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1 Introduction

Gauge theories in 5d are non-renormalizable and thus are not expected to exist as micro-

scopic theories. For example, maximally supersymmetric Yang-Mills theory is believed to

flow to the 6d (2, 0) theory in the UV [1, 2], so the microscopic theory is actually 6d. Nev-

ertheless, there is a lot of evidence that in the N = 1 supersymmetic case, corresponding

to 8 supercharges, an interacting UV fixed point may exist making the theory UV com-

plete [3–5]. The gauge theory can then be realized as the IR limit of such a SCFT under a

mass deformation, corresponding to the inverse gauge coupling square which has dimension

of mass in 5d.

An interesting question then is how can we study these 5d SCFT’s. One way is to

embed them in string theory. A convenient embedding is given by 5-brane webs in type II

B string theory [6, 7]. This realizes the 5d SCFT as an intersection of 5-branes at a point.

The moduli and mass parameters of the SCFT are then realized as motions of the internal

and external 5-branes respectively. In particular, the 5d SCFT may posses a deformation

leading to a low-energy gauge theory.

Thus, 5-brane webs can be used to study various properties of these theories. First

of all they give support for the existence of fixed points for various gauge theories. Not
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every 5d gauge theory flows to a 5d SCFT, and the demand that such a SCFT exists is

expected to constrain the matter content of the theory. If a gauge theory can be realized as

the IR theory in a brane web then this strongly suggests that it flows to a UV fixed point

described by the collapsed web. Therefore, brane webs can be used to study the conditions

for the existence of fixed points.

Another useful application of brane webs is to study 5d dualities. A single SCFT

may have more than one gauge theory deformation, in which case these different IR gauge

theories are said to be dual. This is somewhat similar to Seiberg duality in 4d, except that

in this case there are several different IR gauge theories all going to the same UV SCFT.

This is nicely realized in brane webs, where a SCFT can be deformed in different ways

leading to different IR gauge theories [6]. This usually involves an SL(2,Z) transformation

in the brane web. Thus, brane webs provide a useful way to motivate these kind of dualities.

For several examples of this see [8–12].

Brane webs can also be used to study symmetry enhancement in 5d gauge theories [13,

14]. They can be used to calculate the 5d superconformal index of a SCFT using the

methods of topological strings [15]. Even when calculating the 5d superconformal index

for a gauge theory using localization [16], brane webs are very useful for evaluating the

instanton contribution [9, 17, 18]. They can also realize 5d versions of A type class S

theories [19], and thus can be used to study them, and there are many other applications.

The purpose of this article is to study brane webs in the presence of an orientifold 5-

plane. First, this allows constructing SO(N) and USp(2N) gauge theories with fundamental

matter, as first done in [20]. This can then be used to study these gauge theories. These

systems can also be realized using an orientifold 7-planes, as done in [12], and our results

agree with their finds.

More interestingly we can use this to realize more elaborate theories. First, we can

realize a linear quiver of alternating SO and USp groups connected by half-bifundamentals.

This then provides evidence that these theories exist as fixed points, and allows us to study

some of their properties. Second, a subset of these theories are closely related to quivers

of SU group in the shape of the Dynkin diagram of type D (henceforward referred to as

D shaped quiver), so these methods can be used to study these theories as well. We also

argue that these can even be used to engineer SO(N) gauge theories with spinor matter

for N ≤ 12.

The structure of this article is as follows. Section 2 introduces the general construction

in the more simplified case realizing a single gauge group. In section 3 we consider the

general case giving a linear quiver with alternating SO and USp groups. We also consider

the S-dual system leading to a D shaped quiver of SU gauge groups. Section 4 deals with

describing SO gauge groups with spinor matter. We end with some conclusions. The

appendix provides a short review of index calculations and instanton counting.

2 The general construction

The starting point is the ordinary brane webs used to describe N= 1 supersymmetric SU

groups and their quivers [6, 7]. The supersymmetry permits adding an O5-plane parallel
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Figure 1. (a) The classical picture of a half NS5-brane crossing an O5-plane, represented as a

black dashed line. (b) The quantum picture, where bending occurs so that the D5-brane charge is

conserved.

to the D5-branes. This should lead to orthogonal or sympletic groups and their quivers

(such a system was previously considered in [20]). Specifically, the construction involves an

O5-plane with several parallel D5-brane crossed by NS5-branes. The orientifold enforces

an orbifolding on the transverse coordinates which must be respected by the web.

Next, we wish to recall several properties of O5-planes that will play an important role

in what follows. There are 4 different variants of O5-planes denoted as O5+, O5−, Õ5
−

and Õ5
+

[21]. Putting N D5-branes on top of an O5+, Õ5
+

results in a USp(2N) gauge

theory on them while putting them on top of an O5− results in an SO(2N) gauge group.

The Õ5
−

is an O5− plane with a stuck D5-brane and so putting N D5-branes on top of it

results in an SO(2N + 1) group. The O5-planes carry D5-brane charge: the O5+ and Õ5
+

carry charge +1, the O5− carries charge −1 and the Õ5
−

carries charge −1
2 . When a stuck

NS5-brane crosses the O5-plane, in a way preserving N= 1 supersymmetry, it partitions

the O5-plane into two parts of differing types: O5+(Õ5
+

) changes to O5−(Õ5
−

). Likewise

a stuck D7-brane also has a similar effect, now changing an O5+(O5−) into an Õ5
+

(Õ5
−

)

and vice versa.

The change in the type of O5-plane when crossing an NS5-brane has important impli-

cations once quantum effects are taken into account. For example, let’s consider a system

consisting of an O5+ with a stuck NS5-brane that changes it to an O5−. Because of the

type change, there is a jump in the D5-brane charge across the NS5-brane which should

cause the NS5-brane to bend. Then taking into account charge conservation, sypersym-

metry and invariance under the orbifolding, one concludes that the correct configuration

should be a (2,−1)-brane crossing the O5-plane and becoming an (2, 1)-brane. This is

exhibited in figure 1.

Next we explore the implications for the simplest cases of N D5-branes stretched

between two NS5-branes in the presence of one of the O5-plane types.

2.1 O5+ and USp groups

The classical picture consists of an O5+-plane with N D5-branes suspended between two

stuck NS5-branes resulting in a USp(2N) gauge theory. Taking into account the bending

caused by the D5-branes and the O5-plane results in the web shown in figure 2. It is

now straightforward to generalize to cases with fundamental flavor by adding (1, 0) 7-
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Figure 2. Brane webs for pure USp(2N) gauge theory using an O5+-plane. (a) Shows the N = 1

case while (b) shows the general case.

Figure 3. Examples of webs for a USp gauge theory with fundamental flavor. (a) Shows the case

of USp(4) + 4F while (b) shows the general case of USp(2N) + (NFL
+NFR

)F .

branes on top of the D5-branes. These can then be pulled through the external 5-branes,

accompanied by Hanany-Witten transitions resulting in webs with semi-infinte external

D5-branes. Examples of these are shown in figure 3. Note that the gauge symmetry on

Nf external D5-branes is SO(2Nf ), since these sit on top of an O5−, which is the correct

global symmetry of USp(2N) +NfF .

These webs can now be used to study a variety of issues in 5d gauge theories, no-

tably, the existence of fixed point, identifying decoupled states in index calculations and

motivating dualities. Such a thing was done for a different realization of this theory using

O7-planes in [12]. One can see that the webs in the reduced space in these systems are

similar to the ones, in the reduced space, with the O5+-plane. Thus, most of the results

found using the construction with the O7-plane are also true in this case, and we will not

repeat them.

We do wish to discuss the manifestation of the Higgs branch in this web, as this is

different from the O7-plane construction. In brane webs, the Higgs branch consists of all

the possible motions of the 5-branes along the 7-branes. Uniquely for 5d, at the fixed point

there can be additional Higgs branch directions besides the ones visible in the perturbative

gauge theory [22]. Figure 4 (a) illustrates an example of this for the case of the E1 theory:

the fixed point has a one dimensional Higgs branch corresponding to separating the (1, 1)

5-brane from the (1,−1) 5-brane. This theory can also be constructed using an O5+-plane,

as shown in figure 4 (c). This also exhibits the 1-dimensional Higgs branch, now given by

pulling the (3, 1) and (3,−1) 5-branes out of the O5-plane.

The addition of fundamental flavor is done by adding (1, 0) 7-branes, which we pull out,

resulting in Nf semi-infinte D5-branes all in the same direction, as shown in figure 5 (a). To

enter the Higgs branch we go to the origin of the Coulomb branch and set the masses of the

– 4 –



J
H
E
P
0
3
(
2
0
1
6
)
1
0
9Figure 4. (a) The brane web for SU0(2), also known as the E1 theory, at a generic coupling and

at a generic point on the Coulomb branch (on the left), and at the origin of the Coulomb branch

and taking the bare coupling to infinity (on the right), describing the fixed point. We have also

explicitly drawn the 7-branes, shown as black circles. These span the 8 directions coming out of

the picture. (b) The brane web for SUπ(2), also known as the Ẽ1 theory. The web on the left is for

a generic coupling and at a generic point on the Coulomb branch, and the the web on the right is

at the origin of the Coulomb branch and taking the bare coupling to infinity. One note that there

is no Higgs branch in this case. (c) The web of figure 2 (a) at the origin of the Coulomb branch

and infinite coupling constant.

flavors to zero by coalescing all the D5-branes on the O5-plane. Furthermore, we separate

the D7-branes along the O5−-plane. When the O5−-plane is crossed by a D7-brane it

changes into an Õ5
−

which is an O5−-plane with a stuck D5-brane. We thus conclude that

upon each crossing one 5-brane must end on a D7-brane resulting in the picture shown in

figure 5 (b).

The Higgs branch now consists of breaking the 5-branes on the 7-branes as shown in

figure 5 (c). The possible breakings are limited by the S-rule, which necessitates that at

most one 5-brane can be stretched between any given NS5-brane and D7-brane. When
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Figure 5. (a) The web for USp(2) + 2F . (b) The web at the origin of the Coulomb branch and for

massless flavor, after the D7-branes were separated along the O5-plane. (c) The web at a generic

point on the Higgs branch. For ease of presentation we have used a different view of the web where

the vertical straight lines are the D5-branes, the horizontal wide lines are the D7-branes, and the

black dot is the (1,-1) 5-brane.

Nf > 2N this becomes more stringent as one can no longer connect a D7-brane to the

other NS5-brane. Counting the possible breakings, with these restrictions, we indeed find

the correct dimensions of the Higgs branch expected from the gauge theory. Additional

examples of this are shown in figure 6.

Finally we take the fixed point limit by collapsing the gauge D5-branes. In this limit

additional directions become available. First there is the 1 dimension given by detaching

the 5-branes from the O5-plane, similarly to the one in the E1 theory. This exists for any

number of flavors. When Nf > 2N there are further additional directions. It appears that

when the NS5-branes touch, a D7-brane can always be connected to the other NS5-brane.

This eases the constraints imposed by the S-rule and allows additional directions. As we

shall soon show this is necessary in order to recover the correct Higgs branch dimensions

of known theories, like the rank 1 E6 theory. When Nf = 2N + 4 the two external NS5-

branes become parallel and there is an additional direction given by breaking one of them

on a (0, 1) 7-brane. Finally, when Nf = 2N + 5 there are intersecting external legs, where

resolving the interaction leads to one of these external legs becoming a D5-brane due to

passing thorough the monodromy of the other (see [12] for the details). At the fixed point,

one can then also break this D5-brane on the 7-branes leading to additional directions.

We can count the dimension of the Higgs branch for these theories and compare it with

the one found using a different realization of these theories, for example using ordinary

webs, finding complete agreement. As an example, consider SU(2) with five flavors, the

rank 1 E6 theory. As shown in figure 6 (a) the perturbative Higgs branch is 7 dimensional,

which is indeed the gauge theory result. An important limitation here is that there are

only two gauge D5-branes so only two D7-branes can be connected to the other NS5-brane.

This makes the constraint imposed by the S-rule more stringent. We have argued that

this constraint should be relaxed at the fixed point, where the two NS5-branes coalesce.

Indeed, without this constraint we would get a 10 dimensional Higgs branch, as can be

seen by comparing with the perturbative component of the Higgs branch for a different

theory with the same number of flavors but with 2N > Nf like the USp(6) + 5F theory in

figure 6 (b). Thus, the non-perturbative Higgs branch has 10 + 1 = 11 (remember there
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Figure 6. (a) The web at a generic point in the Higgs branch for USp(2) + 5F . The numbers

next to the O5-plane represent the number of D5-branes stuck on it. The Higgs branch is given by

detaching a D5-branes and its image from the O5-plane. One can see that the Higgs branch is 7

dimensional (quaternionic) in accordance with the gauge theory result. (b) The web at a generic

point in the Higgs branch for USp(6) + 5F . The Higgs branch for this theory is 10 dimensional,

again in accordance with the gauge theory result. Note that this differs from the case of (a) only

by the number of color branes which is large enough so that every D7-brane can be connected to

the other NS5-brane.
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Figure 7. The web for a pure SO gauge theory, in this case SO(6), using an O5− plane.

Figure 8. Examples of webs for an SO gauge theory with fundamental flavor. (a) Shows the case

of SO(8) + 2F while (b) shows the general case of SO(2N) + (NFL
+NFR

)F .

is an additional direction given by taking the web off the O5-plane) which is indeed the

Higgs branch dimension of the rank 1 E6 theory. Similarly, one also get from the web the

correct dimensions of both the perturbative and non-perturbative Higgs branches for the

E7 and E8 theories.

2.2 O5− and SO groups

Changing the O5+ to an O5− leads to an SO(2N) gauge theory, an example of which is

shown in figure 7. The major difference in the web is that the bending caused by the

O5-plane is in the opposite direction. This results in different bounds for fixed points, so

for example one cannot draw a web for pure SO(2), while one existed for the O5+ case,

pure USp(2). This is in accordance with the expected UV incompleteness of 5d U(1) gauge

theories. The generalization by the addition of fundamental (in the vector representation)

flavors is straightforward, examples shown in figure 8. Now, the flavor D5-branes sit on

top of an O5+-plane resulting in a USp(2Nf ) global symmetry again in accordance with

the gauge theory expectation.

An alternative realization of SO(2N) +NfF using an O7-plane also exists, and again

the reduced space webs of these two constructions are similar. Thus, all the results seen

from that construction are also valid in this one and we will not repeat them here. We

do wish to describe the manifestation of the Higgs branch in this case. In the pure case,

exactly as in the O5+ case, one finds a 1-dimensional Higgs branch that opens at the fixed

point. This agrees with the results seen also from the O7-plane constructions as well as

other constructions when these are available (such as pure SO(6) = SU(4)).

– 8 –
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Figure 9. (a) The web for SO(6) + 1F . (b) The web at the origin of the Coulomb branch and

massless flavor, after separating the 7-branes. Since a D5-brane cannot be stuck on an Õ5
+

we are

forced to stretch an extra D5-brane between the two 7-branes. (c) The web at a generic point on

the Higgs branch.

Figure 10. Separating a D7-brane and its image across an O5−-plane, and then moving them past

the (2, 1) 5-brane. This leads to the configuration identical to separating a D7-brane and its image,

each with a D5-brane ending on it, across an O5+-plane.

Next we discuss the generalization when flavors are present, starting with the case of

one flavor. We can again go to the origin of the Coulomb branch and the limit of zero mass.

The major difference from the USp case is encountered when separating a 7-brane from it’s

mirror image, since now there is an Õ5
+

between them. One cannot have a stuck D5-brane

on an Õ5
+

, so we conclude that when separating the 7-branes the two D5-branes must end

on the same 7-brane.1 The resulting construction is shown in figure 9. The implication of

this is that now there is a 1-dimensional Higgs branch where the gauge theory is broken to

SO(2N − 1), in accordance with the gauge theory expectation.

The generalization to more than one flavor is now straightforward. There are now 2Nf

7-branes stuck on the O5-plane which come in alternating pairs with one with no 5-branes

ending on it and the other with two 5-branes ending on it. Breaking the 5-branes on the

7-branes, while taking due care of the S-rule, correctly reproduces the breaking pattern

and the dimension of the Higgs branch as expected from the gauge theory.

Finally, we take the fixed point limit and consider non-perturbative Higgs branch

directions. Like in the USp case, there is always the direction given by separating the

1One can also arrive to the same conclusion by moving the D5-branes past the NS5-brane, and separate

them on the O5− as done in the previous section. The separated 7-branes can now be moved back past the

NS5-brane, along the O5-plane, resulting in the same outcome (see figure 10).
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Figure 11. (a) The web for SO(6) + 1F where we have also drawn the monodromy line of the

7-branes, depicted as a thin dot-dash line. (b) The web for SO(5) which one gets by going on the

Higgs branch of SO(6) + 1F . (c) Pulling the 7-brane to the other side through two HW transitions

results in the web of SO(5) using an Õ5
−

-plane. Note that there is an half monodromy stuck on

the Õ5
−

-plane which fixes the D5 brane charge conservation. When drawing an Õ5
−

plane we also

draw the stuck D5-branes, slightly above the Õ5
−

plane, and the half monodromy line, slightly

below the Õ5
−

-plane.

external branes. However, in this case there does not appear to be a web with Nf > 2N−3

so the directions associated with this case do not arise. When Nf = 2N − 4 the external

legs become parallel while for Nf = 2N − 3 the external legs becomes intersecting, and

there are extra directions similar to the cases of Nf = 2N + 4, 2N + 5 in the USp case.

2.3 Õ5

Finally we want to consider the case of an Õ5 plane. At first one encounters a problem

with the fractional NS5-brane on it. This leads to a change between an Õ5
+

and an Õ5
−

,

resulting in a jump in the D5-brane charge. However this jump is now fractional, and it

does not appear to be possible to reconcile the bending required by charge conservation

with the reflection symmetry implied by the orientifold. One approach to realizing these

theories, in the case of an Õ5
−

, is to use the construction for SO(2N+2)+1F and go on the

Higgs branch leading to SO(2N+1). An example of this is shown in figure 11. We can now

transform to a description with an Õ5
−

by moving the stuck D7-brane though the external

5-branes to the other end of the O5-plane, while taking due care of the monodromy of the

7-brane. Now, the resolution of the above issue is clear: there is also a half monodromy on

the O5-plane which corrects the bending so as to be consistent with the orbifolding.

One can now use this construction to realize SO(2N + 1) +NfF gauge theories. Once

again the reduced space web matches the one using an O7-plane and the results found

from this description also apply to this case. The Higgs branch is realized exactly as in the

SO(2N) case.

Finally, we can inquire about the web with an Õ5
+

. A natural guess is that this

describes the USp theory with θ = π.2 Indeed, we expect such theories to exist yet there

are no discrete choices in the web save for this. Furthermore, such a thing occurs for

example in the construction of the maximally supersymmetric 5d USp(2N) gauge theory

using O4-planes [23, 24]. However, the web for USp(2N) using an Õ5
+

, an example of which

is shown in figure 12, appears to be identical to USp(2N)+1F and does not describe a new

theory. Thus, it appears that there is no difference between using an O5+ and an Õ5
+

.

2We think O5+ describes the θ = 0 case based on the Higgs branch. As mentioned in figure 4, the E1

fixed point has a 1-dimensional Higgs branch while Ẽ1 does not.
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Figure 12. (a) The web for USp(2) using an Õ5
+

-plane. Like with the Õ5
−

-plane, we also draw

the half monodromy line slightly below the Õ5
+

-plane. (b) The same web where we have added

the half 7-branes on which the half D5-branes end. (c) The same web after taking the 7-branes

past the NS5-brane, merging them to a full 7-brane and pulling it out of the O5 plane. One can

see that this describes USp(2) + 1F .

Figure 13. The web for SO(6)×USp(2)×SO(6) where a half-bifundamental is understood to exist

whenever an × is used between an SO and USp groups.

As a result, there does not appear to be a way to describe USpπ(2N) with an O5-plane.

One can set out to get such a web by starting with the E2 web and giving a mass to a

flavor. Then depending on the mass sign one gets either the E1 or Ẽ1 theories. This indeed

works for ordinary webs and ones with an O7-plane, but not for this case. The problem is

that in this case the flavor can only be integrated in one direction. It is interesting whether

there is a fundamental reason why θ = π cannot be accommodated in this construction, or

alternatively if it is possible to incorporate it in the web in a more intricate way.

3 SO × USp quivers

So far we considered a system with just two external NS5-branes. The web can be gener-

alized to an arbitrary number of such branes which leads to a long quiver with alternating

SO and USp groups connected by half-hypers in the bifundamental representation. Two

examples of this are shown in figures 13 and 14. The quiver can contain both SO(2N) and

SO(2N + 1) gauge groups which can be achieved by adding a stuck D7-brane. This can

also lead to an half-hyper in the fundamental for USp(2N) which appears in the web as a

stuck D7-brane or a stuck external D5-brane. Note that due to a global gauge anomaly,

the 5d version of [25], a USp(2N) gauge theory must have an even number of fundamental

half-hypers [5]. This is indeed respected by the web.

These webs have several interesting implications. First, they point to the existence of

fixed point theories for these quiver theories. This can also be generalized by adding flavors

and the web can be used to argue the limit beyond which a fixed point does not exist. The

web can also be used to study the Higgs branch, both the perturbative component and the

non-perturbative component, as in the previous examples. It can also be used to identify

decoupled states in index calculations using the SO × USp formalism, as done for other

systems in [9, 12, 17, 18].
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Figure 14. The web for 3HF + USp(2) × SO(7) × USp(2) + 1HF where HF stands for a half-

fundamental. Note that the total number of half-fundamentals is even for each USp(2) so there is

no gauge anomaly.

Yet another application is to study symmetry enhancement in such theories. In brane

webs this is manifested by some of the external legs becoming parallel. For example,

consider a linear quiver consisting of nG groups of ranks Ni, for i = 1, 2 . . . , nG, with Fi
fundamental hypers under the i’th group. By inspecting the D5-charges of the NS5-charge

carrying external branes, one can see that these are neither parallel nor intersecting as long

as 2Ni ± 4 > Fi + Ni−1+Ni+1

2 where the + sign is for USp groups and the − sign is for SO

groups, and we take N0 = NnG+1 = 0.

If however 2Ni ± 4 = Fi + Ni−1+Ni+1

2 for some series of adjacent groups then a group

of NS5-charge carrying external branes become parallel, signaling an enhancement of the

topological symmetries associated with these groups. In particular, if all the groups obey

2Ni ± 4 = Fi + Ni−1+Ni+1

2 then all these external branes become parallel, suggesting an

enhancement of U(1)nG → SU(nG + 1) (see figure 15 (a) for an example).

If 2Ni±4 < Fi+
Ni−1+Ni+1

2 occures for one of the groups then the NS5-charge carrying

external branes associated with that group intersect (see figure 15 (b) for an example). The

intersecting branes can be continued past one another accompanied with a Hanany-Witten

transition. If this process terminates after a finite number of such transitions then this 5d

gauge theory go to a 5d fixed point described by the collapsed web (see figure 15 (c) for

an example). One can now use this brane web to try and read the global symmetry of the

fixed point theory.

For example, consider the previously considered class of theories, where every group

obeys 2Ni±4 = Fi+
Ni−1+Ni+1

2 . Say we now add one more flavor to one of the edge groups,

say for i = 1. As seen in figure 15 (b), this leads to a configuration with the leftmost NS5-

charge carrying external brane intersecting the nG other NS5-charge carrying branes. This

can be resolved by continuing them past one another, accompanied with a Hanany-Witten

transition, leading to a configuration with no intersection (see figure 15 (c) for an example)

so we conclude that this class of theories go to a 5d fixed point. Inspecting the web one

sees that this configuration as F1 + nG D5-branes on the left side and FnG D5-branes on

the right side. Thus, we conclude that in this case there should be an enhancement of

U(1)nG ×SO(2F1)→ SO(2F1 + 2nG) or U(1)nG ×USp(2F1)→ USp(2F1 + 2nG) depending

on whether the i = 1 group is of type USp or SO respectively.

In the rest of this section we concentrate on one further application which is motivating

5d dualities. These are manifested by a different gauge theory description, of the same web,

generically in a different SL(2,Z) frame. We can first start by generalizing the dualities

of [12] also to the quiver case. As a simple example consider the web shown in figure 16

– 12 –
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Figure 15. (a) The web for 4F +USp(4)×SO(8)×USp(4)+4F where each group obeys 2Ni±4 =

Fi + Ni−1+Ni+1

2 . One can see that the web as 4 parallel NS5-branes suggesting an enhancement of

UT (1)3 → SU(4). (b) The web for 5F + USp(4)×SO(8)×USp(4) + 4F . One can see that the (1, 1)

5-brane intersects the 3 NS5-branes. Resolving the intersection via a Hanany-Witten transition

leads to the web in (c). One can see that due to passing through the monodromy of the (1, 1)

5-brane, the NS5-branes become D5-branes. This suggests that this fixed point as an enhanced

SO(16) global symmetry.

(a) which describes a 3F + SO(10)×USp(4) + 3F gauge theory. The web can be deformed

through several flop transitions to the one shown in figure 16 (b). The web shows an

SU(3) + 2F gauge theory, existing on the (1, 1)-branes, gauging a global SU(3) symmetry

in the remaining web shown in figure 16 (c), which describes a 3F + SO(8)×USp(2) + 2F

gauge theory. The web suggests that this theory has an enhanced SU(3) instantonic global

symmetry. This leads to the duality shown in figure 17. Since the gauged global symmetry

is instantonic, this does not lead to a gauge theory duality. For this we would need to

find a dual description of the theory in figure 16 (c), in which the SU(3) global symmetry

is perturbativly realized. We can consider generalizations of this duality, but in all we

encounter the same problem, where we do not find a complete gauge theory description of

the dual side.
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Figure 16. (a) The web describing an 3F +SO(10)×USp(4)+3F gauge theory. (b) The same web

after several flop transitions. One can see that it is identical to an SU(3)+2F gauging the enhanced

SU(3) instantonic symmetry of the web in (c). (c) The web describing an 3F +SO(8)×USp(2)+2F

gauge theory.
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Figure 17. The duality implied by the manipulations of figure 16 where we use a dotted line for

a half-hyper in the bifundamental representation. The gauged SU(3) group on the right side is

instantonic and so is not perturbatively visible.

3.1 S-duality and O50-plane

In order to make further progress one must do an SL(2,Z) transformation on the entire

system, including the O5-plane. This requires understanding the behavior of the O5-plane

under these transformations, in particular S-duality. There is one case where this is actually

known which is an O5−-plane with a full D5-brane. In that case the total D5-brane charge

of the system is zero, and its strong coupling behavior is of the perturbative orbifold R4/Z2,

the Z2 being a reflection in the four directions combined with (−1)FL [21, 26]. Thus, in

this case we might be able to say something explicit about the S-dual theory.

The simplest thing to start with is an O5−-plane with N parallel D5-branes crossed

by 2k NS5-branes, where an even number is necessary so that asymptotically we still have

an O5−-plane so that we can apply S-duality. Doing S-duality on this configuration results

in the web shown in figure 18 (b). This clearly shows a long SU(2k) linear quiver where

at its end there are the branes connecting the NS5-brane with the orbifold fixed plane.

The gauge theory existing on such a system is known to be an SU(n1) × SU(n2) gauge

theory with n1 + n2 = 2k. The numbers n1, n2 arise as there are two different types of

5-branes ending on the orbifold fixed plane differing by their charge under the twisted field

living at the fixed plane. In the present case, one can see an SU(k)× SU(k) gauge theory.

The matter content supplied by the crossed NS5-brane is a bifundamental hyper between

each SU(k) and the adjacent SU(2k) so we conclude the duality shown in figure 19. The

Chern-Simons levels are all 0 as the web is invariant under reflection which is the brane

web analogue of charge conjugation in the gauge theory.

One can now inquire whether we can find additional evidence for this duality. First, we

can do several simple checks such as comparing the dimension of the Coulomb branch and

the number of mass parameters. A short counting shows that they are equal. Matching

the global symmetries is harder as not all are classically apparent. The theory with the

O5− plane classically has an U(1)2k−1 × SO(2N)2 which, as suggested by the web, is

enhanced to SO(2N)2 × SU(2k). However, on the dual side, the classical global symmetry

is U(1)2N × SU(2k), which the duality suggests should enhance to SO(2N)2 × SU(2k).

Indeed this is supported by the instanton analysis of [27, 28].

Both theories also have discrete global symmetries. The D-shaped quiver theory has

a Z2 × Z2 symmetry given by charge conjugation and exchanging the two SU(k) groups.

The SO×USp quiver theory as a Z2 reflection symmetry, which the web suggests matches

charge conjugation in the dual theory. The duality suggests that there should be another
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Figure 18. The brane configuration consisting of an O5− plane, 2k NS5-branes and N D5-branes.

(b) The S-dual of (a).

Figure 19. The duality implied from figure 18. The upper gauge theory is the one described by 18

(a) while the lower one is the one described by 18 (b) (all the groups are SU with CS level 0).

Z2 that matches the exchange of the two SU(k) groups. There is indeed an extra Z2

on the SO × USp quiver theory, exchanging the two spinor representations of all the SO

groups. We expect this to match the exchange of the two SU(k) groups. Note that this

operation on the Dynkin diagram of type D indeed corresponds to exchanging the two

spinor representations. This matches similar results in the linear A type quiver [9].

Another check that can be done on this duality is comparing their superconformal

indices (see the appendix for a review of the 5d superconformal index). As a starting

point we can take the simplest example illustrated in figure 20. On one side we have the

gauge theory SU(2)×SU(4)×SU(2) with 4 flavors for the SU(4). The Chern-Simons levels

of both SU(2) groups should be 0 which corresponds to θ = 0. The web suggests this
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Figure 20. The duality in the case of N = 3, k = 2. (a) The web describing 3F +USp(2)×SO(6)×
USp(2)+3F . (b) The S-dual web describing the gauge theory SU(2)×SU(4)×SU(2) with 4 flavors

for the SU(4). (c) The resulting duality.

Figure 21. The duality one gets after integrating out two flavors from the duality of figure 20.

theory as an SU(4)3 global symmetry where one is visible perturbativly and the others are

brought by instantonic enhancement. Indeed by an index calculation we verified that such

an enhancement is present.

In the dual theory we also expect an SU(4)3 global symmetry where now an SO(6)2 =

SU(4)2 is perturbativly visible while instantons should provide the conserved currents for

the third SU(4). The web suggests that this requires the contributions of (2,0,0) + (0,1,0)

+ (0,0,2) + (2,1,0)+ (0,1,2) + (2,1,2) instantons.

Unfortunately, calculating all of these contributions is technically demanding so it is

worthwhile to look at a simpler example. Particularly, we can consider integrating out

flavors so as to reduce the degree of enhancement. This is done by taking an external

D5-branes to infinity. Note that for the two edge flavors this is identical to pulling an

NS5-brane to infinity, and thus to also integrating out a flavor in the dual theory. Thus,

we arrive at the duality shown in figure 21 which is the one we shall check using the

superconformal index.

The theory on the right of figure 21 is SU(2)×SU(4)×SU(2) gauge theory with 2 flavors

for the SU(4). The classical global symmetry is SU(2) × U(1)6. The fugacity allocation is

shown in figure 22. We work to order x5 which requires the contributions of the (1,0,0)
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Figure 22. The fugacity spanning for the SU(2) × SU(4)× SU(2) theory.

Figure 23. The fugacity spanning for the USp(2) × SO(6)×USp(2) theory.

+ (0,1,0) + (0,0,1) + (1,1,0) + (0,1,1) + (1,0,1) + (2,0,0) + (0,0,2) + (1,1,1) instantons.

We find:

IndexD−quiver = 1+x2
(

7+d2+
1

d2
+

(
q+

1

q

)(
z2+

1

z2

)
+

(
t+

1

t

)(
c2+

1

c2

))
+ x3

(
y+

1

y

)(
8+d2+

1

d2
+

(
q+

1

q

)(
z2+

1

z2

)
+

(
t+

1

t

)(
c2+

1

c2

))
+O(x4) (3.1)

where we have only displayed terms up to order x3 even though the calculation was done

up to order x5.

From the x2 terms in the index we see that the (1,0,0) + (0,0,1) instantons provide the

conserved currents to enhance U(1)4 → SU(2)4 so that the quantum symmetry appears to

be SU(2)5 × U(1)2. The remainder of the index indeed forms characters of the enhanced

symmetry as will become apparent when we next compare it with the index of the SO×USp

quiver. In that theory the classical global symmetry is SU(2)4×U(1)3. We use the fugacity

spanning shown in figure 23. To the order we are working with we get contributions from

the (1,0,0) + (0,1,0) + (0,0,1) + (1,0,1) + (0,2,0) + (1,1,1) instantons. We find:

IndexSO/USp = 1 + x2
(

7 + f2 +
1

f2
+ g2 +

1

g2
+ h2 +

1

h2
+ p2 +

1

p2
+A+

1

A

)
+ x3

(
y +

1

y

)(
8 + f2 +

1

f2
+ g2 +

1

g2
+ h2 +

1

h2
+ p2 +

1

p2
+A+

1

A

)
+O(x4) (3.2)

where again we displayed terms only up to x3.

From the x2 terms we see that the (0,1,0) instantons bring about an enhancement of

U(1)→ SU(2) so that the quantum symmetry is SU(2)5×U(1)2 in accordance with the dual
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theory. Further comparing the two we find that taking:
√
A = d, Q

T = b2, QT
√
A = a

√
tq,

f = z
√
q, g =

√
q
z , h =

√
t
c , p = c

√
t render the two equal. From the matching we see that

the enhanced SU(2) global symmetry of the SO × USp quiver matches the perturbative

SU(2) global symmetry of the D shaped quiver theory and vice versa, as expected from

the web.

The index also makes manifest the Z2 ×Z2 global symmetry. It acts on the theory by

permutating the 4 SU(2) global symmetry groups, perturbativly realized in the SO ×USp

quiver, similar to its action on the 4 vertices of a rectangle whose symmetry group is also

Z2×Z2. The matching of fugacities is consistent with charge conjugation of the D-shaped

quiver mapped to reflecting the SO×USp quiver, while exchanging the two SU(2) groups

is mapped to charge conjugation of the SO×USp quiver (which exchanges the two spinor

representations of SO(6)).

The index can be written in characters of the SU(2)5 ×U(1)2 global symmetry where

it reads:

Index = 1 + x2(2 + χ[3,1,1,1,1] + χ[1,3,1,1,1] + χ[1,1,3,1,1] + χ[1,1,1,3,1] (3.3)

+ χ[1,1,1,1,3]) + x3χy[2](3 + χ[3,1,1,1,1] + χ[1,3,1,1,1]

+ χ[1,1,3,1,1] + χ[1,1,1,3,1] + χ[1,1,1,1,3])

+ x4
(
χy[3](3 + χ[3,1,1,1,1] + χ[1,3,1,1,1] + χ[1,1,3,1,1] + χ[1,1,1,3,1]

+ χ[1,1,1,1,3]) + χ[5,1,1,1,1] + χ[1,5,1,1,1] + χ[1,1,5,1,1] + χ[1,1,1,5,1]

+ χ[1,1,1,1,5] + 3χ[3,1,1,1,1] + 2χ[1,3,1,1,1] + 2χ[1,1,3,1,1] + 2χ[1,1,1,3,1]

+ 2χ[1,1,1,1,3] + 8 + χ[3,3,1,1,1] + χ[3,1,3,1,1] + χ[3,1,1,3,1] + χ[3,1,1,1,3]

+ χ[1,3,3,1,1] + χ[1,3,1,3,1] + χ[1,3,1,1,3] + χ[1,1,3,3,1]

+ χ[1,1,3,1,3] + χ[1,1,1,3,3] + χ[1,2,2,2,2]

+

(
a
√
qt+

1

a
√
qt

)
(χ[2,1,2,2,1] + χ[2,2,1,1,2])

+

(
b2 +

1

b2

)
(χ[1,2,2,1,1] + χ[1,1,1,2,2])

)
+ x5

(
χy[4](3 + χ[3,1,1,1,1]

+ χ[1,3,1,1,1] + χ[1,1,3,1,1] + χ[1,1,1,3,1] + χ[1,1,1,1,3]) + χy[2]

(
χ[5,1,1,1,1]

+ χ[1,5,1,1,1] + χ[1,1,5,1,1] + χ[1,1,1,5,1] + χ[1,1,1,1,5] + 7χ[3,1,1,1,1]

+ 6χ[1,3,1,1,1] + 6χ[1,1,3,1,1] + 6χ[1,1,1,3,1] + 6χ[1,1,1,1,3] + 12

+ 2χ[3,3,1,1,1] + 2χ[3,1,3,1,1] + 2χ[3,1,1,3,1] + 2χ[3,1,1,1,3] + 2χ[1,3,3,1,1]

+ 2χ[1,3,1,3,1] + 2χ[1,3,1,1,3] + 2χ[1,1,3,3,1] + 2χ[1,1,3,1,3] + 2χ[1,1,1,3,3]

+ χ[1,2,2,2,2] +

(
a
√
qt+

1

a
√
qt

)
(χ[2,1,2,2,1] + χ[2,2,1,1,2])

+

(
b2 +

1

b2

)
(χ[1,2,2,1,1] + χ[1,1,1,2,2])

))
+O(x6)

where we use χy[d] for the d dimensional representation of SUy(2) and χ[d1, d2, d3, d4, d5]

for the representations of the appropriate dimensions under SU(2)5 where the SU(2)′s are

ordered as χ[
√
A, f, g, p, h].
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Figure 24. Adding a stuck NS5-brane to an SO(2N) web.

Figure 25. A web configuration describing an SU(2)×SO(2N+2) quiver with a half-bifundamental

and one flavor for each group.

4 Spinor matter

In this section we discuss the addition of matter in a spinor representation of an SO

gauge group. It is well known that there is no perturbative way to add matter in spinor

representations through D-brane constructions in string theory. However, we claim that

there is a way to do so for webs in the presence of O5-planes, in a non perturbative manner.

We first present our conjecture for how this is done, and present our argument for why this

gives spinor matter. We then proceed to give evidence for this conjecture.

We claim that the configuration shown in figure 24, in which we add a stuck NS5-

brane to an SO(2N) gauge theory, corresponds to adding a single hyper in the spinor

representation of that group. Our motivation for this is as follows. First, consider the

system in figure 25, describing an 1F+SU(2)×SO(2N+2)+1F gauge theory. Starting from

this system, we can get to the the one in figure 24 by going on the Higgs branch described

in the web by separating a full D5-brane. In the gauge theory this describes giving a vev

to the operator qBQ where q is the SU(2) fundamental, B the half bifundamental, and Q

the vector of SO(2N + 2).

Perturbativly, this completely breaks the SU(2) gauge group. However, the web sug-

gests that in this limit we do remain with additional degrees of freedom. Thus, these can

only come from instantons of the SU(2). It is well known that the 1 instanton of SU(2)

with Nf flavors carries charges in the spinor representation of SO(2Nf ). Therefore, we

conjecture that the remaining state can be described by an hypermultiplet in the spinor of

SO(2N) whose origin is non-perturbative in the brane web. Although we have used SO(2N)

in this example, the same reasoning can also be carried out for the SO(2N + 1) case.

Before giving support for our claim, we wish to state some further implications of

it. First, we can consider what happens when we attach further D5-branes as shown in

figure 26. We can answer this question by again starting with the system of figure 25

where adding the D5-brane corresponds to adding a flavor for the SU(2). The instanton

is again in the spinor of SO(2Nf ) which decomposes to two spinors of opposite chirality

under SO(2Nf − 2). We thus conclude that we now get two hypermultiplets both spinors

of SO(2N), but of opposite chirality. Finally, we wish to consider what happens if we
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Figure 26. The matter contribution associated with a single stuck NS5-brane found using the

preceding argument.

similarly add a (2, 1) 5-brane in the other direction. Particularly, we still expect a spinor

hyper, but we inquire whether it has the same chirality or not as it opposing friend. We

can answer this by considering the appropriate equivalence of the system in 25, where the

spinor should appear as the instanton of the SU(2) gauge group. The chirality of this

spinor is determined by the SU(2) θ angle, and as this is identical in the two constructions,

we conclude that the two spinors have the same chirality. To change the chirality between

the two spinors, one would have to switch the θ angles of one of the SU(2)’s. As previously

mentioned, we do not know if this can be done.

We can now proceed to give evidence for our conjecture. First, we look at the Higgs

branch. In figures 27 and 28 we show the webs for a variety of SO groups with two spinors

of the same chirality. These theories then have a Higgs branch breaking them to an SU

group. We show that the web correctly reproduces this branch, giving the expected theory.

Furthermore, this branch can only be accessed when the spinor is effectively massless which

in the web corresponds to the point where the would be SU(2) instanton is massless as

expected from our interpretation.

Note that we are essentially limited by the requirement that the would be SU(2) gauge

group sees less than 8 flavors. Naively, this would imply the we cannot get spinors of

SO(N) for N > 10. However, we can by a slight generalization get one also for N = 11, 12.

In these theories, the spinors are pseudo-real, so a half-hyper is possible. Figure 29 shows

the webs we conjecture for SO(11) and SO(12) with one half or full hyper in the spinor

representation. One can see that the Higgs branch of these webs agrees with what expected

from the gauge theory. One issue with the webs for the full spinor cases is that they have

only one mass deformation, in contrary to the two expected from the gauge theory. This

is reminiscent of the web for USp(2N) +AS which also has just one mass deformation. In

that case the web is for a massless antisymmetric. Likewise this web appears to have a

massless spinor.

Using these webs we can look at the existence of fixed points for SO groups with both

vector and spinor matter. First, holding the spinor matter fixed, we can use the web to

determine what is the maximal number of vectors one can add while still having a 5d fixed

point. We generally find agreement with the expectations from [29].

We can also ask what this implies about the limit of spinor matter. As mentioned,

we are limited by the requirement that the would be SU(2) gauge group sees less than 8

flavors. Yet, we argue that this does not represent a limitation on spinor matter for SO

gauge theories, rather a breakdown of the interpretation of these webs. A limitation on
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Figure 27. Several examples of the Higgs branch for theories of the form SO(2N) + 2S for N =

3, 4, 5. Starting from the initial web on the right, we take the massless spinor limit, corresponding

to taking the distance between the two pairs of NS5-branes to zero. Then a Higgs branch opens up

given in the web by detaching the web from the orientifold. This is shown on the right where for

ease of presentation we have shown only half the web. (a) The case of N = 3. We know from the

gauge theory that there is a Higgs branch breaking the theory to SU(3). (b) The case of N = 4.

We know from the gauge theory that there is a Higgs branch breaking the theory to SU(4). (c) The

case of N = 5. We know from the gauge theory that there is a Higgs branch breaking the theory

to SU(5) + 2F . In all 3 cases the Higgs branch is correctly reproduced in the web.

the matter content due to a lack of 5d fixed point manifests as a lack of a brane web when

taking the Yang-Mills coupling to infinity, generally due to intersecting legs that cannot

be resolved by a finite number of HW transitions. This is not the case here, rather the

intersection arises when we take the massless spinor limit indicating that there are in fact

additional states in this case. Therefore, we do not think this gives a limit on spinor matter

for SO gauge theories, rather being a limitation of the method.

4.1 Dualities

As our final piece of evidence, we examine dualities between systems involving SO groups

with spinor matter. The idea is to use the webs to motivate dualities and then test them

using the superconformal index. This then provides independent evidence for the duality

and thus also for the original identification leading to it. There is one limitation in this

test as instanton counting for SO groups with spinor matter is currently unknown. Thus,

we are limited to comparing the perturbative parts.
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Figure 28. Several examples of the Higgs branch for theories of the form SO(2N + 1) + 2S

for N = 2, 3, 4. Starting from the initial web on the right, we take the massless spinor limit,

corresponding to taking the distance between the two pairs of NS5-branes to zero. Then a Higgs

branch opens up given in the web by detaching the web from the orientifold. This is shown on

the right where for ease of presentation we have shown only half the web. (a) The case of N = 2.

We know from the gauge theory that there is a Higgs branch breaking the theory to SU(2). (b)

The case of N = 3. We know from the gauge theory that there is a Higgs branch breaking the

theory to SU(3). (c) The case of N = 4. We know from the gauge theory that there is a Higgs

branch breaking the theory to SU(4) + 2F . In all 3 cases the Higgs branch is correctly reproduced

in the web.

Figure 29. The webs we conjecture for (a) SO(12) + 1
2S, (b) SO(12) + 1S, (c) SO(11) + 1

2S, (d)

SO(11)+1S. One can see that the Higgs branch correctly agrees with the gauge theory expectation.

The cases with a half-hyper, (a)+(c), do not have a Higgs branch. For (b) the gauge theory has a

Higgs branch leading to SU(6) which is correctly reproduced in the web. For (d) the gauge theory

has a Higgs branch leading to SU(5) which is again correctly reproduced in the web.
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Figure 30. (a) The web for SO(8) + 2S + 2C. (b) The S-dual of the web in (a). It describes an

SU0(2)×USpπ(4)×SU0(2) gauge theory. The USpπ(4) group can be seen by pulling the (1, 1) and

(1,−1) 7-branes through the 5-branes, and merging them to an O7− plane (see [12]).

Figure 31. The duality suggested by the webs of figure 30.

4.1.1 Example 1

As our first example, consider the theory shown in figure 30 (a). From figure 26, we claim

that this describes an SO(8)+2S+2C gauge theory where we use S and C for the two Weyl

spinor representations of SO(8). We can take the S-dual description leading, as shown in

figure 30 (b), to the quiver theory SU(2)×USp(4)×SU(2). Thus we conjecture that these

two theories are dual. We want to also check this using the superconformal index.

We start with the SO(8) theory. The classical global symmetry is U(1) × USp(4)2

coming from the topological and flavor symmetries. There is also a Z2 discrete symmetry

coming from exchanging the two spinor representations. The analysis of [29] suggests that

there is no enhanced symmetry so it seems to also be the quantum symmetry.

We preform the calculation up to order x5 finding:

IndexSO(8) = 1 + x2(1 + χ[10,1] + χ[1,10]) + x3χy[2](2 + χ[10,1] + χ[1,10]) (4.1)

+ x4
(
χy[3](2 + χ[10,1] + χ[1,10]) + χ[35(4,0),1] + χ[1,35(4,0)] + χ[14,1]

+ χ[1,14] + χ[10,10] + χ[5,5] + χ[10,1] + χ[1,10] + χ[5,1] + χ[1,5] + 3)

+ x5
(
χy[4](2 + χ[10,1] + χ[1,10]) + χy[2](χ[35(4,0),1] + χ[1,35(4,0)] + χ[35(2,1),1]

+ χ[1,35(2,1)] + χ[14,1] + χ[1,14] + 2χ[10,10] + χ[5,5] + 4χ[10,1] + 4χ[1,10]

+ χ[5,1] + χ[1,5] + 4)) +O(x6)

where we use χ[d1, d2] for the representation of dimension d1 (d2) under the first (second)

USp(4) symmetry. Since USp(4) has two 35 dimensional representations, both appearing

in the index, we have also written their Cartan weight to distinguish between them. Note

that the index is symmetric under the exchange of the two global USp(4)’s which is the

manifestation of the discrete Z2 symmetry.

Next we move to the SU0(2)×USpπ(4)×SU0(2) theory. The classical global symmetry

is U(1)3 × SU(2)2, but as we will show this is enhanced at least to U(1) ×USp(4)2 by the

– 24 –



J
H
E
P
0
3
(
2
0
1
6
)
1
0
9

Figure 32. The fugacity spanning for the SU0(2)×USpπ(4)× SU0(2) theory.

SU(2)’s 1-instanton. There is also a discrete Z2 symmetry of exchanging the two SU(2)

groups that matches the corresponding one in the SO(8) theory. Next, we evaluate the

index of this theory to order x5. To that order we have contributions from the (1,0,0) +

(0,0,1) + (1,0,1) + (2,0,0) + (0,0,2) - instantons. Using the fugacity spanning shown in

figure 32, we find:

IndexSU2(2)×USp(4) = 1 + x2
(

5 + z2 +
1

z2
+ c2 +

1

c2
+

(
q +

1

q

)(
z2 + 1 +

1

z2

)
+

(
t+

1

t

)(
c2 + 1 +

1

c2

))
+ x3χy[2]

(
6 + z2 +

1

z2
+ c2 +

1

c2

+

(
q +

1

q

)(
z2 + 1 +

1

z2

)
+

(
t+

1

t

)(
c2 + 1 +

1

c2

))
+O(x4) (4.2)

Although we evaluated the index to order x5, we have written it only up to x3 to

avoid over-clutter. From the x2 terms one can see the conserved currents of the classical

global symmetry as well as ones provided by the (1,0,0) + (0,0,1) - instantons results in

the enhancement of U(1)2 × SU(2)2 → USp(4)2. This matches the global symmetries of

the two theories and one can see that also the indices match to order x3. We have also

confirmed that the matching persists up to order x5.

4.1.2 Example 2

Our next examples involves SO(N) groups with N odd. As the webs for these theories

involves an Õ5
−

plane with a stuck monodromy, performing S-duality is difficult. However,

we can still overcome this by simply considering the guage theory on the NS5-branes. For

example, consider the web of figure 33 (a) describing SO(7)+1V +2S. We can mass deform

it as shown in figure 33 (b). From the point of view of the NS5-branes, this describes an

SU0(2) gauging of the SCFT described by USp(4) + 1AS + 2F (see figure 33 (c)). The

gauging is done into the topological symmetry of the USp(4) gauge theory, but as this

theory has an enhancement of symmetry to SU(3) [5], we can rotate it so as to sit in the

flavor sector.

So we conclude that the dual is AS + USp(4) × SU0(2) where all that’s left is to

determine the θ angle of USp(4). Comparing global symmetries, we see that they match:

the SO(7) theory having a UT (1) × SUV (2) × USpS(4) global symmetry while the quiver

having a UT (1) × SUAS(2) × USp(4) one (here we have used the enhancement of U(1) ×
SUBF (2) → USp(4) coming from the 1-instanton of the gauge SU(2) seen in the previous

– 25 –



J
H
E
P
0
3
(
2
0
1
6
)
1
0
9

Figure 33. (a) The web for SO(7) + 1V + 2S. (b) Mass deforming the web of (a) leads to

this web. One can see that it describes an SU(2) gauging of the web in (c). (c) The web for

USp(4) + 1AS + 2F , where we have used that SO(5) = USp(4) under which the fundamental

and antisymmetric representations of USp(4) are the spinor and vector representations of SO(5)

respectively.

example). We thus see that the dual must be AS + USpπ(4)× SU0(2), as otherwise there

would be an additional enhancement not expected in the SO(7) theory.3

We want to further test this duality by comparing the superconformal index. There

are two problems with this calculation. One, due to the presence of the spinor matter, we

cannot calculate the SO(7) instanton contribution so we can only calculate the perturbative

part. Two, there is a problem calculating di-group instantons in the AS+USpπ(4)×SU0(2)

theory. Calculating instantons in USp + AS requires removing decoupled states where

the full instanton partition function, Z, contains extraneous contributions that must be

removed by hand. This case is well understood, and the form of the decoupled states was

worked out in [30]. Defining Zc for the full instanton partition function with the extraneous

contributions removed, we find:

Zc = ZPE

 ax2χSU(2)[2]

(1− xy)
(

1− x
y

)
(1− xc)

(
1− x

c

)
 (4.3)

where c stands for the antisymmetric SU(2) fugacity, a for the USp(4) instanton fugacity,

and χSU(2)[2] is the character for the fundamental of the gauge SU(2) (which is a global

symmetry from the USp(4) point of view). We also use PE[x] for the plethystic exponent

of x, and this term in (4.3) gives the contribution of the decoupled states. One notes that

they carry gauge charges under the SU(2) gauge group. These are responsible for the lack

of enhancement, but also imply non-trivial interaction between these decoupled states and

the SU(2) gauge group degrees of freedom. Therefore, while Zc should properly capture

USp(4) or SU(2) instantons, we expect additional extraneous contributions for di-group

instantons making these calculations unreliable.

Bearing this in mind, we next state our result. We start with the SO(7) + 1V + 2S

theory. The classical global symmetry consists of a topological U(1), an SU(2) associated

3Again, the results of [29] suggests no enhancement in this case.
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with the vector and a USp(4) associated with the 2 spinors. We calculate the perturbative

index to order x5 finding:

IndexSO(7) = 1+x2(1+χ[3,1]+χ[1,10])+x3 (χy[2](2+χ[3,1]+χ[1,10])

+χ[2,1]+χ[2,5])+x4 (χy[3](2+χ[3,1]+χ[1,10])+χy[2](χ[2,1]+χ[2,5])

+χ[1,35(4,0)]+χ[1,14]+χ[3,10]+χ[1,10]+χ[1,5]+χ[5,1]+χ[3,1]+4
)

+ x5 (χy[4](2+χ[3,1]+χ[1,10])+χy[3](χ[2,1]+χ[2,5])

+χy[2](χ[1,35(4,0)]+χ[1,35(2,1)]+χ[1,14]+2χ[3,10]+4χ[1,10]+χ[1,5]

+χ[5,1]+4χ[3,1]+5)+χ[4,1]+χ[4,5]+χ[2,35(2,1)]+χ[2,10]+2χ[2,5]

+χ[2,1])+O(x6) (4.4)

Now we wish to compare this to the index of AS + USpπ(4) × SU0(2). We continue

to use z, q for the fugacities of the gauge SU(2) bifundamental and topological symmetries

while the rest of the fugacities are as in (4.3). To order x5 we get contributions from the

(0,1) + (0,2) + (1,0) + (2,0) instantons, where only the (2,0) instantons contribute states

charged under the USp(4) topological U(1) (the (1,0) instantons are gauge-charged and

only contribute through an invariant with the anti-instanton). We first separate them out,

since we expect these states to match the instantons of SO(7). For the others we find:

IndexAS+USp(4)×SU(2) = 1 + x2
(

4 + z2 +
1

z2
+ c2 +

1

c2
+

(
q +

1

q

)(
z2 + 1 +

1

z2

))
+ x3

(
χy[2]

(
5 + z2 +

1

z2
+ c2 +

1

c2
+

(
q +

1

q

)(
z2 + 1 +

1

z2

))
+

(
c+

1

c

)(
2 + q +

1

q
+ z2 +

1

z2

))
+O

(
x4
)

(4.5)

One can see that the two indices match, and, indeed, we have checked that they match

up to order x5.

Finally, we can consider the contributions of states charged under the USp(4) topolo-

gical U(1). To order x5, the only contributions we find come from the (2,0) instanton where

we get:

Index
(0,2)
AS+USp(4)×SU(2) = x5

(
a2 +

1

a2

)(
c+

1

c

)
+O

(
x6
)

(4.6)

We expect this to match against instanton contribution of SO(7) + 1V + 2S, but

unfortunately we cannot verify it by direct calculation.

4.1.3 Example 3

As our final example, we consider the gauge theory SO(9)+1V +2S. By arguments similar

to the previous ones, we conjecture that the dual should be USpπ(4)×USp0(4) +AS. The

brane web for this theory is shown in figure 34 (a). We can mass deform it to the web of 34

(b). Looking from the NS5-branes point of view one can see that it describes a USpπ(4)

gauging of the SCFT described by USp(4) + 1AS + 4F . Since the gauged symmetry is

realized on the NS5-branes, it is instantonic from the D5-branes point of view. However
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Figure 34. (a) The web for SO(9) + 1V + 2S. (b) Mass deforming the web of (a) leads to this web

which describes a USp(4) gauging of the web describing USp(4) + 1AS + 4F , shown in (c). That

the gauging is done by a USp(4) group can again be seen by pulling the (1, 1) and (1,−1) 7-branes

through the two D5-branes. The resulting pair of 7-branes can be interpreted as the S-dual of a

resolved O7−-plane.

the USp(4) + 1AS+ 4F theory as an enhancement of UT (1)× SOF (8)→ SO(10) [5] which

we can use to rotate the gauging to the flavor symmetry. Thus, we conclude that the

dual is USpπ(4) × USp0(4) + AS where the last θ angle was chosen so that the global

symmetries match.

Particularly, the SO(9) theory as a classical symmetry given by UT (1) × SUV (2) ×
USpS(4) while the USp quiver as a classical UT (1)2×SUBF (2)×SUAS(2) global symmetry.

However we find that when θ = 0, for the USp group with the antisymmetric, there is an

additional enhancement of UT (1)× SUBF (2)→ USp(4). Thus, with this choice of θ angle,

the global symmetries of the two theories agree again up to additional enhancements on

either side.4

We next test this by calculating and comparing the superconformal index. There are

two major limitations in this calculation. First we cannot calculate the SO(9) instanton

contribution due to the presence of spinor matter. Second, we cannot reliably calculate

di-group instantons for the USp2 theory. The reasons are the same as before: instanton

counting for USp(4) + AS requires removing the contributions of decoupled states. The

precise form of these decoupled states was worked out in [30], and in our case the removal

is done by:

Zc = ZPE

 qx2(z2 + 1 + 1
z2

+ χUSp(4)[5])

(1− xy)
(

1− x
y

)
(1− xc)

(
1− x

c

)
 (4.7)

where c is the antisymmetric fugacity, z the bifundamental, q the topological one for the

group with the antisymmetric and χUSp(4)[5] is the character for the antisymmetric of

the gauge USpπ(4) (which is a global symmetry from the USp(4) + AS point of view).

Again The gauge charges imply additional corrections for di-group instantons are expected

so (4.7) is insufficient for the evaluation of di-group instanton contributions.

4Like in the previous cases the analysis in [29] suggests no enhancement for the SO(9) theory.
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Finally, we state our results. For the perturbative index of SO(9) + 1V + 2S we find:

IndexSO(9) = 1 + x2(1 + χ[3,1] + χ[1,10]) + x3 (χy[2](2 + χ[3,1] + χ[1,10]) (4.8)

+ χ[2,10]) + x4
(
χy[3](2 + χ[3,1] + χ[1,10]) + χy[2]χ[2,10] + χ[1,35(4,0)]

+ 2χ[1,14] + χ[3,10] + χ[1,10] + 2χ[1,5] + χ[5,1] + χ[3,1] + 4) +O(x5)

where we are working to order x4.

To this order, in the USpπ(4) × USp0(4) + AS theory, we get contributions of the

(0,1)+(0,2) instantons finding:

IndexUSp(4)2+AS = 1 + x2
(

4 + z2 +
1

z2
+ c2 +

1

c2
+

(
q +

1

q

)(
z2 + 1 +

1

z2

))
+ x3

(
χy[2]

(
5 + z2 +

1

z2
+ c2 +

1

c2
+

(
q +

1

q

)(
z2 + 1 +

1

z2

))
+

(
c+

1

c

)(
2 + z2 +

1

z2
+

(
q +

1

q

)(
z2 + 1 +

1

z2

)))
+O

(
x4
)

(4.9)

where the fugacities are the ones used in (4.7). One can see that the indices match to the

order shown, and we have further checked that the x4 order also matches.

5 Conclusions

In this article we studied brane webs in the presence of an O5-plane. This supports the

existence of a wide class of new fixed points, and can be used to further study various

aspects of these theories, such as dualities and enhancement of symmetry. The gauge

theories that can be constructed in this way include alternating linear quivers of SO and

USp groups as well as D shaped quivers of SU groups.

We have also argued that one can engineer SO(N) groups with spinor matter, where the

spinor matter is thought to arise non-perturbatively. We would like to see if further evidence

can be found for this. It will be interesting to further study the gauge theory leaving on

the D1-brane associated with the SO(N) instanton. These gauge theories are known to

play an important role in instanton counting, and so may lead to a better understanding

of instanton counting for SO groups with spinor matter, which is currently unknown.

Finally, when sufficient flavors are introduced a 5d gauge theory may go to a 6d N=

(1, 0) SCFT, instead of a 5d SCFT. A well known example is SU(2) + 8F which has the

6d rank 1 E-string theory as its UV fixed point [31]. These sort of relations have been

studied extensively recently for theories with ordinary brane web representations [32–35].

This phenomenon appears to also occur for some of the theories considered in this article,

as seen for example by the apparent presence of affine global symmetries [29]. It will be

interesting if this can be better understood, and if the 6d N= (1, 0) SCFT’s that these

theories go to can be uncovered.
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A Index computation

This appendix provides a brief review of the 5d superconformal index, and it’s calculation

using localization. The superconformal index is a sum of the BPS operators of a theory

where if two or more operators can merge to form a non-BPS multiplet, they sum to zero.

This is a useful quantity as it is invariant under continuous deformations since the spectrum

of BPS operators can only change via this merging.

Specifically for the case of 5d N = 1 SCFT, the representations of the superconformal

group are labeled by the highest weight of its SOL(5)× SUR(2) subgroup. We will call the

two weights of SOL(5) as j1, j2 and those of SUR(2) as R. Then following [16] the index is:

I = Tr (−1)F x2 (j1+R) y2 j2 qQ (A.1)

where x, y are the fugacities associated with the superconformal group, while the fugacities

collectively denoted by q correspond to other commuting charges Q, generally flavor and

topological symmetries. For a 5d gauge theory the index can be evaluated by localization

where it is given by [16]:

I =

∫
dαZpert|ZNek|2 (A.2)

where the integral is over the Cartan subalgebra of the gauge group. The terms Zpert

and ZNek are the contributions of the perturbative and instanton sectors respectively. The

perturbative contribution, Zpert, can be easily evaluated using the results of [16]. The

instanton contribution, also known as the 5d Nekrasov partition function [36], is harder

to evaluate. In general Zpert is expanded in a power series in the instanton fugacity, each

term providing the contribution of the associated instantons.

These terms can in turn be evaluated by a contour integral where the integrand

receiving contributions from the various matter and gauge content of the theory. The

expressions for most of these contributions that we need have appeared elsewhere, no-

tably [9, 11, 12, 16, 30], and we won’t repeat them here. The only exception being the

SO× USp bifundamental and half-bifundamental whose expressions we provide below. In

addition one also has to supplement this with a pole prescription detailing which poles are

inside the contour. A good review of these is given in [30].

Finally, the evaluation of the Nekrasov partition function is sometimes plagued with

the contributions of extraneous degrees of freedom that must be removed by hand. These

can materialize in the partition function as a breakdown of x→ 1
x invariance, which must

be obeyed as it is part of the superconformal algebra. Another way these can appear in

the partition function is as an infinite tower with representations of increasing dimension

– 30 –



J
H
E
P
0
3
(
2
0
1
6
)
1
0
9

under a flavor symmetry. Examples and ways of dealing with the former can be found

in [9, 17, 18], and those for the latter in [16, 30].

A.1 SO × USp

In this subsection we state the contributions of the matter content to the Nekrasov partition

function in the SO × USp formalism. The gauge contributions for both SO and USp

groups were already written elsewhere so we will not restate them. We concentrate on

the contributions of bifundamentals and half-bifundamentals. In 4d these were considered

in [37]. The 5d results in the O+ sector can be derived by lifting the 4d ones, but for the

O− sector one has to derive these directly using the methods in [38].

We start with the contribution of a full SO(M)×USp(2N) bifundamental hyper to the

integrand for the (k,K) instanton. The dual gauge group in this case is USp(2k)×O(K).

We shall employ the notation M = 2n1 + χ1 and K = 2n2 + χ2 where χ = 0, 1. The

O(K) group has two disconnected parts, denoted as the O+ and O−, which must both

be taken into account. We also separate the O− case to two distinct cases depending

on whether k is even or odd. Throughout this subsection we use the fugacities: z for the

bifundamental U(1), a for the SO(M) gauge symmetry, b for the USp(2N) gauge symmetry,

u for the USp(2k) dual gauge group, and v for the O(K) dual gauge group. The complete

contribution is:

ZSO×USp
BF+ =

 n1∏
i=1

(
z+

1

z
−ai−

1

ai

) k∏
m=1

(
z+ 1

z−umy−
1

umy

)(
z+ 1

z−
um

y −
y
um

)
(
z+ 1

z−umx−
1

umx

)(
z+ 1

z−
um

x −
x
um

)
χ2

(A.3)

 n2∏
j=1

(
z+

1

z
−vj−

1

vj

)χ1 [√
z− 1√

z

]χ1χ2 n1,n2∏
i,j=1

(
z+

1

z
−aivj−

1

aivj

)(
z+

1

z
− ai
vj
− vj
ai

)
N,k∏

n,m=1

(
z+

1

z
−bnum−

1

bnum

)(
z+

1

z
− bn
um
− um
bn

)
k,n2∏
m,j=1

(
z+ 1

z−umvjy−
1

umvjy

)(
z+ 1

z−
umvj
y −

y
umvj

)(
z+ 1

z−
um

vjy
− vjy
um

)(
z+ 1

z−
vj
yum
− yum

vj

)
(
z+ 1

z−umvjx−
1

umvjx

)(
z+ 1

z−
umvj
x −

x
umvj

)(
z+ 1

z−
um

vjx
− vjx
um

)(
z+ 1

z−
vj
xum
− xum

vj

)
for the O+ part.

ZSO×USp
BF−O =

n1∏
i=1

(
z+

1

z
+ai+

1

ai

) k∏
m=1

(
z+ 1

z +umy+ 1
umy

)(
z+ 1

z + um

y + y
um

)
(
z+ 1

z +umx+ 1
umx

)(
z+ 1

z + um

x + x
um

) (A.4)

(√z+
1√
z

) n2∏
j=1

(
z+

1

z
−vj−

1

vj

)χ1
n1,n2∏
i,j=1

(
z+

1

z
−aivj−

1

aivj

)(
z+

1

z
− ai
vj
− vj
ai

)
N,k∏

n,m=1

(
z+

1

z
−bnum−

1

bnum

)(
z+

1

z
− bn
um
− um
bn

)
k,n2∏
m,j=1

(
z+ 1

z−umvjy−
1

umvjy

)(
z+ 1

z−
umvj
y −

y
umvj

)(
z+ 1

z−
um

vjy
− vjy
um

)(
z+ 1

z−
vj
yum
− yum

vj

)
(
z+ 1

z−umvjx−
1

umvjx

)(
z+ 1

z−
umvj
x −

x
umvj

)(
z+ 1

z−
um

vjx
− vjx
um

)(
z+ 1

z−
vj
xum
− xum

vj

)
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for the O− part and odd K.

ZSO×USp
BF−E =

n1∏
i=1

(
z2+

1

z2
−a2i−

1

a2i

) k∏
m=1

(
z2+ 1

z2−u
2
my

2− 1
u2
my

2

)(
z2+ 1

z2−
u2
m

y2 −
y2

u2
m

)
(
z2+ 1

z2−u2mx2−
1

u2
mx

2

)(
z2+ 1

z2−
u2
m

x2 − x2

u2
m

) (A.5)

(z− 1

z

) n2−1∏
j=1

(
z+

1

z
−vj−

1

vj

)χ1
n1,n2−1∏
i,j=1

(
z+

1

z
−aivj−

1

aivj

)(
z+

1

z
− ai
vj
− vj
ai

)
N,k∏

n,m=1

(
z+

1

z
−bnum−

1

bnum

)(
z+

1

z
− bn
um
− um
bn

)
k,n2−1∏
m,j=1

(
z+ 1

z−umvjy−
1

umvjy

)(
z+ 1

z−
umvj
y −

y
umvj

)(
z+ 1

z−
um

vjy
− vjy
um

)(
z+ 1

z−
vj
yum
− yum

vj

)
(
z+ 1

z−umvjx−
1

umvjx

)(
z+ 1

z−
umvj
x −

x
umvj

)(
z+ 1

z−
um

vjx
− vjx
um

)(
z+ 1

z−
vj
xum
− xum

vj

)
for the O− part and even K.

The contributions of this bifundamental also add additional poles to the integrand.

The prescription for dealing with them follows directly from the work of [30]. Doing the

following redefinitions in the above expressions: p = 1
zx and d = z

x , the correct prescription

is to assume x, p, d� 1 taking all the poles within the circles and reset p = 1
zx , d = z

x only

at the end of the calculation.

The generalization to half-bifundamentals follows straightforwardly, similarly to the

4d case done in [37]. To avoid the need to add an half-fundamental, we specialize to the

case χ1 = 0. When taking the limit of a massless half-bifundamental, that is z → 1, the

expressions (A.4)–(A.6) become a total square, and the expression squared is identified

with the contribution of a half-bifundamental. Explicitly these are given by:

ZSO×USp
HBF+ =

 n1∏
i=1

(
√
ai −

1
√
ai

) k∏
m=1

(
um + 1

um
− y − 1

y

)
(
um + 1

um
− x− 1

x

)
χ2

(A.6)

n1,n2∏
i,j=1

(
ai +

1

ai
− vj −

1

vj

) N,k∏
n,m=1

(
um +

1

um
− bn −

1

bn

)
k,n2∏
m,j=1

(
um + 1

um
− vjy − 1

vjy

)(
um + 1

um
− vj

y −
y
vj

)
(
um + 1

um
− vjx− 1

vjx

)(
um + 1

um
− vj

x −
x
vj

)
for the O+ part.

ZSO×USp
HBF−O =

n1∏
i=1

(
√
ai +

1
√
ai

) k∏
m=1

(
um + 1

um
+ y + 1

y

)
(
um + 1

um
+ x+ 1

x

) (A.7)

n1,n2∏
i,j=1

(
ai +

1

ai
− vj −

1

vj

) N,k∏
n,m=1

(
um +

1

um
− bn −

1

bn

)
k,n2∏
m,j=1

(
um + 1

um
− vjy − 1

vjy

)(
um + 1

um
− vj

y −
y
vj

)
(
um + 1

um
− vjx− 1

vjx

)(
um + 1

um
− vj

x −
x
vj

)

– 32 –
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for the O− part and odd K.

ZSO×USp
HBF−E =

n1∏
i=1

(
ai −

1

ai

) k∏
m=1

(
u2m + 1

u2m
− y2 − 1

y2

)
(
u2m + 1

u2m
− x2 − 1

x2

) (A.8)

n1,n2−1∏
i,j=1

(
ai +

1

ai
− vj −

1

vj

) N,k∏
n,m=1

(
um +

1

um
− bn −

1

bn

)
k,n2−1∏
m,j=1

(
um + 1

um
− vjy − 1

vjy

)(
um + 1

um
− vj

y −
y
vj

)
(
um + 1

um
− vjx− 1

vjx

)(
um + 1

um
− vj

x −
x
vj

)
for the O− part and even K.

In some cases the contributions add additional poles to the integrand, and the pre-

scription then follows from the previous case where one defines p = 1
x in the denominators

of (A.7)–(A.8). The prescription is then to assume x, p� 1, and set p = 1
x only at the end

of the calculation.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] M.R. Douglas, On D = 5 super Yang-Mills theory and (2, 0) theory, JHEP 02 (2011) 011

[arXiv:1012.2880] [INSPIRE].

[2] N. Lambert, C. Papageorgakis and M. Schmidt-Sommerfeld, M5-Branes, D4-branes and

Quantum 5D super-Yang-Mills, JHEP 01 (2011) 083 [arXiv:1012.2882] [INSPIRE].

[3] N. Seiberg, Five-dimensional SUSY field theories, nontrivial fixed points and string

dynamics, Phys. Lett. B 388 (1996) 753 [hep-th/9608111] [INSPIRE].

[4] D.R. Morrison and N. Seiberg, Extremal transitions and five-dimensional supersymmetric

field theories, Nucl. Phys. B 483 (1997) 229 [hep-th/9609070] [INSPIRE].

[5] K.A. Intriligator, D.R. Morrison and N. Seiberg, Five-dimensional supersymmetric gauge

theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B 497 (1997) 56

[hep-th/9702198] [INSPIRE].

[6] O. Aharony and A. Hanany, Branes, superpotentials and superconformal fixed points, Nucl.

Phys. B 504 (1997) 239 [hep-th/9704170] [INSPIRE].

[7] O. Aharony, A. Hanany and B. Kol, Webs of (p, q) five-branes, five-dimensional field theories

and grid diagrams, JHEP 01 (1998) 002 [hep-th/9710116] [INSPIRE].

[8] L. Bao, E. Pomoni, M. Taki and F. Yagi, M5-Branes, Toric Diagrams and Gauge Theory

Duality, JHEP 04 (2012) 105 [arXiv:1112.5228] [INSPIRE].
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