered as a function of (u, ¢, (), Eq is explic-
itly given by Eo(up(u, ¢, <), C(’)(C),ZB(Z)). Note also that the right lower corner of (6.62) is
equivalent to the transformation law of P,

= — 5 OC
P'(u, ¢, () = P(u,C, C)ean%O, (6.63)

and that preserving PP > 0 requires %%Z% > (. The transformation law of the metric

in (6.25) and of 0 are given by

(d5?) = *Pro(d5?),

E — 6.64
't = e o <5 — e Froguf9, — s[0Ey — (e FR0uf)dy (B — In P)])ns. (6.64)

In particular, when putting all results together, the subleading term of the rescaled radial

coordinate is given by
x1 = e 3Eroduidul [0, Fro +1° + 7°] — e 2Ero50uy,. (6.65)

For notational simplicity, we drop in the next sections the subscript 0 on the asymptotic
change of coordinates and on the complex Weyl parameter.
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6.4 Combined extended BMS4 group with complex rescalings

From the top left corner of the first matrix of (6.62), it follows that Er is determined by
u(u, (', Z’) and, conversely, that the knowledge of such a function allows one to recover the
complete change of coordinates, up to an arbitrary function @'(¢’ ,ZI),

u/

u(u', ¢, ¢ = / dv' e PR, (6.66)

Note that the point with coordinates (&’(C’,Z’), C’,Z/) corresponds to (0, ¢, C).

After inverting, one can write,

u

u'(u,¢,C) = / dv R, (6.67)

where Eg = Er(u'(v,¢, ), C’((),ZI(Z)), and now the point with coordinates ((¢, ), ¢, <)
is given by (0, ¢’ ,Z/) in the new coordinate system.
For a field P transforming as in (6.63), we trade (¢, () for

0
B(¢.T) = / dv (PP)} | (6.68)

u

which can be inverted since the integrand is positive.
The extended BMS, group combined with complex rescalings can be parametrized by

(€' (©), (0,80, E@, ¢, 7)), (6.69)

since B(¢, ) determines (¢, ¢) and one then gets u/(u, ¢, ) from (6.67). Defining

(0.6,0) = [ du(PP)R(w.¢.0), (6.70)
0
its transformation law is simply
~1 1 1 L~ = = d¢ o¢
W, ¢.T) = 773 [, ¢.O) + B D)), =a§a§ (6.71)
Together with (6.63), this implies in particular that, if
8(¢.C), E@.¢.Q), (6.72)

and the same quantities with a superscript s and a superscript ¢ are associated to a first,
a second successive and the combined transformation respectively, we have

B¢, C) = J28°(¢,C) + B, O),

—1 = -/ (6'73)
B, (") = E°(u", (", () + E(u, (', ).
Alternatively, one can define
Uu,¢,Q) = (PP)31,  a(u,(,0) = (PP) 725, (6.74)
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and parametrize the extended BMS,4 combined with complex rescaling through

(€€, ¢, alw, ¢, Q). B, ¢, ). (6.75)

Equation (6.71) and the first of equations (6.73) are then replaced by

L{’(u’, C/’E/) — Br(u' (') [L{(u, C;Z) + a(u, C)Z)]j

—. vy — —. (676)
a‘(u,(,Q) = e PRt Das (!, ¢, ) + alu, ¢, 0).
A pure complex rescaling is characterized by
O =¢ o= / dvePr, P = pe . (6.77)
0

In the case when P does not depend on u, u = (Pﬁ)%u and 8 = —(PI_-_’)%Q, whereas
U = u and «(¢,¢) = —a. If furthermore P’ does not depend on «’, then neither does E and

' (u,(,C) = eER(CI’EI)(u +a), e PrRou =0da +0Egr(u+a). (6.78)

When the conformal factor is fixed, P(¢,¢) = Pp(¢,¢) and P’((’,ZI) = PF(C’,Z/) for
some fixed function Pp of its arguments, it follows from (6.63) that complex rescalings are
frozen to

€E _ ﬁF(C:Z) aicl

"B ) o
In this case, a pure supertranslation is characterized by
(=¢ efF=1, v, ) =u+a, e ROV =200, (6.80)
while a pure superrotation is characterized by
¢ =70, ¥ = Pr(,9) a—C/ u = ePry, e PRIy = BERu. (6.81)

= _FF(CI’Z/) aé- )
The standard definition of the BMS, group is then recovered when (i) standard Lorentz
rotations are described through fractional linear transformations (see e.g. [41] for details),

, _ag+b
C_CC—I—d’

ad—bc=1, a,b,c,deC, (6.82)

(ii) the conformal factor is fixed to be that for the unit sphere, Pr = Pg, in which case

eEI%: 1+CZ eiEf:EZ+C_i
(a¢ + b)(@C +b) + (¢ + d) (e +d)’ ¢ +d

(6.83)

(iii) supertranslation are expanded in spherical harmonics, ag = th ™Y, (¢, €) with or-
dinary translations corresponding to the terms with [ = 0,1 and are explicitly described by
A+ B(+BC+ 0

1+¢C ’

A,CeR,BeC. (6.84)
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6.5 Action on solution space

Putting the results of the previous subsections together, the transformation law of the data
characterizing asymptotic solution space is contained in

of = e ErRT2ED [00 +d(e Frou’) — (e ProOU) (0, +7° — 'yo)(e_ERfiu’)} , (6.85)
N0 = ¢2F [)\O—i-(au—FS’yo — 7% [B(e™FrBu’) — (e~ FRBU) 0y + 70—70)(6”5331/)}} , (6.86)
\Illg — 6_3ER_2iEI\I/27
\I/’g = ¢ 3Fr—iEL [\I/g — e_EREiu'\IJZ},

Wy = e 3FR WY — 26~ Prou W) + (e~ Prou) W],

\Il’(l) — ¢ 3ErTiET [\I/(l) — 36_ER5u'\I/g + 3(6_ER5U')2\I/g — (e_ERfiu’)?’\IfZ ,

\I/’g — ¢ 3ERT2iE] [\118—467ER5U’\II?+6(67ER5U’)2\118—4(e*E35u’)3\Ifg+(e*ERﬁu’)zl\Ilg .
(6.87)

In particular for instance, if P, P’ do not depend on u,u’, the transformation law of the
asymptotic shear under a pure supertranslation reduces to

oh =00+ 0%, v =uta (=¢ (6.88)
while the transformation law of the news under a pure superrotation is
N0 = e 2E[\0 4+ (3°Eg — (BER)Y, (6.89)

with «/, F given in (6.81). If furthermore, we work with respect to the Riemann sphere,
Pr = Pr =1, this reduces to

0 a¢’ - 0o, 1,y / -1 / /
= (%) persteal. w=rte ¢=c, (6.90)
where the Schwarzian derivative is {F,z} = 62In(0,F) — 5(9, In(0,F))>.

Let us now analyze in more details the evolution equations (6.34). We start with unit
scaling factors, P = P = 1, so that in particular the leading part of the metric on a
space-like cut of .# T is the one on the Riemann sphere, d5?> = —2d(d(. In this case, (6.34)
and (6.35) reduce to

0 _q_,0_,0 0 _ =0
Yr =0=Vg = g, AR = Op,
=0 72— 0 —d =0
Wy — Ugp = 0% — 0 % + 0%k — TRo%, (6.91)
0 7-0 0 =0
U3p = — 0op, Vigr = —Og,

and
0uV5 s = 00 + 30% 09,
0,V = 005, + 20009, (6.92)

0.V = OV, + o Wip,

~ 31—



In a first stage, these equations may be trivially solved in terms of integration functions
WO, =00, (¢,¢) for a=0,1,2 as follows:

Uop = Up + /Ou dv [00S + 0%V R], (6.93)
where
Wy — Uy = (020 — 5% + 6% — 520%)(0), (6.94)
W, =00+ /Ou dv [0 + 20509 ,], (6.95)
and
UOp = Ups + /Ou dv [00Y + 305,09 ,], (6.96)

and the express1ons for \I/ 1p in terms of \IllRI,\IIQRI,JR,J% and for WY op in terms of
\IIORI, \IIIRI, \112}217 aR, 0(1)% can be worked out recursively. ~

For later use, we introduce instead the integration functions \IlgRI = \Ilg r1(¢, Q) for
a=0,1,2 defined by

Wy = Wpy — 5% — o%hion + /0“ dv 695 n,  Wpr = Topy, (6.97)
Wp = Wpr +udWp; — 0pdoh — ;8(0%5%)

+/u dv [ (06%5% — 30R80R+30R80R 8URUR) 535%}

+8/ dv/ dw o URUR, (6.98)
Uor = Wopr + udWip; + U 29" Uopr

_ 1— 1 =
+ / v [ag<3ngI 30050 _ 49% )—280%86%—2620%6%—20%826%]
0

+ / dv [30% / dw d%EOR
0 0

+8/ dw [ (5%, — 303803 + 36%05% — 50%3%) —535%”

+0 / dv/ dw/ d(L‘O’RO'R (6.99)

=~ =2__| -0
Uopr = Vopr + [0k + U%URKO)u

We have

W = W, + [URaUR + 3(09;:5(1)%) (0), (6.100)

U = Vg
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In these terms, the Bondi mass aspect can be chosen to be given by
u -0
( 47TG)MR—\I/2R+URO'R+8 O'R—\IJQR]‘i‘/ d’UO‘%ER (6101)
0

Note that this expression contains the additional term 525% as compared to the more
convential choice, see e.g., equation (4.18) of [10] with f = 1 (up to a global minus sign
due to the change of signature). More details on this quantity, and more generally on the
would-be conserved currents and their transformation laws, will be given elsewhere [43].

In order to generate the general solution to (6.34) and (6.35) for arbitrary scaling
factors P, P from the one with P = 1 = P, we apply a pure complex rescaling, without
superrotations nor supertranslations to the solution above, i.e., we take e = Flfl, u =
Jo dveFr, (' = (. In this particular case,

V=0, e Ergy = —9u, 9=0 — (P'P) 20 udy, 9y = (P'P) " 20,. (6.102)

As a consequence, one finds from the transformation laws that the general solution to (6.34)
and (6.35) is given by

] (6.103)
W9 (1) + 200055 (1) + (90) (@),

0§ = PP2| WY (@) + 39098 (@) + 3(90)2 W3 () + (90)* Wis (W),

WY = P2 PE [W0, (@) + 40000, (@) + 6(50)2W0p(7)

+ 4(00)* Wia (@) + (B0) Wia (),

where all functions depend on u, ¢, {, except where explicitly indicated that the dependence
on u is replaced by a dependence on @(u, ¢, ¢).

In particular, this means that o%(u), a%( ), U0 p(u),a=0,...,4and ¥%.. i =0,1,2,
are invariant under complex rescalings. Indeed, applying a complex rescaling to the non
reduced quantities amounts to applying the combined complex rescaling to the reduced
ones. In other words, only P, P, u change while U%, 30}%7 \Ilg r are unchanged as a function of
their variables, while \II?RI are completely unchanged. More generally, the transformation
law of a%(ﬂ),?%(ﬂ), ¥0,(0),a = 0,...,4 under the extended BMS group combined with
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complex rescalings simplifies to

ac\"2/8C\? DS
=(50) (55) [A+7o+ 50 0E+0)

— 3
ac\ 2
C) [‘Ing —2Y Wi + YZ‘IIZR} )

- ¢\ [0 1
O-/Ig _<8<-/> |:O-(I)% + i{cl7 C}:| )
o (OC\E[AT\E
Vyp = acl o AR
o\ aC N
vy = <8C’> ;?[WQR—Y\I/QR], Y:86+§8lna—z(u+6), (6.104)
(%)
g - 9% [@0 — 3y WY, +3y200, — y3ul }
1R — ag/ az/ 1R 2R 3R 4R |
1 - 5
ac\z/aC\z2
Uip = <3C’> (azl> [‘PSR —AY U, + 6Y W, — AV, + Y4\I/91R} ;

where the primed quantities depend on @' = J _%(ﬂ + 8),¢ ,E/, while the unprimed ones
depend on %, ¢, (. These transformations simplify for the standard BMS group since the
Schwarzian derivative vanishes for this case.

For the transformation law of EI?R 7, we find

3 — 3
~ aC\z[/0C\2[~ 0 _
T, = <8C’> () [ngI—/ﬁdv [0U8R + oV R]

ac’ -
+[— 20893, + (98)* Vi) (—»3)} (6.105)
~, B OC\ 2~ 0
\I’loR[ = ag, <a§/> |:\I’(1]RI - /6 d’U [E\Ing + 20’%‘1’3}2]
+[ = 308Y95 + 3(98)* U3k — (98)°Vig] (—ﬂ)}, (6.106)

ot

~ o 3 Oc\ 2~ 0 _
T, = ((%C,) (aZC’) [qum_/_ﬁ dv [0V + 303095
+[ — 4089 R +6(98)° V3R —4(05) WS +(98) WiE] (—5)] - (6.107)

The transformation laws of W9, ¥, can be obtained from that of \T/gRI, \TJ?R[ by
using the first two relations of (6.100) and equation (B.2), respectively (B.3) of appendix B.

This gives
ac\2/aC\? _ o
Uipr = <8§’> (8?’) [‘IlgRI +0°9%8 + %{C ,CHar +0°8)
+5 k178 - [ vt o), (6.108)
0
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)
i1 05’ <a‘§’
g(c% 62ﬁ)<662/6 650(})%) %(OR 62b)(635 6/60'01%)

2
_ _ 3_9 _ 1 _
) [q,g R — BOUS L, — 30809, + 562505% + 582&90%

—3(9B)205% + (08)%5 % + / dvd / din 655
0 0
o dﬁ[;(ﬁd%ﬁ%  30035% 1 369300, — Do%) 536%” ().
(6.109)

Finally, the transformation law of the Bondi mass aspect as chosen in (6.101) is given
by (1.3) after using (B.4). Note that the transformation law of the standard expression for
the Bondi mass aspect can easily be obtained by using (B.1).

7 Discussion

In this work, we have generalized finite BMS, transformations to include general holomor-
phic and antiholomorphic transformations as well as time-dependent complex rescalings. A
further interesting generalization would be to abandon the reality conditions and consider
the transformations discussed in this work in the context of H-space [44-46].

The approach we have followed here is systematic and straightforward but explicit
computations are rather tedious and can presumably be simplified in a more suitable set-
up. Extracting physical consequences from these transformation laws should be much more
rewarding. We conclude with some comments on why this should be the case.

The residual symmetry group we have investigated acts on the general asymptotically
flat solution space in the sense of Newman-Unti [27], containing not only the Kerr black
hole [47] but also Robinson-Trautman waves [48, 49]. In this context, the analog of the
time coordinate u used here has been introduced previously in [50] in order to express the
latter solutions in terms of a Bondi coordinate system where the conformal factor is the
one for the unit sphere.

The transformations also naturally act on the would-be conserved BMS currents includ-
ing Bondi mass and angular momentum aspects, which are built out of the data considered
here. In order to cover the most general case, the expressions considered for instance in [10]
have first to be generalized to the case of a variable, complex, u-dependent factor P. This
will be done in [43].

The relevance of the transformation formulas to the gravitational memory effect [51, 52]
as described in [53] (see [54, 55] for recent discussions) is obvious. The question of what part
of this effect is controlled by BMS transformations boils down to a question about suitable
orbits of the BMS group. These problems will be discussed in more details elsewhere,
together with other applications involving topology-changing mappings.
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A Newman-Penrose field equations in 3d

The Einstein equations in three dimensions can be expressed as

Do — 6k = (e+20)0 — (T — 7+ 20)~K, (A.1)
D1 — Ak = 2(1 + m)o — 2k, (A.2)
DB —de=2(8+7)o— 2u+y)k— (B —m)e, (A.3)
1
Dy — Ae = 2(T+7T)6—2€’Y+2T7T—2/€V+ﬁ, (A.4)
Dp —om = (20—e)u+7r2—/w—$, (A.5)
Dv — Am = 2(w + 7)u — 2ev, (A.6)
Ap—o0v = —=Q2u+vy)u+ (m+ 28 —1)v, (A.7)
AB— 6y = (B—r)y— 23+ )+ (20 + e, (A8)
1

— — — — 2 -

Ao — 61 = (y—2u)o —7° + vk + 572" (A.9)
while vanishing of torsion can be written as
Dn* — Al = —~l¥ —en* + 2(m + 7)mH, (A.10)
Dmt — §I* = (m — B)I* — kn* + 20mH, (A.11)
Am#* —on* = v + (B — 1)nt — 2um*. (A.12)
B Additional transformation laws in 4d
_ 0 1 - — 0 1 - —
%o = J2 H@2 +5(¢, C}} o+ [82 +3(¢, 4}] 8
. 1 — . _. .

_ [025 +5{¢. O+ 5)] Gh — 2Y 0o, + Y%%] , (B.1)

. — . —. . 1 — —
3°F0 + ooy = J2 {825% + 005 — 2V 05 h + Y50 + (¢ @k + %)

F51C Qo+ T°8) + 05 + (T, THE Y+ /3)] . (B2)
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