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models with a supersymmetric UV completion. The supersymmetry breaking scale is

taken to be of the order of the grand unification scale. We first study the case where all

superpartners decouple at this scale. We show that contrary to the Standard Model with

one Higgs doublet, matching to the supersymmetric UV completion is possible if the low-

scale model contains two Higgs doublets. In this case vacuum stability and experimental

constraints point towards low values of tan β . 2 and pseudoscalar masses of at least about

a TeV. If the higgsino superpartners of the Higgs fields are also kept light, the conclusions

are similar and essentially independent of the higgsino mass. Finally, if all gauginos are

also given electroweak-scale masses (split supersymmetry with two Higgs doublets), the

model cannot be matched to supersymmetry at very high scales when requiring a 125 GeV

Higgs. Light neutral and charged higgsinos therefore emerge as a promising signature of a

supersymmetric UV completion of the Standard Model at the grand unification scale.
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1 Introduction

The structure of the electroweak and strong interactions seems to point towards an in-

crease of symmetry and to a unification of the fundamental forces as we probe shorter and

shorter distances. It is then natural to expect that symmetries larger than the internal and

space-time symmetries of the Standard Model of particle physics, including supersymme-

try, grand unification and additional space-time dimensions, will play a crucial role for the

embedding of the Standard Model into a more fundamental theory. In particular string

theory, the leading candidate for a unified theory of all interactions, relies on supersymme-

try to guarantee a perturbatively controlled stable vacuum state [1, 2]. From the point of

view of superstring theory, the generic expectation for the scale of supersymmetry breaking

is at or close to the string scale, which is of course usually many orders of magnitude larger

than the electroweak scale. The Standard Model, possibly supplemented by other light

states, would then be the non-supersymmetric effective field theory of a UV completion

with spontaneously broken supersymmetry. This UV completion would take effect at a

very high energy scale of about 1015−17 GeV. Example scenarios include universal high-

scale supersymmetry [3] and split supersymmetry [4, 5], which has been realised in string

theory [6] and higher-dimensional field theory with flux [7].
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In the past, the main motivation to consider supersymmetric extensions of the Stan-

dard Model used to be the hierarchy problem: electroweak-scale supersymmetry allows to

stabilise a large hierarchy between the electroweak scale and a much higher fundamental

scale against radiative corrections. However, so far the data shows no sign of supersymme-

try. Should no evidence in its favour surface during the second run of the LHC, one may

have to conclude that the electroweak scale is not actually protected by supersymmetry, but

fixed by some unknown ultraviolet dynamics at a value which presently appears unnatural

to us. Our hypothesis for the present paper is that supersymmetry does exist but, since the

scale of its breaking is high, that it plays no role in stabilising the electroweak hierarchy.

Admitting a supersymmetric UV completion at high scales is a nontrivial constraint on

the low-energy effective theory. For example, it is well known that the Standard Model by

itself cannot be matched to its minimal supersymmetric extension (MSSM) above about

1011 GeV [8]. This is because at higher energies the running Higgs quartic coupling in

the Standard Model becomes negative, while the D-term potential in supersymmetry is

positive definite. The maximal matching scale is even lower for split supersymmetry, where

the electroweak-scale spectrum consists of the Standard Model and the MSSM gauginos

and higgsinos [8, 9]. Therefore, to allow for a supersymmetric UV completion at scales

of 1015−17 GeV, more states need to be kept light in the low-energy theory, besides the

Standard Model Higgs doublet and possibly gauginos and higgsinos.

Our ability to extrapolate some non-supersymmetric low-energy effective theory to

high energies may also be limited by vacuum stability. This, again, is already seen in

the Standard Model itself: as a result of the quartic coupling turning negative, the Higgs

potential becomes unbounded from below (although the lifetime of the electroweak vacuum

has been estimated to be longer than the age of the universe, see ref. [10] and references

therein). More generally, demanding a stable or at least sufficiently long-lived vacuum

imposes additional constraints on any low-energy theory, even if it can be matched to a

supersymmetric UV completion. Although supersymmetry ensures that the potential will

be positive definite at the UV completion scale, the RG-improved tree-level potential may

still be formally unbounded from below at intermediate energies when expressed in terms

of the running couplings. This would signal the presence of additional vacua which are in

general deeper than the realistic electroweak vacuum.

A particularly interesting class of models retains both MSSM Higgs doublets as light

states at low energies, with or without the light higgsinos and gauginos of split super-

symmetry. The matching of the two-Higgs-doublet model (THDM) to the MSSM at high

energies has previously been discussed in ref. [11]. Recently, a detailed analysis of the

matching for a variety of THDM models as function of the supersymmetry breaking scale

has been performed in ref. [12], however, without taking vacuum stability constraints into

account. With regards to vacuum stability, the extrapolation of a THDM to high energies

near the Planck scale was studied in refs. [13–16], but without imposing constraints from

high-energy supersymmetry.

In the present paper we show that several kinds of two-Higgs-doublet models can in-

deed be matched to GUT-scale or even to string-scale supersymmetry without suffering

from vacuum instability. We study three exemplary models using the spectrum gener-
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ator framework FlexibleSUSY [17]: a pure type-II THDM, the THDM with additional

electroweak-scale higgsinos (which has the appealing property of gauge coupling unifica-

tion at 1014 GeV), and the THDM with the full gaugino and higgsino field content of split

supersymmetry at the electroweak scale. It turns out that the combined requirements of a

supersymmetric UV completion, a stable vacuum, and a 125 GeV Higgs are quite restric-

tive on the low-energy spectrum. For the pure THDM we find that the parameter region

at low tan β and relatively large MA, namely tan β . 2 and MA & 1 TeV, is in agreement

with all these constraints as well as with the experimental bounds from the measurement

of BR(b → sγ) [18] and the limits from the searches for additional Higgs bosons, in par-

ticular in the channel H,A → ττ [19–21]. The conclusions are similar but somewhat more

restrictive for the THDM with light Higgsinos. For the THDM with split supersymmetry,

on the other hand, we find that the model cannot be extrapolated to the scale of Grand

Unification because the predicted mass of the Standard Model-like Higgs boson is always

too large in the parameter regions allowed by the other constraints.

2 THDM models as effective field theories

2.1 Preliminary remarks

The standard procedure for treating theories with several hierarchically separated scales is

to “run and match” the effective field theory parameters. That is, the theory is regularised

and renormalised using the MS scheme (or one of its cousins such as DR), the parame-

ters are evolved according to their n-loop renormalisation group equations in between the

thresholds, and at each threshold crossing the heavy states are decoupled by hand. The

parameters of the resulting effective theory are matched to those of the full theory with

(n − 1)-loop precision. If the masses of two heavy states are comparable to each other,

they should be decoupled simultaneously and their mass difference accounted for by an

appropriate threshold correction at leading-log order. If on the other hand the masses of

two heavy states are widely separated, then they define two distinct thresholds between

which the logarithms should be resummed, using the renormalisation group equations of

an intermediate effective theory.

For the present study we will always use precisely one effective field theory between

the supersymmetry breaking scale MS = 1015−17 GeV and the electroweak scale. While

intermediate thresholds certainly offer interesting possibilities to generalise our work, here

we will always assume that one set of particles decouples close to MS and that the remaining

states will obtain masses at most of the order of a TeV. These “light” states will always

include the Standard Model particles and a second Higgs doublet; we will furthermore

investigate the cases where they also include a pair of higgsinos, or a pair of higgsinos and

all MSSM gauginos.

In particular, we take all the eigenvalues of the Higgs mass matrix to be comparable to

each other, and therefore the running parameters of the THDM must be matched directly

to the measured pole masses of the Standard Model particles. Thus, our study differs from

the often considered case where the mass scale MA of the non-standard Higgs bosons is

much higher than the electroweak scale. In this case the appropriate procedure would be
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to decouple the non-standard Higgs bosons at the high scale MA, to match the THDM to

the Standard Model at MA, and then to evolve the Standard Model running parameters

down to the electroweak scale.

Imposing that all Higgs bosons acquire masses .TeV is a strong assumption, which

as discussed above is technically unnatural since as for the discovered Higgs boson at

125 GeV also the masses of further relatively light Higgs bosons should be affected by high-

scale physics. The Higgs mass parameters of the low-energy theory are determined by the

matching conditions to the unknown supersymmetric theory at MS ∼ 1015−17, and are

generically expected to be of the order of MS itself. Here we postulate that the various

contributions to the Higgs mass matrix cancel each other to a very high degree of precision,

such that all of its entries are of the order of at most a TeV. We refrain from speculating

about the reasons — in our approach we assume that the hierarchy problem is solved by

the UV theory by some means unknown to us. It has been argued that the electroweak

scale might need to be low for anthropic reasons, and that this would predict precisely one

light scalar doublet. We do not subscribe to these arguments; it seems to us that they rest

on rather frail assumptions, and that even if anthropics should indeed be related to the

electroweak hierarchy, this would not necessarily preclude a (presently unknown) anthropic

argument for a second light Higgs doublet.

2.2 Conventions for the THDM

We use the following conventions for parameterising the scalar potential of the THDM as

V = m2
1H
†
1H1 +m2

2H
†
2H2 −

(
m2

12H
†
1H2 + h.c.

)
+ V4 ,

V4 =
λ1

2
(H†1H1)2 +

λ2

2
(H†2H2)2 + λ3(H†1H1)(H†2H2) + λ4|H†1H2|2

+

(
λ5

2
(H†1H2)2 + λ6(H†1H2)(H†1H1) + λ7(H†1H2)(H†2H2) + h.c.

)
.

(2.1)

For each Yukawa term allowed in the Standard Model, the general THDM contains two

such terms, one involving H1 and the other involving H2. Moreover, if there are light

gauginos (B̃, W̃ i, G̃a) and higgsinos (h̃d, h̃u) in the spectrum, they are coupled to the

Higgs doublets with the Yukawa terms

−LYuk =
g̃d√

2
H1W̃ h̃d +

g̃′d√
2
H1B̃h̃d +

g̃u√
2
H†2W̃ h̃u +

g̃′u√
2
H†2B̃h̃u

+
γ̃d√

2
H2W̃ h̃d +

γ̃′d√
2
H2B̃h̃d +

γ̃u√
2
H†1W̃ h̃u +

γ̃′u√
2
H†1B̃h̃u

+ h.c..

(2.2)

The gauge symmetries of the general THDM with higgsinos and gauginos further allow for

Yukawa couplings between the higgsinos, right-handed leptons and Higgs bosons.

If all the couplings allowed by gauge symmetry were actually present (and sizeable) in

the THDM, this would lead to phenomenologically unacceptable rates of flavour changing

neutral currents. However, matching to supersymmetry leads to strong restrictions on the

parameter space as we will now describe in detail.
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2.3 Matching to the MSSM at the scale MS

We identify H1 = −iσ2H∗d and H2 = Hu at the scale MS , where Hu and Hd are the Higgs

doublets of the minimal supersymmetric Standard Model. Tree-level matching at the scale

MS gives

λ1 =
1

4

(
g2 + g′

2
)
,

λ2 =
1

4

(
g2 + g′

2
)
,

λ3 =
1

4

(
g2 − g′2

)
,

λ4 = −1

2
g2,

λ5 = λ6 = λ7 = 0 .

(2.3)

Here g ≡ g2 and g′ ≡
√

3
5g1.

The one-loop threshold corrections to these couplings are e.g. listed in ref. [11]. The

exact superpartner spectrum at MS is of course unknown, but we use the GUT model

of ref. [7] as a guidance. It predicts that the squark and slepton soft masses are degen-

erate to leading order at the matching scale MS , and that all other soft parameters are

generated at subleading order. In this case the squark and slepton threshold corrections

are suppressed not only by a loop factor but also by the small ratios A/MS , µ/MS and

by the near-degeneracy of the squarks and sleptons, and their impact on our results is

correspondingly reduced.

In the following we set these threshold corrections to zero for definiteness, with the

understanding that this is a source of model dependence. To account for the neglected

effects, we will assume a conservative 3 GeV uncertainty on mh in our analysis.

Following the same line of reasoning, we also neglect the higgsino threshold corrections

to eqs. (2.3) in the pure THDM case, and the electroweak gaugino threshold corrections in

the case of both the pure THDM and the THDM with light higgsinos.

Note that the tree level matching conditions eqs. (2.3) are not specific to the UV

completion being the MSSM, but apply in any model in which the quartic scalar potential

emerges from the D-term potential of an N = 1 supersymmetric SU(2) ×U(1) theory.

Since we are setting λ5 = λ6 = λ7 = 0 in our analysis, and since the Yukawa terms

H†dūRqL + H†ud̄RqL + H†uēR`L + h.c. are also absent at the matching scale (up to small

threshold corrections which we neglect), our model becomes an effective type-II THDM.

If there are winos or binos in the spectrum, the matching conditions for their Yukawa

couplings at the scale MS read at the tree-level

g̃u = g ,

g̃d = g ,

g̃′u = g′ ,

g̃′d = g′ ,

γ̃u = γ̃d = γ̃′u = γ̃′d = 0 .

(2.4)
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We will again neglect possible effects from small threshold corrections. We also assume

that there is some conserved quantum number (such as R-parity or B − L) distinguishing

the higgsino from the lepton doublets, such that there are no Yukawa couplings between

the Higgs, the higgsino and the right-handed leptons.

2.4 Running to the scale Mt

The λi evolve from MS down to the electroweak scale according to their renormalisation

group equations. Note that λ5,6,7, γ̃u,d, γ̃
′
u,d, as well as the “wrong Higgs” quark and lepton

Yukawa couplings, are protected by the symmetries of the effective theory and therefore

will not be generated during the running if they are zero at the matching scale, which we

assume is the case. We therefore work with all these couplings set to zero henceforth.

To obtain a scalar potential that is bounded from below, a set of sufficient conditions

on the running scalar couplings is ref. [23]

λ1 > 0 , (2.5)

λ2 > 0 , (2.6)

λ3 + (λ1λ2)1/2 > 0 , (2.7)

λ3 + λ4 + (λ1λ2)1/2 > 0 . (2.8)

Numerically it will turn out that the first three conditions are always satisfied as a conse-

quence of the supersymmetric matching conditions, while the fourth one eq. (2.8) may be

violated at intermediate scales.

The stability conditions can be relaxed if one allows for additional vacua besides the

electroweak one, and merely imposes that the lifetime of the electroweak vacuum be & 1010

years. In that case, assuming that the conditions (2.5)–(2.7) are satisfied, the condi-

tion (2.8) is replaced by an inequality which should hold at all renormalisation scales µr,

λ(µr) & −
2.82

41.1 + log10
µr

GeV

≡ λmeta , (2.9)

where

λ =
4 (λ1λ2)1/2

(
λ3 + λ4 + (λ1λ2)1/2

)
λ1 + λ2 + 2 (λ1λ2)1/2

. (2.10)

A derivation of eq. (2.9) is given in appendix B.

In order to numerically study the running of the parameters in the presence of the

boundary and vacuum stability conditions, we use the spectrum generator framework

FlexibleSUSY 1.2.1 [17] in combination with SARAH 4.6.0 [24–26].1 The latter is used

to compute the 2-loop renormalisation group equation for the effective field theories. As a

preliminary safety-check, we have compared the expressions obtained from SARAH with

the ones provided by PYR@TE [27, 28], finding complete agreement.

FlexibleSUSY makes use of 2-loop renormalisation group equations and provides an

automatic matching of the THDM to input parameters at the electroweak scale (we perform

the matching at the scale Mt), as described in the following as well as in more detail in

appendix A.

1The SARAH version we use contains an additional bug-fix, which corrects the MS–DR conversion terms

in the left- and right-handed one-loop fermion self-energies.
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2.5 Matching at the weak scale

By integrating the 2-loop renormalisation group equations we obtain the running parame-

ters of the THDM (potentially including higgsinos and gauginos) at the scale Mt, where we

match the THDM to experimentally known input parameters. The matching is performed

by calculating the MS gauge and Yukawa couplings as well as the VEVs of the THDM

from known input parameters at the 1- and leading 2-loop level. In particular, at the tree

level, the well-known THDM relations

m2
12 = m2

A sinβ cosβ ,

m2
1 = m2

12 tanβ − v2
(
λ1 cos2 β + (λ3 + λ4) sin2 β

)
,

m2
2 = m2

12 cotβ − v2
(
λ2 sin2 β + (λ3 + λ4) cos2 β

)
,

(2.11)

allow us to express the entire scalar potential in terms of v =
√
v2
u + v2

d, the quartic

couplings, the pseudoscalar MS Higgs mass mA and

tanβ ≡ v2

v1
. (2.12)

More details on the matching procedure at the loop level are given in appendix A.

We note that our models have the appealing feature that there are very few parameters

left in the low-energy theory. Since the quartic couplings are essentially determined by the

gauge couplings via the supersymmetric boundary conditions, the only free parameter

which directly affects them is the matching scale MS . Setting v ≈ 174 GeV implies that,

in the pure THDM, the Higgs mass spectrum is completely determined by the parameters

MS , mA and tanβ, one of which can (in principle) be fixed by requiring Mh = 125 GeV.

Moreover, requiring vacuum stability forces us into the region of rather low tan β, and the

sensitivity of the low-energy spectrum to MS is very mild. This allows us, in principle,

to predict a sharp correlation between tan β and mA. In practice, however, the theory

uncertainty on the calculation of the lightest Higgs mass is still so large that there is still

room for significant variation, as we will detail in the next section.

2.6 Higgs-mass predictions

In the THDM with higgsinos, the Higgs masses receive loop corrections from charginos and

neutralinos and hence depend on the higgsino mass parameter µ. This leads to correlations

between the Higgs and neutralino and chargino masses which are in principle testable at

colliders. In the THDM with higgsinos and gauginos, the Higgs masses depend on all the

chargino and neutralino masses, and may in addition be affected by two-loop corrections

from the gluino. This will also become evident in the next section.

We calculate the CP-even Higgs pole masses by numerically finding the two eigenvalues

M2
h,H of the one-loop-corrected mass matrix

M2
h,1L = M2

h − Re Σh(p2 = M2
h,H , µr = Mt). (2.13)

Here, M2
h denotes the CP-even Higgs mass matrix expressed in terms of the MS parameters

at the scale µr = Mt and Σh(p2, µr) is the MS renormalised CP-even Higgs one-loop self-

energy matrix, where the Higgs fields at the external legs are taken to be the Higgs gauge
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eigenstates. Since the Higgs self-energy has to be evaluated at the momenta p2 = M2
h,H ,

where M2
h,H are the eigenvalues of M2

h,1L, eq. (2.13) is solved iteratively.

3 Results

3.1 The pure THDM

The low-energy parameter space is strongly constrained by vacuum (meta)stability, by

requiring the lightest Higgs boson mass to be 125 GeV, and by the experimental bounds

from the measurement of BR(b → sγ) [18] and the limits from the LHC searches for

H,A → ττ [19–21]. In the top row of figure 1 we show contours of the lightest Higgs mass

as a function of MA and tanβ for a SUSY breaking scale MS = 2 · 1014 GeV. The vacuum

is absolutely stable only in the white unshaded region at low tan β. It is metastable

in the bulk of the parameter space (orange regions), and unstable in the red region of

intermediate tan β.

We remark that including high-scale one-loop threshold corrections from heavy hig-

gsinos, which we have neglected in generating these plots, can have a significant impact

on the large tan β region. For example, choosing µ = 0.1 MS somewhat lowers the upper

boundary of the unstable region and opens up a new stable region around tan β = 30.

However, the constraint Mh = 125 GeV enforces MA . 200 GeV at large tan β, and this

parameter region is excluded by the constraint on the charged Higgs boson mass in a

THDM from the measurement of BR(b → sγ) (since the charged Higgs is similarly light

as the pseudoscalar) and by the limits from the LHC searches for H,A → ττ . Thus,

including or neglecting these threshold corrections only affects a parameter region which

is phenomenologically disfavoured anyway.

Note that absolute vacuum stability forces one into the low tan β region, tan β . 1.8,

with pseudoscalar Higgs masses exceeding a TeV for Mh = 125 GeV and the central value

of Mt. By contrast, when allowing for the vacuum to be metastable, the most severe

constraint on MA comes from the measurement of BR(b → sγ), which together with the

requirement that Mh should be close to 125 GeV still points to somewhat small tan β values,

tanβ <∼ 5.

For comparison, we also show the case of a higher SUSY breaking scale MS = 2 ·
1017 GeV in the bottom row of figure 1. This scale, an order of magnitude below MPlanck,

is about the highest for which the matching to a weakly coupled four-dimensional super-

symmetric field theory can be justified. While the qualitative behaviour in the plane is

the same as for the lower SUSY breaking scale case, we observe that a large part of the

formerly metastable region is now unstable. Concerning the higgsino one-loop threshold

corrections, similar remarks as above apply.2

In order to understand why the THDM allows a matching to the supersymmetric

standard model at very high scales one has to study the renormalisation group flow of the

quartic couplings. This is shown in figure 2 for MS = 2 · 1014 GeV for two values of tan β.

2Note that for part of the parameter space considered in ref. [12], mA = 200 GeV and MS of the order

of the grand unification scale, the electroweak vacuum is either metastable or unstable.
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Figure 1. Contours of the lightest Higgs mass Mh in the mA(Mt) – tanβ plane in the pure THDM

for MS = 2 ·1014 GeV (top row) and MS = 2 ·1017 GeV (bottom row). The Higgs mass prediction is

computed for Mt = 173.34± 0.76 GeV (solid black, dashed green and dotted blue). Left: full range

of tanβ, low mA(Mt); right: region of low tan β, large mA(Mt). Unshaded regions are allowed

by vacuum stability. In the orange region, the electroweak vacuum is unstable but its lifetime is

larger than the age of the universe. Red regions are excluded by vacuum stability. Grey regions are

uncalculable because perturbative control is lost.
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Figure 2. Renormalisation group running of dimensionless parameters (left column) and the

vacuum stability conditions (right column), in the THDM for MS = 2 · 1014 GeV, for two different

points characterised by a stable electroweak vacuum (top row) and metastable behaviour (bottom

row). µr denotes the renormalisation scale. λ and λmeta are defined in eqs. (2.9) and (2.10).

For small values of tan β the absolute value of the top-quark Yukawa coupling is large in

the IR. This drives the coupling λ2 also to large values in the IR. In the UV, at MS , all

quartic couplings are determined by the gauge couplings, which approximately unify in the

THDM. Due to the boundary conditions the coupling λ4 is negative at MS . Hence the

condition λ3 +λ4 +
√
λ1λ2 > 0 is the most stringent stability constraint. As figure 2 shows,

for tanβ = 1.15 the coupling λ2 is sufficiently large such that
√
λ1λ2 can compensate the

negative λ4. For tan β = 5 this is no longer the case, and only the weaker metastability

condition is satisfied.
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3.2 The THDM with higgsinos

In the case that the gauginos, squarks and sleptons are decoupled at the scale MS , while the

Higgs bosons of the THDM and their superpartners have masses at the electroweak scale,

the low-energy mass spectrum depends on the additional parameter µ. Figure 3 shows

the results for µ = 200 GeV; the picture is qualitatively very similar for µ = 2000 GeV.

Already at MS = 2 · 1014 GeV a wide range of tan β values is now excluded because the

vacuum is unstable. For a metastable vacuum the requirement that Mh should be close

to 125 GeV favours somewhat higher MA values than for the pure THDM, in accordance

with the constraint from the measurement of BR(b → sγ). An absolutely stable region

remains at small values of tan β, favouring somewhat higher MA values than in the pure

THDM case. For a higher SUSY breaking scale MS = 2 · 1017 GeV the parameter space is

even more constrained.

It is important to notice that the existence of a stable region at small tan β imposes

no constraints on the parameter µ. Hence, a scenario where at the weak scale the particle

content of the Standard Model is supplemented by the Higgs bosons of a second doublet at

about a TeV and light neutral and charged higgsinos is fully compatible with the matching

to a supersymmetric UV completion at the grand unification scale. A discovery of light

higgsinos at the LHC could therefore be interpreted as a possible hint for a supersymmetric

UV completion at the grand unification scale.

3.3 The THDM with split supersymmetry

When retaining the full gaugino spectrum of the MSSM as well as its complete Higgs

sector as the light degrees of freedom, this particle content has the appealing feature that

the gauge couplings approximately unify at the scale MGUT = 2 · 1016 GeV. The best-

motivated choice for the matching scale in this case is therefore MS = MGUT.

The low-energy spectrum now depends on the gaugino masses M1,2,3 as well as on µ.

For simplicity we choose a common low-scale value M1 = M2 = µ for the electroweak

superpartner masses, while keeping M3 = 2000 GeV to avoid experimental limits from LHC

Run 1. (Alternatively we could have imposed gaugino mass unification at MGUT, which

leads to very similar results for a low-scale value of M2 equal to µ.) The Higgs sector is

affected by the gluino only through two-loop effects, and therefore is not very sensitive to

the precise value of M3, given that the squarks are decoupled. We can therefore assume

that the gluino is sufficiently heavy to have escaped detection at the LHC so far.

We find that in the case of light gauginos the vacuum stability conditions are always

satisfied and therefore imply no constraint on tan β. As shown in figure 4, however, a

Higgs mass consistent with observation can only be obtained for small values of MA which

are essentially excluded by the constraint from the measurement of BR(b → sγ) in this

scenario. Hence, the extrapolation of the THDM with light higgsinos and gauginos up

to the grand unification scale is not compatible with the measured value of the Higgs

boson mass.
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Figure 3. Contours of the lightest Higgs mass Mh in the mA(Mt)–tanβ plane for the case where

the spectrum at the electroweak scale consists of the THDM with higgsinos, with µ = 200 GeV, for

MS = 2 · 1014 GeV (top row) and MS = 2 · 1017 GeV (bottom row). The Higgs mass prediction is

computed for Mt = 173.34± 0.76 GeV (solid black, dashed green and dotted blue). Left: full range

of tanβ, low mA(Mt); right: region of low tan β, large mA(Mt). Unshaded regions are allowed

by vacuum stability. In the orange region, the electroweak vacuum is unstable but its lifetime is

larger than the age of the universe. Red regions are excluded by vacuum stability. Grey regions are

uncalculable because perturbative control is lost.
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Figure 4. Contours of the lightest Higgs mass Mh in the mA(Mt)–tanβ plane for the case where

the spectrum at the electroweak scale consists of the THDM with gauginos and higgsinos (split-

supersymmetry) for MS = 2 · 1016 GeV, with µ = 2000 GeV (top row) and µ = 200 GeV (bottom

row). Left: full range of tan β, lowMA; right: region of low tan β, largeMA. Unshaded white regions

are allowed by vacuum stability. Grey regions are uncalculable because perturbative control is lost.

4 Summary and outlook

We have studied the matching of the Standard Model, supplemented by a second Higgs

doublet, with or without additional higgsinos and gauginos, to the supersymmetric stan-

dard model at high scales close to the GUT scale. A supersymmetric ultraviolet completion

of the Standard Model is strongly motivated by unified theories, in particular string theory.
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The extrapolation of the Standard Model to high scales is severely constrained by

the necessary requirement of stability or metastability of the electroweak vacuum. In

the Standard Model a matching to its supersymmetric extension at the GUT scale is not

possible for the measured mass of the Higgs boson. On the contrary, as we have shown, a

matching consistent with vacuum stability is possible for two-Higgs-doublet models. For

small values of tan β the large top-quark Yukawa coupling drives one of the quartic Higgs

couplings to large values in the IR. As a consequence, all vacuum stability conditions can

be satisfied.

The matching of the pure THDM to its supersymmetric extension at high scales implies

a lower bound on the additional Higgs boson masses of about a TeV. This bound shows a

significant sensitivity on the remaining theoretical uncertainties induced by the experimen-

tal error of the mass of the top quark and from unknown higher-order corrections. In case

of light higgsinos the lower bound is slightly more stringent than for the case of the pure

THDM. Because of this preference for low values of tan β and relatively high values of MA,

the discovery of additional Higgs bosons at the LHC appears challenging in this scenario.

In principle, smaller pseudoscalar masses can be consistent with a metastable electroweak

vacuum. But these values of MA are already essentially excluded by the constraints from

rare processes. Finally, in the case of both higgsinos and gauginos at the TeV scale the

vacuum stability conditions are always fulfilled, but a Higgs mass of 125 GeV implies values

of MA that are incompatible with low energy measurements.

It is remarkable that the extrapolation of two-Higgs-doublet models to the GUT scale

implies essentially no constraints on the masses of light neutral and charged higgsinos, the

superpartners of the two Higgs doublets. Hence, a discovery of just light higgsinos at the

LHC could be interpreted as a possible hint for a supersymmetric UV completion at the

grand unification scale.

The Standard Model requires fine-tuning of the cosmological constant and the Higgs

mass. In two-Higgs-doublet models also the mass term of the second Higgs doublet has to

be fine-tuned. This situation is unsatisfactory. It is conceivable that an explanation of this

puzzle will eventually be provided by the UV completion.
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A Details on the matching at the weak scale

In the following the applied procedure for the matching at the weak scale is described. The

matching is performed at the scale Mt.

– 14 –



J
H
E
P
0
3
(
2
0
1
6
)
1
5
8

The MS gauge couplings gi(Mt) of the THDM are calculated as

g1(Mt) =

√
5

3

√
4παTHDM

em (Mt)

cos θW
, (A.1)

g2(Mt) =

√
4παTHDM

em (Mt)

sin θW
, (A.2)

g3(Mt) =
√

4παTHDM
s (Mt) , (A.3)

where αTHDM
em and αTHDM

s denote the electromagnetic and strong coupling constants of

the THDM, respectively, and θW is the MS weak mixing angle. The coupling constants

of the THDM are related to the corresponding Standard Model ones, α
SM(5),MS
em (Mt) and

α
SM(5),MS
s (Mt), via the relation

αTHDM
em (Mt) =

α
SM(5),MS
em (Mt)

1−∆αem(Mt)
, (A.4)

αTHDM
s (Mt) =

α
SM(5),MS
s (Mt)

1−∆αs(Mt)
, (A.5)

where the threshold corrections ∆αi(µr) read

∆αem(µr) =
αem

2π

[
−16

9
log

mt

µr
− 4

3

2∑
i=1

log
mχ̃±

i

µr
− 1

3
log

mH±

µr

]
, (A.6)

∆αs(µr) =
αs

2π

[
−2

3
log

mt

µr
− 2 log

mg̃

µr

]
. (A.7)

The terms involving the masses of the charginos and the gluino are only present if these

particles have not been integrated out at the high-scale and are thus part of the low-energy

effective theory. As input, we use α
SM(5),MS
em (MZ) = 1/127.940 [34] and α

SM(5),MS
s (MZ) =

0.1184 [35], which are evolved to the scale Mt using the 1-loop QED and 3-loop QCD

β-functions in the Standard Model with 5 active quark flavours.

The MS weak mixing angle θW in the THDM is determined from the Fermi constant

GF = 1.16638·10−5 [34] and MZ = 91.1876 GeV [34] using the iterative approach described

in [29] taking into account the full 1-loop THDM corrections and leading 2-loop Standard

Model corrections to ∆ρ̂ and ∆r̂ [29, 37]. The vertex and box contributions, δVB, from

potential non-Standard Model particles are neglected here.

The MS Yukawa couplings yi(Mt) of the THDM are determined from the corresponding

THDM MS masses mi using the relations

yi(Mt) =

{
mi(Mt)/vu(Mt) if i is an up-type fermion ,

mi(Mt)/vd(Mt) if i is a down-type fermion .
(A.8)

The top quark MS mass in the THDM is calculated from the top pole mass Mt =

173.34 GeV [36] using the full 1-loop self-energy plus 2-loop Standard Model QCD cor-
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rections,

mt(Mt) = Mt + Re ΣS
t (p2 = M2

t , µr = Mt)

+Mt

[
Re ΣL

t (p2 = M2
t , µr = Mt) + Re ΣR

t (p2 = M2
t , µr = Mt)

+ ∆m
(1),qcd
t (Mt) + ∆m

(2),qcd
t (Mt)

]
,

(A.9)

where ΣS,L,R
t denote the scalar, left- and right-handed parts of the top self-energy in the

MS scheme without the gluon contribution, and ∆m
(1),qcd
t and ∆m

(2),qcd
t are 1- and 2-loop

gluon corrections taken from ref. [30],

∆m
(1),qcd
t (µr) = − g2

3

12π2

[
4− 3 log

(
m2
t

µ2
r

)]
, (A.10)

∆m
(2),qcd
t (µr) =

(
∆m

(1),qcd
t

)2
− g4

3

4608π4

[
396 log2 m

2
t

µ2
r

− 2028 log
m2
t

µ2
r

− 48ζ(3)

+ 2821 + 16π2(1 + log 4)

]
.

(A.11)

The bottom quark MS mass in the THDM, mb(Mt), is obtained from the MS mass

m
SM(5)
b (mb) = 4.18 GeV in the Standard Model with 5 active quark flavours by first evolv-

ing m
SM(5)
b (mb) to the scale Mt using the 1-loop QED and 3-loop QCD RGE. Afterwards,

m
SM(5)
b (Mt) is converted to mb(Mt) as

mb(Mt) =
m

SM(5)
b (Mt)

1−∆mb
, (A.12)

∆mb = Re ΣS
b (p2 = m2

b , µr = Mt)/mb

+ Re ΣL
b (p2 = m2

b , µr = Mt) + Re ΣR
b (p2 = m2

b , µr = Mt) , (A.13)

where ΣS,L,R
b are the scalar, left- and right-handed parts of the 1-loop bottom quark self-

energy in the MS scheme in which all Standard Model particles, except the bottom quark,

the top quark and the W, Z and Higgs bosons, are omitted. Finally, the MS mass of the τ

lepton in the THDM, mτ (Mt), is calculated by first identifying the τ pole mass, Mτ , with

the MS mass in the Standard Model with 5 active quark flavours at the scale Mτ ,

mSM(5)
τ (Mτ ) = Mτ . (A.14)

In this identification, the 1-loop Standard Model electroweak corrections to m
SM(5)
τ (Mτ )

are neglected. Afterwards, m
SM(5)
τ (Mτ ) is evolved to Mt using the 1-loop QED RGE and

m
SM(5)
τ (Mt) is converted to mτ (Mt) as

mτ (Mt) = mSM(5)
τ (Mt) + Re ΣS

τ (p2 = m2
τ , µr = Mt) (A.15)

+mSM(5)
τ (Mt)

[
Re ΣL

τ (p2 = m2
τ , µr = Mt) + Re ΣR

τ (p2 = m2
τ , µr = Mt)

]
,
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where ΣS,L,R
τ are the scalar, left- and right-handed parts of the 1-loop τ self-energy in the

MS scheme where all Standard Model particles, except the τ lepton, the top quark and the

W, Z and Higgs bosons, are omitted.

The MS vacuum expectation values vu(Mt) and vd(Mt) are obtained from the running

Z mass, mZ(Mt) and the MS gauge couplings via

vd(Mt) =

√
2mZ(Mt)√

3/5g2
1(Mt) + g2

2(Mt) cosβ(Mt)
, (A.16)

vu(Mt) =

√
2mZ(Mt)√

3/5g2
1(Mt) + g2

2(Mt) sinβ(Mt)
, (A.17)

where the running Z mass is given by

m2
Z(Mt) = M2

Z + Re ΣT
ZZ(p2 = M2

Z , µr = Mt), (A.18)

and ΣT
ZZ is the transverse part of the 1-loop Z self-energy in the THDM including higgsinos

and gauginos if present in the theory.

As shown above, the matching at the weak scale at the 1- and 2-loop level introduces

a dependency of the gauge and Yukawa couplings as well as the vacuum expectation values

on the particle spectrum of the THDM (possibly including higgsinos and gauginos). These

gauge and Yukawa couplings enter the renormalisation group equations for all model pa-

rameters, including the quartic couplings λi, which are fixed by boundary conditions at the

high scale, MS . For this reason, an iteration between the matching of the λi at MS and

the matching to the Standard Model at Mt must be performed until a convergent solution

to this boundary value problem has been found.

If a consistent solution to this boundary value problem has been found, the pole mass

spectrum is calculated at the 1-loop level. This calculation follows a similar procedure

as described in ref. [29] for the MSSM, adapted to the THDM case, potentially including

higgsinos and gauginos, if present in the theory.

B Vacuum (meta)stability

Absolute stability of the electroweak vacuum is a strong requirement. From the phe-

nomenological point of view, it might be more reasonable to demand metastability with a

lifetime larger than the age of the universe. Semiclassically, the tunnelling probability into

the true vacuum during a cosmic time τ (or more precisely, the tunnelling rate times τ)

can be estimated as [31]

p ∼
( τ
R

)4
e−Sbounce , (B.1)

where Sbounce is the euclidean action of the “bounce” instanton solution which interpolates

between the false and the true vacuum, and R is the characteristic size of the bubble. Note

that, at this level, R is undetermined for a classically scale invariant potential.

A more precise estimate in quantum theory was discussed e.g. in ref. [32] for the case

of the Standard Model. Following their analysis, for a single scalar field with a φ4 potential
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(neglecting the Higgs mass term),

L =
1

2
(∂µφ)2 − λ

4
φ4 , (B.2)

the tunnelling probability for negative λ can be estimated as

p ≈ max
R

( τ
R

)4
exp

(
− 8π2

3|λ( 1
R)|

+ ∆S

)
, (B.3)

where λ(µr) is the running quartic coupling, and ∆S are one-loop corrections from particles

coupling to φ. We require p � 1 when τ is the age of the universe, τ = 1010 yr. The

tunnelling probability is dominated by the largest value of |λ|, which, for the Standard

Model, leads to a condition that λ be larger than about −0.05 during its entire RG evolution

up to MPlanck [32] (somewhat larger |λ| being permissible at low scales).

In our case the model is somewhat more complicated as it involves several scalar degrees

of freedom. However, out of the four conditions for absolute stability eqs. (2.5)–(2.8), the

first three turn out always to be satisfied as a consequence of the supersymmetric boundary

conditions on the quartics. The remaining condition eq. (2.8)

λ̃ ≡ λ3 + λ4 +
√
λ1λ2 > 0

may be violated, which corresponds to one particular direction in field space becoming

unstable. To see this explicitly, we follow ref. [33] and set

a = H†1H1 , b = H†2H2 , c = ReH†1H2 , d = ImH†1H2 . (B.4)

This allows us to write the quartic potential as the sum of three terms which are manifestly

positive definite if the stability conditions eqs. (2.5)–(2.8) are satisfied:

V4 =
1

2

(√
λ1a−

√
λ2b
)2

+ (λ3 +
√
λ1λ2)(ab− c2 − d2) + λ̃(c2 + d2) . (B.5)

If however λ̃ is negative, then the potential is unbounded from below along the direction

a =
√
λ2/λ1b, ab = c2 + d2 with c2 + d2 growing large.

To map this onto a one-dimensional problem, we choose a gauge and a field basis

such that

H1 =

(
0

1√
2
(φ cos θ + χ sin θ)eiξ1

)
, H2 =

(
ρ√
2
eiξ2

1√
2
(−φ sin θ + χ cos θ)eiξ3

)
, (B.6)

where φ, χ, ρ, and ξi are real and θ is defined by

1 + sin(2θ)

1− sin(2θ)
=

√
λ2

λ1
. (B.7)

Choosing ρ = 0 and χ = φ sets the first two terms in eq. (B.5) to zero. The remaining

effective potential along the φ direction is

Veff(φ) =
λ̃

4
cos2(2θ)φ4 , (B.8)
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or equivalently

Veff(φ) =
λ

4
φ4 , where λ =

4
√
λ1λ2 (λ3 + λ4 +

√
λ1λ2)

λ1 + λ2 + 2
√
λ1λ2

. (B.9)

The tunnelling rate will be dominated by bounces along this line in field space, so the

problem is effectively one-dimensional. Using for Sbounce the RG-improved one-dimensional

expression without further loop corrections,

Sbounce =
8π2

3|λ(µr)|
, (B.10)

we obtain a reasonably accurate necessary condition for the longevity of the electroweak

vacuum from eq. (B.3). The condition is that at all scales µr between the electroweak scale

and MS we should have the inequality

λ(µr) & −
2.82

41.1 + log10
µr

GeV

, (B.11)

with λ defined in eq. (B.9). This lower bound on λ varies between −0.065 at the electroweak

scale and −0.047 at µr = MPlanck. It could probably be strengthened slightly by going

beyond our simple one-dimensional approximation.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] M.B. Green, J.H. Schwarz and E. Witten, Superstring Theory. Vol. 2: Loop Amplitudes,

Anomalies And Phenomenology, Cambridge University Press (1987) [INSPIRE].

[2] L.E. Ibanez and A.M. Uranga, String theory and particle physics: An introduction to string

phenomenology, Cambridge University Press (2012).

[3] L.J. Hall and Y. Nomura, A Finely-Predicted Higgs Boson Mass from A Finely-Tuned Weak

Scale, JHEP 03 (2010) 076 [arXiv:0910.2235] [INSPIRE].

[4] N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy

supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073

[hep-th/0405159] [INSPIRE].

[5] G.F. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum

ibid. B 706 (2005) 487] [hep-ph/0406088] [INSPIRE].

[6] I. Antoniadis and S. Dimopoulos, Splitting supersymmetry in string theory, Nucl. Phys. B

715 (2005) 120 [hep-th/0411032] [INSPIRE].

[7] W. Buchmüller, M. Dierigl, F. Ruehle and J. Schweizer, Split symmetries, Phys. Lett. B 750

(2015) 615 [arXiv:1507.06819] [INSPIRE].

[8] G.F. Giudice and A. Strumia, Probing High-Scale and Split Supersymmetry with Higgs Mass

Measurements, Nucl. Phys. B 858 (2012) 63 [arXiv:1108.6077] [INSPIRE].

– 19 –

http://creativecommons.org/licenses/by/4.0/
http://inspirehep.net/search?p=find+IRN+1782614
http://dx.doi.org/10.1007/JHEP03(2010)076
http://arxiv.org/abs/0910.2235
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.2235
http://dx.doi.org/10.1088/1126-6708/2005/06/073
http://arxiv.org/abs/hep-th/0405159
http://inspirehep.net/search?p=find+EPRINT+hep-th/0405159
http://dx.doi.org/10.1016/j.nuclphysb.2004.11.048
http://arxiv.org/abs/hep-ph/0406088
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0406088
http://dx.doi.org/10.1016/j.nuclphysb.2005.03.005
http://dx.doi.org/10.1016/j.nuclphysb.2005.03.005
http://arxiv.org/abs/hep-th/0411032
http://inspirehep.net/search?p=find+EPRINT+hep-th/0411032
http://dx.doi.org/10.1016/j.physletb.2015.09.069
http://dx.doi.org/10.1016/j.physletb.2015.09.069
http://arxiv.org/abs/1507.06819
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.06819
http://dx.doi.org/10.1016/j.nuclphysb.2012.01.001
http://arxiv.org/abs/1108.6077
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.6077


J
H
E
P
0
3
(
2
0
1
6
)
1
5
8

[9] E. Bagnaschi, G.F. Giudice, P. Slavich and A. Strumia, Higgs Mass and Unnatural

Supersymmetry, JHEP 09 (2014) 092 [arXiv:1407.4081] [INSPIRE].

[10] D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089

[arXiv:1307.3536] [INSPIRE].

[11] M. Gorbahn, S. Jager, U. Nierste and S. Trine, The supersymmetric Higgs sector and B − B̄
mixing for large tan β, Phys. Rev. D 84 (2011) 034030 [arXiv:0901.2065] [INSPIRE].

[12] G. Lee and C.E.M. Wagner, Higgs bosons in heavy supersymmetry with an intermediate mA,

Phys. Rev. D 92 (2015) 075032 [arXiv:1508.00576] [INSPIRE].

[13] N. Chakrabarty, U.K. Dey and B. Mukhopadhyaya, High-scale validity of a two-Higgs doublet

scenario: a study including LHC data, JHEP 12 (2014) 166 [arXiv:1407.2145] [INSPIRE].

[14] D. Das and I. Saha, Search for a stable alignment limit in two-Higgs-doublet models, Phys.

Rev. D 91 (2015) 095024 [arXiv:1503.02135] [INSPIRE].

[15] D. Chowdhury and O. Eberhardt, Global fits of the two-loop renormalized Two-Higgs-Doublet

model with soft Z2 breaking, JHEP 11 (2015) 052 [arXiv:1503.08216] [INSPIRE].

[16] P. Ferreira, H.E. Haber and E. Santos, Preserving the validity of the Two-Higgs Doublet

Model up to the Planck scale, Phys. Rev. D 92 (2015) 033003 [arXiv:1505.04001] [INSPIRE].
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