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1 Introduction

Supergravity theories play an essential role in our understanding of string theory, providing

not only effective actions in appropriate regimes, but also many insights into its consistent

backgrounds, as well as its symmetries and dualities. An important aspect of their study is

the classification of their gauged deformations: certain gauged supergravities can arise as

consistent truncations of the ten- and eleven-dimensional theories, and not only can they be

exploited to generate solutions to the equations of motion of the latter, but they also offer

many insights on the exceptional symmetries and hidden structures that we expect to be

present in string and M-theory. For certain theories with a high amount of supersymmetry,

a larger set of gaugings appear to be associated with so-called non-geometric compactifi-

cations, namely backgrounds that are not described by any conventional formulation of

supergravity, but can be argued to exist based on duality arguments. How to describe
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these non-geometric settings in a satisfying way is generally still an open question, and a

better understanding of gauged supergravity should serve as guidance and as a challenge

for such investigations.

Certainly one essential step in a better understanding of these models is to develop

systematic methods to study and classify inequivalent gaugings of supergravity theories.

Thanks to the embedding tensor formalism [1–3], such a task can be reduced to an alge-

braic and group-theoretical problem, though the explicit construction of all inequivalent

gaugings of a given theory remains highly non-trivial. A non-vanishing embedding tensor

breaks explicitly the group G of global symmetries of a theory to a subgroup Ggauge that

becomes local. The classification of all inequivalent gaugings then requires one to find all

the consistent embedding tensors and organize them in equivalence classes under the action

of the broken G. When G is related to duality groups inherited from string theory, these

equivalence classes are referred to as duality orbits. This classification of G- or duality

orbits has been carried out completely only for certain maximal and half-maximal super-

gravities in high dimensions [4, 5], while in lower dimensions the number of free parameters

and the large dimension of G for the most interesting cases make such a computation hard

to carry out directly and exhaustively.

Despite the absence of full explicit classifications, some of the most striking surprises

in the recent studies of gauged supergravities come from four-dimensional theories. In [6],

it was proven that the SO(8) gauged maximal supergravity of de Wit and Nicolai [7, 8]

is only one element of an infinite family of models sharing the same gauge group but

differing in the electric-magnetic embedding of its gauge-connection. These so-called ω-

deformed SO(8) theories all exhibit a fully supersymmetric and SO(8)-invariant anti-de

Sitter vacuum, just like the original model, and also share the same mass spectra at such

extremum. Other extrema however differ, because the higher order couplings depend non-

trivially on the deformation parameter ω. Many further studies have unveiled the physical

differences between the deformed models [9–20]. Since the original SO(8) model can be

uplifted to eleven-dimensional supergravity compactified on a seven-sphere, it is natural to

ask whether the new theories also admit an uplift. In [12] and [21] it was shown that there

is no uplift to the same geometric background as the original SO(8) model. Thus, if an

M-theory embedding of ω exists, it must be intrinsically non-geometric.

Deformations similar to the one of SO(8) were soon identified and studied for other

gauged maximal supergravities [22–24], giving rise among other things to the first slow-roll

solutions in maximal supergravity and to a vast landscape of Minkowski models with spon-

taneously broken supersymmetry. An important result was the proof of the existence of a

discrete deformation for the ISO(7) gauging [24, 25]. The string theory origin and CFT dual

of such models were recently identified in [26–28], were it was shown that the deformation

is associated with Romans mass in IIA supergravity compactified on a six-sphere.1

A crucial aspect in the classification of duality orbits of gaugings is the explicit con-

struction of those identifications that reduce the range of (or eliminate entirely) the de-

1This gauged supergravity is often referred to as ‘dyonic ISO(7) gauged supergravity’. It should

be pointed out that this terminology is misleading, because all gauging charges are mutually local by

construction.
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formation parameters. Such transformations cannot be identified nor proven to exist by

arguments based only on duality invariants, yet knowing their form can be crucial.2 A

systematic, constructive approach to the classification of duality orbits of gaugings of four-

dimensional maximal supergravity was introduced in [24], which defined the concept of

a deformation of the symplectic frame of a four-dimensional theory, compatible with a

certain fixed choice of embedding tensor (for short, symplectic deformation). This space

parameterizes inequivalent gaugings of a theory, all sharing the same gauge group but

differing in the specifics of their couplings. All field redefinitions that give rise to identifi-

cations between models are also encoded explicitly in the space of symplectic deformations.

Equivalent to the space of duality orbits of gaugings of a certain group Ggauge is a certain

double coset-space called the ‘reduced’ S-space

Sred = SSp(56,R)

(
XMN

P
)
\ NSp(56,R)(Ggauge) / NE7(7)oZ2(Ggauge) , (1.1)

where XMN
P is the embedding tensor, Sp(56,R) is the group of Gaillard-Zumino dual-

ity redefinitions of the vectors of maximal supergravity, and S,N indicate stabilizers and

normalizers respectively. When the gaugings are defined in an electric frame, it can be

meaningful to only regard as equivalent those theories that are related by local field redef-

initions. In this case a full space S is defined, where in the left quotient only GL(28,R)

local redefinitions of the physical vector fields are allowed. As a simple example of the

difference between the two, S treats as inequivalent theories also those that differ by a

shift in a (constant) theta-angle, while Sred captures all and only the deformations that

affect the classical equations of motion.

Surprises similar to those encountered in maximal supergravity surely hide in the

gaugings of less supersymmetric theories. In this paper we extend the approach of [24]

to non-maximal gauged supergravities in four dimensions, providing classifications of large

sets of inequivalent models. We will give a general discussion followed by many physically

relevant examples. Some of the latter are strictly related to consistent truncations of

the ω-deformed SO(8) gauged maximal supergravity and clarify what couplings are really

non-trivially affected by ω and render non-viable an uplift to the standard geometric eleven-

dimensional supergravity. We will show that ω is trivialized in certain truncations where it

was expected to be relevant, and survives in others. Many further examples are provided,

not related to the SO(8) theories, with particular attention to N = 4 supergravities.

We will mostly focus on the case where the global symmetries G of the theory under

consideration factor into electric-magnetic duality symmetries and other ‘matter’ symme-

tries, which is sufficient to encompass extended supersymmetric models. As we will explain

2For instance, when defined in an electric frame the range of ω for the SO(8) theory is reduced by

parity and by a certain E7(7) transformation [25] of the scalar fields inducing the Z2 outer automorphism

of the gauge group, combined with a redefinition of the vector fields by the same automorphism [6, 12, 24].

Employing these local field redefinitions, the ω = π/4 SO(8) gauged supergravity can also be lifted to eleven

dimensions. In particular, self duality and anti self duality of certain SO(8) four-forms are reversed by the

outer automorphism, which is necessary for the proof of the ‘Clifford property’ of [12] when ω = π/4. This

clarifies a mismatch between the values of ω that are described as liftable in [12] and [21], and the range of

inequivalent theories in four dimensions.
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in the following sections, when a gauging of matter symmetries is involved, the concepts

of symplectic deformations and of G-orbits differ slightly, although both allow in principle

a full classification of gaugings of a theory. The computation of symplectic deformations

is favored because of its group-theoretical nature, where the quadratic constraints of the

embedding tensor only need to be solved once for each choice of gauge group.

This paper is organized as follows. In section 2 we briefly review the embedding tensor

formalism, discuss its G-orbits and define the space of symplectic deformations for N ≥ 2

gauged theories. In section 3 we discuss the truncation of the SO(8) gauged maximal

supergravities to N = 6 supergravity and its N = 2 sibling sharing the same bosonic

content. We make a surprising discovery in that we find that ω is trivial in the former

but not in the latter, where it is joined by a second deformation. Section 4 is dedicated to

several examples of gauged half-maximal supergravities, and section 5 describes all gaugings

of the STU-model, showing in particular that no non-trivial ω-deformation is present. We

conclude in section 6.

2 Symplectic deformations with gauged matter symmetries

2.1 General gaugings and G-orbits

The embedding tensor formalism for D = 4 gauged theories was formulated in [3] and soon

applied to the construction of the maximal [29] and half-maximal [30] gauged supergravities.

The formalism was also applied to N = 2 rigid theories [31] and supergravity in the

superconformal formulation [32].

Given the group G of global symmetries of a theory, we use the set of electric and

magnetic vector potentials AMµ (M = 1, . . . , 2nv, where nv is the number of physical

vectors) to gauge a subgroup Ggauge ⊆ G. The choice of gauging is completely encoded in

an embedding tensor ΘM
α, such that covariant derivatives take the schematic form Dµ ≡

∂µ−AMµ ΘM
ατα, where τα are G generators in any appropriate representation. Notice that

α is an index in the adjoint of G, while M enumerates the vectors and therefore also forms

a representation of Sp(2nv,R), the group of electric-magnetic duality transformations [33].

The subgroup Gd ⊆ G that is non-trivially represented on the vectors is embedded in

Sp(2nv,R), and corresponds to duality symmetries of the theory. It also acts on the other

fields by inducing isometry transformations of the scalar manifold.

All modifications to the couplings of a (supergravity) theory that are due to a gauging

can be expressed in terms of ΘM
α. The embedding tensor satisfies certain linear and

quadratic constraints that guarantee consistency of the resulting gauged theory (we exclude

trombone gaugings):

ΩMNΘ α
M Θ β

N = 0 (locality),

Θ α
M Θ β

N f γ
αβ + Θ α

M t P
αN Θ γ

P = 0 (closure),

Θ α
P t P

αM = Θ α
(M t Q

αN ΩP )Q = 0 (susy/counting of d.o.f.),

(2.1)

where ΩMN is the symplectic invariant and tαM
N are the generators of Gd in the symplec-

tic representation that acts on the vector fields. Notice that this need not be a faithful
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representation of the full Ggauge. We denote GX the subgroup that is faithfully represented

on vectors. Defining XMN
P ≡ ΘM

αtαN
P , the above constraints imply

ΩMNX Q
MP X S

NR = 0,

[XM , XN ] Q
P +X R

MN X Q
RP = 0,

X P
PM = X(MNP ) = 0.

(2.2)

If Ggauge = GX , i.e. only duality symmetries are gauged, XMN
P entirely defines the gauging

and the above constraints are necessary and sufficient for consistency. Otherwise, ΘM
α

contains extra non-vanishing entries associated with the gauging of non-duality symmetries

and (2.1) imposes further consistency constraints. In any case, the gauging of GX is by

definition completely encoded in a tensor XMN
P . It is also important to stress that the

first two constraints on XMN
P are equivalent when the linear one is satisfied.

Let us now discuss how all gaugings of a chosen GX can be characterized. We can

decompose XMN
P in terms of generators txM

P , x being an adjoint index for GX , and a

‘small’ embedding tensor ϑM
x such that

X P
MN = ϑ x

M t P
xN . (2.3)

Clearly, ϑM
x specifies the choice of gauge connection for GX . The consistency con-

straints (2.2) then reduce to linear equations in ϑM
x:

ϑ x
M f z

xy = t N
yM ϑ z

N , ϑ x
M t M

xN = ϑ x
(M txNP ) = 0 , (2.4)

where fxy
z are the structure constants of GX . Given one solution of these constraints,

every other one is obtained by the action on XMN
P of symplectic transformations in

SSp(2nv,R)

(
XMN

P
)
\ NSp(2nv,R)(GX) , (2.5)

where SG(X) is the stabilizer of X in the group G, and NG(K) is the normalizer in a group

G of its subgroup K.3 This result is obtained following the same procedure as in N = 8

supergravity [24]. In an appropriate electric frame, one solution of the constraints can be

taken to be ϑM
0 x = δM

x.

We can try to treat the gauging of the full Ggauge ⊆ G in a similar way. Assum-

ing that the choice of gauge group has been made, we introduce its generators τA, A =

1, . . . , dimGgauge, structure constants fAB
C , and a small embedding tensor ϑM

A. This

time, however, we must solve the more general consistency constraints (2.1). A first dif-

ference is that these result in a set of quadratic equations for ϑM
A, rather than linear

ones. A more crucial difference with the previous case (and with maximal supergravity in

particular) is that here is no analogue of (2.5) that can characterize all consistent ϑM
A

group theoretically. Intuitively, the problem is that the full Ggauge is not embedded in

Sp(2nv,R). There is therefore no equivalent of XMN
P that entirely defines the gauging,

on which symplectic transformations can act to induce a change of the full ϑM
A. If we

3Contrary to [24], we never include overall rescalings of the embedding tensor in SSp(2nv,R)(XMN
P ).
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nevertheless assume to have solved the linear and quadratic constraints on ϑM
A for a given

Ggauge, we can ask which of the resulting solutions give rise to inequivalent theories. To

answer this question, we should quotient out any G transformation that maps Ggauge to

itself. Namely, we should compute the action of the normalizer NG(Ggauge) on the general

solutions ϑM
A, thus obtaining the classification of G-orbits of gaugings of Ggauge. This

is the obvious generalization of the computation of duality orbits of maximal and half-

maximal gauged supergravities, when the global symmetries of the theory are larger than

the duality symmetries Gd.

Given that the space of consistent gauge connections has no group-theoretical descrip-

tion, the characterization of the G-orbits can only be carried out on a case-by-case basis,

computing explicitly the action of G transformations on the embedding tensor. What we

will do instead is to pose an analogous but subtly different problem, the answer to which

can be phrased in terms of a certain subset of symplectic transformations that can be

computed explicitly.

2.2 Symplectic deformations of N ≥ 2 gauged theories

From now on we will focus on theories where the global symmetries decompose in a direct

product of duality and ‘matter’ symmetries, the latter leaving the vector fields invariant:4

G = Gd × Gm. (2.6)

In particular, this situation arises in theories with extended supersymmetry. It is convenient

for our purposes to first consider the consistent gauging of some group GX ⊂ Gd, entirely

specified by XMN
P , and then the further coupling of matter symmetries Hm ⊂ Gm to the

vector fields, so that the final gauging is a maximal subgroup Ggauge ⊆ GX×Hm. Assuming

GX and Hm have been chosen and fixed, we can rewrite the constraints (2.1) in terms of

XMN
P and a small embedding tensor θM

a, with a running along the adjoint of Hm. Beyond

the constraints (2.2) for XMN
P , we now also have

θ a
M θ b

M f c
ab = −X P

MN θ c
P , θ a

M θ b
N ΩMN = θ a

M X Q
NP ΩMN = 0. (2.7)

One advantage of this decomposition is that the consistency constraints on XMN
P are

unchanged. Finding all solutions θM
a that satisfy the quadratic constraints for a given

XMN
P can be difficult, although there are some obvious simplifications. For instance, the

non-Abelian part of Hm must be gauged by vector fields that already gauge an isomorphic

subgroup in GX . This means that the above constraints only need to be solved explicitly

for central extensions and Abelian factors in Hm.5 Notice however that different choices of

θM
a compatible with the same XMN

P might modify the embedding of Ggauge into GX×Hm,

possibly mapping it to an inequivalent one. Hence, the classification of solutions of (2.7)

differs from that of G-orbits of gauge connections for a fixed gauge group. This distinction

is only relevant when matter symmetries are gauged.

4The non-minimal couplings between scalars and vectors can be parameterized in terms of a symmetric

matrixM(φ)MN and beyond those symplectic transformations that induce isometries on the scalar manifold,

there can be extra symmetries in Gd associated with U ∈ U(nv) ⊂ Sp(2nv,R) if [U,M(φ)] = 0 ∀φ.
5As will be clear in the following discussion, the rank of θM

a is fixed and maximal.
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We are now ready to define our problem. The question we ask is what set of symplectic

frames are compatible with the introduction of the same tensors XMN
0 P , θM

0 a. The intro-

duction of a fixed embedding tensor in different symplectic frames will in general affect the

resulting equations of motion, thus yielding inequivalent gauged theories. Let us rephrase

this problem from a perspective similar to the discussion of inequivalent gauge-connections

we have carried out so far. Any two frames are related by a symplectic transformation

NM
P . Instead of explicitly classifying all Lagrangians associated with the action of these

transformations on the kinetic terms and moment-couplings of the vector fields, we can de-

cide to always revert to a fixed choice of symplectic frame after XMN
0 P and θM

0 a have been

turned on, by acting with the inverse transformation N M
−1 P on both the vector couplings

and the embedding tensor. As a result, computing symplectic deformations is equivalent

to classifying all transformations NM
P such that

X0 P
MN → N Q

M N R
N X0 S

QR N−1P
S , θ0 a

M → N N
M θ0 a

N , (2.8)

yield a consistent gauging in a fixed symplectic frame. We now notice that the most

general XMN
P gauging GX is obtained from a reference one by transformations NM

N ∈
NSp(2nv,R)(GX), and that in this case also (2.7) is satisfied. We conclude that symplectic

deformations are specified by elements of NSp(2nv,R)(GX), in full analogy with N = 8 su-

pergravity. In contrast to maximal supergravity, the resulting models are allowed to span

inequivalent embeddings of Ggauge in GX×Hm, if more than one exists. On the other hand,

this is not an exhaustive classification of G-orbits of gaugings of a fixed Ggauge discussed in

the previous section, making the two concepts inequivalent but complementary. The ad-

vantage of symplectic deformations is that we have a general framework to construct them.

2.3 The quotients

The set of gaugings we are interested in is determined by NSp(2nv,R)(GX) even when we

have a gauging of matter symmetries. The presence of the latter however affects what

elements of NSp(2nv,R)(GX) should be regarded as giving rise to equivalent theories.

Let us keep reasoning in terms of the fixed-frame approach, in which symplectic de-

formations act on the embedding tensor according to (2.8). In absence of gauged matter

symmetries we can write

N ∼= S N, S ∈ SSp(2nv,R)

(
X0 P
MN

)
, N ∈ NSp(2nv,R)(GX), (2.9)

since the transformation S has by definition no effect on the embedding tensor. The most

natural generalization of this identification would be to require

N ∼= S N, S ∈ SSp(2nv,R)

(
X0 P
MN , θ0 a

M

)
, (2.10)

as proposed in [24]. We can actually quotient out a larger group of transformations. The

key point is that the constraints (2.7) are preserved under any transformation such that

S N
M θ0 a

N = θ0 b
M m a

b , S ∈ SSp(2nv,R)

(
X0 P
MN

)
, m b

a ∈
NGm(Hm)

CGm(Hm)
. (2.11)
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The latter quotient is isomorphic to a subgroup of Aut(Hm), hence it can be represented

in the adjoint of Hm as specified. Clearly, any ma
b ∈ Aut(Hm) would preserve the em-

bedding tensor constraints, since by definition ma
dmb

efde
fm−1

f
c = fab

c. However, in the

Lagrangian such automorphisms must be induced by a field redefinition of the matter fields

obtained from the action of the (broken) Gm global symmetries. One way to see this is to

look at the covariant derivative for some matter fields φ:

Dµφ ≡ ∂µφ−AMµ θ0 a
M τa(φ) → ∂µφ−AMµ θ0 b

M m a
b τa(φ), (2.12)

where φ is some matter field and τa(φ) are the infinitesimal variations of the fields under

Hm. Clearly the left and right hand side can only be equivalent if ma
b can be reabsorbed

in a redefinition of φ that also leaves invariant all couplings unrelated to the gauging (in

particular, it must be an isometry of the scalar manifold to preserve the kinetic terms). We

thus define the subgroup of NSp(2nv,R)(GX) that can be appropriately quotiented away:

S
(
X0, θ0

)
≡
{
S ∈ SSp(2nv,R)(X

0) | Sθ0 = θ0m, m ∈ NGm(Hm)

CGm(Hm)

}
. (2.13)

A second set of transformations to quotient out is associated with duality symme-

tries Gd. In full analogy with maximal supergravity, these identifications are obtained by

imposing

N ∼= ND, D ∈ NGd
(GX). (2.14)

In this case no further changes are needed.

Let us now comment on the point of view in which a fixed choice of XMN
0 P and θM

0 a

is made, and symplectic deformations affect the frame where these tensors are introduced.

For instance, XMN
0 P and θM

0 a could involve electric vectors only, and we would be clas-

sifying all electric frames compatible with such gauge couplings. The quotients that we

need to perform are necessarily the same (the two approaches are equivalent), but their

interpretation changes. The quotient by Gd now corresponds to redefinitions of the scalar

fields only (non-linearly realized on the fermion fields, too), rather than duality transfor-

mations. Again, this is analogous to maximal supergravity [24]. The elements of S(X0, θ0)

now have a non-trivial interpretation: they correspond to electric-magnetic redefinitions

of the vector fields such that any effect on the gauge interaction terms can be removed by

a redefinition of the matter fields, as described above. Therefore, these electric-magnetic

redefinitions do not affect the equations of motion and can be safely quotiented out as we

have done. However, some of these redefinitions are non-local, and in an electric frame we

might want to only allow for local field redefinitions instead. If this is the case, (2.13) must

be substituted with its subgroup of GL(nv,R) redefinitions of the electric vectors:

G(X0, θ0) ≡
{
S ∈ SGL(nv,R)(X

0) | Sθ0 = θ0m, m ∈ NGm(Hm)

CGm(Hm)

}
. (2.15)

To give a simple example, quotienting by G(X0, θ0) rather than by S(X0, θ0) makes us

regard as inequivalent theories that differ by shifts in theta-terms.
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2.4 Parity

If the ungauged theory we start with admits a parity symmetry, it must have an action on

the scalar manifold and hence act as an automorphism of G. Parity acts on Gd as an anti-

symplectic transformation PM
N inducing a Z2 automorphism [24, 34, 35]. In the matter

sector, parity might induce an automorphism of Hm, too. Denoting pa
b this automorphism,

if it exists, we make use of the fact that the locality constraints allow us to map two matrices

θM
a, θM

′ a to each other both via a symplectic and an anti-symplectic transformation. In

particular, we can define P̂M
N such that

θ0 b
M p a

b = P̂ N
M θ0 a

N . (2.16)

Combining these observations, parity induces an extra identification on NSp(2nv,R)(GX)

only when the following conditions are satisfied:

1. the ungauged theory has a parity symmetry and there is a representative PM
N that

normalizes GX ,

2. the action of parity on Gm can be taken to induce a transformation pa
b ∈ Aut(Hm)

(i.e. to normalize Hm),

3. the induced P̂ transformation can be chosen to stabilize XMN
0 P .

In this case, we have the extra identification

N ∼= P̂NP , N ∈ NSp(2nv,R)(GX) . (2.17)

As a byproduct, a given gauging defined by XMN
0 P , θM

0 a admits a parity symmetry only

if PP̂ ∈ S(X0, θ0). When no matter symmetries are gauged, these requirements reduce

to PM
N normalizing GX , because in that case its action on XMN

0 P must be equivalent to

that of an element Q−1 of NSp(2nv,R)(GX), which classifies exhaustively all gaugings of GX .

Then, one can just define P̂ ≡ PQ, as in the maximal case [24].

We have arrived at the definition of the so-called ‘reduced S-space’: first we define

S0
red ≡ S

(
X0, θ0

)
\ NSp(2nv,R)(GX) / NGd

(GX), (2.18)

then, depending on whether the conditions above are satisfied, we have

Sred ≡

{
S0

red/ZP
2 ∃ parity identification,

S0
red otherwise.

(2.19)

Finally, when we regard the symplectic deformations as choices of symplectic frames of

the ungauged theory, where it is allowed to introduce a fixed choice of embedding tensor

(X0, θ0), we may want to regard as inequivalent also all those symplectic frames related by

elements S(X0, θ0) which, however, induce non-local redefinitions of the vector potentials,

In doing so we define a ‘full’ S-space where the left quotient in the above formulas must

then be substituted with (2.15), and parity identifications are required to not mix the

electric vector fields with their duals.
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3 Twin supergravities and the fate of the ω-deformation

Let us now apply our framework to some interesting cases. Maximal supergravity can

be truncated to N = 6 supergravity, breaking the SU(8) local symmetry to SU(6) ×
SU(2)× U(1) and keeping only the SU(2)-singlets [36]. In the process the scalar manifold

is reduced to SO∗(12)/U(6). Interestingly, another consistent truncation of the maximal

theory is achieved if the preserved bosonic field content is the same as for N = 6, but now

it is the SU(6) fermionic singlets that are kept in the spectrum. The resulting model is

N = 2 supergravity coupled to fifteen vector multiples, parameterizing SO∗(12)/U(6) as

special Kähler target space [36, 37].

The N = 6 SO(6) gauged model that arises from truncation of SO(8) gauged maximal

supergravity can be regarded as a consistent truncation of type IIA supergravity on CP3.

Correspondingly, when truncating 11d supergravity on S7 to type IIA by reducing on the

S1 Hopf fiber of S1 ↪→ S7 → CP3, two supersymmetries end up hidden in non-perturbative

states of the IIA theory. This is an example of ‘superymmetry without supersymmetry’ [38].

The N = 2, D = 4 supergravity twin of the N = 6 SO(6) model captures exactly the two

hidden supersymmetries. As pointed out in [36], all gaugings of N = 6 supergravity are

obtained as truncations of the maximal theory.

It is clearly extremely interesting to study how the ω-deformation of SO(8) gauged

N = 8 supergravity is realized on these consistent truncations. In [18] an initial analysis

of the N = 6 model was carried out. Here we complete this study, and perform the same

computation for the twin N = 2 model, where we find some surprises. In particular, we

will prove that the SO(6) gauged N = 6 supergravity does not admit any classically non-

trivial deformations (in our language, S is trivial) and the ω parameter inherited from

the maximal theory is one of three parameters that can be eliminated by a change of

symplectic frame, at most affecting only boundary terms and quantum corrections, thus

completing the analysis of [18]. For the twin N = 2 theory instead, we will show that the ω

parameter remains non-trivial also at the classical level, and actually a second deformation

is available.

3.1 Deformations of N = 6 SO(6) gauged supergravity

TheN = 6 supergravity contains sixteen vector fields and thirty (real) scalars, transforming

in the 15+1 and 15+15 of the SO(6) that we gauge, respectively. The duality symmetries

of the ungauged theory are SO∗(12) ⊂ Sp(32,R) where the vectors transform in a chiral

spinorial representation.

The symplectic frame we use can be obtained starting from maximal supergravity in

the SU(8) covariant form, where one has complex linear combinations Aµ
[IJ ] of the vector

fields and their duals, I, J, . . . being SU(8) fundamental indices. Similarly the scalar fields

are denoted φIJKL and give rise to the coset representative L(φ) ∼ exp
(

φIJKL
φIJKL

)
.

The N = 6 fields are obtained keeping only A
[ab]
µ , a, b = 1, . . . , 6, A

[78]
µ ≡ A0

µ, φabcd and

their complex conjugates. We can then switch to a real basis for the vectors using a Cayley
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matrix
1√
2

(
116 116

−i116 i116

)
,

making only an SO(6) subgroup of U(6) explicitly covariant. The scalar matrix L(φ) can

be also truncated to a 32 × 32 dimensional coset representative of SO∗(12)/U(6). The

resulting electric group in this symplectic frame is PSL(4,C) ⊂ SO∗(12).

All we need to know to compute the symplectic deformations is how SO(6) is embed-

ded in Sp(32,R) and the form of the embedding tensor XMN
P . To be more precise, the

fundamental of Sp(32,R) contains the adjoint of PSO(6) ∼= SO(6)/Z2 embedded as:6

tPSO(6) =


Λab

cd

0

−Λcd
ab

0

 (3.1)

where ab, cd are now antisymmetrized pairs of vector indices of SO(6) and Λab
cd ∈ adj(su(4)).

We have chosen the SO(6) invariant vector to be the last. In the standard symplectic frame

the embedding tensor takes the form (up to an overall constant)

X N
abM = cosω


−2δ[a

[eδb][cδd]
f ]

0

2δ[a
[cδb][eδf ]

d]

0

 ,

Xab N
M = sinω


−2δ[a

[eδb][cδd]
f ]

0

2δ[a
[cδb][eδf ]

d]

0

 .

(3.2)

We have included for reference the ω parameter as it would appear from the truncation of

the N = 8 supergravity embedding tensor, but for our purposes we only need some initial

choice of embedding tensor, hence from now on we fix X0 ≡ X|ω=0.

We now compute the double quotient

S(X0) \ NSp(2nv,R)(PSO(6)) / NSO∗(12)(PSO(6))). (3.3)

The centralizer of PSO(6) in Sp(2nv,R) is easily computed using Schur’s lemma. It turns

out to be CSp(32,R)(PSO(6)) = SL(2,R)× SL(2,R)0 where SL(2,R)0 is the group of duality

redefinitions of the ungauged vector, while the first factor acts in the same way on all the

fifteen gauged vectors, thus commuting with PSO(6), and leaves the singlet vector invariant.

The normalizer is obtained noting that Out(PSO(6)) = Z2, and such an automorphism is

6Notice that fermions transform under the double cover SO(6), rather than under its universal covering

SU(4). Their representations are indeed tensor products of the vector irrep. This is analogous to the

situation in maximal supergravity where fermions transform under SO(8) ⊂
max.

SU(8) and becomes relevant

in the computation of outer automorphisms.
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indeed inherited from NSp(56,R)(PSO(8)) in the maximal theory. Therefore we have (we

always leave the gauge group itself as understood when writing normalizers)

NSp(32,R)(PSO(6)) ∼= Z2 × SL(2,R)× SL(2,R)0. (3.4)

The Z2 outer automorphism of an SO(2n) group can always be realized in the vector

representation as the matrix diag(−1,+1, . . . ,+1). In our case it is embedded in Sp(32,R)

as a diagonal matrix with ±1 eigenvalues, where the negative signs are associated with the

vectors A1a
µ , a = 2 . . . 6 and their duals. If we combine it with a sign flip of the ungauged

vector (which is an SL(2,R)0 transformation), we actually obtain an element of U(6). We

will refer to the combined transformation as Z ∈ NU(6)(SO(6)).7

At this point a quick computation also shows that NSO∗(12)(PSO(6)) = U(1)×Z2, the

U(1) factor being of course the center of U(6) and Z2 being the Z transformation we have

just defined. The U(1) transformation is generated in sp(32,R) by

tU(1) ∝

(
+115

−3
−115

+3

)
. (3.5)

We also find S(X0) = Z2 × R × SL(2,R)0, where the R ⊂ SL(2,R) factor corresponds to

shifts in the theta-angle θSO(6) of the gauged vectors. Recall that we are not allowing for

rescalings of the gauge coupling constant. We must also quotient by a parity identification,

which however does not affect the final result in this case. Putting everything together, we

arrive at

(Sred)N=6
SO(6)

∼= R \ SL(2,R) / U(1) ∼= R+ , (3.6)

where the only remaining transformation is nothing but the rescaling of the gauge coupling

constant. We see in particular that there is no non-trivial ω-deformation in SO(6) N = 6

gauged supergravity. In fact, the ω parameter in (3.2) can be set to vanish via the U(6)

transformation (3.5).

The computation we have just made is equivalent to the classification of duality orbits

of embedding tensors gauging SO(6), under the duality symmetry group SO∗(12). Following

the reasoning in [24], we can instead ask what set of symplectic frames of ungauged N = 6

supergravity admit the introduction of XMN
0 P as gauge couplings. The difference is that

now we regard SO∗(12) as local redefinitions of the scalar fields, and we substitute the left

quotient in (3.3) with its subgroup G(X0), corresponding to GL(16,R) local field redefini-

tions of the physical vector potentials. The GL(16,R) group is embedded block-diagonally

in Sp(32,R). Moreover, in this case the action of parity must be taken into account: we can

borrow the anti-symplectic transformation used in maximal supergravity [24], truncated to

the N = 6 fields:

PM
N = P̂M

N =

(
116

−116

)
. (3.7)

7Z can be mapped to the SU(8) transformation associated with the outer automorphism of SO(8),

introduced in [25] and exploited in [6, 12, 24].

– 12 –



J
H
E
P
0
3
(
2
0
1
6
)
1
3
8

It stabilizes XMN
0 P and induces the identification N ∼= P̂NP for N ∈ NSp(32,R)(PSO(6)).

We arrive at the space

SN=6
SO(6) =

[(
R+\PSL(2,R)0 × SL(2,R)

)
/U(1)

]
/ZP

2 (3.8)

where R+ corresponds to rescalings of the ungauged vector and the U(1) is generated

by (3.5). This space is parameterized by the gauge coupling constant, shifts in the theta-

angles for the SO(6) and the ungauged vectors, and a duality rotation linearly independent

from (3.5). The latter can be taken to be the ω-deformation acting uniformly on all sixteen

vector fields, or equivalently an electric-magnetic rotation of the ungauged vector only. The

space (3.8) can be parameterized by the double-coset representative

SN=6(λ, ω, θSO(6), θ0) =


λ115 0

θSO(6)

2π 115 0

0 cos 4ω − θ0
2π sin 4ω 0 sin 4ω + θ0

2π cos 4ω

015 0 1
λ115 0

0 − sin 4ω 0 cos 4ω

 . (3.9)

Here λ > 0 induces a rescaling of the gauge coupling constant, θSO(6) is a shift in the

theta-term for the gauged vectors, θ0 acts similarly for the singlet vector, and ω is the ω-

deformation inherithed from the maximal theory. It acts only on the singlet vector because

we exploited the quotient by the action of (3.5). The periodicity of ω is still the same as

in N = 8, namely ω ∼= ω + k π4 , while parity induces the further identification

(λ, ω, θSO(6), θ0) ∼= (λ,−ω,−θSO(6),−θ0). (3.10)

Notice that, even setting θSO(6) = θ0 = 0, parity as a local symmetry is broken unless

ω = 0 mod π
8 . For any other value of ω the action of parity must be combined with a U(6)

transformation and a symplectic dualization of the ungauged vector in order to preserve

the Lagrangian. For ω = π/8 the intrinsic parity of A0
µ is reversed.

Compared to maximal supergravity, if we define our gauged models in the electric frame

and only quotient by local field redefinitions, N = 6 SO(6) gauged supergravity actually

admits one more deformation parameter associated with the difference in the theta-terms

of the gauged and singlet vector potentials.8 Notice that these shifts and ω are entirely

on the same footing, as they do not affect the equations of motion of N = 6 supergravity,

and can be removed by a change of symplectic frame that leaves XMN
0 P invariant. This

also means that an uplift to IIA supergravity in CP3 is always possible, after the obvious

dualizations similar to the one described in [18] for ω.

3.2 Deformations of N = 2 SO(6)× SO(2) gauged supergravity

The crucial difference when studying the N = 2 gauged supergravity twin of the N = 6

model is that, truncating from the N = 8 SO(8) theory, a FI term gauging SO(2) ⊂ SU(2)R
is also induced [36]. This means that the SO(6) singlet vector A0

µ is minimally coupled

8The difference in theta-terms can be accommodated in maximal supergravity by also adding extra

Chern-Simons-like terms, following the general embedding tensor formalism.
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to the fermions of the N = 2 theory, and the embedding tensor contains an extra vector

ξM = gFIδ
0
M parameterizing this coupling.9 From this observation it is natural to anticipate

that the ω parameter induced from N = 8 will now be entirely non-trivial. We also find an

extra non-trivial deformation associated with the ratio of the SO(6) and FI gauge couplings

which breaks compatibility with maximal (and N = 6) gauged supergravity.

The computation of the space of deformations is analogous to the N = 6 case. The

only difference with respect to (3.3) is in the left quotient, where now also ξM must be

stabilized up to a sign flip that can be reabsorbed in an SU(2)R transformation according

to (2.13). Hence the new left quotient will be

S
(
X0 P
MN , ξ

)
= RθSO(6)

× Rθ0 × Z2
2 (3.11)

where one Z2 factor is associated with the center of SL(2,R)0 and the other one is the

outer automorphism of PSO(6). The two real lines are shifts in the theta parameters. We

immediately arrive at the new deformation space

(Sred)N=2
SO(6)×SO(2) =

[
(RθSO(6)

× Rθ0) \ (PSL(2,R)0 × SL(2,R)) / U(1)
]
/ZP

2 . (3.12)

The full S space also keeps the theta-angle shifts. The space (3.12) is parameterized by

the symplectic transformation

SN=2(λ, λ0, ω) = Gλ0SN=6(λ, ω, 0, 0), (3.13)

where Gλ0 = diag(115, λ0, 115,
1
λ0

), λ0 > 0 rescales the FI coupling constant. The period-

icity of ω and the parity identifications are unchanged, hence in particular for the classically

relevant deformations we have the fundamental domain

gSO(6) > 0, gFI > 0, ω ∈ [0,
π

8
]. (3.14)

where we traded the rescalings for the gauge coupling constants themselves. In contrast

to N = 6, beyond an overall rescaling of all gauge couplings we have two non-trivial

parameters, one being the ω-deformation inherited from the truncation of maximal SO(8)

gauged supergravity, and the other genuinely new, associated with the rescaling of the

ratio gFI/gSO(6).

4 Half-maximal gauged supergravities10

Historically, a first important example of inequivalent gaugings of extended supergravities

sharing the same gauge group are certainly the de Roo –Wagemans angles in half-maximal

supergravity [39], where they are crucial for the existence of vacuum solutions of the scalar

potential. It is therefore natural to make contact with these duality phases in our setting,

9We do not need to specify the explicit embedding of SO(2) in SU(2)R for our computation. Also notice

that at the linearized level for vanishing scalar fields A0
µ is the graviphoton.

10I thank Adolfo Guarino for many inspiring and informative discussions on the gaugings of half-maximal

supergravity.
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and complement them with an analysis of other possible deformation parameters that may

arise in some models.

Let us first briefly summarize the continuous and discrete symmetries of ungauged

half-maximal supergravity. Pure N = 4 supergravity has an SL(2,R) duality symmetry,

reflected in the SL(2,R)/SO(2) non-linear sigma model described by the complex scalar

(axio-dilaton) in the gravity multiplet. Moreover, there is an SU(4) symmetry under which

the fermions transform in the fundamental and anti-fundamental representations and the

vectors in the 6. When we couple the gravity sector to nv vector multiplets, the scalar

fields in the latter combined with the axio-dilaton parameterize the coset space

SL(2,R)

SO(2)
× SO+(6, nv)

SO(6)× SO(nv)
. (4.1)

Notice that we took only the identity component of SO(6, nv), since only continuous isome-

tries are necessary to construct the scalar manifold. For our purposes however it is crucial

to take into account also any discrete symmetries. We notice that all fields in the vector

multiplets including fermions carry a vector index under SO(nv), and it is clear by inspec-

tion of the Lagrangian (see e.g. [30]) that all couplings are actually invariant under the full

(non-linearly realized) O(nv) group, hence extending SO+(6, nv) to O+(6, nv). Extending

the SO(6) factor to an internal O(6) is instead not possible, because fermions transform in

chiral spinorial representations. This means however that the action of space-time parity

induces the appropriate O(6)/SO(6) automorphism of SU(4) on both fermions and bosons.

Thus a full realization of an O(6, nv) symmetry is obtained combined with space-time par-

ity, which also acts non-trivially on SL(2,R) by inducing a sign flip of the axion in the

gravity multiplet. We will come back to these transformations in the next section and

provide an explicit embedding in the symplectic group.

4.1 From N = 8 to N = 4: frames and parity

Since we will mostly focus on gauge groups related to truncations of gauged maximal

supergravity, it is convenient to put some facts about the half-maximal theory coupled to

six vector multiplets in the perspective of a truncation from N = 8.

The truncation is obtained from a Z2 projection on the spectrum and embedding tensor

of the maximal theory [40, 41]. We can take the Z2 to be embedded in SU(8) as the matrix

U = diag(14,−14) in the fundamental representation, thus breaking SU(8) to the local

SU(4)R × SU(4)×U(1) of the half-maximal theory. By construction all surviving bosonic

and fermionic fields only transform under SU(4)/Z2 ' SO(6) as expected, while SU(4)R is

faithfully represented on the fermions. The former SO(6) is actually extended to an O(6)

symmetry as discussed in the previous section. If we consider the maximal theory in the

standard SL(8,R) symplectic frame, the truncation to N = 4 yields a Lagrangian which is

only invariant under an SO(3)4 subgroup of O+(6, 6). Full O+(6, 6) invariance is obtained

after dualization of six vectors: three in the gravity multiplet and three in the matter

multiplets (at the linearized level), associated respectively to one SO(3) factor in SU(4)R
and one in O(6). For concreteness, let us write down the kinetic terms for the vector fields
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in the resulting symplectic frame:

Lv = −1

4

(
Im τMΛΣF

Λ
µν FµνΣ +

1

2
Re τ ηΛΣεµνρσF

Λ
µν F Σ

ρσ

)
, (4.2)

where τ is the axio-dilaton field of the gravity sector, ηΛΣ is the O(6, 6) invariant metric and

MΛΣ is the O(6, 6) generalized metric constructed from the scalars in the vector multiplets.

As already emphasized the duality symmetries of the theory are

SL(2,R)×O+(6, 6) , (4.3)

where only PSL(2,R) = SL(2,R)/Z2 is realized on bosons. These transformations are

embedded in Sp(24,R) as matrices

SL(2,R) :

(
a112 −bη
−cη d112

)
, ad− bc = 1 ,

O+(6, 6) :

(
K

K−T

)
, K ∈ O+(6, 6) .

(4.4)

It is evident that the centers of the two factors in (4.3) are represented in the same way

on the bosons, which is consistent with the Z2 quotient of the SL(2,R) factor.11

It will be necessary to also consider the action of parity on the vectors and scalar

fields of the theory. Starting from the maximal theory and before any dualization, all

electric vectors have the same parity assignment. This is reflected in the action of parity

on the bosons of the maximal theory as the outer automorphism of E7(7), realized as the

anti-symplectic transformation [24, 34]

P = σ3 ⊗ 128. (4.5)

Crucially, this transformation acts on E7(7)/SU(8) coset representatives as [24]

P N
M V(φ) IJ

N = [V∗(Pφ′)]M IJ , (4.6)

where M, N are fundamental E7(7) indices, I, J are SU(8) ones, and Pφ is the action

of space-time parity on the spin-0 fields. The complex conjugation is consistent with

the exchange of chiralities of the fermions. When we truncate to N = 4 and dualize

six vectors, parity induces again an outer automorphism of (4.3), realized as the anti-

symplectic transformation

P = diag(+13, −13, +13, −13 | − 13, +13, −13, +13) , (4.7)

where we emphasized the separation in electric and magnetic components. Applied to (4.4),

P induces a sign flip of b, c consistent with τ → −τ∗. At the same time it affects the O+(6, 6)

factor, acting as an O(6, 6) discrete transformation that reverses the orientation of both

11Our conventions can be mapped into those of Schon-Weidner [30] by raising the SO(6, nv) index of the

dual field strength: GµνΛ → ηΛΣGµνΣ.
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eigenspaces of ηΛΣ (i.e. the six ‘timelike’ and six ‘spacelike’ directions). Since the scalar

fields of the vector multiplets form the (6,6) of O(6) ×O(6), we obtain that half of them

are pseudo-scalars as should be expected from the truncation from N = 8. This further

induces a transformation similar to (4.6) for the O+(6, 6) coset representative:

P Σ
Λ V(φ) i

Σ = [V∗(Pφ)]Λ i , P Σ
Λ V(φ) A

Σ = [V(Pφ)] A
Λ , (4.8)

where we wrote the representatives in a mixed form with Λ, Σ fundamental O+(6, 6) indices,

i a fundamental index of SU(4) and A is a vector index of O(6). Again, these transformation

properties are consistent with the action of parity on fermion fields.

4.2 Pure N = 4 SO(4) gauged supergravities

As a warmup for the more complicated case of the next section, let us consider the SO(4)

gaugings of pure half-maximal supergravity [42, 43]. In this case only the six vectors in the

gravity multiplet are present, and they sit in the adjoint of the gauge group SO(4) ⊂ SU(4),

so that its embedding in the symplectic group is really as SO(3)+ × SO(3)−:

Sp(12,R) 3


k+

k−
k+

k−

 , k± ∈ SO(3)± . (4.9)

We will consider as a reference gauging the one where the gauge connection matrix is

electric and the gauge couplings of the two simple factors are both equal to 1:

ϑ0 x
Λ =

(
13

13

)
, ϑ0Λx = 0, (4.10)

where x runs in the adjoint of SO(4) and Λ enumerates the vectors and their duals. The ref-

erence embedding tensor is XM
0 = ϑM

0 xtx, tx ∈ SO(3)+×SO(3)−. The relevant normalizers

and stabilizers are easily identified:

NSp(12,R)(PSO(4)) = SL(2,R)2 o Z2 ,

NSO(6)×PSL(2,R)τ (PSO(4)) = Z4 × PSL(2,R)τ ' Z2 × SL(2,R)τ ,

S(X0) = R2
θ o Z2 .

(4.11)

The SL(2,R) factors in the first row correspond to separate dualizations of the vectors

gauging each SO(3) group, while conjugation of the gauge group by Z2 exchanges the

two factors. Shifts in SO(3)2-invariant theta-angles for the electric vectors stabilize the

embedding tensor and correspond to the R2 term in the third line. Finally, the Z4 term

acts like the Z2 above and also flips the sign of the gauge connection of one SO(3) factor.

Acting with it twice just flips the signs of all six vectors, which can be conveniently regarded

as an SL(2,R)τ transformation at the bosonic level. We arrive at the reduced space of

deformations

Sred =
(
R2 \ SL(2,R)2 / SL(2,R)τ

)
/ (Z2 × ZP

2 ) , (4.12)
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where the Z2 exchange quotient acts from both the left and the right.12 It is immediate to

see that by gauge fixing SL(2,R)τ we can take as coset representative (in the fundamental

representation)

L(g, α) ≡ L+ ⊕ L−(g, α), L+ = 12, L−(g, α) =

(
1
g

g

) (
cosα sinα

− sinα cosα

)
. (4.13)

The parameter α corresponds to an electric-magnetic phase for SO(3)−, while the natural

interpretation of g is discussed below depending on the value of α. It is exhaustive to take

g 6= 0 and α ∈ (−π
2 ,

π
2 ]. The expression above still admits a continuous residual symmetry

corresponding to a shift in the axion (reflected as an SL(2,R)τ transformation) combined

with an R transformation in the left quotient, that shifts the constant theta term for the

SO(3)+ gauge group so that L+ = 1 remains invariant:

L(g, α)→ L(g̃, α̃) = (T−θ L+Tθ)⊕ (Tθ̃L−(g, α)Tθ) , Tθ ≡

(
1 θ

2π

1

)
(4.14)

The further shift Tθ̃ is necessary to preserve the gauge-fixing of L+ and is associated with

a constant theta-term for SO(3)−. When α 6= 0 we can use this transformation to fix

α = π/2, so that α becomes a discrete parameter.

Let us discuss the interpretation of α assuming momentarily that g > 0. Its two

values correspond to the two well-known gaugings [42, 44] of SO(4) in pure half-maximal

supergravity: for α = 0 the gauging is electric in the SU(4) covariant symplectic frame

of [45] and corresponds to the Freedman-Schwarz gaugings [42], arising as an S3 × S3

truncation of IIA supergravity. For α = π/2 the gauging is electric in the original SO(4)

covariant frame of [43, 46] and comes from a truncation of eleven-dimensional supergravity

on a seven-sphere [47]. The interpretation of g is slightly different in the two cases. When

α = 0, g represents the ratio of the gauge couplings of the two SO(3) factors, while an overall

rescaling of the two can be absorbed in a redefinition of the dilaton field, associated with

the diagonal element of SL(2,R)τ . For α = π/2 the situation is reversed: the redefinition

of the dilaton field can be used to set the two gauge couplings equal to each other, so

that g can be mapped into the overall gauge coupling of the entire SO(4) gauge group.

These findings reproduce the discussion of [47], where the α = 0 case was also related to

a singular limit of the α = π/2 one, corresponding to deforming S7 into S3 × S3 × S1. In

our language, this limit is associated with (4.14) where α 6= 0 is sent to zero by an infinite

shift of the axion.

Let us now complete our analysis taking into account the sign of g and the two Z2

identifications in (4.12). The internal Z2 is the combination of the ones in the second and

third rows of (4.11). It exchanges L+ and L− and flips the sign of the latter. Once we go

back to the gauge-fixing L+ = 1, the resulting transformation is

L−(g, α)→ −L−(g, α)−1 , (4.15)

12Actually, Z2 and ZP
2 do not commute the way they are realized. Their commutator is the center of

SL(2,R)τ so it is trivialized anyway.
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which induces g → −1/g for α = 0, while it leaves L−(g, π/2) invariant. Finally, the

parity identification reverses the signs of α and g, which means that it also acts trivially

for α = π/2.13 Putting everything together, we arrive at the following families of gaugings:

α = 0 g ∈ (0, 1] g ∼ ratio of gauge couplings,

α = π/2 g ∈ (0,+∞) g ∼ overall gauge coupling,

α = π/2 g ∈ (−∞, 0) |g| ∼ overall gauge coupling.

(4.16)

The first two cases were discussed above. The third case differs from the second in the

relative signs of the gauge couplings of the two simple factors [48]. It can arise from a

truncation of SO(4, 4) gauged maximal supergravity, and can be lifted to eleven-dimensional

supergravity on a seven dimensional hyperboloid [49, 50].

Finally, if we define these gaugings in their electric frames and do not want to allow

for extra boundary terms to be added to the action we cannot quotient out R2
θ. In this

case α is continuous.

4.3 The N = 4 SO(4)× SO(3)2 supergravities

Let us now consider the maximal compact gaugings of N = 4 supergravity coupled to six

vector multiplets, embedded in the global internal symmetry group SL(2,R) × O+(6, 6).

The gauge group is SO(4)× SO(3)2, where the first factor is embedded in SU(4)R, so that

fermions transform in the vector representation of SO(4) ⊂ SU(4)R. The SO(3)2 factors

are embedded in the O(6) symmetry of the vector multiplets, so that fields in the gravity

multiplet are invariant.

We take again as reference gauging the case where all simple factors are gauged elec-

trically in the frame of (4.2) and all gauge couplings are equal to 1. The appropriate

normalizers and stabilizers are

NSp(24,R)(SO(3)4) = SL(2,R)4 o S4 ,

NO+(6,6)×PSL(2)τ (SO(3)4) = Z4 × D4 × PSL(2,R)τ ,

S(X0) = R4
θ o S4 .

(4.17)

Analogously to the previous case, conjugation by S4 acts as permutations of the four simple

factors, Z4 acts like in the previous section for SO(4) ⊂ SU(4)R and the dihedral group

D4 acts similarly for SO(3)2 ⊂ O(6) but also includes the sign flip of one gauge connection

without any exchange. Fixing the S4 quotient, we can then write the reduced S-space as

Sred =
(
R4 \ SL(2,R)4 / PSL(2,R)τ

)
/ (Z4 × D4) o ZP

2 . (4.18)

The discrete identifications act from both the left and the right side: Z4×D4 is embedded

in SO(6) × O(6) as natural, and its right action is combined with left S4 compensating

transformations. Parity acts as described in section 2.4.

We can perform a first round of gauge fixing by defining the coset representatives as

L(g, α, hi, βi) ≡ L+ ⊕ L−(g, α)⊕ L1(h1, β1)⊕ L2(h2, β2), (4.19)

13one can see that P = σ3 ⊗ σ3 ⊗ 13 and P̂ = σ3 ⊗ 16, where from now on we will use ⊗ to denote

Kronecker products.
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where L+ = 12 and Li(hi, βi) are defined as L−(g, α) in (4.13). Notice that we have also

used the −112 element of Z4 × D4 to fix the sign of L+. Exploiting D4 we can already

reduce the range of the parameters to

g 6= 0, hi > 0, α, βi ∈
(
−π

2
,
π

2

]
, β1 > β2 or β1 = β2 & h1 ≥ h2 . (4.20)

The same combination of an axion and theta-angle shift we discussed for pure supergravity

can be used to set to π/2 one non-vanishing angle. Hence, we have three separate cases:

Case 0: α = βi = 0,

Case I: α = 0, β1 = π
2 , β2 ∈

(
−π

2 ,
π
2

]
,

Case II: α = π
2 , βi ∈

(
−π

2 ,
π
2

]
.

(4.21)

We now must consider the action of the Z4 discrete quotient acting on L±. Enforcing

the gauge-fixing of L+ and the restriction on the ranges of the angles βi, its action is

reduced to just a Z2. We obtain the following transformation rules:

Case 0: g → −1

g
, hi →

hi
|g|

,

Case I: g → −1

g
, h1 → |g|h1,

h2 → |g|h2 (g4 cos2 β2 + sin2 β2)−1/2 , β2 → arctan

(
1

g2
tanβ2

)
,

Case II: g → g, hi → |g|hi (g4 cos2 βi + sin2 βi)
−1/2, βi → − arctan(g2 cotβi) .

(4.22)

We regard the transformation rules of the angles to be normalized, e.g. β2 = π/2 → π/2

for Case I and βi = 0 → π/2 for Case II. Of course D4 allows us to exchange i = 1 and

i = 2 if necessary to guarantee that (4.20) is satisfied.

The only remaining identification is parity. For convenience, we will combine its action

with the reflection element of D4, so that all (electric) vectors in the vector multiplets have

positive eigenvalue under PM
N . Therefore, embedding our coset representative in Sp(24,R)

we must quotient by

L(g, α, hi, βi) ' P̂ L(g, α, hi, βi)P , (4.23)

where P = σ3⊗diag(+13, −13, +13, +13) and P̂ = σ3⊗112 . We arrive at the identifications

Case 0: g → −g ,

Case I: g → −g , β2 → −β2 ,

Case II: βi → −βi .

(4.24)

We can now provide the full classification of inequivalent SO(4) × SO(3)2 gaugings

of half-maximal supergravity coupled to six vector multiplets. One simple factor in the

gravity sector is always gauged by vectors that are electric in the SU(4) frame, and with

gauge coupling equal to one. To each other factor is associated a gauge coupling and a
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duality phase described above, whose values are further restricted by (4.21). The complete

fundamental domain is:

Case 0: g ∈ (0, 1] , h1 ≥ h2 > 0 ,

Case I: g ∈ (0, 1] , hi > 0 and β2 ∈ (−π
2
,
π

2
) , or h1 ≥ h2 > 0 and β2 =

π

2
,

Case II: g 6= 0, a ≡ arctan |g| and

− a ≤ β2 < β1 ≤
π

2
, and hi > 0 , or − a ≤ β2 = β1 ≤ 0 and h1 ≥ h2 > 0 .

(4.25)

This space of deformations is clearly more complicated than any of the examples dis-

cussed so far. It can help to identify some familiar deformations among the (up to) five we

have discovered. The most natural question is what values of the parameters correspond

to the truncation of maximal SO(8) gauged supergravity, and whether its ω deformation

survives. Following the truncation and dualization procedure we discussed in section 4.1,

we conclude that ω survives and the truncations of the SO(8)ω gaugings are implemented as

g = hi = 1, β1 =
π

2
− 2ω, β2 = −2ω, ω ∈

[
0,
π

8

]
, (4.26)

which fits into Case II. Moreover, if we flip the sign of g we obtain truncations of the

ω-deformed SO(4, 4) maximal supergravities [22, 24].

4.4 SO(4,C) gaugings

As another example we can consider the gauging of

SO+(3, 1)2 ⊂ SO+(3, 3)2 ⊂ SO+(6, 6) . (4.27)

also considered in [51, 52]. Taking into account that fermions transform in the double

cover, the gauge group is really SO(4,C), but we will still refer to it as SO+(3, 1)2 to be

able to distinguish the two factors. This gauge group also arises as a truncation of the

SO(4, 4)ω maximal gauged supergravities. First, the usual normalizers and stabilizers are

NSp(24,R)

(
SO+(3, 1)2

)
= SL(2,C)2 oD4 ,

NO+(6,6)×PSL(2)τ

(
SO+(3, 1)2

)
= Z2 × D4 × PSL(2,R)τ ' D4 × SL(2,R)τ ,

S(X0) = R4
θ oD4 .

(4.28)

This time, conjugation of the gauge group by D4 forms the outer automorphism group

of SO+(3, 1)2, generated by exchange of the two factors and the outer automorphism on

one. For definiteness, if we embed the first (second) SO+(3, 3) in O+(6, 6) as acting on the

first (last) three positive and negative eigenvectors of ηΛΣ, then D4 can be conveniently

expressed as generated by the matrices

(iσ2 ⊕ σ1)⊗ 13 , (12 ⊕ σ3)⊗ 13 , (4.29)

further embedded in the symplectic group. Fixing the left D4 we can write the quotient as

Sred =
(
C2 \ SL(2,C)2 / SL(2,R)τ

)
/
(
D4 o ZP

2

)
, (4.30)
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where the remaining dihedral group acts from both the left and the right side of the

SL(2,C)2 deformation matrices.14

Let us discuss the parameterization of the deformations for a single SO+(3, 1) factor of

the gauge group. The deformation SL(2,C) associated with it generally has six parameters,

of which two correspond to shifts in theta-angles that we are ignoring. It helps to regard

the other four as deformations of the gauge connection rather than of the symplectic frame,

in order to get a more intuitive interpretation of their effect. Our initial consistent choice

of gauge connection is that in which the SO(3) subgroup is gauged by three of the vectors

Ai−µ associated with negative eigenvalues of ηMN and the boosts are gauged by vectors

Ai+µ with positive eigenvalue, with i = 1, 2, 3. This means that in a pure supergravity

truncation, where only Ai−µ survive, the SO(3) group would be gauged. We also set the

initial coupling constant to unit value. Introducing also dual vector fields Aµi±, the action

of a generic SL(2,C) deformation yields the consistent gauge connections

SO(3) : g cosα
(
cosϕAi−µ + sinϕAi+µ

)
+ g sinα (cosψAµi− + sinψAµi+)

boosts : g cosα
(
− sinϕAi−µ + cosϕAi+µ

)
+ g sinα (sinψAµi− − cosψAµi+) .

(4.31)

We can of course interpret g and α as the gauge coupling constant and a de Roo-Wagemans

angle for the whole SO(3, 1). When α = 0, ϕ plays the role of the deformation phase intro-

duced in [52] in terms of sums and differences of gauge couplings for the SO(3) and boost

generators of SO(3, 1). Notice however that when α 6= 0, ϕ and ψ are two independent

parameters, and together the three angles parameterize an S3, corresponding to the com-

pact subgroup of SL(2,C).15 In terms of a 2×2 complex matrix representing SL(2,C), the

deformations above can be taken to define the transformation (for cos α 6= 0)16

L1 =

(
eiϕ

g cosα 0

−eiψg sinα e−iϕg cosα

)
∈ SL(2,C) . (4.32)

For this single SO+(3, 1) factor in the gauge group we can carry out at least the fixing

of the continuous elements of the quotients in (4.30). This means that we want to compute

a representative of the double quotient

C \ SL(2,C) / SL(2,R) . (4.33)

The left quotient corresponds to matrices of the form ( 1 z
0 1 ) with z ∈ C, which we have

used in (4.32) to set one entry to vanish. Exploiting the quotients we arrive at three

separate one-parameter branches for the representative L1 of (4.33). In terms of (4.32),

14The left action is the transpose of the right action.
15An alternative parameterization is in terms of a single ‘Roest-Rosseel’ angle and two de Roo-Wagemans

phases: one for SO(3) and another for the boost generators, despite the fact that they do not decompose

into two commuting simple algebras.
16Recall that if S ∈ Sred, it is S−1 that acts on XMN

P . When cosα = 0, a different fixing of the extra

theta-term shifts is necessary, where the upper-right block is non-vanishing.
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they correspond to:

1) ϕ ∈ [0, π) , g = 1 , α = 0 ,

2) ϕ = 0 , ψ =
π

2
, g cosα = 1 , g sinα ≡ r 6= 0 ,

3) ϕ =
π

2
, ψ = 0 , g cosα = 1 , g sinα ≡ r 6= 0 .

(4.34)

The second SL(2,C) group of deformations associated with the other SO+(3, 1) gauge

group is treated similarly, but only a left C quotient must be performed, giving a coset

representative L2 ∈ C\SL(2,C). This means that four non-trivial deformation parameters

survive and can be parameterized just analogously to (4.31), with a new gauge coupling

constant and new deformation phases. The vectors in the gauge connection are of course

the remaining six (which we can regard as Ai±µ for i = 4, 5, 6, together with their duals).

Once all continuous deformations and identifications have been taken into account,

we should consider the discrete ones. The generator of Z4 ⊂ D4 acts on L1 ⊗ L2 as

L1 ⊗ L2 → L∗2 ⊗ L1, while the reflection element can be taken to act as L2 → L∗2. Finally

parity, embedded as described below (4.23), flips the signs of the off-diagonal elements of

L1, L2 and conjugates L2.

The remaining step is to combine these discrete transformations with the fixing of

continuous identifications performed above. We refrain from doing so here, as the task is

rather complicated and the resulting transformations written in terms of the parameters

g, α, ϕ, ψ of each gauge group turn out to be quite uninformative. However, we stress that

our analysis is sufficient to conclude that the SL(2,C)2 gauging of half-maximal supergrav-

ity admits five non-trivial deformation parameters, separated in at least three branches as

described in (4.34).

4.5 Two examples outside SL(4,R)2

The gauge groups of the last two sections are embedded in a subgroup SO+(3, 3)2 ∼
SL(4,R)2 of O+(6, 6). There are many more gauge group available in this sector, as studied

e.g. in [51, 52]. There are also several different real forms of SO(4)2 that can be constructed.

If we investigate the embedding of such gauge groups in O+(6, 6) directly, we find eight

possibilities (we ignore the details about the centers for brevity):

SO(4)2, SO+(3, 1)2, SO(2, 2)2, SO(4)× SO(2, 2),

SO(4)× SO+(3, 1), SO+(3, 1)× SO(2, 2), SO∗(4)× SO(2, 2) (×2),
(4.35)

where the last entry counts twice because it admits two inequivalent embeddings in O+(6, 6).

Except for this last entry, the other groups are embedded in SO+(3, 3)2 together with many

group contractions. A full classification of these groups and their deformations goes beyond

the scope of this paper, but the two gaugings of SO∗(4)×SO(2, 2) are a curious example as

they do not sit in SO+(3, 3)2. We have checked explicitly that they satisfy the embedding

tensor constraints.
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One embedding of this gauge group really gives rise to Ggauge = SU(2) × SO+(1, 2)3,

where the compact factor is contained in the SO(6) subgroup of O+(6, 6), acting on fermions

as SU(2) ⊂ SU(4)R. The compact subgroups of SO+(1, 2)3 are embedded in O(6). The

procedure to construct the Sred space is analogous to the compact case, except that now

the outer automorphism group of Ggauge, reflected in NSp(24,R)(GX), is S3 nZ3
2 accounting

for permutations of SO+(1, 2)3 and for the outer automorphism of each factor. After some

simplifications we obtain

Sred =
PSL(2,R)3

R4 × S3
, (4.36)

where the numerators are dualizations of each SO+(1, 2) factor and one R is the combination

of axion and theta-term shift that can be used to fix a duality phase to 0 or π/2. This

space can be parameterized in terms of a gauge coupling and a duality phase for each

simple factor, following (4.19). We take L+ there to correspond to the SU(2) factor here,

so that it is gauged electrically with coupling equal to one. The parameters g, α, hi, βi
now are associated with each of the three non-compact factors. Their fundamental domain

is now given by (4.20) and (4.21) with the further condition g > 0.

The other embedding is obtained when the compact factor is contained in O(6). This

results in Ggauge = SO+(2, 2)× SO+(1, 2)× SO(3). The parameterization and fundamental

domain for its duality orbits are analogous to the previous case, with the further restrictions

Case I: β2 ∈
[
0, π2

]
,

Case II: if β1 = β2 = β, then β ∈
[
0, π2

]
.

(4.37)

5 Gaugings of the STU model

As a final application we classify all gaugings of N = 2 supergravity coupled to three vector

multiplets with prepotential

F (X) = −2i
√
X0X1X2X3 . (5.1)

This prepotential defines the so-called ‘magnetic’ STU model, related to the standard

cubic prepotential F (X) ∼ X1X2X3

X0 by a change of symplectic frame. The magnetic STU

prepotential is more natural when discussing the theory as it arises (in the bosonic sector)

from a U(1)4-invariant consistent truncation of maximal supergravity. This model is often

the starting point for the construction of black hole solutions with both Minkowski and

AdS asymptotics.

The three complex scalar fields parameterize three copies of the coset space

SL(2,R)/U(1).17 The internal global symmetries of the theory are the direct product

of the duality symmetry SL(2,R)3 o S3 and the SU(2) external automorphism of the su-

persymmetry algebra. The permutation group S3 acts as triality [53] on the three vector

multiplets and the associated SL(2,R) factors. Finally, the four vector fields and their

duals transform in the (2,2,2,1) of SL(2,R)3 × SU(2). We can denote them as Aµ
aαα̇,

17In terms of the square root prepotential, a good parameterization of the scalars is zi ≡ Fi(X)/X0,

i = 1, 2, 3. In this case each scalar parameterizes one SL(2,R)/U(1) manifold.
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where a, α, α̇ are fundamental indices for each of the factors SL(2,R)i, i = 1, 2, 3. The

electric vector fields in the symplectic frame of (5.1) are

(
A0
µ, A

1
µ, A

2
µ, A

3
µ

)
≡
(
A111
µ , −A122

µ , −A212
µ , −A221

µ

)
, (5.2)

so that only a GL(1,R)3 o S3 subgroup of the duality symmetries is realized locally.18

The allowed gauge groups of the STU model are easily identified by the requirement

that the vector fields transform in the adjoint representation and by imposing the linear

constraint on the candidate embedding tensor. They are FI-gaugings of U(1) ⊂ SU(2), the

gauging of a diagonal combination of two SL(2,R) groups (which form the electric group of

the Lagrangian in an appropriate frame) and the combination of the two previous options.

5.1 Fayet-Iliopoulos gaugings

The simplest gauging of the STU model involves one linear combination of the vectors

Aaαα̇µ gauging a U(1) ⊂ SU(2). The only charged fields under the gauge group are thus the

fermions, so that the bosonic Lagrangian is only affected by the introduction of a scalar

potential. The whole gauging is determined by a constant moment map ξaαα̇. Technically,

this is a triplet of SU(2), but since only a single U(1) can be gauged, and there is a unique

embedding in SU(2), we shall ignore the adjoint index in ξaαα̇. In our current symplectic

frame explicit SL(2,R)3 covariance is broken, and the eight entries of the FI term take

the values

ξM = (ξ111,−ξ122,−ξ212,−ξ221 | ξ222,−ξ211,−ξ121,−ξ112) , (5.3)

where M is as usual a symplectic index, mirroring the eight vectors AMµ .

Classifying all possible FI gaugings is equivalent to classifying the symplectic deforma-

tions of a reference one, since the gauge group is always fixed. The usual double quotient

then would read:

Sred =
(
ISp(6,R) \ Sp(8,R) / SL(2,R)3

)
/
(
S3 × ZP

2

)
. (5.4)

In fact, constructing this double coset is entirely equivalent to explicitly building the

SL(2,R)3o(S3×ZP
2 ) orbits of the FI term itself, especially so because coset representatives

of ISp(6,R)\Sp(8,R) are also entirely specified by a symplectic vector in the (2,2,2).

The classification of duality orbits for a general FI term ξM can be computed rather

straightforwardly. One approach is to break covariance with respect to one of the SL(2,R)

factors and write two matrices ξ1αα̇ and ξ2αα̇. The action of S3 is generated by transposition

of these matrices and exchange of the last row of ξ1αα̇ with the first of ξ2αα̇. Then one

can rely on the computation of the determinant of ξ1 to set it to a reference form and use

the non-covariant SL(2,R) to make ξ2 orthogonal to ξ1. The remaining necessary steps

are just making use of the conjugacy classes of sl(2,R) and taking into account further

18These identifications can be obtained e.g. from the transformation properties of the gauge-kinetic func-

tion, written in terms of the second derivatives of the prepotential FΛΣ(X), Λ = 0, 1, 2, 3.
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identifications given by triality and parity. We find the following inequivalent FI gaugings:

ξM = g(1, 1, 1, 1 | 0, 0, 0, 0) Anti de Sitter SO(8)ω

ξM = g(−1,−1, 1, 1 | 0, 0, 0, 0) de Sitter SO(4, 4)ω

ξM = (1, 0, 0, 0 | 0, 0, 0, 0) Minkowski Scherk-Schwarz, SO(6, 2)π/4, . . .

ξM = g(−1, 1, 1, 1 | 0, 0, 0, 0) SO(6, 2)ω, ω 6= π/4

ξM = (1, 1, 1, 0 | 0, 0, 0, 0) CSO(6, 0, 2), CSO(4, 2, 2)

ξM = (1, 1, 0, 0 | 0, 0, 0, 0) CSO(4, 0, 4)

ξM = (−1, 1, 0, 0 | 0, 0, 0, 0) CSO(2, 2, 4)

(5.5)

We have indicated what kind of vacuum (if any) can be found in the six-dimensional scalar

field space of the resulting theories, and some of the uplifts of these models to gauged

maximal supergravities. Notice that it is always possible to find a representative of each

orbit that is fully electric. We can also see that the only continuous parameter allowed is

a (positive) gauge coupling g, and even that is only available for certain orbits.

A particular choice of FI term gives rise to a gauged supergravity with a fully su-

persymmetric AdS vacuum, arising (in the bosonic sector) as a U(1)4-invariant consistent

truncation of SO(8) gauged maximal supergravity. It is interesting to ask whether the ω-

deformation of the latter remains non-trivial in the truncation. It was pointed out in [23]

that the scalar potential of the FI-gauged STU model resulting from the U(1)4 truncation

of the SO(8) maximal supergravities is independent from ω (also including the axions).

However, [54] argued that the ω-deformation is preserved in the truncation to STU, be-

cause the vector fields couple minimally to the fermions, and it is not possible to cancel ω

by a duality. Here we show that the ω deformation is in fact trivial in the STU model (up

to boundary terms), since there are no continuous duality orbits for the FI term, except

for the choice of gauge coupling constant. The disagreement with [54] is due to the fact

that, even if a certain linear combination of vector fields is minimally coupled to fermions

and thus cannot be freely dualized, three other vector fields are ungauged. Symplectic

redefinitions of the latter are therefore available and turn out to be sufficient to reabsorb

ω from all couplings.

To show this explicitly, we take the point of view in which the deformation is entirely

contained in the choice of embedding tensor, so that any ISp(6,R) redefinition of the

ungauged vectors is automatically taken into account. After truncation of maximal SO(8)

gauged supergravity to the STU field content, the prepotential is still (5.1) and the electric

and magnetic FI term takes the form

ξM ∝ (cosω, cosω, cosω, cosω | sinω, sinω, sinω, sinω) . (5.6)

This is the most general FI term that gives rise to a fully supersymmetric AdS vacuum at

the origin of scalar-field space. We can remove ω e.g. by the SL(2,R)2 rotation
cosω sinω

cosω sinω

− sinω cosω

− sinω cosω

⊗ 12 . (5.7)
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We thus conclude that:

• when defined in terms of an electric and magnetic FI term in a fixed frame, the

ω-deformation is entirely reabsorbed in an SL(2,R)3 duality transformation;

• when defined in an electric frame as done in [54], the ω deformation can be reabsorbed

in a redefinition of the scalar fields that mirrors the SL(2,R) transformation above,

combined with an ISp(6,R) symplectic redefinition of the three ungauged vectors,

compatibly with (5.4).

This result holds for both the FI gaugings arising from truncations of the SO(8)ω and

SO(4, 4)ω maximal gauged supergravities. Alternatively, for the AdS case the duality

rotation can be taken in the U(1) of the diagonal subgroup of SL(2,R)3, showing that ω is

trivial also in the ‘3 + 1’ truncation of the STU model.

Since ω is trivial, we should ask how the BPS conditions of the black hole described

in [54] turned out to be ω-dependent. To answer it is sufficient to notice that if we stay in

the symplectic frame defined by (5.4) with ω-dependent FI term (5.6), both the bosonic

Lagrangian and the solution of [54] are completely ω-independent. The supersymmetry

variations of the fermions, however, are affected by ω, which explains why the supersym-

metry of the black hole depends on the parameter. Acting with an SL(2,R)3 duality as

just discussed, we can remove ω from the FI term, but now both the vectors and the six

scalar fields of the non-supersymmetric black hole solutions will take a different form com-

pared to the supersymmetric one. They are therefore inequivalent field configurations of

the same theory.

If we consider the STU truncation of SO∗(8)ω ' SO(6, 2)ω, the ω = π/4 model belongs

to a different orbit than all other cases with ω ∈ [0, π/4). Indeed, a Minkowski vacuum is

found for ω = π/4 in the SO(6, 2) maximal theory, with a moduli space that matches the

STU model scalar sector [23, 25].19 A huge family of gaugings with Minkowski vacua was

found in [23] starting from this gauging and taking singular limits in its moduli space, with

N = 0, 2, 4, 6 residual supersymmetry. They include as particular cases the Scherk-Schwarz

and Cremmer-Scherk-Schwarz gaugings. All these theories fall in the same duality orbit

when truncated to a FI gauging of the STU model.

Finally, let us comment on the full S-space for the FI gaugings. As should be clear

from the previous discussion, this space corresponds to first choosing one of the seven

conjugacy classes described above, and then deforming the Lagrangian by a symplectic

redefinition of the three ungauged vectors (plus theta-shifts in the gauged one) that sits in

the coset space
ISp(6,R)

GL(3,R) nR3
(5.8)

where both the numerator and denominator stabilize ξM . Furthermore, any duality, triality

and parity symmetries that stabilize ξM must be quotiented out.

19More precisely, there are several ‘STU’ branches in the moduli space associated with how one breaks

the gauge group to a Cartan subgroup.
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5.2 Charge quantization

The Abelian gaugings of the STU model provide a good opportunity to comment on the in-

terplay between symplectic deformations and Dirac charge quantization conditions induced

by dyonic states. When we include in the theory states with mutually non-local electric

and magnetic charges such as black holes, the quantization condition on these charges

breaks the duality symmetries to a discrete subgroup: Gd → Gd(Z)Γ, preserving a certain

lattice Γ.20 Moreover, symplectic redefinitions of the vector fields that preserve the lattice

should similarly form a discrete group Sp(2nv,Z)Γ. The FI gaugings also assign electric

and magnetic charges to the fundamental fermions with respect to a certain vector field.

Therefore, the FI term must also belong to Γ. All allowed FI terms compatible with this

lattice will therefore be characterized by a space of the schematic form

Sred(Γ) =
(
ISp(6,Z)Γ \ Sp(8,Z)Γ / SL(2,Z)3

Γ

)
/
(
S3 × ZP

2

)
. (5.9)

The discrete terms might also be affected, depending on Γ. It is tempting to extend this ex-

pression to the general case (2.19), requiring consistent inequivalent gaugings to be related

by the intersection of Sred with Sp(2nv,Z)Γ. Notice that since we are discussing defor-

mations of the embedding tensor, the right quotient corresponds to duality identifications,

rather than field redefinitions of the scalar fields.

Of course, in this discussion the choice of Γ still has to be specified. The space of

deformations is discretized only if other physical requirements fix Γ, because otherwise we

are always allowed to deform it together with the gauging. This is consistent with the

comments in [24].

5.3 Non-Abelian gaugings

If we gauge a diagonal SL(2,R)gauge ⊂ SL(2,R)2 × SL(2,R)3, the vectors decompose into

the representations

A aαα̇
µ ∈ (2,2,2)→ (2,3 + 1) of SL(2,R)1 × SL(2,R)gauge . (5.10)

We can take any linear combination of the two 3 representations to obtain a consistent

gauge connection, and the broken SL(2,R)1 symmmetries are sufficient to make any such

choice equivalent, including the value of the gauge coupling constant. Therefore, the gauge

connection of a diagonal SL(2,R)gauge is unique.21

If we now combine the non-Abelian gauging with a FI term, the U(1) must be gauged

by an SL(2,R)gauge singlet, so that only some combination of the vectors in the (2,1) can

be used. They take the form Aµ
aεαα̇. We can use SL(2,R)1 as above to fix the non-Abelian

gauge connection entirely, and we are still left with the possibility to use its residual axionic

20For the purposes of this schematic discussion we will ignore the issue of what combinations of charges on

a certain lattice are actually realized as states of the theory. There is clearly an interplay with the gauging,

as that affects the equations of motion and hence the kinds of solitonic (black-hole) solutions present in

the theory.
21Notice however that there are two embeddings of SL(2,R)gauge in Gd: they differ by the action of the

outer automorphism of SL(2,R)3, which is not a symmetry.
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shift to force the FI term to be either entirely electric or entirely magnetic. Finally, the

automorphism exchanging SL(2,R)2 with SL(2,R)3 can be used to flip the sign of the FI

term. We are therefore left with a discrete deformation corresponding to choosing the FI

term entirely electric or entirely magnetic. Moreover, the magnitude of the FI term with

respect to the non-Abelian gauge coupling constant is a non-trivial, continuous parameter.

6 Comments and conclusion

In this paper we have developed a general framework to classify four-dimensional gauged

supergravities that share the same gauge group, but differ in the symplectic embedding

of the gauge connection. This framework is constructive in the sense that not only it

provides all the necessary ingredients to build these supergravities explicitly, but it also

determines what dualities and field redefinitions make certain models equivalent to each

other. All computations are group-theoretical in nature and it should be stressed that

finite group elements play a central role in the construction, so that an analysis merely

based on branchings of relevant Lie algebra representations is not a viable approach.

Using these tools we have investigated several examples of deformations of gauged

supergravities with different amounts of supersymmetry. We have focused our examples on

reductive gauge groups, where it is easy to identify the discrete components of the relevant

subgroups of Sp(2nv,R) that appear in (2.19). There is no obstruction to performing the

very same computations for non-reductive Ggauge, as was exemplified in [24] for maximal

supergravity.

Studying the twin N = 6 and N = 2 truncations of the SO(8) gauged maximal

supergravities, we have found that despite the ω-deformation being trivial in the N = 6

theory (as also noted in [18]), it is not in the N = 2 gauged supergravity due to the presence

of an extra Fayet-Iliopoulos coupling. Moreover, the magnitude of this coupling with

respect to the non-Abelian interactions can be changed, resulting in new N = 2 models that

cannot be uplifted to N = 8. These observations give rise to some interesting questions.

The two theories as obtained from N = 8 share the same field content and couplings in the

bosonic sector, which can therefore be lifted to the field content and equations of motion

of type IIA supergravity on CP3 for any value of ω, up to dualization of the singlet vector.

In particular, the vacua of these models are ω-independent. When fermions are included,

however, things are subtler: when ω = 0 the fermionic states captured by the N = 2 theory

are non-perturbative from the point of view of massless type IIA on CP3. They have a

perturbative interpretation in 11d supergravity, of course, being related to the two gravitini

that restore maximal supersymmetry. It becomes therefore tempting to ask whether the

N = 2 model for ω 6= 0 is including some non-perturbative fermionic states descending from

some modification of type IIA on CP3. This could be related to the generalized-geometric

construction of [21], where a generalized parallelization [55] satisfying the Leibniz algebra

associated with the ω deformed SO(8) gauging is constructed, that relies on a four-torus

fibration over CP3. Truncating to an SO(6) sub-frame relevant for the truncation of type

IIA supergravity, the dependence on the extra coordinates can be removed. It would be

very interesting to study how the N = 2 theories constructed here can be related to such
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a construction, especially since only fermion fields should be expected to see the extended

fibration. If a consistent holographic dual to the ω-deformation exists, the current findings

suggest that it should be associated to a deformation of the sector of monopole operators

of the ABJM theory responsible for its N = 8 supersymmetry enhancement at levels

k = 1, 2 [56, 57].

While the rescaling of the gFI/gSO(6) ratio in the same class of N = 2 models breaks

compatibility with an N = 8 uplift, it does not necessarily break liftability to eleven-

dimensional supergravity. Contrary to ω, this deformation could be associated with a

vev of some SO(6) singlet mode whose dynamics are truncated when reducing to four

dimensions. One natural guess would be the size of the Hopf circle of S1 ↪→ S7 → CP3,

but it is worth noticing that [38] find three scalar SO(6) singlets in the second massive

level of the spectrum of eleven dimensional supergravity compactified on the Hopf circle.22

Studying the scalar potential with both the gFI/gSO(6) and ω deformations is a natural

next step to understand the physics of these models.

In our classification of the gaugings of the STU model, we have found that no non-

trivial ω-like deformations are present for FI gaugings. The one inherited from maximal

supergravity can be removed by field redefinitions and electric-magnetic dualizations of the

three ungauged vectors of the model. This also means that asymptotically AdS black hole

solutions of the STU model can be lifted not only to the standard SO(8) theory, but also

to the deformed ones, once the appropriate charge quantization conditions are imposed.

It would be interesting to find whether other supersymmetric, asymptotically AdS black

holes can be found whose properties depend on ω. This would require to find such solutions

in other supersymmetric truncations of the maximal theory where ω is non-trivial.

Since the trivial ω parameter of the STU model is only evident in the fermion couplings,

we have also seen that it can be used to generate non-supersymmetric bosonic solutions

from supersymmetric ones. This trick of exploiting trivial deformations of an embedding

tensor associated with broken compact symmetries of the theory could be straightforwardly

applied to any other bosonic field configurations, including more general black holes in the

STU or other models.

Finally, the large set of half-maximal gauged supergravities that we have constructed

certainly deserve to be studied further. A first step is surely to look for vacua in these

theories. The uplift of certain deformations to geometric and non-geometric backgrounds

of string theory would also be extremely interesting: it seems natural to expect that certain

models would enjoy a description similar to certain gauged half-maximal supergravities in

seven dimensions [5, 21]. The possibility to lift SO(N) gauge groups (and other real forms)

geometrically on coset spaces as mentioned in [58] would also be relevant. We hope to

come back to several of these questions in the near future.

22There are no SO(6) singlet scalar fields in the SO(8) maximal supergravity spectrum: taking the

gravitini to transform in the 8v irrep, the relevant decomposition is 8v → 2× 1+ 6 and the scalar fields sit

in the 35c + 35s → 2× 15 + 10 + 10.
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