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tigate the possibility to solve this discrepancy by introducing new physics at the TeV scale.

We focus on models where the Higgs is a pseudo Nambu-Goldstone boson of a new strongly

coupled sector with a global SO(5) symmetry broken spontaneously to SO(4). Besides the

usual top partners, we introduce bottom partners in the representations 16 and 4 of SO(5)

and show that they can improve significantly the fit by correcting the Zbb̄ couplings. We

also estimate the corrections to the couplings at one-loop and obtain that the tree-level

ones dominate and can give a reliable estimation. We find that the large shift required for

ZbRb̄R leads to light custodians associated to the b-quark, similar to the top partners, as

well as a rich phenomenology involving neutral interactions in the bottom-sector.

Keywords: Beyond Standard Model, Technicolor and Composite Models, Global Sym-

metries

ArXiv ePrint: 1509.04726

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP03(2016)152

mailto:andres@cab.cnea.gov.ar
mailto:daroldl@cab.cnea.gov.ar
mailto:ivandavidovich@gmail.com
http://arxiv.org/abs/1509.04726
http://dx.doi.org/10.1007/JHEP03(2016)152


J
H
E
P
0
3
(
2
0
1
6
)
1
5
2

Contents

1 Introduction 1

2 A model to solve the deviation in A
b

FB
and a light Higgs 3

2.1 2-site description 4

2.2 Mass eigenstate basis 7

2.3 Zbb̄ interactions in the mass eigenstate basis 9

3 Low-energy effective theory 10

3.1 Z-interactions in the low energy effective theory 12

4 Higgs potential 13

5 Numerical results 14

6 Radiative corrections to Zbb̄ 16

7 Phenomenology at colliders 19

8 Conclusions 20

A Representations of SO(5) 22

B Yukawa interactions and mass matrices 24

C Correlators 26

1 Introduction

The recent discovery of a light scalar field, with a mass around 126GeV and similar proper-

ties to the Standard Model (SM) Higgs boson, has deep implications in our understanding

of electroweak symmetry breaking (EWSB) [1, 2]. The negative results in the search of new

particles with masses M .TeV at the first LHC-run introduces some tension for theories

Beyond the Standard Model (BSM) aiming to solve the little hierarchy problem. One of the

most interesting possibilities to alleviate this problem is a Higgs arising as a pseudo-Nambu

Goldstone boson (pNGB) of a new strongly interacting sector at a few TeV scale [3–6]. In

this scenario the Higgs potential is generated radiatively through the interactions with the

SM fields, that explicitly break the non-linearly realized global symmetry protecting the

Higgs potential, leading to a separation between the scale of the resonances of the strongly

coupled field theory (SCFT) and the electroweak (EW) scale. Besides, the contributions

of the fermions to the potential, particularly those associated to the top, are misaligned
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with the original vacuum and can trigger EWSB. Although it has been shown that these

theories still require some amount of tuning [7], they remain as one of the most promising

BSM avenues.

There are different patterns of symmetry breaking that one can consider to obtain

a Higgs as a pNGB. A very interesting approach is the minimal composite Higgs model

(MCHM) based on SO(5)-symmetry. As first shown in ref. [8], SO(5)×U(1)X is the minimal

symmetry group that contains the EW gauge symmetry of the SM as well as a custodial

symmetry and can deliver a Higgs as pNGB.1 Assuming that the strong interactions of the

SCFT spontaneously break SO(5) to SO(4), a Nambu Golstone boson (NGB) emerges with

the proper quantum numbers to be associated with the SM Higgs. Several incarnations of

the SO(5)/SO(4) symmetry breaking pattern have been considered in the literature. As

examples, there are realizations in warped [8, 9] and flat extra-dimensions [10, 11], as well

as theories with collective breaking or deconstruction, theories with two [12, 13] and three

sites [14], that can be thought of as discretized descriptions of extra dimensional models.

One of the main difficulties for composite Higgs models is to pass electroweak precision

tests (EWPT). Generically these theories induce corrections to the SM interactions at

tree level that can bee too large to pass these stringent tests. Besides the well known

oblique corrections, one important problem is the correction to the ZbLb̄L coupling, that

has been measured very precisely, such that the corrections can not be larger than the

per mil level compared with the SM. In models where the BSM sector has a global O(4)

symmetry spontaneously broken to the custodial O(3) after EWSB, it has been shown that

the ZbLb̄L coupling can be protected by the presence of a subgroup of O(3). Assuming

that the interactions between the SM and the BSM are linear in the SM fields, also known

as partial compositeness:

Lint = ψSMOψ
SCFT , (1.1)

this symmetry is realized if the SCFT operators coupled to the SM doublet qL transform as

(2,2)2/3 under SU(2)L×SU(2)R×U(1)X [15]. This way, despite the large mixing between

the resonances of the SCFT and qL, required to obtain the top mass, to leading order

there are no corrections to ZbLb̄L. Moreover, when considering a pNGB Higgs arising from

SO(5), the previous assignment of quantum numbers restricts the SO(5) representations of

the operatorOq
SCFT to include a (2,2), the smallest representations satisfying this condition

are 5, 10 and 14 [7, 9, 15].

On the other hand, LEP and SLD measurements of the forward-backward asymmetry

in the production of bb̄: Ab
FB, suggest deviations of the coupling ZbRb̄R compared with

the SM. A solution to this anomaly can be achieved by the introduction of new vector-

like fermions with the proper quantum numbers, often called beautiful mirrors [16]. In

the framework of composite Higgs models, these fermions can be associated to excitations

created by the operator Ob
SCFT. Ref. [15] showed the expected sign in the shift of the ZbRb̄R

coupling for some representations of Ob
SCFT under SU(2)L×SU(2)R×U(1)X . Refs. [17, 18]

proposed an effective two-site model with two resonances mixing with the bottom sector,

one transforming as (1,2)−5/6 that induces the proper correction to ZbRb̄R, and another one

1The U(1)X factor is required to account for the proper normalization of hypercharge.
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transforming as (2,3)−5/6 that after small mixing with bL gives a small positive correction

to ZbLb̄L, preferred by Ab
FB. The presence of both multiplets also allows to write a proto-

Yukawa term in the sector of resonances, that can lead to the mass of the bottom quark

through partial compositeness. Refs. [19, 20] have proposed similar solutions, whereas

refs. [21, 22] have proposed different alternatives.

Recently ref. [23] performed a fit of the SM taking into account the latest theoretical

and experimental results. It shows significant deviations from the SM in Zbb̄ couplings that

are attributed to deviations in Ab
FB at 2.8σ. The fit points to δg/g corrections of O(20%)

for the Right-handed coupling correlated with a ∼ 1% correction of the Left-handed one.

Motivated by the discovery of a light Higgs-like particle and the deviations in the

Zbb̄ couplings, we want to consider an extension of the model of ref. [17] where the Higgs

could be realized as a pNGB. We will consider an effective two site model with the Higgs

arising from the well known SO(5)/SO(4) pattern of symmetry breaking. To obtain a

finite one-loop potential we will embed all the fermion and vector resonances into full

SO(5) multiplets [12]. To generate the proper corrections of the Zbb̄ couplings we will

consider bottom partners embedded in SO(5) representations containing a (1,2) and a

(2,3) multiplet of SU(2)L×SU(2)R. The smallest representations of SO(5) with these

properties are the 4 and 16; these will be the uplifted beautiful mirrors. To be able to

generate the top mass and trigger EWSB we will also introduce top partners. For simplicity

we will consider them transforming with the representation 5 of SO(5).

In section 2 we describe our model and compute the Zbb̄ couplings at tree level in

the mass basis. In section 3 we show the effective theory at energies much lower than

the scale of the composite-resonances and obtain the couplings at zero momentum. In

section 4 we compute the Higgs potential arising from the specified set of representations.

In section 5 we give our numerical results after demanding dynamical EWSB as well as

the proper spectrum for the light states corresponding to the SM degrees of freedom. In

section 6 we discuss the one-loop corrections to the Zbb̄ couplings. In section 7 we give

a brief description of some interesting properties of the model for the phenomenology at

accelerators and we conclude in section 8.

2 A model to solve the deviation in A
b

FB
and a light Higgs

Ref. [15] considered theories with a new SCFT with global symmetry SU(2)L×SU(2)R×
U(1)X . It showed that if the SM fields interact linearly with the SCFT, eq. (1.1), in order to

protect the ZbLb̄L coupling from large corrections in the presence of a large mixing between

qL and an operator Oq
SCFT, the new sector must have a PLR symmetry exchanging SU(2)L

and SU(2)R, and Oq
SCFT must be embedded in the (2,2)2/3 representation of the extended

symmetry. In this case the interaction between bL and the corresponding component of

Oq
SCFT preserves PLR and the coupling ZbLb̄L is protected. On the other hand refs. [15]

and [17] showed that δgbR can be positive if bR mixes with an Ob
SCFT in a (1,2)−5/6

and [17] also showed that δgbL can be positive if qL mixes with a second operator Oqb

SCFT

in a (2,3)−5/6.
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By extending the symmetry of the new sector to SO(5)×U(1)X , the Higgs can be a

pNGB arising from the spontaneous breaking of SO(5) to SO(4). The interactions between

the SCFT and the SM fields explicitly break the global symmetry and generate a poten-

tial for the Higgs at loop level. This potential can induce a misalignment of the vacuum

and trigger EWSB dynamically. Explicit realizations of this pattern of symmetry break-

ing [8, 9, 12–14, 24, 25] have shown that to obtain a finite Higgs potential at one loop the

OSCFT must be embedded in full representations of the global symmetry. In the present

work we are interested in the representations 16 and 4 of SO(5) for the fermionic oper-

ators Oqb

SCFT and Ob
SCFT, respectively, since they contain a (2,3) and (1,2) multiplets of

SU(2)L×SU(2)R, and therefore the interactions of this operators with the bottom quark

can induce the proper shifts of the Zbb̄ couplings to solve the deviations pointed to in

ref. [23]. These operators also have the proper quantum numbers to generate a bottom

Yukawa interaction.

There are larger SO(5)-representations containing the multiplets of SU(2)L×SU(2)R
specified previously and there are also larger SU(2)L×SU(2)R-representations that can

achieve shifts in the Zbb̄ couplings with the correct sign [17], however the 4 and 16 are

the smallest representations once SO(5) is chosen; in this sense we will work in a minimal

model. These operators can create fermionic resonances, the lowest lying levels of those

with masses of order TeV, that we will call beautiful mirrors.

To be able to generate the top mass by partial compositeness and trigger EWSB we also

introduce an operatorOqt

SCFT in a representation of SO(5), we use the index qt to distinguish

it from the one involved in the generation of the bottom mass that has index qb. We will

add an operator Ot
SCFT interacting with tR, and for simplicity we will assume that Oqt

SCFT

and Ot
SCFT transform with the representation 5. We could choose other representations

for these operators, but we do not expect that the physics we want to study could have a

relevant dependence on this choice.

2.1 2-site description

A 4D effective description of an SCFT leading to resonances, similar to QCD but with a

scale of order TeV, can be realized in a theory with two sites [26]: one site called site-0

with elementary fields and another one called site-1 with fields that describe, at an effective

level, the first layer of composite resonances of the SCFT. In this work we will consider a

two site theory very similar to the models of refs. [12] and [13], with the difference that

we will introduce representations for the fermions not considered in those articles. We will

closely follow the notation of ref. [13].

We will use lower case letters for the fields of site-0 and capital letters for the fields of

site-1. The elementary sector at site-0 contains the same fermionic and gauge degrees of

freedom as the SM but no elementary scalar:

L0 = − 1

4g20
w̃j
Lµνw̃

j µν
L − 1

4g
′2
0

b̃µν b̃
µν + iψ̄ 6D0ψ , (2.1)

where a sum over the SM fermions is understood, j = 1, 2, 3 and w̃j
L and b̃ are the SU(2)L

and U(1)Y gauge fields, respectively. Dµ
0 is the covariant derivative containing the fields of
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the elementary sector. The tilde over the gauge fields denotes the non-canonical normal-

ization of their kinetic terms. There is also an SU(3)c gauge symmetry that we have not

written because it does not play any role in our analysis.

It is very convenient to introduce new spurious degrees of freedom in the elementary

sector [8], such that the SM gauge symmetry is extended to SO(5)0×U(1)x, the same

group as in the composite sector, with hypercharge realized as Y = T 3R + X.2 The

spurious fields are not dynamical and they do not play any physical role. The fermions

can also be extended to fill complete representations of this group. We will introduce

two chiral elementary fermions called qt and qb, respectively transforming as 52/3 and

16−5/6. Under SU(2)L×SU(2)R these multiplets decompose as: 5 ∼ (2,2) ⊕ (1,1) and

16 ∼ (3,2)⊕ (2,3)⊕ (2,1)⊕ (1,2). The (2,2)2/3 and the (2,3)−5/6 contain each just one

21/6 of SU(2)L×U(1)Y , whereas the other SO(4) multiplets do not contain a 21/6. Out

of these two doublets only one linear combination will be dynamical. By defining P21/6

as the projector that acting on the space of the fields embedded in full SO(5) multiplets

project them onto the subspace containing a 21/6, the dynamical doublet can be written

as qL ≡ P21/6
(qt + qb), all the other components will be just spurious fields. We will also

promote tR to a 52/3, with the (1,1)2/3 component being the only dynamical field. We will

embed bR in a 4−5/6, using that 4 ∼ (2,1)⊕ (1,2), the only dynamical field will be the up

component of the (1,2)−5/6. In terms of these multiplets the elementary Lagrangian reads:

L0 = − 1

4g20
ãCµν ã

Cµν − 1

4g2x
x̃µν x̃

µν + iψ̄ 6D0ψ , (2.2)

where now the sum is over ψ = qt, qb, t and b, C is an index in the adjoint of SO(5):

C = 1, . . . 10. The elementary hypercharge coupling is g′−2
0 = g−2

0 +g−2
x and the dynamical

field is obtained by setting w̃3
R = x̃ = b̃.

The composite sector at site-1 contains an SO(5)1×U(1)X gauge symmetry, as well

as several fermions charged under this symmetry.3 We will assume that the SO(5)1 sym-

metry is spontaneously broken to SO(4)1 at a scale f1 by the strong dynamics of site-

1. We will parametrize this breaking by considering a non-linear description in terms

of a unitary matrix U1, containing the NGB fields arising from the spontaneous break-

ing: U1 = e
√
2iΠ1/f1 , with Π1 = Πâ

1T
â and T â the broken generators of SO(5)1/SO(4)1.

The SO(5)1 symmetry is non-linearly realized, since under a transformation at site-1:

G1 ∈ SO(5)1: U1 → G1 U1H1(G1; Π1)
†, with H1(G1; Π1) ∈ SO(4)1 implicitly depending

on G1 and Π1, as usual in the NGB formalism [27, 28]. The Lagrangian of the bosonic

sector at site-1 is:

L1 ⊃ − 1

4g2ρ
ÃC

µνÃ
Cµν − 1

4g2X
X̃µνX̃

µν +
f2
1

2
Dâ

µDµâ (2.3)

with C = 1, . . . 10 and Ã and X̃ being the SO(5)1 and U(1)X gauge fields, respectively.

Dâ
µ is implicitly defined by U †

1D1µU1 = iEa
µT

a + Dâ
µT

â, with D1µ the covariant derivative

2For more information on the representations of SO(5) used in this paper see appendix A.
3One can consider also an SU(3) gauge symmetry in the composite sector to describe resonances of the

gluons. For simplicity, and because we will be concerned with the EW sector only, we will not mention

them anymore in this work.
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containing the fields of the composite sector. We take the couplings of site-1 to be larger

than the SM couplings, but still in the perturbative regime: gSM ≪ gρ ≪ 4π, where by gρ
we generically denote all the couplings of the composite sector.

For the fermions of the composite sector we will consider four vector-like multiplets:

two associated to the top and transforming as 52/3, called Qt and T , and two associated to

the bottom, one called Qb transforming as 16−5/6 and another one called B transforming

as 4−5/6. Besides the usual kinetic and mass terms, there are also Yukawa interactions

involving the NGB field Π1. The Lagrangian of the fermions at site-1 is:

L1 ⊃ Ψ̄(i 6D1−mΨ)Ψ+
∑

r

ytrPr(U
†
1Q

t
L)Pr(U

†
1TR)+

∑

r

ybrPr(U
†
1Q

b
L)Pr(U

†
1BR)+h.c. (2.4)

where a sum over Ψ = Qt, Qb, T and B is understood. r is an irreducible representation

of SU(2)L×SU(2)R, Pr is a projector from the space of representations of SO(5) to the

subspace of the r representation of SU(2)L×SU(2)R and the product Pr(Φ
′)Pr(Φ) corre-

sponds to the usual operation leading to an SU(2)L×SU(2)R invariant.4 We have consid-

ered only a partial set of chiral structures, not including for example terms of the form

Pr(U
†
1ΨL)Pr(U

†
1ΨR), neither of the form: Pr(U

†
1Q

t
R)Pr(U

†
1TL) or Pr(U

†
1Q

b
R)Pr(U

†
1BL). As

argued in ref. [13], those operators introduce divergences in the Higgs potential at one-

loop, unless one goes to three or more sites [12, 14]. For the Yukawa interactions of the

top sector there is a trivial singlet, independent of Π1 [29], that leads to a mass mixing

term between Qt and T and can be obtained by taking yt(1,1) = yt(2,2). There is also a

non-trivial invariant proportional to yt(1,1) − yt(2,2). For the bottom sector there are two

non-trivial independent invariants, with couplings yb(1,2) and yb(2,1). The presence of more

than one Yukawa structure in the down sector in general leads to flavor violating processes

mediated by Higgs exchange that, in anarchic models, are too large compared with the

present bounds on flavor violating interactions [30]. By imposing a PLR symmetry under

the exchange of SU(2)L and SU(2)R one obtains: yb(1,2) = yb(2,1). In a theory of flavor

this symmetry aligns the bottom Yukawa structures in flavor space and relaxes the most

stringent constraints arising from those processes [30]. In the following we will assume that

yb(1,2) = yb(2,1) ≡ yb. Notice that the Yukawa couplings as defined in eq. (2.4) are dimen-

sionful. We expand the neutral Yukawa interactions in terms of the components within

each multiplet in appendix B.

The elementary and composite sectors described above are coupled by non-linear σ-

model fields Ω and ΩX , realizing partial compositeness. The non-linear σ-model fields

transform bilinearly under the elementary and composite symmetry groups: Ω → g0Ωg
†
1

and similarly for ΩX . As a consequence, there is mixing between the elementary and com-

posite fields, and the mass eigenstates are a superposition of both sectors. Each non-linear

4It is also usual to write the invariants by working with the NGB vector field Φ1 = U1Φ0, with Φt
0 =

(0, 0, 0, 0, 1) parametrizing the SO(5)/SO(4) vacuum before EWSB. In this case the invariants for the

Yukawa interactions can be written formally as: Ψ̄LΦ
nΨ′

R, with n = 2 for Ψ,Ψ′ ∼ 5 and n = 1, 2 for

Ψ ∼ 16 and Ψ′ ∼ 4. Refs. [12, 13] used the later parametrization to write the Yukawa interactions.
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σ-model field is characterized by an energy scale, fΩ and fΩX
. The mixing Lagrangian is:

Lmix =
f2
Ω

4
tr|DµΩ|2 +

f2
ΩX

4
|DµΩX |2 + q̄LΩ (∆QtΩ

2/3
X Qt

R +∆QbΩ
−5/6
X Qb

R)

+ ∆T t̄RΩΩ
2/3
X TL +∆B b̄RΩΩ

−5/6
X BL + h.c. (2.5)

The link field Ω parametrizes the coset SO(5)0 × SO(5)1/SO(5)0+1, with SO(5)0+1 the

diagonal subgroup of SO(5)0 × SO(5)1, and similarly for ΩX

Ω = e
√
2 iΠΩ/fΩ , ΩX = e

√
2 iΠΩX

/fΩX , (2.6)

where ΠΩ = ΠC
Ω TC

0−1 and TC
0−1 are the generators of the coset. The covariant derivatives

contain in this case elementary and composite gauge fields, as required by gauge invariance:

DµΩ = ∂µΩ− iãµΩ+ iΩÃµ , DµΩX = ∂µΩX − ix̃µΩX + iΩXX̃µ . (2.7)

2.2 Mass eigenstate basis

To make contact with the physical content of the theory one can go to the unitary gauge

by performing a gauge transformation G1 = Ω and G1X = ΩX . After that the only physical

scalars can be parametrized by

U = e
√
2 iΠ/fh , Π = hâT â ,

1

f2
h

=
1

f2
Ω

+
1

f2
1

. (2.8)

After EWSB the vacuum is described by the parameter:

ǫ = sin
v

fh
, (2.9)

with v = 〈h〉 and h2 = hâhâ.

To better understand the particle content and the different sources of symmetry break-

ing of the theory, we briefly discuss the spectrum as well as its modifications when the differ-

ent sources of mixing are taken into account. Freezing the elementary fields one can study

the spectrum of the pure composite sector. It contains vectors in the SO(4)1 subgroup with

mass mρ = gρfΩ/
√
2, vectors in the SO(5)1/SO(4)1 coset with mass mâ = gρ

√

f2
Ω + f2

1 /
√
2

and a vector of U(1)X with mass mX = gXfΩX
/
√
2.

After the mixing between the two sites, there remains a gauge symmetry SU(2)L,0+1×
U(1)Y,0+1, corresponding to the diagonal subgroups. The corresponding massless gauge

fields are linear combinations of elementary and composite gauge fields

W i
L = cθ wi

L + sθA
i
L , i = 1, 2, 3 ; B =

b+ tθ′ρA
3
R + tθ′XX

(1 + t2θ′ρ
+ t2

θ′X
)1/2

, (2.10)

where we have rescaled the gauge fields as: wi
L = g0w̃

i
L, b = g′0b̃, A

C = gρÃ
C andX = gXX̃.

We have also used shorthand for the trigonometric functions: cα ≡ cosα, sα ≡ sinα and

tα ≡ tanα, and the different mixing angles: θ, θ′ρ and θ′X are respectively given by:

tθ = g0/gρ , tθ′ρ = g′0/gρ , tθ′X = g′0/gX . (2.11)

– 7 –
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The couplings of the gauge fields defined in eq. (2.10) are given by:

1

g2
=

1

g20
+

1

g2ρ
,

1

g′2
=

1

g
′2
0

+
1

g2ρ
+

1

g2X
. (2.12)

The orthogonal combinations to eq. (2.10) correspond to massive fields. The spectrum

of heavy vectors arising from this diagonalization is slightly modified with respect to the

original mass, but the corrections are small as long as tθ ≡ g0/gρ ≪ 1, as was assumed to

be the case. As an example, for ρ̃iL = cθA
i
L − sθw

i
L the mass is mρ̃ = mρ

√

1 + t2θ. The

masses of the composite fields that do not mix with the elementary ones remain unchanged.

For more details on the precise linear combinations and spectrum of the massive states we

refer the reader to ref. [13].

After EWSB the spectrum is further modified, the W and Z bosons obtain masses:

mZ ≃
√

g2 + g′2ǫfh/2 and mW ≃ gǫfh/2, where one can identify: vSM = 246 GeV ≃ ǫfh.

The masses of the heavy states are slightly modified after EWSB, which induces mixing

between the heavy states as well as mixing with the light ones. As a summary, there are

seven neutral states: one massless and another light one, corresponding to the photon and

Z, and five heavy states; there are also four charged states: a light one corresponding to

the W , and three heavy states. Since the mixing angles are small, the light states are

mostly elementary and the heavy states are mostly composite.

The fermionic mixing can also be diagonalized by performing a rotation of the chiral

components involved in Lmix. We define fermionic mixing tθΨ ≡ tan θΨ = ∆Ψ/mΨ, with

Ψ = Qt, Qb, T, B. After the corresponding rotation there is a set of chiral fermions that

remain massless, their degree of compositeness measured by θΨ. The masses of the fermions

corresponding to the orthogonal combinations become mΨ̃ = mΨ

√

1 + t2θΨ .
5 The masses of

the fermions that do not mix, often called custodians, remain being mΨ. For large mixing

angles, as is the case for the mixing leading to the top mass and mildly for the mixing of bR
leading to the shift in the coupling ZbRb̄R, there can be a sizeable separation between the

scales mΨ̃ and mΨ. By fixing the scale mΨ̃ ∼ mρ̃ ∼ O(2-3)TeV, for mixing sθΨ & 0.7, one

obtains light custodians with masses . 1TeV [9, 31]. After EWSB all of the fermions with

the same electromagnetic charge are mixed. In the present model there are nine up-type

fermions, eleven down-type fermions and some exotic fermions: two with Q = +5/3, eight

with Q = −4/3 and two with Q = −7/3. One up-type fermion and one down-type fermion

become massive only after EWSB, they are lighter than the other states and correspond

to the top and bottom. In appendix B we show the mass matrices for these fermions.

Although the mass matrices can be diagonalized straightforward numerically, it is

worth obtaining the analytic diagonalization expanding in some small parameter. By this

procedure one can obtain analytic expressions for the couplings in the mass basis and

understand the size and sign of the corrections as functions of the fundamental parameters

of the theory. We have considered a perturbative expansion in powers of ǫ, obtaining a

5Since qL mixes simultaneously with one doublet contained in Qt and another doublet contained in Qb,

the diagonalization of this system is more involved, requiring the angles θQt and θQb . The squared masses

of the massive states emerging from the diagonalization, in the absence of Yukawa terms, can be written in

the following way: 1
2
(m2

Q̃t +m2

Q̃b
)± 1

2
[(m2

Q̃t +m2

Q̃b
)2−4m2

Q̃tm
2

Q̃b
(1+t2θ

Qt
+t2θ

Qb
)(1+t2θ

Qt
)−1(1+t2θ

Qb
)−1]1/2.
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full diagonalization of the fermionic and bosonic sectors to O(ǫ2). Since the mass matrices

of the up- and down-type quarks are of dimension 9 and 11, and the mass matrix of the

neutral vector bosons is of dimension 7 [13], the explicit expressions for the eigenvalues

and eigenvectors are too long to be written in the paper. However in the next subsection

we will show our results for the Zbb̄ interactions using this perturbative diagonalization.

2.3 Zbb̄ interactions in the mass eigenstate basis

Seeking to compare the predictions of our model with the fit presented in ref. [23], we

compute the Zbb̄ interactions in the basis of mass eigenstates. In order to do that we

have diagonalized the bosonic and fermionic mass matrices perturbatively in ǫ, the first

non-trivial correction being of O(ǫ2).

Since the Z is a mixing between the elementary and composite neutral vector fields,

there is a universal correction to the Z couplings. That correction remains for vanishing

fermion mixing and therefore is the same for all fermions. We have subtracted that term

in the results that we present in eq. (2.13), such that we only show the non-universal

corrections. In order to simplify the equations, for the correction to ZbLb̄L we have set

∆B = 0, whereas for ZbRb̄R we have set ∆Qb = 0, obtaining:

δgmass
bL

=
g

cW

1

2

ǫ2f2
h

m2
Qtm2

T∆
2
Qb +m2

Qb [m
2
Qtm2

T +∆2
Qt(m2

T + y2t(2,2))]
{

−∆2
Qtm2

Qb(m
2
T + y2t(2,2))

[

g2 − g′2

4m2
ρ

+
g′2

3m2
X

]

+∆2
Qbm

2
Qtm2

T

[

g2(2 + 3t−2
θ )− 2g′2

4m2
ρ

+
5g′2

12m2
X

+
5y2b(1,2)

8f2
hm

2
B

]}

,

δgmass
bR

=
g

cW

ǫ2f2
h

m2
Qbm

2
B +∆2

B(m
2
Qb + y2b(1,2))

∆2
B

{

5g′2

24m2
X

(m2
Qb + y2b(1,2)) +

y2b(1,2) + y2b(2,1)

8f2
h

+
1

8m2
ρ

[

g2(1 + t−2
θ )(m2

Qb + 2y2b(1,2))− g′
2
(m2

Qb + y2b(1,2))
]

}

. (2.13)

The gauge couplings appearing in eq. (2.13) were defined in eq. (2.12). We have checked

that the relative difference between these approximations and the full numerical results are

∼ 1% for the points selected in our scan (see details in the next sections). We analyse first

the Left-coupling. Notice that, when considering the interaction between mass-eigenstates,

this coupling is modified by the mixing with the fermion Qt even for ∆Qb = 0, the correction

being of order δg/g ∼ −g2ǫ2∆2
Qt/4g2ρm

2
Qt . Compared with the naive estimate in the absence

of PLR-symmetry [32], this contribution is suppressed by a factor g2/g2ρ. This term is

present because the mass eigenstates are mixtures of elementary and composite fields,

therefore they do not have well defined transformation properties under the full gauge

symmetry group. The correction arising from the mixing with Qb can be split in two:

one mediated by a heavy vector, of order δg/g ∼ ǫ2∆2
Qb/m

2
Qb , where we have taken into

– 9 –
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account the fact that g/gρ ∼ tθ, and another one involving the bottom Yukawa, of order

∼ ǫ2∆2
Qby

2
b(1,2)/m

2
Qbm

2
B. Although the corrections mediated by ∆Qb are suppressed by a

small mixing compared with those mediated by ∆Qt , the large couplings of the composite

sector can compensate that suppression, mainly with the term proportional to t−2
θ . Also

notice that the contribution from mixing with Qt is negative, whereas the contribution

from mixing with Qb is positive, as expected from the representation under SO(5) chosen

for this fermion. The presence of a negative contribution to δgmass
bL

requires a mixing ∆Qb

larger than expected to compensate the negative term and obtain a positive δgmass
bL

. The

correction to the Right-coupling in the mass basis is positive and is controlled by the mixing

with B. It can also be enhanced by large composite couplings.

3 Low-energy effective theory

We consider in this section the effective theory at energies lower than the scale of reso-

nances. This is particularly useful when studying the Zbb̄-interactions, because one can gain

understanding on the different symmetries that can protect the couplings, as well as on the

origin of the sources that break those symmetries and induce corrections to the couplings.

The effective theory also provides a very compact formalism to describe the spectrum and

therefore to compute the Higgs potential at one-loop. We proceed by integrating-out the

states of the composite sector, obtaining an effective theory for the elementary ones.

The gauge sector has the same symmetries and field content as ref. [13], where the

effective Lagrangian for the gauge fields was computed in detail. Below we show the main

results that are needed for the purposes of this article and in appendix C we show the

gauge correlators in the SO(4)-symmetric vacuum. The quadratic effective Lagrangian for

the gauge fields arising from integrating-out the composite vectors is:

Leff ⊃ 1

2

∑

r

ΠA
r Pr(U

†aµ) Pr(U
†aµ) +

1

2
ΠXxµx

µ , (3.1)

with r being SO(4)-representations and U acting on the 10 representation of SO(5). The

correlators ΠA
r can be computed straightforward by integrating out the composite vectors

in the SO(4)-symmetric vacuum ǫ = 0. Although we are using a different parametrization

of the pNGB field compared with ref. [13], where it was parametrized in terms of a vector in

the fundamental of SO(5), both descriptions coincide. By considering an arbitrary vacuum

and keeping only the elementary gauge fields of SU(2)L×U(1)Y , we obtain:

Leff ⊃ 1

2

3
∑

i=1

Πwi
L
w̃i
Lµw̃

i µ
L +Πw3

L b w̃
3
Lµb̃

µ +
1

2
Πb b̃µb̃

µ , (3.2)

where the correlators Πwi
L
, Πb and Πw3

L b can be expressed in terms of the correlators Πr
A

and ΠX as:

Πwi
L
= ΠA

(3,1)+(1,3) +
1

2
(ΠA

(2,2) −ΠA
(3,1)+(1,3)) sin

2

(

v

fh

)

,

Πb = ΠX +ΠA
(3,1)+(1,3) +

1

2
(ΠA

(2,2) −ΠA
(3,1)+(1,3)) sin

2

(

v

fh

)

,

Πw3
L b = −1

2
(ΠA

(2,2) −ΠA
(3,1)+(1,3)) sin

2

(

v

fh

)

. (3.3)
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At quadratic level in the elementary fermions, the most general effective Lagrangian

arising from integrating-out the composite states of our two-site model can be written as:

Leff ⊃
∑

ψ=qt,qb,t,b

∑

r

Pr(U †ψ) 6p Πψ
r Pr(U

†ψ) +
∑

ψ=t,b

∑

r

Pr(U †qψ) Mψ
r Pr(U

†ψ) + h.c.

(3.4)

with U acting on the SO(5)-representation corresponding to each fermion. The correlators

Πψ
r and Mψ

r can be computed straightforward by considering the SO(4)-symmetric vacuum

ǫ = 0. For a general vacuum, and keeping only the dynamical fields, eq. (3.4) leads to [13]:

Leff ⊃ t̄L 6p(Zq +ΠtL)tL + b̄L 6p(Zq +ΠbL)bL + t̄R 6p(Zt +ΠtR)tR + b̄R 6p(Zb +ΠbR)bR

+ t̄LMttR + b̄LMbbR + h.c. (3.5)

where Zψ are the kinetic terms of the elementary fermions. The correlators of the dynamical

fermions can be expressed in terms of the ones in the SO(4)-symmetric vacuum as:

ΠtL =α
(2,2)
tL,qt

(h)Πqt

(2,2) + α
(1,1)
tL,qt

(h)Πqt

(1,1)

+ α
(2,1)

tL,qb
(h)Πqb

(2,1) + α
(1,2)

tL,qb
(h)Πqb

(1,2) + α
(2,3)

tL,qb
(h)Πqb

(2,3) + α
(3,2)

tL,qb
(h)Πqb

(3,2) ,

ΠbL =α
(2,2)
bL,qt

(h)Πqt

(2,2) + α
(1,1)
bL,qt

(h)Πqt

(1,1) ,

+ α
(2,1)

bL,qb
(h)Πqb

(2,1) + α
(1,2)

bL,qb
(h)Πqb

(1,2) + α
(2,3)

bL,qb
(h)Πqb

(2,3) + α
(3,2)

bL,qb
(h)Πqb

(3,2) ,

ΠtR =α
(2,2)
tR,t (h)Π

t
(2,2) + α

(1,1)
tR,t (h)Π

t
(1,1) ,

ΠbR =α
(2,1)
bR,b (h)Π

b
(2,1) + α

(1,2)
bR,b (h)Π

b
(1,2) ,

Mt =β
(2,2)
t (h)M t

(2,2) + β
(1,1)
t (h)M t

(1,1) ,

Mb =β
(2,1)
b (h)M b

(2,1) + β
(1,2)
b (h)M b

(1,2) , (3.6)

where the functions α and β can be obtained by computing the invariants in an arbitrary

vacuum. For those related with the top quark we obtain:

α
(2,2)
tL,qt

(h) =
1

4
(3 + c2h) , α

(1,1)
tL,qt

(h) =
1

2
s2h ,

α
(2,1 )

tL,qb
(h) = 0 , α

(1,2)

tL,qb
(h) = 0 , α

(2,3)

tL,qb
(h) = c2h

2

, α
(3,2)

tL,qb
(h) = s2h

2

,

α
(2,2)
tR,t (h) = s2h , α

(1,1)
tR,t (h) = c2h ,

β
(2,2)
t (h) =

chsh√
2

, β
(1,1)
t (h) = −chsh√

2
,
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whereas for those related with the bottom-quark:

α
(2,2)
bL,qt

(h) = 1 , α
(1,1)
bL,qt

(h) = 0 ,

α
(2,1)

bL,qb
(h) =

5

8
s2h

2

s2h , α
(1,2)

bL,qb
(h) =

5

128

4c2h − c4h − 3

ch − 1
,

α
(2,3)

bL,qb
(h) = c2h

2

3c2h + 4ch + 9

16
, α

(3,2)

bL,qb
(h) = s2h

2

3c2h − 4ch + 9

16
,

α
(2,1)
bR,b (h) = s2h

2

, α
(1,2)
bR,b (h) = c2h

2

,

β
(2,1)
b (h) =

i

2

√

5

2
s2h

2

sh , β
(1,2)
b (h) = −1

4

√

5

2
(1 + ch)sh . (3.7)

In the previous expressions we have used the following shorthand notation cnh ≡ cos
(

n h
fh

)

and similarly for snh. The correlators in the SO(4)-symmetric vacuum expressed in terms

of the parameters of the model are shown in appendix C.

Following ref. [33] we define:

v2SM = Πw1
L
(0) = f2

hǫ
2 ,

1

g2
=

1

g20
+Π′

w1
L
(0) =

1

g20
+

1

g2ρ
− ǫ2

g2ρ

f2
1 (2f

2
Ω + f2

1 )

(f2
Ω + f2

1 )
2

,

1

g′2
=

1

g
′2
0

+Π′
b(0) =

1

g
′2
0

+
1

g2ρ
+

1

g2X
− ǫ2

g2ρ

f2
1 (2f

2
Ω + f2

1 )

(f2
Ω + f2

1 )
2

, (3.8)

where Π(0) ≡ Π(p2)p2=0. The matching of eq. (3.8) implies that in the effective theory, at

zero momentum the corrections to the gauge interactions are mediated by the mixing with

the heavy fermions, such that, for zero fermionic mixing the coupling is SM-like. We will

show the explicit results for the Z interactions in the effective theory in section 3.1.

3.1 Z-interactions in the low energy effective theory

In this section we compute the Z-interactions in the effective theory. Since the elementary

and composite fields have well defined transformation properties under the gauge symme-

try groups and the effective theory is formulated in terms of the elementary fields after

integrating-out the composite ones, the symmetries of the model are manifest in the low

energy effective theory. In particular, we expect the symmetries protecting several cou-

plings to manifest explicitly in this basis; we will show below that this is the case. We will

consider the couplings at p2 = 0.

We begin by analysing the interactions with the top quark. Since tR transforms as

(1,1), from PC symmetry [15] we expect the tR coupling to be protected. We have checked

that property by explicit calculation, finding no corrections. On the other hand the tL
coupling is not protected. In eq. (3.9) we show our result. Although it is possible to obtain

the coupling to all orders in ǫ, for simplicity in the presentation we only show the leading

order terms.

The bL coupling can receive contributions from the mixing with Qt and Qb, the first

potentially large due to the large ∆Qt required by the top mass. However, since the
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composite fermion in Qt mixing with bL has T 3L = T 3R = −1/2, a PLR symmetry protects

this coupling from corrections induced by mixing with Qt [15]. On the other hand, the

mixing with Qb induces a positive shift of the bL coupling, suppressed by the small ∆Qb

mixing that controls the bottom mass [17]. Notice that it is positive and is suppressed by

ǫ2∆2
Qb/m

2
Qb .

The shift of the bR coupling is positive and controlled by ∆2
B.

To leading order in ǫ we obtain:

δgefftL =
g

cW

ǫ2

4

{

−∆2
Qtm2

Qb

[

f2
Ω

(

yt(1,1)−yt(2,2)
)2
+f2

1

(

2m2
T + y2t(1,1)−4yt(1,1)yt(2,2)+5y2t(2,2)

)]

+∆2
Qbf

2
1m

2
Qtm2

T

}

{

(f2
Ω + f2

1 )
[

m2
Qtm2

T (2m
2
Qb +∆2

Qb) +m2
Qb∆

2
Qt(m2

T + y2t(2,2))
]}−1

+O(ǫ4) ,

δgefftR = 0 ,

δgeffbL =
g

cW

ǫ2

16
∆2

Qb

m2
Qtm2

T

[

12f2
1m

2
B + 5y2b(1,2)

(

f2
Ω + f2

1

)

]

m2
B(f

2
Ω + f2

1 )
[

m2
Qtm2

T

(

2m2
Qb +∆2

Qb

)

+m2
Qb

(

m2
T + y2t(2,2)

)] +O(ǫ4) ,

δgeffbR =
g

cW

ǫ2

8
∆2

B

f2
Ω

(

y2b(1,2) + y2b(2,1)

)

+ f2
1

(

2m2
Qb + 5y2b(1,2) + y2b(2,1)

)

(f2
Ω + f2

1 )
[

m2
Bm

2
Qb +

(

m2
Qb + y2b(1,2)

)

∆2
Qb

] +O(ǫ4) . (3.9)

The Weinberg angle has been defined by the usual tree-level relation, with the couplings g

and g′ defined in the effective theory by eq. (3.8).

By comparing these effective couplings with the couplings between the mass eigenstates

one can appreciate the size of the corrections, the most important one being the contribu-

tion to δgbL arising from mixing with Qt that is present in the basis of mass eigenstates,

but is not present in the effective Lagrangian thanks to the PLR-symmetry.

For non zero momentum the Z-interactions become form factors with non trivial mo-

mentum dependence. These corrections also give rise to new Lorentz structures [34], as:

pµ 6p, p′µ 6p, pµ 6p′, p′µ 6p′, γµ 6p, γµ 6p′, with pµ and p′µ the momentum of the particle and antipar-

ticle. Note that the last two structures flip chiralities.

4 Higgs potential

Two site models lead to a one-loop Higgs potential that is finite and calculable, provided

that one excludes certain chiral structures in the Yukawa interactions [12, 13], as detailed

in section 2.6

We assume that the light generations have small mixing for both chiralities and there-

fore do not have a large impact in the one-loop Higgs potential. The effect of the other

states are fully taken into account. Using the correlators of the effective theory, the Higgs

6Another possibility would be to allow for all the possible chiral structures in a model with at least three

sites [14].
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potential at one loop can be written as [8, 13]:

V (h) =

∫

d4p

(2π)4

{

3
2

∑

i=1

log

(

p2

g20
+Πwi

L

)

+
3

2
log

[(

p2

g20
+Πw3

L

)(

p2

g
′2
0

+Πb

)

−Π 2
w3

L b

]

− 2Nc

∑

ψ=t,b

log
[

p2(ZψL
+ΠψL

)(ZψR
+ΠψR

)− |Mψ|2
]

}

. (4.1)

Notice that we have included the kinetic terms in the expression for the potential because

they were not included in the definitions of the correlators.

The fermionic correlators are proportional to the mixing squared, ΠL,R ∝ ∆2
L,R and

M ∝ ∆L∆R. Thus we expect fermions with large mixing to dominate the potential.

The top quark requires large mixing with the composite sector to account for its large

mass. The mixing explicitly breaks the symmetry behind the NGB nature of the Higgs,

thus the top quark usually dominates the Higgs potential. A large correction to ZbRb̄R also

requires a considerable mixing of bR, with a potentially important effect in V (h). However,

for yb(1,2) = yb(2,1) as in the present model, the correlator ΠbR is independent of h. The

reason is that in this limit the only invariant involving just bR is the trivial one. As we

will discuss in the next sections, the mixing of bL is smaller than those of the top and bR,

therefore we expect the effect of the bottom quark in the Higgs potential to be subleading

in the present model.7

For h = 0 there is a divergent contribution to the Higgs potential that has no impact

on EWSB. A finite and meaningful potential can be obtained by computing V (h)− V (0).

5 Numerical results

One of the goals of this article is to obtain the shift of Zbb̄ couplings in the region of the

parameter space of the model where the EW symmetry is broken and the masses of the

SM fields are around their physical values. To satisfy these conditions we have performed

a random scan over the parameters of the model, selecting the proper points. Below we

describe the implementation of the random scan and after that we present our results for

the couplings. We have followed a similar procedure to the one of ref. [13].

We have scanned over the bosonic mixing tθ and tθX ≡ tan θX = gx/gX . For simplic-

ity we have imposed the relation tθ = tθX , that fixes the ratio between elementary and

composite couplings to be the same for the different groups. We have fixed the remaining

freedom in the set of gauge couplings by matching with the SM couplings, as shown in

eq. (2.12). We have expressed the decay constants of the σ-model fields in terms of the

masses of the vectors mρ̃ and the Higgs decay constant fh, and we have scanned over them.

The choice tθ = tθX leads to gX ∼ 0.65gρ, thus to avoid a light vector resonance arising

from the U(1)X symmetry we have considered fΩX
∼ 2fΩ.

For the fermions we have scanned over the mixing tθΨ , with Ψ = Qt, Qb, T and B. We

have also expressed the composite masses mΨ in terms of the masses mΨ̃ (see the discussion

7See ref. [35] for an interesting discussion on the impact of the leptonic sector in the Higgs potential.
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in the paragraphs below eq. (2.12)). For simplicity we have fixed mΨ̃ = mρ̃, the same value

for all the representations, however notice that even under this simplifying assumption

there can be large splittings between the different fermions due to the suppression of the

masses of the custodians when the mixing is large. Besides we have also scanned over the

Yukawa couplings of the composite sector: yt(1,1), yt(2,2) and yb(1,2) = yb(2,1).

Concerning the numerical values, we have allowed large ranges for all the parameters.

However we present results constrained to some regions of the parameter space, motivated

by phenomenological considerations. We let the bosonic mixing vary according to: tθ ∈
[0.11, 0.33], we have allowed small values for this parameter because they favour larger

shifts in the Z couplings. We have considered sθQt , sθT ∈ [0.5, 1) for the top, sθ
Qb

∈
[0.05, 0.45] and sθB ∈ [0.1, 0.9]. For fh we scanned over fh ∈ [0.5, 2.8]TeV, the smallest

value corresponding to ǫ ∼ 0.5 for vSM = 246GeV, of the order of the maximum value

allowed by EWPT. For the masses of the resonances we have allowed mρ̃ ∼ 2−8TeV, that

is consistent with the approximate relation mρ ∼ gρfh, with gρ in the range determined

by the bosonic mixing angle detailed before. We have considered real Yukawa couplings

within the NDA perturbative regime: |y/fh| ≤ 2π.

For each point we have evaluated the one-loop Higgs potential, as well as the masses

of the Higgs, the Z boson, the top and bottom. We have normalized all the dimensional

parameters by demanding the mass of the lightest neutral boson to reproduce the SM Z

mass, and we have only kept the points that match the SM values for the other masses.

The phenomenology that we have studied is not very sensitive to small variations around

the central values of the masses, therefore, due to the finite time for CPU calculation, we

have considered the following ranges: 110 . mh . 140GeV, 130 . mt . 170GeV and

1 . mb . 4GeV. We have also discarded points with ǫ > 0.5 as well as points with masses

of bosonic vector resonances below 2TeV. For the points that satisfy these conditions, we

have computed the Zbb couplings in the basis of mass eigenstates by performing a numerical

diagonalization. Following ref. [36] we have subtracted the universal corrections to gbL and

gbR , that can be parametrized by the oblique parameters. We have checked our analytic

approximation of eqs. (2.13) for the non-universal corrections to the couplings by comparing

their predictions with the results obtained by performing a full numerical diagonalization.

For the selected points we find that the corrections to gbL and gbR computed by both

methods are in agreement within O(1%).

In figure 1 we show the deviations δgbL and δgbR in the basis of mass eigenstates for

the points of the scan that pass the selection conditions detailed in the previous paragraph.

The results that we show correspond to the full numerical diagonalization, but as already

pointed, they are in agreement with eqs. (2.13) within 1% level. In the same figure, we

present the 68% and 95% probability distributions for these shifts from ref. [23].8 The

white cross shows the center of the ellipses. First, one can see that there are many points

that can solve the discrepancy attributed to the deviation in Ab
FB. Second, the probability

distributions of ref. [23] present a strong correlation between both shifts, such that shifting

just one of the couplings does not improve the fit considerably. Instead the probability

8We thank Diptimoy Ghosh for clarifications concerning ref. [23].
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distributions prefer a shift δgbL ∼ O(10−3) correlated with a shift δgbR ∼ O(10−2). In order

to shift both couplings simultaneously, considerable mixing sθ
Qb

and sθB are required, as

shown in eqs. (2.13). In that case, in order to reproduce the bottom mass, since the same

mixing that controls the shift of the couplings also controls the mass of the bottom quark,

the composite bottom Yukawa coupling yb(1,2) has to be suppressed to compensate the

effect of the mixing and lead to a small bottom mass. On the other hand, if the composite

bottom Yukawa coupling is large, of the same size as the other composite couplings, at

least the mixing of one of the chiralities has to be small to suppress the mass, leading to

a very small shift for the coupling associated to that chirality. This behaviour is present

independently of the nature of the composite Higgs, whether it is a pNGB or not and is

instead associated to partial compositeness, and has been noticed before in scenarios where

the Higgs was not a pNGB [17]. That behaviour is shown in figure 1, where the black points

(dots) correspond to regions of the parameter space where the Yukawa is large: yb/fh ∼ gρ,

whereas colored points (stars, squares and triangles) correspond to regions of the parameter

space with sizeable sθ
Qb

and sθB , and small bottom Yukawa coupling: yb/fh ∼ O(10−1),

introducing a little hierarchy between the composite couplings. This Yukawa violates the

assumption that gρ ≫ gSM for all the composite couplings. The colors codify the value of

ǫ: orange points (stars) for ǫ ∈ (0, 0.2), green points (squares) for ǫ ∈ (0.2, 0.35) and red

points (triangles) for ǫ ∈ (0.35, 0.5). As expected, since to leading order in ǫ the shift is

proportional to ǫ2, a large shift requires ǫ & 0.2. We have not found points that satisfy all

the selection criteria specified before and produce corrections that lie outside of the range

shown in the plot.

The previous results introduce at least two different scales: one for the Yukawa of

the top sector and another one for the Yukawa of the bottom sector. Still, since we have

considered only the third generation of quarks, the present analysis does not give any

information about the flavor structure of the Yukawa couplings and composite masses.

That issue is beyond the scope of this work.

6 Radiative corrections to Zbb̄

We have shown the tree level corrections to Zbb̄ interactions, however it is important to

estimate the size of the one-loop contributions, to test the stability of the corrections. In

particular, the large mixing of some of the fermions can have an impact on the small correc-

tion allowed for ZbLb̄L. Ref. [37] has considered the one-loop correction to this interaction

in models with SO(5)/SO(4) symmetry breaking pattern, computing the contributions

from fermions in the representation 52/3. The authors argued that when there are several

multiplets present in the theory, in large regions of the parameter space EWPT can be sat-

isfied, particularly a shift of gbL small enough is obtained. There are some simplifications

in the case 52/3 because there is no bR partner in the composite sector and also because

the heavy down-type quarks, the quarks with charge Q = −1/3, arise from multiplets with

the same quantum numbers under SU(2)L×U(1)Y as the SM doublet: 21/6. Ref. [38] have

considered new fermions in the representation 10, however in this case the bR mixing is

usually smaller than in the present case. Since in our model there are quarks with exotic
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Figure 1. Results for the shifts in the Zbb̄ couplings. The ellipses correspond to the 68% (dark

region) and 95% (light region) probability distribution for δgbL and δgbR from ref. [23], the white

cross shows the center of the ellipses. The black points (dots) have bottom Yukawa coupling:

yb/fh ∼ gρ and one small bottom mixing, typically the Left-handed one. The colored points

(stars, squares and triangles) have sizeable sθ
Qb

and sθB , and small bottom Yukawa coupling:

yb/fh ∼ O(10−1). The colors codify the value of ǫ: orange points (stars) for ǫ ∈ (0, 0.2), green

points (squares) for ǫ ∈ (0.2, 0.35) and red points (triangles) for ǫ ∈ (0.35, 0.5).

hypercharge assignments as well as large mixing for bR, it is worth performing an estimation

of the one-loop corrections.

We take the gaugeless limit for our calculation, which has been shown before to yield

good predictions while simplifying the calculations greatly [39]. The Zbb coupling will thus

be estimated by calculating the G0bb coupling, where G0 is the NGB eaten by the Z. By

taking this limit, we are left with the diagram shown in figure 2. This diagram can be

split into various contributions corresponding to corrections to G0bLbL and G0bRbR and to

fermions Ψ(n) of charges −4/3 (v-type quarks), −1/3 (down-type quarks) or 2/3 (up-type

quarks) running in the loop.9 This diagram represents a finite contribution to the G0bb

coupling which can be explicitly calculated for all fermions running in the loop. Details on

the expressions obtained for this diagram can be found for example in [40, 41].

Performing a numerical calculation for different sets of points in the parameter space of

our model we arrive at the following results. We find that the shift to the G0bLbL coupling

produced by considering only the charge 2/3 fermions running in the loop, subtracting the

SM contribution, is of order δgbL |T ∼ 10−4. Similarly, δgbR |T is of order ∼ 10−5. The

difference in size for these shifts can be readily understood by considering a perturbative

expansion in both the fermionic mixing and the Yukawa couplings with the NGB’s. For

9With the NGB in the loop changing accordingly to maintain conservation of electric charge in the

vertices.
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G0
Ψ(n) h,Gi

b

b̄

Figure 2. Radiative correction to Zbb̄ at 1-loop in the gaugeless limit, G0/i is the neutral/charged

NGB associated with the longitudinal degree of freedom of the Z/W i and Ψ(n) is a heavy fermionic

resonance.

δgbL |T , we would expect the main perturbative contribution to be proportional to s2θQt
y4tLT ,

where Lq is the loop factor coming from the phase space integration with the q-type quarks

running in the loop. This is due to the fact that the elementary bL has a non-zero projection

on an elementary 5 which, after mixing with the composite 5, can couple directly to a top-

like fermion through the Yukawa coupling with the charged NGB’s. On the other hand,

the bR field is embedded in a 4 which contains no charge 2/3 fermions and which must

undergo various mixing and Yukawa couplings before being able to mix with the top-like

fermions. In particular, it mixes with the elementary qL so it can then follow a path

similar to the one explained for the bL. Hence, we expect the largest contribution to δgbR |T
to be ∼ s2θBy

2
bs

2
θ
Qb
y2tLT . In order to get the right mass for the SM b quark the product

(sθ
Qb
sθByb) needs to be small, thus δgbR |T is suppressed with respect to δgbL |T . A large

tree level shift to the ZbRbR coupling typically requires sθB large, then in this case the

suppression in δgbR |T /δgbL |T is of order s2θ
Qb
y2b/y

2
t .

Similarly, we can compare the shifts produced by the top-like quarks with those pro-

duced by the charge (−4/3) quarks. For the v-type quarks, we find δgbL |V ∼ 10−8. This

is 4 orders of magnitude smaller that δgbL |T , which is consistent with the fact the the

main perturbative contribution to it is expected to be ∼ s2θ
Qb
y4bLV and thus heavily sup-

pressed with respect to δgbL |T . On the other hand, the main perturbative contribution

to δgbR |V ∼ s2θBy
4
bLV , resulting in δgbR |V ∼ 10−5 which is of the same size as δgbR |T ; in

this case, the difference in loop factors, Yukawa couplings and fermionic mixing roughly

compensates.

There is also a contribution due to bottom-type quarks running in the loop (together

with a neutral NGB), which can be analyzed in a similar way, and whose size is negligible

compared to that of the up-type quarks contribution.

It is worth mentioning that due to the nonlinear coupling of the NGB’s in our model

and the mixing of b-type quarks, other Feynman diagrams can be constructed. Some

examples are diagrams modifying the self energy of the bottom [42] and diagrams arising

from 4-fermion operators [43]. In some cases these diagrams can be divergent and must be

renormalized.
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7 Phenomenology at colliders

We briefly discuss the phenomenology of the model at colliders as the LHC. Similar to other

realizations of a Higgs as pNGB of SO(5)/SO(4), we expect light fermionic resonances also

known as custodians with charges Q = +5/3, 2/3 and −1/3; these are usually present

in models based on representations 52/3, 102/3 and 142/3. In the present model, the

representation 4−5/6 leads also to resonances with new exotic charges Q = −4/3, whereas

the 16−5/6 leads to resonances with Q = −4/3 and −7/3. The masses of the former can

have considerable suppression compared to mρ, due to the non-negligible mixing sθB ∼ 0.6,

whereas for the later they are expected in the same range as mρ, since the suppression of

their masses is small as long as sQb is not so large. Moreover, for small composite Yukawa in

the bottom sector, the mirror fermion in 4−5/6 contains three rather light custodians that

are almost degenerate and, under SU(2)L×U(1)Y , have the following quantum numbers:

one doublet 2−5/6 and one singlet 1−4/3. Similarly, in this limit the 16−5/6 contains

a set of almost degenerate custodians generically heavier than the previous ones, that

under SU(2)L×U(1)Y can be organized as: 3−4/3, 3−1/3, 2−11/6, two 2−5/6 doublets,

21/6, 1−4/3 and 1−1/3. For the points shown in figure 1 we find that generically the bR
custodians have masses similar to the custodians of the top. The production and detection

of exotic resonances associated to bR would be a distinctive signature of this kind of models.

Refs. [44, 45] have explored this scenario, selecting the single production of states with

Q = −4/3 and proposing a search strategy at LHC, see also [46] for a very comprehensive

analysis. The present model provides a complete framework to study the phenomenology

of these exotic resonances given the presence of a light Higgs.

There can also be interesting signals associated to the neutral interactions between the

SM b quark, a down-type fermionic resonance b(m) and a neutral vector boson, either the SM

Z or a resonance Z(n), with m = 1, . . . 10 and n = 1, . . . 5, the indexes ordered by increasing

mass. The different processes to create one of this resonances and its dominating decay

channel depend on the spectrum and the size of the couplings. Although there are many

different possibilities and the spectrum and couplings can change much as the parameters

of the theory vary, we want to discuss some general situations that can be expected in the

present type of scenarios. After that we will describe the generic properties of the spectrum

and couplings that can lead to these processes. First, if the coupling Zb(m)b̄ is large, b(m)

can be produced (either QCD production b(m)b̄(m) or single EW production) and decay to

Zb, leading to a final state where one could fully reconstruct the b(m)-mass by selecting a

visible Z-decay channel. In the case of Z(n) heavier than b(m), if Z(n) is produced it can

decay via Z(n) → b(m)b̄, and eventually to Zbb̄ if the coupling Zb(m)b̄ is large enough. In

this case the full process would be ψψ̄ → Z(n) → b(m)b̄ → Zbb̄, with bottom quarks and Z

of large pT and with the eventual possibility to reconstruct the full mass of Z(n) and b(m). In

the case of production of b(m) heavier than Z(n), a very interesting decay would be a cascade

of neutral decays like b(m) → Z(n)b → b(ℓ)b̄b → Zbb̄b, again with final states with large pT .

Let us now briefly discuss the spectrum of down-type fermionic resonances and neutral

vector bosons. We expect two light custodians: one arising from the multiplet 52/3 mixing

with tR and another one from the multiplet 4−5/6 mixing with bR. There are also five

custodians from the 16−5/6, usually with larger masses than the previous ones since the

– 19 –



J
H
E
P
0
3
(
2
0
1
6
)
1
5
2

bL mixing is smaller than the other mixing, as well as three more states with no mass

suppression: one from the 52/3 mixing with qL, one from 4−5/6 and another from the 16−5/6.

In our scan, after taking into account EWSB effects, we have found a splitting between two

sets of resonances: two light resonances mostly given by the first two custodians described

in the beginning of this paragraph, and eight heavier resonances. For the neutral vectors

we find three states with similar masses mostly arising from the neutral components of

SO(4) and from U(1)X , and two heavier states mostly from the coset SO(5)/SO(4). We

also find that the heavier set of fermions have masses similar to the lighter set of bosons.10

We consider the strength of the coupling Z(n)b
(m)
L/RbL/R; we call these couplings gnmbL/R

.

In what follows, we will always refer to the size of the couplings in units of g
cW

. We use

the points with low composite Yukawa coupling presented in figure 1 as a testing ground.

We analyse first the Right-handed couplings of Z(1). We find that typically g19bR ∼ O(1),

with b(9) usually slightly heavier than Z(1), although the mass difference is small in this

case and the ordering can be changed easily. Another relevant Z(1) coupling is that of g13bR ,

which can be as large as 0.8 but can also fluctuate all the way down to negligible strength,

depending on the value of sθ
Qb
. Contrary to b(9), b(3) is generally lighter than Z(1), but

again the splitting is small.

Z(3) behaves in the same way as Z(1) when considering Right-handed couplings. Z(4)

and Z(5) both present couplings of strength ∼ 1.4 with b
(1)
R bR and b

(2)
R bR.

11 No other

Right-handed coupling is as relevant as these for the Z resonances.

For the Left-handed chirality there is not a Z(1) coupling that is consistently large,

but all of b(1), b(2), b(3) and b(8) show couplings of O(1) for a large portion of the points we

studied. b(8) has approximately the same mass as Z(1) for our region of parameter space.

Z(2) and Z(3) show the same qualitative behavior as Z(1) when it comes to couplings with

b
(1)
L bL and b

(2)
L bL. Z(2), however, also shows a consistently large coupling with b

(10)
L bL

(we find it of O(1) for all the points considered). For our points, the mass of b(10) is only

∼ 1.05−1.25 times that of Z(2). The Left-handed couplings for the heavier Z(n) resonances

are not, in general, as relevant as these.

Lastly, we can consider the Zb
(m)
L/RbL/R couplings. Out of these, none of the Left-

handed couplings are relevant. For the Right-handed chirality, on the other hand, the two

lightest b(m) resonances can exhibit a coupling half as large as that of the SM bR quark

(see footnote 11).

8 Conclusions

We have presented a model with a naturally light Higgs, arising as a pNGB of an SCFT,

and able to induce a shift in the Zbb̄ couplings that can relax the tension in Ab
FB measured

at LEP/SLD. The model is based on the breaking SO(5)/SO(4) and on the presence of

10It should be noted, however, that this mass ordering is only a consequence of the fact that we have

assumed the mass scale of the gauge bosons and all fermions to be the same; this could be easily altered

by introducing different scales for the resonances.
11What actually seems to happen here is that there is only one b-type “light” quark which has a large

coupling, but depending on the values of the parameters considered it will be either the lightest or the

second lightest down-resonance. The same appears to be true for these two when it comes to Left-handed

couplings.
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composite fermions associated to the bottom sector transforming with the representations

4 and 16 of SO(5). These representations allow to generate the appropriate pull in the

Zbb̄ couplings and simultaneously to produce the small bottom mass. The top partners

are embedded in a 5, such that no large corrections are induced for ZbLb̄L in the presence

of large mixing for the top, these mixing trigger EWSB and generate the large top mass.

We have computed the corrections to the Zbb̄ couplings at tree level by performing a

perturbative diagonalization of the mass matrices expanding in powers of ǫ2 = sin2
(

v
fh

)

.

We have obtained analytic expressions for δgbL and δgbR that allowed us to understand

the origin, the sign and the size of the different contributions to these corrections. We

have also studied the effective theory at energies below the scale of the heavy resonances.

By integrating-out the composite-states we have obtained an effective Lagrangian for the

elementary-states and the Higgs. In particular we have computed the Zbb̄ and Ztt̄ couplings

using this procedure, which has the virtue that the symmetry properties of the different

sectors become evident.

Under certain assumptions, the class of models considered in our work has a finite Higgs

potential at one-loop, that has been computed for fermions in different representations of

SO(5). In the present article we have included in the calculation of the Higgs potential

the contributions of all the fermions and vector bosons, including those arising from the

bottom sector that transform with the representations 4 and 16, that can be important if

the mixing between that quark and the heavy states are large. By performing a random

scan we have found the regions of the parameter space where the EW symmetry is broken

and the Higgs and the quarks of the third generation have the observed masses. We have

also computed the full corrections to Zbb̄ couplings at tree level numerically for those

regions of the parameter space. We have checked that our analytic results are in very good

agreement with the full numerical ones, with higher order corrections smaller than 1% level.

We have found a considerable region of the parameter space of our model where the

Zbb̄ couplings are corrected in such a way that they can solve the deviation attributed to

Ab
FB. The model has been designed to produce those corrections, but we have found that

generically, for composite bottom Yukawa couplings yb ∼ gρfh, the bottom mass and the

correct shifts δgbL and δgbR can not be produced simultaneously. This is expected since

there is a strong correlation between the shifts δgbL and δgbR arising from the experimental

results. Instead we have found that δgbR requires a rather large mixing of bR and its

composite partners, as was expected, but also δgbL requires a moderate mixing of bL and

its partners. Since the shift δgbL preferred by the experiments is small, one would have

expected that a small mixing could be enough. However when going to the mass eigenstate

basis, there is a correction to gbL arising from the top sector, even in the case of PLR-

symmetry, that although being suppressed, has the wrong sign. Therefore, to compensate

this correction, the bL mixing has to be somewhat larger than expected from a naive

analysis. Since the mixing driving the corrections to Zbb̄ also control the bottom mass,

the composite bottom Yukawa has to be partially suppressed to lead to a light bottom.

We have checked numerically that this is indeed the case, obtaining yb/fh ∼ O(10−1),

introducing a small hierarchy between yb and the other composite couplings gρ that we

take of order gSM ≪ gρ ≪ 4π.
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We have also estimated the corrections to the Zbb̄ couplings at one-loop in the gaugeless

limit. We found that these corrections are at least one order of magnitude smaller than

the tree level ones. Therefore we can expect the tree level corrections to give a reliable

estimation of the shifts of the Zbb̄ couplings.

We found an interesting collider phenomenology involving the beautiful mirror

fermions. Finding exotic fermions with charge −4/3 or −7/3 would provide good evidence

for the solution we have presented. There is also a rich phenomenology involving neutral

interactions, with the possibility of cascade decays mediated by Z- and b-resonances, and

possible final states with several bottom quarks and Z with large pT .
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A Representations of SO(5)

For a comprehensive description of the 4 and 5 representations of SO(5), refs. [8] and [13]

should be consulted. Here we will present the 16 representation of SO(5) in more detail.

Given the size of the matrices needed to represent the generators of the algebra for this

representation, and the fact that most of the elements of these matrices are zeroes, we

will describe them by their diagonals. For that purpose, we define Diag(g, k) as the k-th

diagonal of the matrix representing the element g of the so(5) algebra. k = 0 will be the

main diagonal and we will use positive numbers to denote diagonals above the main one

and negative numbers for those below it. As an example, if we consider the matrix,

Mex =







A1 A2 A3

B1 B2 B3

C1 C2 C3






, (A.1)

then,

Diag(Mex, 0) = (A1, B2, C3) ,

Diag(Mex, 1) = (A2, B3) , Diag(Mex, 2) = (A3) ,

Diag(Mex,−1) = (B1, C2) , Diag(Mex,−2) = (C1) . (A.2)
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We now proceed to define the generators of the so(5) algebra for the 16 as follows:

Diag(T 3
L, 0) =

(

1

2
,−1

2
, 1, 0, 0,−1,

1

2
,
1

2
,−1

2
,−1

2
, 1, 0, 0,−1,

1

2
,−1

2

)

Diag(T 3
R, 0) =

(

1, 1,
1

2
,
1

2
,
1

2
,
1

2
, 0, 0, 0, 0,−1

2
,−1

2
,−1

2
,−1

2
,−1,−1

)







Diag(T+
L , 1) =

(

1√
2
, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1√

2

)

Diag(T+
L , 2) =

(

0, 0, 0, 1, 0, 0,− 1√
2
, 1√

2
, 0, 0, 1, 0, 0, 0

)

T−
L = T+†

L






























Diag(T+
R , 6) =

(

− 1, 0, 0, 0, 0, 0, 0, 0, 0, 0
)

Diag(T+
R , 7) =

(

0, 1, 0, 0,− 1√
2
, 0, 0, 0,−1

)

Diag(T+
R , 8) =

(

0, 0, 1√
2
, 0, 0, 1√

2
, 1, 0

)

Diag(T+
R , 9) =

(

0, 0, 0, 1√
2
, 0, 0, 0

)

T−
R = T+†

R


















Diag(T+−,−4) =
(

0, 0, 0,
√
5
4 , 0, 12

√

5
2 ,− 1

2
√
2
, 0, 14 , 0, 0, 0

)

Diag(T+−,−3) =
(

0,−1
2

√

5
2 , 0,

1
4 ,−3

4 ,− 1
2
√
2
, 0, 12

√

5
2 ,

√
5
4 ,

√
5
4 , 0,−1

2

√

5
2 , 0

)

Diag(T+−,−2) =
(

1
2 ,

1
2
√
2
, 0, 0,

√
5
4 , 0, 0, 0, 0,−3

4 , 0, 0,
1

2
√
2
, 12

)

T−+ = T+−†






























Diag(T++, 3) =
(

1
2
√
2
, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,− 1

2
√
2

)

Diag(T++, 4) =
(

1
2

√

5
2 ,

1
2 ,− 1

2
√
2
, 0,−

√
5
4 , 0, 0, 34 , 0,

1
2

√

5
2 ,−1

2 ,−1
2

√

5
2

)

Diag(T++, 5) =
(

0, 0,−1
2

√

5
2 ,

1
4 ,−3

4 , 0,
√
5
4 ,

√
5
4 , 1

2
√
2
, 0, 0

)

Diag(T++, 6) =
(

0, 0, 0,−
√
5
4 , 0, 0,−1

4 , 0, 0, 0
)

T−− = T++† (A.3)

All elements not explicitly indicated are zeroes. The set {T 3
L, T

+
L , T−

L , T 3
R, T

+
R , T−

R } generates
the so(4) algebra that is left unbroken after the SO(5)→SO(4) breaking. As is well known,

the reason for choosing the usual SU(2) naming convention for the generators of this sub-

algebra is that SO(4)≃SU(2)L×SU(2)R. On the other hand, {T+−, T−+, T++, T−−} are

the broken generators corresponding to the SO(5)/SO(4) coset, that transform as a (2,2) of

SO(4). The first (second) ± super-index of these generators stands for the ±1/2 eigenvalue

under T 3
L (T 3

R).

The basis we have chosen to describe these matrices is a basis of eigenvectors of T 3
L

and T 3
R (as can be readily seen by the fact that their matrices are diagonal) which are

also eigenvectors of the Casimir operators, (T 1
L)

2 + (T 2
L)

2 + (T 3
L)

2 and (T 1
R)

2 + (T 2
R)

2 +

(T 3
R)

2.12 Below we show our notation for the components of the fermions corresponding

12As usual, T 1
L/R = T+

L/R + T−
L/R and T 1

L/R = −i(T+
L/R − T−

L/R).
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to the different representations of SO(5), with charges under SU(2)L×SU(2)R given by the

previous generators:

ψ4 = (B1, V1, B, V2) , (A.4)

ψ5 =

(

− i√
2
(X −B),

1√
2
(X +B),

i√
2
(T1 − T ),

1√
2
(T1 + T ), T̃

)

, (A.5)

ψ16 = (T,B, T1, B1, B2, V1, B3, B4, V2, V3, B5, V4, V5, S1, V6, S2) . (A.6)

This notation will become useful to describe a basis for the mass and Yukawa matrices of

appendix B.

B Yukawa interactions and mass matrices

In this appendix we show the neutral Yukawa terms and the mass matrices for the up- and

down-type fermions. The neutral Yukawa terms involving the 4 and 16 representations

are:

Lb
yuk =

1

8
yb(1,2)

[

−
(

BB
R ch

2
+ iBB

1,R sh
2

)(

− (3 ch
2
+ 5 c 3h

2
)BQb

2,L +

+2 sh
2
(−(1 + 5 ch)B

Qb

4,L +
√
5(
√
2 cth

2
BQb

L −BQb

1,L + cth
2
BQb

3,L +

+
√
2BQb

5,L) sh)
)

+
(

(3 ch
2
+ 5 c 3h

2
)V Qb

4,L + 2 sh
2
(−(1 + 5 ch)V

Qb

3,L +

+
√
5(−

√
2V Qb

1,L + cth
2
V Qb

2,L + V Qb

5,L +
√
2 cth

2
V Qb

6,L) sh)
)(

i sh
2
V B
1,R +

+ ch
2
V B
2,R

)]

+
1

8
yb(2,1)

[(

BB
1,R ch

2
+ iBB

R sh
2

)(

(3 ch
2
+ 5 c 3h

2
)BQb

4,L +

+2 sh
2
(2
√
5 c2h

2

BQb

1,L − 2
√
10 c2h

2

BQb

5,L −BQb

2,L − 5 chB
Qb

2,L +

+
√
10BQb

L sh +
√
5BQb

3,L sh)
)

+
(

(3 ch
2
+ 5 c 3h

2
)V Qb

3,L +

+2 sh
2
(2
√
10 c2h

2

V Qb

1,L − 2
√
5 c2h

2

V Qb

5,L + V Qb

4,L + 5 chV
Qb

4,L +

+
√
5V Qb

2,L sh +
√
10V Qb

6,L sh)
)(

ch
2
V B
1,R + i sh

2
V B
2,R

)]

+ h.c. (B.1)

In the last expression ctnh = cot(nhfh ), and as usual cnh = cos(nhfh ) and snh = sin(nhfh ). The

neutral Yukawa terms involving the 5 representations are:

Lt
yuk = yt(1,1)

[

chT̃
Qt

L − sh√
2
(TQt

L + TQt

1,L)

] [

chT̃
T
R − sh√

2
(T T

R + T T
1,R)

]

+

+yt(2,2)

{

BQt

L BT
R +XQt

L XT
R +

1

2

(

TQt

L − TQt

1,L

)

(

T T
R − T T

1,R

)

+

+

[

ch√
2

(

TQt

L + TQt

1,L

)

+ shT̃
Qt

L

] [

ch√
2

(

T T
R + T T

1,R

)

+ shT̃
T
R

]

}

+

+h.c. (B.2)

We can calculate a LR matrix for the quadratic terms of the b sector at zero mo-

mentum from the Lagrangian, using the basis
{

bL, BB
1,L, B

B
L , BQb

L , BQb

1,L, B
Qb

2,L, B
Qb

3,L, B
Qb

4,L,
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BQb

5,L, B
T
L , B

Qt

L

}

and
{

bR, B
B
1,R, B

B
R , BQb

R , BQb

1,R, B
Qb

2,R, B
Qb

3,R, B
Qb

4,R, B
Qb

5,R, B
T
R, B

Qt

R

}

,

M b
LR

=

























0 0 0 ∆Qb 0 · · · 0 ∆Qt

0 −mB 0 0 0 · · · 0 0

∆b 0 −mB 0 0 · · · 0 0

0
(

Y b
6×2

)

. . .
...

......

0 0 0 0 · · · −mT 0

0 0 0 0 · · · yt(2,2) −mQt

























. (B.3)

where the main diagonal is (0,−mB,−mB,−mQb ,−mQb ,−mQb ,−mQb ,−mQb ,−mQb ,

−mT ,−mQt) and the Yukawa sub-matrix for the b sector, Y b
6×2, is

Y b
6×2 = (B.4)

1

4























√

5
2
(−iyb(1,2)+yb(2,1))s

2
h −

√

5
2
(yb(1,2)−iyb(2,1)+(yb(1,2)+iyb(2,1))ch)sh

√
5
2
(iyb(1,2)+yb(2,1)+(−iyb(1,2)+yb(2,1))ch)sh

√
5
2
(yb(1,2)+iyb(2,1))s

2
h

i
2
(−yb(1,2)+iyb(2,1)+5(yb(1,2)+iyb(2,1))ch)sh

1
4
(8(yb(1,2)−iyb(2,1))ch+(yb(1,2)+iyb(2,1))(3+5c2h))√

5
2
(−iyb(1,2)+yb(2,1))s

2
h −

√
5
2
(yb(1,2) − iyb(2,1)+(yb(1,2)+iyb(2,1))ch)sh

1
4
(8(iyb(1,2)+yb(2,1))ch+(−iyb(1,2)+yb(2,1))(3+5c2h))

1
2
(yb(1,2) − iyb(2,1)+5(yb(1,2)+iyb(2,1))ch)sh

−
√

5
2
(iyb(1,2)+yb(2,1)+(−iyb(1,2)+yb(2,1))ch)sh −

√

5
2
(yb(1,2)+iyb(2,1))s

2
h























.

In a similar fashion, using the basis

{

tL, T T
L , T T

1,L, T̃
T
L , TQb

L , TQb

1,L, T
Qt

L , TQt

1,L, T̃
Qt

L

}

and
{

tR, T
T
R , T T

1,R, T̃
T
R , TQb

R , TQb

1,R, T
Qt

R , TQt

1,R, T̃
Qt

R

}

, we obtain for the top sector:

M t
LR

=

































0 0 0 0 ∆Qb 0 −∆Qt 0 0

0 −mT 0 0 0 0 0 0 0

0 0 −mT 0 0 0 0 0 0

∆T 0 0 −mT 0 0 0 0 0

0 0 0 0 −mQb 0 0 0 0

0 0 0 0 0 −mQb 0 0 0

0 (

Y t
3×3

) 0 0 −mQt 0 0

0 0 0 0 −mQt 0

0 0 0 0 0 −mQt

































. (B.5)

where Y t
3×3 is given by:

Y t
3×3 =







1
2

(

yt(2,2)(1+c2h)+yt(1,1) s
2
h

)

1
2

(

yt(1,1) − yt(2,2)
)

s2h
(

yt(2,2) − yt(1,1)
)

ch sh√
2

1
2

(

yt(1,1) − yt(2,2)
)

s2h
1
2

(

yt(2,2)(1+c2h)+yt(1,1) s
2
h

) (

yt(2,2) − yt(1,1)
)

ch sh√
2

(

yt(2,2) − yt(1,1)
)

ch sh√
2

(

yt(2,2) − yt(1,1)
)

ch sh√
2

yt(1,1) c
2
h + yt(2,2) s

2
h






.

(B.6)

Now, for the exotic quarks in the model, we begin by considering the v-type quarks

with the basis

{

V B
1,L, V

B
2,L, V

Qb

1,L , V
Qb

2,L , V
Qb

3,L , V
Qb

5,L , V
Qb

4,L , V
Qb

6,L

}

and
{

V B
1,R, V

B
2,R, V

Qb

1,R, V
Qb

2,R, V
Qb

3,R,
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V Qb

5,R, V
Qb

4,R, V
Qb

6,R

}

, and obtain:

Mv
LR

=













−mB 0 · · · 0

0 −mB · · · 0
(

Y v
6×2

) . . .
...

−mQb













. (B.7)

where the main diagonal is (−mB,−mB,−mQb ,−mQb ,−mQb ,−mQb ,−mQb ,−mQb) and

all off-diagonal elements are zero except for the 6× 2 sub-matrix Y v
6×2,

Y v
6×2 = (B.8)

1

4























√

5
2
(−iyb(1,2) + yb(2,1) + (iyb(1,2) + yb(2,1))ch)sh −

√

5
2
(yb(1,2) − iyb(2,1))s

2
h√

5
2
(iyb(1,2) + yb(2,1))s

2
h

√
5
2
(yb(1,2) + iyb(2,1) + (yb(1,2) − iyb(2,1))ch)sh

1
4
(8(−iyb(1,2)+yb(2,1))ch+(iyb(1,2)+yb(2,1))(3+5 c2h)) − 1

2
(yb(1,2) + iyb(2,1) + 5(yb(1,2) − iyb(2,1))ch)sh

−
√
5
2
(−iyb(1,2) + yb(2,1) + (iyb(1,2) + yb(2,1))ch)sh

√
5
2
(yb(1,2) − iyb(2,1))s

2
h

1
2
(−iyb(1,2) + yb(2,1) + 5(iyb(1,2) + yb(2,1))ch)sh

1
4
(8(yb(1,2)+iyb(2,1))ch+(yb(1,2)−iyb(2,1))(3+5c2h))

√

5
2
(iyb(1,2) + yb(2,1))s

2
h

√

5
2
(yb(1,2) + iyb(2,1) + (yb(1,2) − iyb(2,1))ch)sh























.

For the s-type (charge -7/3) quarks, using the basis

{

SQb

1,L, S
Qb

2,L

}

and
{

SQb

1,R, S
Qb

2,R

}

,

we get:

M s
LR

=

[

−mQb 0

0 −mQb

]

. (B.9)

And finally, for the x-type (charge 5/3) quarks, we use the basis
{

XQt

L , XT
L

}

and
{

XQt

R , XT
R

}

and obtain:

Mx
LR

=

[

−mQt yt(2,2)
0 −mT

]

. (B.10)

C Correlators

In this appendix we show the correlators obtained after integration of the composite states

of our model at tree level. The correlators obtained from integration of the heavy vector

bosons are:

ΠA
(3,1) = ΠA

(1,3) =
p2m2

ρ

g2ρ(p
2 −m2

ρ)
, ΠA

(2,2) =
m2

ρ(p
2 +m2

ρ −m2
â)

g2ρ(p
2 −m2

â)
, ΠX =

p2m2
X

g2X(p2 −m2
X)

.

ΠA
(3,1)+(1,3) ≡

ΠA
(3,1) +ΠA

(1,3)

2
. (C.1)
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The correlators arising from integration of Qt and T are:

Πqt

(2,2) = ∆2
Qt

m2
T − p2 + y2t(2,2)

m2
Qt(m2

T − p2) + p2(p2 −m2
T − y2t(2,2))

,

Πqt

(1,1) = ∆2
Qt

m2
T − p2 + y2t(1,1)

m2
Qt(m2

T − p2) + p2(p2 −m2
T − y2t(1,1))

Πt
(2,2) = ∆2

T

m2
Qt − p2 + y2t(2,2)

m2
Qt(m2

T − p2) + p2(p2 −m2
T − y2t(2,2))

,

Πt
(1,1) = ∆2

T

m2
Qt − p2 + y2t(1,1)

m2
Qt(m2

T − p2) + p2(p2 −m2
T − y2t(1,1))

,

M t
(2,2) = ∆Qt∆T

mQt mT yt(2,2)

m2
Qt(m2

T − p2) + p2(p2 −m2
T − y2t(2,2))

,

M t
(1,1) = ∆Qt∆T

mQt mT yt(1,1)

m2
Qt(m2

T − p2) + p2(p2 −m2
T − y2t(1,1))

.

The correlators arising from integration of Qb and B are:

Πqb

(2,3) = Πqb

(3,2) =
∆2

Qb

m2
Qb − p2

,

Πqb

(2,1) = ∆2
Qb

m2
B − p2 + y2b(2,1)

m2
B(m

2
Qb − p2) + p2(p2 −m2

Qb − y2b(2,1))
,

Πqb

(1,2) = ∆2
Qb

m2
B − p2 + y2b(1,2)

m2
B(m

2
Qb − p2) + p2(p2 −m2

Qb − y2b(1,2))
,

Πb
(2,1) = ∆2

B

m2
Qb − p2 + y2b(2,1)

m2
B(m

2
Qb − p2) + p2(p2 −m2

Qb − y2b(2,1))
,

Πb
(1,2) = ∆2

B

m2
Qb − p2 + y2b(1,2)

m2
B(m

2
Qb − p2) + p2(p2 −m2

Qb − y2b(1,2))
,

M b
(2,1) = ∆Qb∆B

mQb mb yb(2,1)

m2
B(m

2
Qb − p2) + p2(p2 −m2

Qb − y2b(2,1))
,

M b
(1,2) = ∆Qb∆B

mQb mb yb(1,2)

m2
B(m

2
Qb − p2) + p2(p2 −m2

Qb − y2b(1,2))
.
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