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1 Introduction

N = 2 supersymmetric theories in four dimensions face a particular hurdle relative to their

N = 1 cousins: the general matter hypermultiplet cannot be off-shell without introducing

an infinite number of auxiliary fields. This understandably makes the direct construction

of supersymmetric actions — a straightforward procedure for N = 1 actions even with su-

pergravity couplings and higher derivatives — significantly more difficult as conventional

N = 2 superspace proves insufficient. Instead, one requires a more elaborate superspace

where infinite sets of auxiliary fields are encoded in a controlled way so that the most gen-

eral off-shell actions of hypermultiplets and vector multiplets may be described. There are

two well-developed options: harmonic superspace and projective superspace. Harmonic su-

perspace, developed by Galperin, Ivanov, Kalitzin, Ogievetsky and Sokatchev [1, 2] exploits

an additional bosonic manifold S2, with the infinite auxiliary fields appearing in a conver-

gent harmonic expansion. In contrast, the projective superspace approach, constructed

by Karlhede, Lindström, and Roček [3–5] (see also the recent reviews [6, 7]) involves an

auxiliary CP 1 where the hypermultiplet is a holomorphic function near one of the poles,

with the auxiliary fields described by coefficients in a Taylor expansion.1

While S2 and CP 1 describe the same manifold, the differing nature of the superfields

has important consequences. For example, the respective action principles on the two

spaces are quite different: harmonic actions involve integrals over the S2 and are com-

pletely specified by their Lagrangians, while projective actions are defined on a contour

in CP 1, with different contours corresponding (in principle) to different actions for the

same Lagrangian. But there are other differences between these two approaches which

are less obviously connected with their auxiliary structures. Quite early on, prepotential

superfields were identified within harmonic superspace both for gauge theories and super-

gravity [1]; these enabled a large body of supergraph calculations involving vector and

hypermultiplets. In contrast, while projective prepotentials appeared in [5] (see [11, 12] for

a discussion of gauge prepotentials on curved supermanifolds) projective supergraph calcu-

lations in non-abelian gauge theories have appeared only relatively recently [13–17], while

supergravity prepotentials remain terra incognita. This does not prevent the construction

of supergravity actions in projective superspace; to the contrary, an extremely powerful

manifestly covariant method has been developed over the last few years to address general

supergravity-matter systems and their component reduction, first in five dimensions [18–20]

and then in four [10, 21–23], building on the initial work of [24]. Within harmonic super-

space, covariant methods have been explored in two papers [25, 26], which addressed how to

derive supergravity prepotentials from a covariant supergeometry, but further applications

of harmonic superspace to supergravity systems have mainly used prepotentials.

The distinction between a prepotential-based approach and a fully covariant method

can be illustrated with a simple example. Take pure (gauged) supergravity consisting of a

1A general framework for discussing higher N analogues of harmonic and projective superspace in-

volves the so-called (N , p, q) superspaces, introduced by Hartwell and Howe [8, 9]. These emphasize the

geometrization of the R-symmetry group and the nature of the superconformal transformations, both of

which play an important role here. As in [10], our discussion corresponds to the case (2, 1, 1).

– 2 –
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single vector multiplet compensator coupled to a single hypermultiplet compensator. Using

the arctic multiplet Υ+ of projective superspace as the hypermultiplet, the action reads2

S = −
1

4

∫
d4x d4θ E W 2 +

1

2π

∮

C
dτ

∫
d4x d4θ+ E−−

(
2iῨ+Υ+

)
. (1.1)

The arctic multiplets in the second term carry charge g under the vector multiplet; if

the vector prepotential were made explicit, this term would be written Ῠ+egV Υ+. The

important feature is that both terms above are manifestly covariant and defined in any

gauge. In particular, one can make arbitrary conformal supergravity gauge transformations

(with arbitrary superfield parameters) for both actions, and invariance is ensured using

the properties of the respective chiral and analytic measures E and E−− [10]. In harmonic

superspace, the corresponding action involving the harmonic hypermultiplet Q̂+ is rendered

with explicit prepotentials as

S = −
1

4

∫
dû d4x̂ d8θ̂ Ê V ++V −− + 2

∫
dû d4x̂ d4θ̂+

(˜̂
Q+(D̂++ − igV ++)Q̂+

)
. (1.2)

One works in the analytic basis for the coordinates, which we have denoted with hats.

In this gauge, explicit gravitational prepotentials appear within the harmonic covariant

derivative D̂++; these can in turn be used to construct the full superspace measure in the

analytic basis, denoted Ê above. There is no analytic measure as Q̂+ is chosen to transform

as a scalar density under analytic diffeomorphisms.

The advantage of the second action, and a prepotential approach in particular, is the

relative ease with which one can calculate superspace equations of motion and perform

quantum calculations. These were major successes of the harmonic approach, and require

the dependence on the prepotentials to be laid bare; that dependence is obscured in a

covariant formulation. On the other hand, there are a number of advantages of a covariant

formulation. The first action (1.1) is constructed in a generic gauge, and its component

reduction can be performed in a manifestly covariant manner (see e.g. [27, 28] for the two

pieces). To reduce the second action (1.2) to components, one must adopt a Wess-Zumino

gauge for the various analytic prepotentials, perform the θ integrals, and then reconstitute

various composite objects such as the covariant derivative, the spin connection, etc. While

this is possible in principle, to our knowledge it has never been explicitly undertaken for

all terms in any supergravity action; even the most extensive component treatment [29] of

general supergravity-matter actions in harmonic superspace restricted to bosonic terms.

Of course, for actions like those discussed above, the question of how easy it is to per-

form a component reduction is essentially moot, as the results are well-known. A more in-

teresting question is how to construct new higher-derivative actions for hypermultiplets cou-

pled to supergravity, and to analyze the dependence of such higher derivative terms on the

underlying prepotentials so that one may analyze supersymmetric equations of motion, su-

percurrents, and so forth. For addressing such questions, it is useful to have a formulation of

general supergravity-matter systems with both a covariant and a prepotential description.

2The projective action for an arctic multiplet minimally coupled to a vector multiplet and conformal

supergravity first appeared in 5D [20] where a different but equivalent action principle was employed. We

are using here the reformulation of projective superspace given in [10].

– 3 –
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Our major goal in this paper will be to provide a covariant reformulation of

supergravity-matter actions in harmonic superspace so that any action, even a higher-

derivative one, can be addressed in a manifestly covariant way. Because the prepotential

approach for harmonic superspace already exists, we will begin by seeking a manifestly

covariant formulation from the outset. This will cover some similar ground as [25, 26], but

where these authors were concerned with Einstein supergravity (with two hidden implicit

compensators within the supergeometry), we will build conformal supergravity into the

structure group of superspace from the very beginning. This so-called conformal super-

space approach, which corresponds to the superconformal tensor calculus in components,

offers significant simplifications to calculations: recent applications have included con-

structing previously unknown higher-derivative invariants in 5D as well as the construction

of all off-shell 3D N ≤ 6 conformal supergravity actions, including auxiliary fields [30, 31].3

In applying this to harmonic superspace, it will permit us to give not only covariant refor-

mulations of all harmonic superspace actions, but will also allow the construction of the

covariant component reduction rule for a general analytic Lagrangian — novel results not

found in any previous formulation of harmonic superspace.

Interestingly, the incorporation of the superconformal algebra directly into the struc-

ture group, and the presence of the SU(2) R-symmetry group in particular, will necessitate

a reinterpretation of just what harmonic superspace actually is. Before elaborating further,

we should pause to answer the following question: just why should one focus on harmonic

superspace when another formulation — projective superspace — already offers fully de-

veloped covariant methods? The answer is that projective and harmonic superspace are

actually not intrinsically different approaches, but possess a quite non-trivial relation. By

fully addressing these issues within harmonic superspace — in part using inspiration from

projective superspace — we can learn important lessons about both. Recently, Jain and

Siegel have argued to interpret projective superspace as an analytic continuation of har-

monic superspace [33].4 This has proven to be a robust scheme and has enabled a direct

link between the harmonic and projective descriptions of vector prepotentials [33] and be-

tween their respective descriptions of hyperkähler sigma models [36]. The main idea is to

“complexify” the S2 of harmonic superspace to the tangent bundle of CP 1, identified as

CP 1 × CP 1 with the anti-diagonal removed. The two CP 1 factors possess different SU(2)

isometry groups. The first is to be identified with the R-symmetry subgroup of the super-

conformal group, while the second is a spectator. The connection between projective and

harmonic superfields can be described concisely as follows:

• The natural superfields on (complex) harmonic superspace are biharmonic functions

F (n,m) with charge (n,m) under the U(1)v × U(1)w subgroup of SU(2)v × SU(2)w of

3The 3D N ≤ 5 component actions were constructed for the first time using superspace techniques. The

N = 6 action was constructed first in components [32] and then in superspace.
4This analytic continuation is related to a similar approach in twistor theory [34]. An earlier proposal

by Kuzenko [35] to relate harmonic and projective superspace works rather differently.

– 4 –
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the form (for n+m ≥ 0)

F (n,m) = (v+, w−)n
∞∑

k=0

F (i1···in+m+kj1···jk)
v+i1

(v+, w−)
· · ·

v+in+m+k

(v+, w−)
w−
j1
· · ·w−

jk
. (1.3)

(A similar series exists for n+m < 0.) The series (1.3) is presumed to converge on the

so-called real S2 manifold, corresponding to the diagonal submanifold of CP 1 ×CP 1

where vi+ ∝ wi+. The anti-diagonal subset of CP 1 ×CP 1 where vi+ ∝ wi− must be

excluded so that the series exists (at least asymptotically) everywhere; this implies

that we are dealing with the tangent bundle of CP 1.

• Associated with every biharmonic function F (n,m) is an arctic superfield Υ(n) and an

antarctic superfield ˘̄Υ(n) given by

Υ(n) = F (n,m)|w−

i =(1,0) = (v1)n
∞∑

j=0

Υjζ
j ,

˘̄Υ(n) = F (n,m)|w−

i =(0,1) = (v2)n
∞∑

j=0

Υ̃j(−ζ)−j . (1.4)

The arctic nature of Υ(n) and the antarctic nature of ˘̄Υ(n) are guaranteed because of

the presumed convergence of (1.3) in the vicinity of S2.

This interpretation of harmonic superspace is actually not particularly revolutionary.

As discussed in the original harmonic superspace literature [37], the superconformal group

acts on complex harmonics ui±, but one performs the harmonic integrals as if they were

real. This suggests (see the comment in chapter 9 of [2]) that the harmonic S2 should

be reinterpreted as lying within CP 1 × CP 1. Guided by these old observations and the

requirement to reproduce the harmonic-projective mapping in curved space, a covariant

scheme immediately presents itself. We will begin with the covariant projective superspace

of [10] defined on the supermanifold M4|8 × SU(2). (As fields and operators had fixed

charges in U(1) ⊂ SU(2), this effectively became M4|8 × CP 1.) The auxiliary SU(2) was

identified with the SU(2) R-symmetry group and non-trivial R-symmetry curvature was

encoded in the fibering of the SU(2) over M4|8. We then extend the auxiliary manifold

with an additional completely rigid SU(2) factor, giving the supermanifold M4|8×SU(2)×

SU(2) (effectively M4|8×TCP 1). Over this complex harmonic manifold, we will introduce

superfields defined exactly as in the rigid case sketched above. The virtue of this approach

is that it efficiently meets two goals. First, it gives a covariant formulation that agrees (as

we will show) with the conventional harmonic superspace description whose harmonics are

naturally complex but integrated on a real S2. Second, it permits the mapping between

harmonic and projective superspace to be lifted to a general curved supermanifold.

To describe the biharmonic space, we will need two sets of harmonics vi± and wi±, or

equivalently, complex harmonics ui± and additional coordinates z±± and z0. This complex

harmonic description has already been employed within the harmonic superspace literature

to describe the target space of quaternionic sigma models, where some of the harmonics are

– 5 –
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interpreted as compensator fields for the sigma model [38]. We will be using these complex

harmonics to instead describe the auxiliary harmonic manifold of superspace itself. Once

this point of view is adopted, we will see that many curious features of the conventional

harmonic approach reveal themselves quite naturally.

It is worth observing that biprojective superfields have already been discussed in [39–

41] to describe extended supersymmetric systems in two dimensions (see also [42, 43] for

curved superspace applications of biprojective superfields in 2D and 3D). In these cases,

the R-symmetry group is SU(2) × SU(2), and so conventional projective and harmonic

approaches already lead to CP 1 × CP 1. Constructing a complex harmonic superspace for

these cases would seem to lead to a quadriharmonic space involving (CP 1)4.

This paper is organized as follows. In section 2, we review some details of harmonic

analysis on TCP 1. Our approach will use some of the tools and ideas introduced in [38],

but our conventions and emphasis will differ rather extensively. In section 3, we present

a concise discussion of the covariant harmonic superspace M4|8 × SU(2)× SU(2) built on

the covariant projective superspace M4|8 × SU(2). Covariant action principles, including

the covariant component reduction, will be discussed in section 4. These two sections

establish the self-consistency of our approach. Section 5 is somewhat disconnected and

may be omitted for those interested only in the covariant superconformal approach: there

we show that this formulation agrees with the conventional harmonic superspace in the

analytic basis, and we relate it to the existing covariant approach of [25, 26].

The main applications are contained within the last two sections. As a sample calcu-

lation, we demonstrate in section 6 the covariant component reduction of a general super-

conformal sigma model, reproducing the general hyperkähler cone sigma model coupled to

conformal supergravity [44] just as in projective superspace [27]. The result of this calcu-

lation is not new, but it provides a useful test that covariant component reductions within

harmonic superspace are tractable. Our interest is actually in exploring higher-derivative

actions. A brief discussion of these applications follows in the concluding section. Our no-

tation and conventions follow [10]. A technical appendix addresses aspects of integration

on analytic submanifolds, to which we will refer as needed.

2 Harmonic analysis on the complexified S2

We begin with a discussion of elements of harmonic analysis on the complexified S2, which

is equivalent to TCP 1. The formulation uses the biharmonic approach of [38], although we

will use somewhat different conventions and emphasize different aspects.

2.1 Elements of analysis on a real S2

Let us briefly review the harmonic description of an S2 manifold [2]. It is described by

harmonics ui+ and u−i obeying u−i = (ui+)∗ with ui+u−i = 1. These parametrize a group

element g of SU(2),

g =

(
u1+ −u−2
u2+ u−1

)
, g−1 = g† , detg = 1 . (2.1)

– 6 –
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The two-sphere is isomorphic to SU(2)/U(1) with the equivalence relation ui+ ∼ eiαui+.

That is, the harmonics are in one-to-one correspondence with real coordinates XI =

u−j (σ
I)jku

k+ obeying
∑

I X
IXI = 1, where σI are the Pauli matrices.

Rather than introduce two derivatives and one tangent space rotation on S2, it is

customary to introduce three SU(2) derivatives, D++
u , D0

u and D−−
u defined as

D++
u ≡ u+i

∂

∂u−i
, D−−

u ≡ ui−
∂

∂ui+
, D0

u ≡ ui+
∂

∂ui+
− u−i

∂

∂u−i
, (2.2)

possessing the commutation relations [D++
u , D−−

u ] = D0
u and [D0

u , D
±±
u ] = ±2D±±

u . Asso-

ciated with these are vielbeins

U++ = u+i du
i+ , U−− = u−i du

i− , U0 = u−i du
i+ = u+i du

i− , (2.3)

so that the exterior derivative can be written d = −U++D−−
u + U0D0

u + U−−D++
u . We

employ the usual superspace conventions for differential forms so that the exterior derivative

acts from the right.

Given some globally defined function f (0)(u+, u−), its integral on S2 is given by

∫

S2

du f (0) =
i

2π

∫

S2

U++ ∧ U−−f (0) , (2.4)

normalized so that
∫
S2 du = i

2π

∫
S2 U++ ∧ U−− = 1. The integrand can be interpreted as

a closed two-form ω = U++ ∧ U−−f (0) on either S2 or SU(2).

2.2 Analysis on the complexified S2 and twisted biholomorphy

We define the complexified S2 as the complex affine quadric Q2,

Q2 =

{
ZI ∈ C

3 :
3∑

I=1

(ZI)2 = 1

}
. (2.5)

One can show that Q2 ⊂ CP 1 × CP 1 by identifying

ZI =
1

(v, w̄)
w̄j(σ

I)jkv
k , (v, w̄) := vkw̄k , (2.6)

which defines vi and w̄j up to the identifications vi ∼ λvi and w̄j ∼ λ̃w̄j for λ and λ̃

unrelated complex numbers. In other words, Q2 can be identified as CP 1 × CP 1 with the

anti-diagonal region (v, w̄) = 0 excised: this is just the tangent bundle of S2.5

As with the real S2, it is convenient to identify each CP 1 with SU(2)/U(1) and to

introduce harmonic coordinates on the respective SU(2) groups. Denote the two groups by

SU(2)v and SU(2)w with harmonics vi± and wi± defined as

vi+ =
vi√
(v, v̄)

, v−i =
v̄i√
(v, v̄)

, (2.7)

5One can prove Q2 ∼= TCP 1 directly by decomposing ZI into its real and imaginary parts.
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and similarly for wi±. The corresponding derivatives (D±±
v , D0

v) and (D±±
w , D0

w), as well

as the vielbeins (V±±,V0) and (W±±,W0), are defined analogously to (2.2) and (2.3). We

write the exterior derivative as d = VaDva +W āDwā where

VaDva = −V++D−−
v + V0D0

v + V−−D++
v = V++Dv++ + V0Dv0 + V−−Dv−− (2.8)

and similarly for W āDwā.

The space Q2 ∼= TCP 1 is defined above in a twisted biholomorphic manner — that is,

the coordinates ZI are holomorphic in vi and anti-holomorphic in w̄i. We will be mainly in-

terested in fields that share this feature, properly interpreted on the harmonic coordinates.

Following the same abuse of nomenclature as in [10], we will refer to fields annihilated by

D++
v as holomorphic on (an open domain of) SU(2)v and those annihilated by D−−

w as

anti-holomorphic on (an open domain of) SU(2)w. Fields satisfying both conditions will

be called (twisted) biholomorphic. We specialize to such fields F (n,m) with charge (n,m)

under U(1)v ×U(1)w, so that

D0
vF

(n,m) = nF (n,m) , D0
wF

(n,m) = mF (n,m) , D++
v F (n,m) = D−−

w F (n,m) = 0 . (2.9)

The natural integration principle is a twisted biholomorphic integral

S =
i

2π

∫

S
V++ ∧W−− ω(−2,+2)(v+, w−) =

i

2π

∫

S
ω (2.10)

where ω is a two-form and S is some closed two-dimensional surface in TCP 1. ω is closed

as a consequence of being twisted biholomorphic. The action is invariant under an infinites-

imal diffeomorphism δξω = d(ıξω) corresponding to a small deformation of the surface S,

and so it depends only on the homotopy class of the surface provided ω is non-singular in

the interior. In fact, as we will discuss shortly, there is but one interesting class for S.

We will actually need a slightly more general two-form given by

ω = V++ ∧W−− ω(−2,2) − V−− ∧W−− ω(2,2) . (2.11)

In this case, the closure condition amounts to two requirements. The first is

D−−
w ω(−2,2) = 0 , D−−

w ω(2,2) = 0 , (2.12)

equivalent to the condition that ω is anti-holomorphic in w−
i . The second requirement

D++
v ω(−2,2) = D−−

v ω(2,2) , (2.13)

constrains the v−i dependence of ω(−2,2).

For later use, it will be convenient to establish two analogues of Stokes’ formula. Taking

Λ(0,2) and Λ(−2,0) to be functions annihilated by D−−
w but otherwise arbitrary, one can show

∫

S
V++ ∧W−−D−−

v Λ(0,2) =

∫

S
V−− ∧W−−D++

v Λ(0,2) , D−−
w Λ(0,2) = 0 , (2.14a)

– 8 –
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∫

S
V++ ∧W−−D++

w Λ(−2,0) = −

∫

S
V++ ∧ V−−D++

v Λ(−2,0) , D−−
w Λ(−2,0) = 0 . (2.14b)

An important special case is when Λ(0,2) and Λ(−2,0) are twisted biholomorphic and then

the right-hand sides of (2.14) vanish.

A special class of diffeomorphisms are the isometries that leave the vielbeins invariant.

An SU(2)v isometry acts as

δv(λ) = −λ++
v D−−

v + λ0
vD

0
v + λ−−

v D++
v , λ±±

v = λijv±i v
±
j , λ0

v = λijv+i v
−
j (2.15)

in terms of harmonic-independent λij . Similar formulae hold for an SU(2)w isometry δw(ρ).

It is interesting to note for these isometries that

δvω
(−2,2) = D−−

v (λ−−
v ω(2,2) − λ++

v ω(−2,2)) , δwω
(−2,2) = D++

w (ρ−−
w ω(−2,2)) ,

δvω
(2,2) = D++

v (λ−−
v ω(2,2) − λ++

v ω(−2,2)) , δwω
(2,2) = D++

w (ρ−−
w ω(2,2)) . (2.16)

2.3 The emergence of a complex harmonic structure

Now let us recover the complex harmonic structure required for harmonic superspace. The

simplest choice of closed surface S is the real S2 = SU(2)/U(1) constructed from the diag-

onal SU(2) submanifold of SU(2)v×SU(2)w with vi± = wi±. Up to small deformations this

is the only homotopically non-trivial choice: any non-contractible S in TCP 1 is continu-

ously deformable into the real S2. We require an additional assumption that each of the

twisted biholomorphic quantities are globally defined along this submanifold. This implies

that F (n,m) possesses an expansion as in [38]

F (n,m) = (v+, w−)n
∞∑

k=0

F (i1···in+m+kj1···jk)
v+i1

(v+, w−)
· · ·

v+in+m+k

(v+, w−)
w−
j1
· · ·w−

jk
. (2.17)

A similar expansion applies for n+m < 0. To shed some light on the meaning of this, we

follow [38] and introduce new complex harmonics,

u+i ≡ u
(0,1)
i =

v+i
(v+, w−)

, u−i ≡ u
(0,−1)
i = w−

i , ui+u−i = 1 , (2.18)

and three additional complex coordinates,

z++ ≡ z(0,2) =
(v+, w+)

(v+, w−)
,

z−− ≡ z(0,−2) = (v−, w−)(v+, w−) ,

z0 ≡ z(1,−1) = (v+, w−) . (2.19)

We have followed existing convention in labeling the coordinates by the sums of their U(1)v
and U(1)w charges. Note in particular that the complex harmonics and the coordinates

z±± carry only U(1)w charge. Relative to the conventions of [38], we have exchanged the

roles of ui± and wi± so that ui± is reserved for the complex harmonic coordinate.
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Now the original harmonics are given in terms of the new coordinates as

vi+ = z0ui+ , v−i =
1

z0
(
u−i + u+i z

−−
)
, wi+ = ui+ + z++ui− , w−

i = u−i . (2.20)

In the new variables, the old derivatives become

D++
v = (z0)2

∂

∂z−−
, D0

v = z0
∂

∂z0
,

D−−
v =

1

(z0)2

(
∂−−
u −

∂

∂z++
+ z−−z0

∂

∂z0
+ (z−−)2

∂

∂z−−

)
, (2.21)

and

D++
w = ∂++

u − z++∂0
u − (z++)2

∂

∂z++
+ z++z0

∂

∂z0
+ (2z++z−− − 1)

∂

∂z−−
,

D0
w = ∂0

u + 2z++∂z++ − 2z−−∂z−− − z0
∂

∂z0
, D−−

w =
∂

∂z++
. (2.22)

The corresponding vielbeins are

V++ = (z0)2U++ , V0 = U0 + z−−U++ +
dz0

z0
,

V−− =
1

(z0)2

(
U−− + 2z−−U0 + (z−−)2U++ + dz−−

)
,

W++ = U++ + 2z++U0 + (z++)2U−− − dz++ ,

W0 = U0 + z++U−− , W−− = U−− . (2.23)

We have introduced

∂++
u = u+i

∂

∂u−i
, ∂−−

u = ui−
∂

∂ui+
, ∂0

u = ui+
∂

∂ui+
− u−i

∂

∂u−i
, (2.24)

U++ = u+i du
i+ , U−− = u−i du

i− , U0 = u−i du
i+ = u+i du

i− . (2.25)

The SU(2)v × SU(2)w isometry transformations can be rewritten

δv(λ) = λ++
u (∂z++ − ∂−−

u ) + λ0
u(z

0∂z0 + 2z−−∂z−−) + λ−−
u ∂z−− ,

δw(ρ) = −ρ++
u ∂z++ + ρ0u(∂

0
u − z0∂z0 − 2z−−∂z−−) + ρ−−

u (∂++
u − ∂z−−) , (2.26)

where λ±±
u = λiju±i u

±
j and similarly for ρ. These special diffeomorphisms are induced by

infinitesimal general coordinate transformations6

δ∗vu
i+ = λ++

u ui− , δ∗vu
i− = 0 ,

δ∗vz
++ = −λ++

u , δ∗vz
0 = −λ0

uz
0 , δ∗vz

−− = −λ−−
u − 2z−−λ0

u , (2.27)

and

δ∗wu
i+ = −ρ0uu

i+ , δ∗wu
i− = −ρ−−

u ui+ − ρ0u ,

6We denote an infinitesimal (passive) general coordinate transformation by δ∗xm = −ξm. The corre-

sponding (active) diffeomorphism induced on a scalar field f(x) is always written δf(x) = ξm∂mf(x). This

notation is opposite that employed in [2].
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δ∗wz
++ = ρ++

u , δ∗wz
0 = ρ0uz

0 , δ∗wz
−− = ρ−−

u + 2z−−ρ0u . (2.28)

The SU(2)v transformations with parameters λij , which will be identified with the SU(2)R
gauge transformations of conformal supergravity in the central basis, are generated by

asymmetric transformations of the complex harmonics. The diagonal isometry group gen-

erated by ρij = λij corresponds to the external group of automorphisms SU(2)A on ui±,

taking δ∗ui± = λi
ju

j± and leaving z±± and z0 invariant.

We have denoted the derivatives of the complex harmonics by simple partial derivatives

∂±±
u and ∂0

u to emphasize that they are not covariant with respect to SU(2)v × SU(2)w.

Following [38], one can introduce covariant derivatives D±± and D0 defined by

D
±± := D±±

v +D±±
w , D

0 := D0
v +D0

w . (2.29)

These obey the usual algebra [D++,D−−] = D0 and [D0,D±±] = ±2D±± and act on Dva

and Dwā as external automorphisms, e.g. [D±±, D∓∓
v ] = ±D0

v and [D0, D±±
v ] = ±2D0

v .

Note that the SU(2)v derivatives were denoted Z±± and Z0 in [38].

In the complex harmonic coordinates, twisted biholomorphic functions are independent

of z++ and z−−, while their dependence on z0 is constrained to a single overall factor,

F (n,m) = (z0)n
∞∑

k=0

F (i1···in+m+kj1···jk)u+i1 · · ·u
+
in+m+k

u−j1 · · ·u
−
jk

= (z0)nF (n+m)(u±) , (2.30)

where F (n+m)(u±) is a convergent expansion. Observe that

D
++F (n,m) = D++

w F (n,m) = ∂++
u F (n,m) −mz++F (n,m) (2.31)

is not twisted biholomorphic unless m = 0. Similarly, D−−F (n,m) = D−−
v F (n,m) is not

twisted biholomorphic unless n vanishes.

2.4 Complex harmonic integration

In the remainder of this paper, we will primarily work with the harmonics vi± and wi±, but

it is enlightening to rewrite some of the previous formulae using the complex harmonics.

For example, the integral (2.10) becomes, using ω(−2,+2)(v+, w−) = (z0)−2ω(u±),

S =
i

2π

∫

S
U++ ∧ U−−ω(u±) . (2.32)

Because ω is closed, the integral is unchanged if we continuously deform S to S2. This is

apparent in the above form as the integrand is manifestly independent of the coordinates

z++, z−− and z0, so we may certainly choose z++ = z−− = 0 and z0 = 1. This recovers

the usual notion of harmonic integration.

If instead we have the more general two-form (2.11), it is convenient to rewrite

ω(−2,2)(v+, w−) =
1

(z0)2
ω(u±, z−−) , ω(2,2)(v+, w−) = (z0)2 ω+4(u±, z−−) . (2.33)
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The components are each independent of z++ and are required to obey

∂

∂z−−
ω(u±, z−−) =

(
∂−−
u + 2z−− + (z−−)2

∂

∂z−−

)
ω+4(u±, z−−) . (2.34)

The action principle is now a bit more complicated for a general surface S,

S =
i

2π

∫

S
U++ ∧ U−−ω +

i

2π

∫

S
U−− ∧

(
2z−−U0 + (z−−)2U++ + dz−−

)
ω+4 . (2.35)

For these two-forms, it is more convenient to use the original expressions with v±i and w±
i .

One may introduce analogues of Stokes’ theorem just as before, but as we will mainly

be working with the original harmonics v± and w±, reformulating (2.14) for complex har-

monics will not be necessary. However, it is useful to note that when the integrands are

twisted biholomorphic,
∫

S
U++ ∧ U−− ∂−−

u Λ++(u±) = 0 ,

∫

S
U++ ∧ U−− ∂++

u Λ−−(u±) = 0 . (2.36)

Using these identities, we can prove a number of results that establish that complex har-

monic integration works exactly as real harmonic integration. First, one can show that

i

2π

∫

S
U++ ∧ U−−u+(i1 · · ·u

+
iℓ
u−j1 · · ·u

−
jℓ)

= 0 for ℓ ≥ 1 , (2.37)

for any closed surface S. This follows by choosing Λ−− = u+(i1 · · ·u
+
iℓ−1

u−iℓu
−
j1
· · ·u−jℓ)

in (2.36). Similar identities with unequal numbers of symmetrized positive and negative

harmonics can be established. We would like to also impose the normalization condition
i
2π

∫
S U++ ∧ U−− = 1. This obviously holds when S = S2 — we chose the overall normal-

ization of the integral to ensure this — and holds more generally because the integrand is

closed. It follows that

i

2π

∫

S
U++ ∧ U−− ≡

i

2π

∫

S
V++ ∧W−−(z0)−2 =

i

2π

∫

S
V++ ∧ V−− = 1 . (2.38)

These results will prove crucial when performing component reductions in superspace.

3 Complex harmonic superspace on M4|8 × SU(2)
v
× SU(2)

w

Now we are prepared to introduce the first main result of this paper: the construction of

complex harmonic superspace on the supermanifoldM4|8×SU(2)v×SU(2)w. This approach

is based on the projective superspace M4|8 × SU(2)v elaborated upon in [10], with the un-

derlying structure of supergravity on M4|8 described by N = 2 conformal superspace [45].

Conformal superspace is a recent approach in the superspace literature that gauges

the entire superconformal group including dilatations, special conformal transformations,

and S-supersymmetry; it is precisely the superspace version of the superconformal tensor

calculus [46]. In contrast to other superspace formulations gauging at most the Lorentz

and R-symmetry groups, conformal superspace proves to be quite economical and simple

to work with, as seen in the rather simple algebra of covariant spinor derivatives.
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3.1 Construction in the central basis

Let us begin by recalling the salient details of [10]. That superspace, which we can identify

as M7|8 = M4|8 × SU(2)v, involves local coordinates z
M = (zM , ym) and a vielbein EM

A

given in block form as

EM
A =

(
EM

A EM
va

Em
A Em

va

)
, (3.1)

where the tangent space index A = (a, α±) = (a, α±, α̇±) is associated with M4|8 and a =

(±±, 0) is associated with SU(2)v. The covariant derivatives ∇A = (∇a,∇α±,∇v±±,∇v0)

are defined by the relation

∂M = EM
A∇A +

1

2
ΩM

abMba +AMA+BMD+ FM
AKA , (3.2)

involving the Lorentz generator Mab, the dilatation generator D, the U(1)R generator A,

and the special (super)conformal generators KA = (Ka, Sα±). The Lorentz, dilatation, and

U(1)R generators are normalized as

[Mab,∇
±
γ ] = (σab)γ

β∇±
β , [Mab, ∇̄

γ̇±] = (σ̄ab)
γ̇
β̇∇̄

β̇± , [Mab,∇c] = ηbc∇a − ηac∇b ,

[D,∇±
α ] =

1

2
∇±

α , [D, ∇̄α̇±] =
1

2
∇̄α̇± , [D,∇a] = ∇a ,

[A,∇±
α ] = −i∇±

α , [A, ∇̄α̇±] = +i∇̄α̇± . (3.3)

We use the following prescription for raising the ± tangent space indices,

∇α∓ = ±∇±
α , ∇v∓∓ = ±∇±±

v , Sα∓ = ∓S±
α , ∇v0 = ∇0

v , (3.4)

so that they corresponded to the ∇0
v charge of the operators. The algebra of the special

superconformal generators with the spinor derivatives generates the SU(2)v derivatives,

{S±
β ,∇

±
α } = ±4ǫβα∇

±±
v , {S̄β̇±, ∇̄α̇±} = ∓4ǫβ̇α̇∇±±

v ,

{S∓
β ,∇

±
α } = ±(2ǫβαD− 2Mβα − iǫβαA)− 2ǫβα∇

0
v ,

{S̄β̇∓, ∇̄α̇±} = ∓(2ǫβ̇α̇D− 2M β̇α̇ + iǫβ̇α̇A) + 2ǫβ̇α̇∇0
v . (3.5)

This identifies SU(2)v with the superconformal group SU(2)R. The remaining relations

between these generators and their action on the covariant derivatives can be found in [10].

In the central basis (or central gauge), the vielbein decomposes as EA = dzM EM
A

and Eva ≡ Va = dymVm
a + dzM VM

a, or in block form

EM
A =

(
EM

A VM
a

0 Vm
a

)
. (3.6)

The components of EA correspond to the vielbein on M4|8, while the vielbein Eva, which

we rename to Va in the central basis for convenience, decomposes into the vielbein Vm
a on
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SU(2)v and the SU(2)R connection VM
a on M4|8. The covariant derivatives may then be

grouped into the M4|8 covariant derivative

∇A = EA
M

(
∂M − VM

aDa −
1

2
ΩM

bcMcb −AMA−BMD− FM
BKB

)
, (3.7)

with EA
M = (EM

A)−1 and the SU(2)v covariant derivative

∇a ≡ Da = Va
m∂m , Dv++ ≡ −D−−

v , Dv−− ≡ D++
v , Dv0 ≡ D0

v , (3.8)

with Va
m = (Vm

a)−1. The constraints chosen on the curvatures imply that

∇±
α = v±i ∇α

i , (3.9)

with the connections in the covariant derivatives ∇α
i and ∇a essentially independent of

the harmonics vi±.

Now let us extend this curved superspace to complex harmonic superspace. Beginning

in the central basis, we attach the completely decoupled space SU(2)w with local coordinates

ym̄ and vielbein Wm̄
ā, obeying ∂m̄ = Wm̄

āDā, for covariant SU(2)w derivatives Dwā =

(Dw++, Dw−−, Dw0) = (−D−−
w , D++

w , D0
w). Denoting the full set of coordinates by zM, the

full vielbein EM
A is in block form

EM
A =



EM

A VM
a 0

0 Vm
a 0

0 0 Wm̄
ā


 . (3.10)

The other connections are even simpler,

ΩM
ab = (ΩM

ab, 0, 0) , AM = (AM , 0, 0) , etc. (3.11)

and the covariant derivative ∇A = (∇A, Dva, Dwā) is given by

∂M = EM
A∇A +

1

2
ΩM

abMba +AMA+BMD+ FM
AKA . (3.12)

In the central basis, there is a clear distinction between SU(2)v and SU(2)w. The first

is identified with the SU(2) R-symmetry group, while the second remains decoupled. In

particular, one finds for ∇A = (∇a,∇α±) the same expression (3.7) in the central basis.

The covariant derivatives ∇va and ∇wā retain their flat forms, Dva = (Dv±±, Dv0) and

Dwā = (Dw±±, Dw0).

Of course, there is no barrier to going to a basis (or gauge) where the vielbein and

connections take a more general form. We retain the same algebra of covariant derivatives

given in [10], and append the SU(2)w covariant derivatives ∇wā = (∇w++,∇w−−,∇w0) =

(−∇−−
w ,∇++

w ,∇0
w), which commute with all the other generators and covariant derivatives.

The resulting algebra of covariant spinor derivatives in any gauge is

{∇±
α ,∇

±
β } = 0 , (3.13)
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{∇±
α , ∇̄

∓
β̇
} = ∓2i∇αβ̇ , {∇±

α ,∇
∓
β } = ±2ǫαβW̄ , {∇̄α̇±, ∇̄β̇∓} = ±2 ǫα̇β̇W . (3.14)

The first equation implies the existence of covariantly analytic superfields. The operator

W appearing in the latter equations is constructed from a single complex superfield Wαβ ,

W =
1

2
WαβMβα +

1

4
∇β+Wβ

αS−
α −

1

4
∇β−Wβ

αS+
α +

1

4
∇α̇βWβ

αKαα̇ , (3.15a)

W̄ =
1

2
W̄α̇β̇M

β̇α̇ +
1

4
∇̄−

β̇
W̄ β̇

α̇S̄
α̇+ −

1

4
∇̄+

β̇
W̄ β̇

α̇S̄
α̇− +

1

4
∇αβ̇W̄

β̇
α̇K

α̇α . (3.15b)

Wαβ is covariantly independent of the harmonics and is the single curvature superfield of

conformal superspace [45]. The remaining curvatures may be compactly written

[∇±
β ,∇αα̇] = −2ǫβαW̄

±
α̇ , [∇̄±

β̇
,∇αα̇] = −2ǫβ̇α̇W

±
α ,

[∇ββ̇,∇αα̇] = −Fββ̇ αα̇ = −2ǫβ̇α̇Fβα
⌣

+ 2ǫβαFβ̇α̇
⌣

. (3.16)

The spinor operators W±
α and anti-selfdual and selfdual components of Fba are given by

W±
α = −

i

2
[∇±

α ,W] , Fβα
⌣

=
1

4
{∇+

(β , [∇
−
α),W]} , F

β̇α̇
⌣

=
1

4
{∇̄+

(β̇
, [∇̄−

α̇), W̄]}. (3.17)

Explicit expressions for these can be found in [10]. The simplicity of these relations is one

of the main advantages of conformal superspace.

In a general gauge, an arbitrary covariant diffeomorphism and gauge transformation

may be written

δ = ξA∇A +
1

2
λabMba + ΛDD+ ΛAA+ ηα+S−

α − ηα−S+
α + ǫaKa (3.18)

in terms of arbitrary parameters ξA, λab, ΛA, ΛD, ǫ
a and ηα±. We remind that

ξA∇A = ξa∇a + ξα−∇+
α − ξα+∇−

α + ξ−−
v ∇++

v + ξ0v∇
0
v − ξ++

v ∇−−
v

+ ξ−−
w ∇++

w + ξ0w∇
0
w − ξ++

w ∇−−
w . (3.19)

The charges on each parameter refer to their SU(2)v charge, except for the local SU(2)w
parameters ξ±±

w . In practice, one should restrict to gauges connected to the central basis by

complex harmonic gauge transformations, that is, gauge transformations that are at most

twisted biholomorphic on SU(2)v × SU(2)w. This means that the vielbein and connections

will generally be constrained so that ∇++
w and ∇−−

v acquire additional connections while

the other covariant harmonic derivatives remain relatively simple.

In the central basis, the harmonic dependence on the parameters is restricted to main-

tain the block form (3.10),

ξα± = v±i ξ
αi , ηα± = v±i η

αi ,

ξ±±
v ≡ λ±±

v = v±i v
±
j λ

ij , ξ0v ≡ λ0
v = v+i v

−
j λ

ij ,

ξ±±
w ≡ ρ±±

w = w±
i w

±
j ρ

ij , ξ0w ≡ ρ0w = w+
i w

−
j ρ

ij , (3.20)
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with the other parameters harmonic-independent. Moreover, the absence of SU(2)w con-

nections means that ρij are always constants in the central basis. In fact, we may refrain

from ever performing SU(2)w diffeomorphisms.

This is perhaps a good place to emphasize again that the derivatives ∇±
α are given in

the central basis by (3.9) and not, as one might otherwise expect, by u±i ∇α
i. That is, the

algebra they obey with the SU(2)v and SU(2)w derivatives can be written

[D±±
v ,∇±

α ] = 0 , [D±±
v ,∇∓

α ] = ∇±
α , [D0

v ,∇
±
α ] = ±∇±

α ,

[D±±
w ,∇±

α ] = 0 , [D±±
w ,∇∓

α ] = 0 , [D0
w,∇

±
α ] = 0 . (3.21)

The closest analogues of the conventional harmonic derivative relations are

[D±±,∇±
α ] = 0 , [D±±,∇∓

α ] = ∇±
α , [D0,∇±

α ] = ±∇±
α , (3.22)

using the derivatives D := Dv +Dw defined in section 2.3. These commutators hold in any

gauge, replacing Dv → ∇v and Dw → ∇w.

3.2 Covariant primary analytic superfields

Because the covariant spinor derivatives obey the conditions (3.13), the superspace admits

analytic superfields Ψ obeying ∇+
αΨ = 0. We are interested only in superfields that are

also primary, S±
αΨ = KaΨ = 0. Consistency with the operator algebra implies that Ψ is a

Lorentz scalar, invariant under U(1)R, and obeys7

∇0
vΨ = DΨ, ∇++

v Ψ = 0 . (3.23)

In other words, Ψ must have a U(1)v charge equal to its conformal dimension — for

definiteness, let us denote both quantities by n — and Ψ must be holomorphic on an

open domain of SU(2)v. We may further choose this open domain to be the vicinity

of the diagonal SU(2) of SU(2)v × SU(2)w and restrict Ψ to be a twisted biholomorphic

scalar F (n,m) with charges (n,m) under U(1)v × U(1)w. A general conformal supergravity

transformation of such a superfield is

δF (n,m) = ξA∇AF
(n,m) + n(ΛD + λ0

v)F
(n,m) − λ++

v D−−
v F (n,m) (3.24)

when written in the central basis. In terms of the complex harmonic coordinates, one finds

δF (n,m) = ξA∇AF
(n,m) + n(ΛD + λ0

u)F
(n,m) − λ++

u ∂−−
u F (n,m) . (3.25)

Below we will summarize the various types of multiplets commonly encountered in har-

monic superspace (see e.g. [2] for further details and references) and discuss their twisted

biholomorphic description in the central basis.

7These conditions were discussed in chapter 9 of the monograph [2]. They are also the conditions required

for covariant projective multiplets [24].
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O(n) multiplets. In flat harmonic superspace, one can introduce complex O(n) multi-

plets [47, 48] that obey D++H(n) = D+
αH

(n) = 0. The generalization to curved harmonic

superspace is straightforward: we need twisted biholomorphic analytic superfields H(n,m)

obeying the additional restriction D++
w H(n,m) = 0. As a consequence of the twisted biholo-

morphy, one finds the integrability condition [D++
w , D−−

w ]H(n,m) = mH(n,m) = 0, so we are

restricted to superfields H(n,0) with

H(n,0) = Hj1···jnv+j1 · · · v
+
jn
, ∇(i

αH
j1···jn) = 0 . (3.26)

As a consequence of (3.23), H(n,0) must have weight n under dilatations. If n is an even

integer, it is possible to impose a reality condition. The most familiar such multiplet is

the O(2) multiplet, or tensor multiplet, G++ = Gijv+i v
+
j , which plays a major role as a

compensator in one of the off-shell formulations of N = 2 Poincaré supergravity [49]. It

possesses the same form in either complex harmonic or projective superspace, and the same

holds for the general complex O(n) multiplets.

Relaxed hypermultiplets. We next consider the general class of so-called relaxed hy-

permultiplets. In flat harmonic superspace, these are given by analytic superfields R+q

obeying (D++)pR+q = 0 for some set of integers p and q (see [2] for a discussion and

further references). Their generalization in curved harmonic superspace involves twisted

biholomorphic superfields R(n,m) with n + m = q and the constraint (D++
w )pR(n,m) = 0.

As a consequence of the twisted biholomorphic condition, one finds m = 1− p.

To understand this condition, it helps to specialize to the case where n +m = 2 and

p = 2. Here one finds a superfield R(3,−1) with

R(3,−1) = (z0)3
(
R(ij)u+i u

+
j +R(ijka)u+i u

+
j u

+
k u

−
a

)
. (3.27)

We have denoted the index of the negative harmonic with a Roman index to distinguish it

from the others. This is because the above expression can be rewritten

R(3,−1) = Rijkav+i v
+
j v

+
k w

−
a , (3.28)

where Rijka = R(ijk)a is symmetric in its first three indices only. The expression (3.27) is

recovered by decomposing Rijka = −R(ijǫk)a+R(ijka). The form (3.28) is advantageous for

several reasons: the constraint is manifestly satisfied for p = 2, the analyticity condition

amounts to ∇
(l
αRijk)a = 0, and the transformation (3.24) leads to

δRijka = ξA∇AR
ijka + 3ΛDR

ijka + 3λ(i
lR

jk)la . (3.29)

This is consistent with the simple interpretation that Rijka possesses three SU(2)R indices

associated with the isometric action on SU(2)v, and an additional external SU(2) index

associated with SU(2)w. The superfield Rijka is just a globally defined O(3) superfield

R(3)a in projective superspace with an extra inert index. It is naturally embedded into

complex harmonic superfield by writing R(3,−1) ≡ R(3)aw−
a .

In like fashion, the general relaxed hypermultiplet R(n,1−p) obeying (D++
w )pR(n,1−p) =

0, is associated with a harmonic-independent superfield Ri1···ina1···ap−1 . This can be inter-

preted as a projective superspace O(n) multiplet R(n)a1···ap−1 with p−1 symmetric external

SU(2) indices.
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The nonlinear multiplet. Our third example is the nonlinear multiplet. Within real

harmonic superspace, it is given by an analytic superfield N++ obeying the constraint

D++N++ = −(N++)2. Because the complex harmonic version of this analytic superfield

must be weight zero under dilatations, it must have vanishing D0
v charge, and so it should

be given by an analytic multiplet N (0,2). As usual, analyticity implies that D++
v N (0,2) = 0,

so the constraint must be given by D++
w . In fact, it turns out two constraints are needed,

D++
w N (0,2) = −(N (0,2))2 , D−−

w N (0,2) = 1 . (3.30)

The second implies that N (0,2) is not twisted biholomorphic, but instead possesses some

dependence on wi+. This leads the conformal supergravity transformation δN (0,2) =

ξA∇AN
(0,2) − λ++

v D−−
v N (0,2) to take an unusual form when written in terms of complex

harmonic coordinates:

δN (0,2) = ξA∇AN
(0,2) − λ++

u ∂−−
u N (0,2) − λ++

u . (3.31)

The inhomogeneous term appears also in the conventional harmonic superspace description

of this multiplet: there it arises as consistency condition for the constraint.

It is well-known that the nonlinear multiplet possesses a formulation in terms of a

harmonic-independent superfield Lai. In complex harmonic superspace, it is encoded as

N (0,2) ≡
La+w+

a

Lb+w−
b

=
Laiw+

a v
+
i

Lbjw−
b v

+
j

. (3.32)

One can easily confirm the constraints (3.30). In terms of the complex harmonic coordi-

nates, this expression becomes

N (0,2) = z++ +
Laiu+a u

+
i

Lbju−b u
+
j

. (3.33)

The first term may be understood as generating the inhomogeneous term in (3.31). Fol-

lowing [2], we take Lai to be normalized as LaiLaj = δij and LaiLbi = δab and raise/lower

the indices in the same way. The analyticity condition and transformation rule becomes

La(k∇i
αL

j)
a = 0 , δLai = ξA∇AL

ai + λi
jL

aj . (3.34)

As with the relaxed hypermultiplet, these conditions indicate that the index i of Lai is

an SU(2)R index, while a is an external index, consistent with (3.32). This form of the

nonlinear multiplet frequently appears as a compensator in N = 2 supergravity [46, 49–51].

The Q+ hypermultiplet. Now we turn to the Q+ hypermultiplet, which is the general

matter multiplet of harmonic superspace as well as the general compensating multiplet of

supergravity [52]. In the complex harmonic description, it possesses charge (1, 0) under

U(1)v×U(1)w. Assuming that Q+ is twisted biholomorphic, it is easy to see that the charge

assignments are consistent with the free hypermultiplet equation of motion D++
w Q+ = 0:

in that case the free on-shell Q+ is an O(1) superfield. Because of the importance of

this multiplet, we will make a few further comments that are obvious generalizations of
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its conventional description in harmonic superspace. Its general off-shell version can be

expanded in the central basis as

Q+ =
∞∑

n=0

Q(i1···in+1j1···jn)v+i1 · · · v
+
in+1

w−
j1
· · ·w−

jn
(z0)−n

= z0
∞∑

n=0

Q(i1···in+1j1···jn)u+i1 · · ·u
+
in+1

u−j1 · · ·u
−
jn

. (3.35)

We have not attempted here to maintain any distinction between the SU(2)v and SU(2)w
indices because the presence of the z0 factors renders the distinction meaningless; the

various terms in this expansion will mix under SU(2)R. To see this, we note that the

transformation property of Q+ may be written

δQ+ = ξA∇AQ
+ + ΛDQ

+ + λ0
uQ

+ − λ++
u ∂−−

u Q+ . (3.36)

This implies for the leading term Qi in (3.35) the transformation

δQi = ξA∇AQ
i + ΛDQ

i + λi
jQ

j −
1

2
λjkQjk

i . (3.37)

For the free on-shell hypermultiplet, all the higher terms vanish, leaving an O(1) multiplet.

The ω hypermultiplet. The ω hypermultiplet is a variant version of the hyper-

multiplet, which can take several forms. We discuss here its simplest version, which

can be constructed in conventional harmonic superspace from a pseudoreal doublet

Qa+ = (Q+, Q̃+) involving a Q+ hypermultiplet and its conjugate Q̃+ as ω = u−a Q
a+. If

Q+ is free, then ω obeys the free equation of motion (D++)2ω = 0 and corresponds to a

relaxed hypermultiplet of Weyl weight 1.

In complex harmonic superspace, this version of ω becomes a twisted biholomorphic

analytic superfield ω(1,−1). Its U(1)v charge is implied by its Weyl weight, while its U(1)w
charge is implied if we assume that the free equation of motion should be (D++

w )2ω(1,−1) = 0.

Each of these properties is consistent with the choice ω(1,−1) = w−
a Q

a+. Such a multiplet

is manifestly twisted biholomorphic with each of the requisite weights. The general ω(1,−1)

hypermultiplet transforms as

δω(1,−1) = ξA∇Aω
(1,−1) − λ++

u ∂−−
u ω(1,−1) + (ΛD + λ0

u)ω
(1,−1) . (3.38)

Abelian vector multiplet. Finally, we turn to the vector multiplet. For simplicity, our

attention here will be on the abelian case, but the non-abelian version is a straightforward

extension. Recall that the abelian vector multiplet is described by an analytic prepotential

V ++ constructed in terms of a bridge superfield B via V ++ = D++B. The bridge B is

globally defined on S2 but not analytic. Both the bridge and V ++ must have vanishing

Weyl weight.

In complex harmonic superspace, the vector multiplet is described by a twisted biholo-

morphic analytic superfield V (0,2). Its U(1)v charge must vanish, consistent with its Weyl

weight. Obviously, V (0,2) should be interpreted as a connection for the complex harmonic
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derivative ∇++
w in the analytic basis. This implies that it should be related to a bridge

superfield B via V (0,2) = D++
w B. The bridge B should be twisted biholomorphic with van-

ishing harmonic charges. To confirm this interpretation, we note that the transformation

of V (0,2) reproduces the transformation in conventional harmonic superspace,

δV (0,2) = ξA∇AV
(0,2) − λ++

v D−−
v V (0,2) = ξA∇AV

(0,2) − λ++
u ∂−−

u V (0,2) . (3.39)

In contrast, we expect V −− ≡ V (−2,0) to be the connection for the complex harmonic

derivative ∇−−
v in the analytic basis and given by V (−2,0) = D−−

v B. It is easy to check

that V (−2,0) is also twisted biholomorphic, though it is not analytic. It transforms as

δV (−2,0) = ξA∇AV
(−2,0) − λ++

v D−−
v V (−2,0) − 2λ0

vV
(−2,0)

= ξA∇AV
(−2,0) − λ++

u ∂−−
u V (−2,0) − 2λ0

uV
(−2,0) . (3.40)

The differences in the covariant transformation laws for V (−2,0) and V (0,2) are naturally

explained by their U(1)v ×U(1)w charges in the complex harmonic approach.

4 Superspace action principles on M4|8 × SU(2)
v
× SU(2)

w

In this section, we will address both the full harmonic superspace and analytic superspace

actions, discuss how to relate one to the other, and provide the component reduction

formula for the analytic action. A few specific examples will also be discussed.

4.1 Full superspace

The natural twisted biholomorphic integral over full superspace is given by

i

2π

∫
d4x d4θ d4θ̄ E

∫

S
V++ ∧W−−

L
(−2,2) , (4.1)

where the first integral is evaluated in the central basis and the second is over the closed

surface S homotopic to the real S2. The harmonic charges of the Lagrangian are chosen

to counter the measure factor. The Lagrangian must have vanishing dilatation and U(1)R
weights and be a conformal primary. This expression can be generalized to any gauge,

i

2π

∫

S
d2ζ

∫
d4x d4θ+ d4θ−E(2,−2)

L
(−2,2) (4.2)

with the measure

E(2,−2) = sdet



EM

A EM
v++ EM

w−−

Eζ
A Eζ

v++ Eζ
w−−

Eζ̃
A Eζ̃

v++ Eζ̃
w−−


 . (4.3)

The complex coordinates ζ and ζ̃ parametrize S with (ζ)∗ 6= ζ̃ in general, and Eζ
A and

Eζ̃
A are the pullback of the vielbein. The charge assignments of the measure E(2,−2)

correspond to its weight under covariant ∇0
v and ∇0

w diffeomorphisms. We have written

the Grassmann coordinates suggestively as θ+ and θ−, but in a general gauge they possess

no meaningful charge or relation to the harmonics. Using e.g. the results of appendix
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B of [10] (see the summary in appendix A) one may confirm that (4.2) is a gauge and

diffeomorphism-invariant quantity.

It is useful to know when a quantity is a total derivative in the covariant approach.

In appendix A, we show that the covariant expression L (−2,2) = ∇++
w V (−2,0) +∇−−

v V (0,2)

is a total derivative for any twisted biholomorphic conformal primary superfields V (−2,0)

and V (0,2) with vanishing Weyl and U(1)R weights. Other expressions which appear to be

total derivatives such as ∇AV
A generally fail to be primary — and so are not permitted

as covariant integrands — or leave residual connections when integrated by parts.

4.2 Analytic superspace

We will be particularly interested in the action principle for analytic superspace. In the

analytic basis, its form is well-known:
∫

S2

du

∫
d4x̂ d4θ̂+ L̂

+4 . (4.4)

The analytic Lagrangian L̂ +4 must transform as a scalar density, ensuring that the action

is invariant under analytic gauge transformations. The integration is performed over the

real S2 manifold. To describe the same action principle in a general gauge, we propose

i

2π

∫

S
d2ζ

∫
d4x d4θ+ E(−2,−2)

L
(2,2) . (4.5)

The Lagrangian L (2,2) is now a scalar function rather than a scalar density and the analytic

measure is given by

E(−2,−2) = sdet




Em
a Em

α+ Em
v++ Em

w−−

Eµ+
a Eµ+

α+ Eµ+
v++ Eµ+

w−−

Eζ
a Eζ

α+ Eζ
v++ Eζ

w−−

Eζ̃
a Eζ̃

α+ Eζ̃
v++ Eζ̃

w−−




. (4.6)

We have labeled the measure again with its weights under covariant ∇0
v and ∇0

w diffeomor-

phisms, and we reiterate that the charge assignment of the Grassmann coordinates is not

meaningful in a general gauge. Later on, when we return to the analytic basis, we will

find a different notion of charge for these objects that concurs with (4.4). One can show

that (4.5) is gauge-invariant provided L (2,2) is an analytic twisted biholomorphic confor-

mal primary of Weyl weight two. To establish the equivalence of (4.4) and (4.5) requires a

more elaborate discussion, which will be postponed until section 5.

It is a straightforward exercise (by e.g. generalizing the argument in [10]) to show that

any full superspace integral (4.2) can be written as an analytic superspace integral

i

2π

∫

S
d2ζ

∫
d4x d8θ E(2,−2)

L
(−2,2) =

i

2π

∫

S
d2ζ

∫
d4x d4θ+ E(−2,−2)(∇+)4L (−2,2) . (4.7)

The superfield (∇+)4L (−2,2) obeys all the requirements of an analytic Lagrangian L (2,2).

Similarly, one can lift any analytic action to a full superspace action. Following the same
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procedure as in [10], we introduce a real nowhere-vanishing harmonic-independent super-

field Ω of Weyl weight two, writing

i

2π

∫

S
d2ζ

∫
d4x d4θ+ E(−2,−2)

L
(2,2) =

i

2π

∫

S
d2ζ

∫
d4x d8θ E(2,−2) Ω

(∇+)4Ω
L

(2,2) . (4.8)

Now let us choose Ω = WW̄ for a vector multiplet W and then adopt the gauge where

W = 1. This effects the conversion of conformal superspace [45] to SU(2) superspace [21, 53]

and lets one rewrite (4.8) as

i

2π

∫

S
d2ζ

∫
d4x d8θ

E(2,−2)

(S++)2
L

(2,2) =
i

2π

∫
d4x d8θ E

∫

S
V++ ∧W−− L (2,2)

(S++)2
, (4.9)

where S++ is a torsion superfield of SU(2) superspace and the right-hand side is written

in the central basis. If we restrict to the real S2, this simplifies still further to

∫
d4x d8θ E

∫

S2

du
1

(S++)2
L

+4 . (4.10)

This is a convenient formulation of curved harmonic superspace in the central basis using

SU(2) superspace and is inspired by an analogous formula in projective superspace [21].

In appendix A, we briefly discuss how to show that L (2,2) = ∇++
w V (2,0) is a total

derivative when V (2,0) is an analytic twisted biholomorphic conformal primary. As an ex-

ercise, one may show this by introducing a prepotential for V (2,0) as V (2,0) = (∇+)4V (−2,0)

and then observing that ∇++
w V (−2,0) is a total derivative as a full superspace Lagrangian.

Note that a similar quantity, ∇−−
v V (4,2), is not an allowed analytic Lagrangian as it is not

twisted biholomorphic.

4.3 Analytic superspace component action

Now we turn to deriving the component form of the analytic superspace action (4.5). Upon

integration over the Grassmann coordinates, the final form of the action should be

S =
i

2π

∫

M4×S
J , (4.11)

for some closed six-form J integrated over the product of 4D spacetime M4 and the

auxiliary manifold S. Here it helps to recall the projective superspace result [10], where

−
1

2π

∮

C
dτ

∫
d4x d4θ+ E−−

L
++ = −

1

2π

∫

M4×C
JP , (4.12)

in terms of a five-form JP , which was quite complicated in a general gauge. Its leading

term was

JP = e0 ∧ e1 ∧ e2 ∧ e3 ∧ ev++(∇−)4L ++|+ · · · (4.13)

with the subleading terms each involving a five-form multiplied by a certain number of

covariant derivatives of L ++. Here we have written ea = Ea|| and ev++ = Ev++|| as

the double-bar projections (setting θ = dθ = 0) of the corresponding vielbeins. Keeping
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in mind that complex harmonic superspace can be understood as projective superspace

combined with an additional CP 1 manifold, one can make the guess that J should be

given by inserting the harmonic Lagrangian into JP and taking the wedge product with

ew−− = Ew−−||, that is,

J = JP [L
(2,2)] ∧ ew−− = e0 ∧ e1 ∧ e2 ∧ e3 ∧ ev++ ∧ ew−−(∇−)4L (2,2)|+ · · · (4.14)

This turns out to be the correct answer.

There are two approaches to checking this result. The first is simply to repeat the

normal coordinate calculation given in appendix C of [10]. The main difference is that

one encounters the volume six-form ê(2,−2) = ê++ ∧ ew−− where ê++ is the volume five-

form when restricted to the bosonic body M4×CP 1 of projective superspace. Viewed as a

superform, its θ+ expansion is responsible for giving the subleading terms in the component

action. But because ew−− has a trivial θ+ expansion when written in Grassmann normal

coordinates, no new features are encountered. This reproduces (4.14).

A less direct approach is to observe that J must be a closed six-form in superspace.

Because of the twisted biholomorphic nature of L (2,2), one can show that the closure of JP ,

interpreted as a five-form in projective superspace, implies the closure of J . One observes

for the leading term of JP (and similarly for the subleading terms)

0 = dJP = dê++ (∇−)4L ++ + ê++ ∧ (EA∇A + Eva∇va + · · · ) (∇−)4L ++ + · · · . (4.15)

The second term in parentheses is the expansion of the exterior derivative in projective

superspace; we have exhibited the vielbeins but suppressed the other connections. When

we formally replace L ++ with L (2,2), the second expression turns out to be missing the

SU(2)w vielbeins. Adding and subtracting these gives

0 = dê++ (∇−)4L (2,2) + ê++ ∧ (EA∇A + Eva∇va + Ewā∇wā + · · · ) (∇−)4L (2,2)

− 2 ê++ ∧ Ew0(∇−)4L (2,2) − ê++ ∧ Ew−−∇++
w (∇−)4L (2,2) + · · · . (4.16)

The first line is the exterior derivative of the leading term of JP [L
(2,2)]. Taking the wedge

product with Ew−− gives for this leading term

0 = dJP [L
(2,2)] ∧ Ew−− − 2JP [L

(2,2)] ∧ Ew0 ∧ Ew−− = −dJ (4.17)

and so J is closed. The subleading terms more or less go the same way. A similar line

of argument shows that if JP is gauge-invariant in projective superspace up to an exact

form, then so is J in harmonic superspace.

It should go without saying that the central basis is to be preferred for component

actions. In that gauge, one finds

S =

∫
d4x eL , L =

i

2π

∫

S

(
V++ ∧W−−L(−2,2) − V−− ∧W−−L(2,2)

)
(4.18)

where L(−2,2) and L(2,2) coincide with the component Lagrangians given in [10] with the

replacement L ++ → L (2,2). They are (with projection to θ = 0 understood)

L(−2,2)=
1

16
(∇−)2(∇̄−)2L (2,2)−

i

8
(ψ̄−

mσ̄m)α∇−
α (∇̄

−)2L (2,2)−
i

8
(ψ−

mσm)α̇∇̄
α̇−(∇−)2L (2,2)
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+
1

4

(
(ψ−

n σ
nm)αψ̄m

α̇− + ψn
α−(σ̄nmψ̄−

m)α̇ − iV−−
m σm

αα̇

)
[∇−

α , ∇̄
−
α̇ ]L

(2,2)

+
1

4
(ψ−

mσmnψ−
n )(∇

−)2L (2,2) +
1

4
(ψ̄−

mσ̄mnψ̄−
n )(∇̄

−)2L (2,2)

−

(
1

2
ǫmnpq(ψ−

mσnψ̄
−
p )ψ

α−
q − 2 (ψ−

mσmn)αV−−
n

)
∇−

αL
(2,2)

+

(
1

2
ǫmnpq(ψ̄−

mσ̄nψ
−
p )ψ̄

−
qα̇ − 2 (ψ̄−

mσ̄mn)α̇V
−−
n

)
∇̄α̇−

L
(2,2)

+ 3 ǫmnpq(ψ−
mσnψ̄

−
p )V

−−
q L

(2,2) (4.19)

and

L(2,2) = −

[
3D +

3i

2
(ψ̄−

mσ̄mχ+)−
3i

2
(ψ−

mσmχ̄+) + 4fa
a

− 4(ψ̄−
mσ̄mnφ̄+

n ) + 4(ψ−
mσmnφ+

n )− 3 ǫmnpq(ψ−
mσnψ̄

−
p )V

++
q

]
L

(2,2)

+

[
3

2
χα+ − i(φ̄+

mσ̄m)α + 2(ψ−
mσmn)αV++

n

]
∇−

αL
(2,2)

−

[
3

2
χ+
α̇ − i(φ+

mσm)α̇ + 2(ψ̄−
mσ̄mn)α̇V

++
n

]
∇̄α̇−

L
(2,2)

−
i

4
V++
m (σ̄m)α̇α[∇−

α , ∇̄
−
α̇ ]L

(2,2) . (4.20)

Above we have the component fields as defined in [45] corresponding to the content of

N = 2 conformal supergravity. These consist of (i) the five fundamental connections —

the vierbein em
a, the gravitini ψm

α
i, the SU(2)R and U(1)R connections Vm

i
j and Am, and

the dilatation connection bm; (ii) covariant auxiliary fields Wab = 1
4T

−
ab, χαi, and D; and

(iii) composite connections ωm
ab, φm

αi and fm
a, given in terms of the other fields, which

are associated with Lorentz, S-supersymmetry and special conformal gauge symmetries.

In the expressions (4.19) and (4.20), these fields are contracted with SU(2)v harmonics,

e.g. ψ±
m = ψi

mv±i , χ
± = χiv±i , Vm

±± = Vm
ijv±i v

±
j , and so forth.

Now observe that interchanging the order of integration gives

S =
i

2π

∫

S
V++ ∧W−−ω(−2,2) −

i

2π

∫

S
V−− ∧W−−ω(2,2) ,

ω(−2,2) =

∫
d4x eL(−2,2) , ω(2,2) =

∫
d4x eL(2,2) . (4.21)

The two-form ω = V++ ∧ W−−ω(−2,2) − V−− ∧ W−−ω(2,2) is of the type discussed in

section 2: it is closed on S and ensures that the action is insensitive to small deformations

of S. We may then restrict to S = S2, where the second integral in (4.21) drops out,

leaving the more conventional expression

S =

∫
d4x e

∫

S2

duL0 , L0 = L(−2,2)|S2 . (4.22)

This yields the most compact form for the component Lagrangian of a general curved

harmonic superspace action and constitutes another of our major results.
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4.4 Examples of complex harmonic superspace actions

Below we will briefly summarize how the most common harmonic superspace actions can

be written in the covariant formulation here. Each of these cases is a straightforward

extension of a well-known action in conventional harmonic superspace.

The Q+ hypermultiplet and general self-couplings. Introduce a family of hyper-

multiplets Qa+ with a = 1, · · · , 2n, and impose a pseudoreality condition Q̃a+ = −Q+
a ≡

−Qb+Ωba using the canonical symplectic form Ωba of Sp(n). Interactions may be intro-

duced in the form of a twisted biholomorphic function H(2,2), so that the Lagrangian is

L
(2,2) =

1

2
Q+

a ∇
++
w Qa+ +H(2,2) . (4.23)

We have denoted the potential term by H(2,2) as in [36] to emphasize its interpretation as

a Hamiltonian [54]. In flat space, it is natural to require H(2,2) = H(2,2)(Q+, v+, w−) to be

analytic and twisted biholomorphic; however, when coupled to conformal supergravity, it

must have Weyl weight 2 and so

Qa+∂a+H
(2,2) = 2H(2,2) =⇒ H(2,2) = H(2,2)(Q+, w−) . (4.24)

In other words, the Hamiltonian must not explicitly depend on vi+ [2, 55]. The component

sigma model corresponding to this action describes a hyperkähler cone. The condition that

H(2,2) cannot depend on vi+ can also be interpreted as requiring the Lagrangian to be a

scalar function under SU(2)v diffeomorphisms. A similar condition is required in projective

superspace. In contrast, it is permissible for the w−
i to appear because one may avoid ever

using non-trivial SU(2)w diffeomorphisms.

The ω hypermultiplet action. The free ω hypermultiplet action can be constructed

from the free Qa+ hypermultiplet action with a = 1, 2 by making the change of variables

Qa+ = wa+ω(1,−1) − wa−f (1,1). One must employ the w±
i harmonics so that ω(1,−1) and

f (1,1) remain covariant under SU(2)v diffeomorphisms. It is evident from this equation

that f (1,1) is not a twisted biholomorphic superfield but rather obeys the constraint

∇−−
w f (1,1) = ω(1,−1). This can be remedied by replacing f (1,1) → f (1,1) + ∇++

w ω(1,−1), so

that the new fundamental superfields are each twisted biholomorphic. The Lagrangian

remains twisted biholomorphic,

1

2
Q+

a ∇
++
w Qa+ =

1

2
ω(1,−1)(∇++

w )2ω(1,−1) +
1

2
(f (1,1))2 +

1

2
∇++

w (ω(1,−1)f (1,1)) . (4.25)

The last term is a total derivative, and the second term can be integrated out, leaving the

free ω hypermultiplet Lagrangian.

The improved tensor multiplet action. As our last example, let us generalize

the construction of the improved tensor multiplet [56] to complex harmonic superspace.

Starting with a free hypermultiplet action with a complex Q+, one makes the complicated

change of variables

Q+ = eiω
(
Q+

0 − i
w−
2

Ω0
g++

)
, Q̃+ = e−iω

(
Q̃+

0 − i
w−
1

Ω0
g++

)
,
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Ω0 ≡ Ω
(1,−1)
0 := Q+

0 w
−
1 + Q̃+

0 w
−
2 , (4.26)

where ω and g++ are two real dynamical variables and Q+
0 is a new complex hypermul-

tiplet. None of the fields ω, g++, or Q+
0 carries U(1)w charge, and each is analytic, so g++

must be Weyl weight two and Q+ Weyl weight one. However, because we have traded

two real degrees of freedom for four, this must be a redundant description, independent

of some combination of the new fields, which will become apparent in due course. It is

convenient to group Q+
0 and Q̃+

0 into the pseudoreal doublet Qi+
0 = (Q+

0 , Q̃
+
0 ), so that

Ω0 can be written simply as Ω0 = Qi+
0 w−

i . Note that Ω0 is actually a weight (1,−1)

superfield, but we have suppressed the charges for notational simplicity.

The above construction differs in two ways from the rigid version given in [56]. First,

that version would correspond to choosing a fixed Qi+
0 = vi+. However, this choice is

not possible in any gauge other than the analytic one, as it is generally inconsistent with

the analytic condition ∇+
αQ

i+
0 = 0 because of the presence of the non-vanishing SU(2)v

connection.8 The second difference is that the change of variables in [56] was more general,

involving an isotriplet cij . The simplifying choice we have made corresponds to taking

c12 = i/2 and c11 = c22 = 0, with the non-canonical normalization c2 := cijcij/2 = 1/4.

Below we restore a more general cij (but keeping this normalization).

After making the redefinition (4.26), the free hypermultiplet Lagrangian becomes

L
(2,2) =

1

2

(g++)2

Ω2
0

− L++∇++
w ω +

1

2
Q+

0i∇
++
w Qi+

0

−
2g++cijw

i−

Ω0
∇++

w Qj+
0 +∇++

w (g++C+−) (4.27)

where we have defined

C++ := cij Q
i+
0 Qj+

0 , C+− := cij Q
i+
0 wj−/Ω0 , C−− := cij w

i−wj−/Ω2
0 ,

L++ := C++ + g++ + C−−g++ . (4.28)

The last term in the Lagrangian is a total derivative and can be discarded. The second

term, which involves ω as a Lagrange multiplier, sets L++ to be an O(2) multiplet. This

determines g++ in the usual form

g++ =
2(L++ − C++)

1 +
√
1 + 4C−−(L++ − C++)

, (4.29)

in terms of which the Lagrangian can be written

L
(2,2) =

1

2

(g++)2

Ω2
0

+
1

2
Q+

0i∇
++
w Qi+

0 − 2
g++cijw

i−

Ω0
∇++

w Qj+
0 . (4.30)

As already mentioned, the change of variables we have made is equivalent to the stan-

dard choice in harmonic superspace, except for the appearance of the new hypermultiplet

8Actually, the precise gauge choice made in conventional harmonic superspace is slightly different, be-

cause Qi+
0 (like all analytic superfields) is chosen to be a scalar density.
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Qi+
0 rather than its frozen value. It is possible to show that the action is actually indepen-

dent of this hypermultiplet. The proof is equivalent to showing the conformal invariance of

the conventional harmonic action. (The conformal invariance of (4.30) is manifest.) Under

an arbitrary variation of Qi+
0 , one simply shows that L (2,2) transforms as a total derivative,

δL (2,2) = ∇++
w

(
1

2
Q+

0iδQ
i+
0 −

2

Ω0
g++(δQi+

0 w−
i C

+− − δQi+
0 Q+

0iC
−−)

)
. (4.31)

When constructing the component action, the multiplet Qi+
0 must drop out.

The necessity of this additional hypermultiplet can also be understood by comparing

the above construction to its curved projective superspace analogue where similar features

occur [57]. Beginning with the free hypermultiplet Lagrangian L ++ = iΥ+Ῠ+, with Υ+ an

arctic multiplet and Ῠ+ its antarctic conjugate, one introduces a redundant parametrization

Υ+ = Υ+
0 e

Λ analogous to (4.26), with Υ+
0 an arbitrary weight-one arctic superfield and Λ

a weight-zero arctic superfield. The free hypermultiplet Lagrangian can be rewritten as

L
++ = iΥ+

0 Ῠ
+
0 e

Λ+Λ̆ − L++(Λ + Λ̆) , (4.32)

after relaxing the requirement that Λ+Λ̆ is the sum of an arctic and an antarctic superfield,

enforcing it instead via the Lagrange multiplier L++. Integrating out the unconstrained

real analytic superfield Λ + Λ̆, one finds the improved tensor Lagrangian

L
++ = L++ − L++ log(L++/iΥ+

0 Ῠ
+
0 ) . (4.33)

It is easy to show that this is actually independent of the choice of Υ+
0 in precise analogy to

the spurious dependence of (4.30) on Qi+
0 .9 Its presence is necessary to ensure covariance

of the Lagrangian, and in the appropriate analytic basis it can be set to a constant.

5 The analytic basis and conventional harmonic superspace

In the previous sections, we have constructed a covariant formulation of complex harmonic

superspace on the supermanifold M4|8 × SU(2)v × SU(2)w, with explicit gauging of the

superconformal group. There is one major task which remains: we must explain how this

formulation is related to the prepotential approach of [52] and the covariant formulation

discussed in [25, 26]. The connection with [52] is the easiest to elucidate as it arises naturally

upon going to the analytic basis (or analytic gauge). After reviewing the analytic basis in

the rigid limit, we will construct it for the general curved supermanifold. Afterwards, we

will describe how to recover [52]: the key step will be to trade analytic scalar fields (which

we have used up until now) for analytic scalar densities. In the final part of this section,

we will sketch the relationship with [25, 26].

5.1 Rigid harmonic superspace and its analytic basis

Understanding the structure of the analytic basis requires a brief discussion of supercon-

formal isometries. This material largely follows [2, 37] and is inspired by the related

9One method is to use the argument of [23] for the gauge invariance of the vector-tensor coupling.
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construction in projective superspace [24]. A corresponding discussion for the general class

of (N , p, q) superspaces was given in [8, 9].

In flat N = 2 superspace, the superconformal transformation of any covariant super-

field Ψ is

δΨ = ξADAΨ+
1

2
λabMbaΨ+ ΛDDΨ+ ΛAAΨ+ λi

jI
j
iΨ+ ηαiSαiΨ+ ǫaKaΨ . (5.1)

We are interested only in transformations that preserve a rigid background, meaning that

the fixed vielbeins and (vanishing) connections of flat N = 2 superspace must be pre-

served, [δ,DA] = 0, from which a number of properties follow. The parameters ξA describe

superconformal Killing vectors, with ξa obeying the so-called master equation

Di
(βξα)α̇ = 0 , D̄

(β̇
i ξα̇)α = 0 . (5.2)

The other quantities in (5.1) turn out to be derived from ξa [24].

For a superfield Ψ that depends on the harmonics v±i and w±
i , the action of the SU(2)R

generators in the central basis is given by

λi
jI

j
iΨ = −λ++

v D−−
v Ψ+ λ0

vD
0
vΨ+ λ−−

v D++
v Ψ , (5.3)

with λ±±
v := λijv±i v

±
j and λ0

v := λijv+i v
−
j . The most important example is an analytic

twisted biholomorphic conformal primary F (n,m), whose full transformation law is

δF (n,m) = ξaDaF
(n,m) − ξα+D−

αF
(n,m) − λ++

v D−−
v F (n,m) + n(ΛD + λ0

v)F
(n,m) , (5.4)

where ξα± = v±i ξ
αi and D±

α := v±i Dα
i. In order for δF (n,m) to be analytic, one must have

D̄α̇+ξb = 2i(σ̄b)α̇αξ+α , D+
α ξ

β+ = δα
βλ++

v , D̄+
α̇ ξ

β+ = 0 , D+
α (ΛD + λ0

v) = 0 , (5.5)

which are consequences of the master equation. The analytic quantity Λ := ΛD + λ0
v may

also be written

Λ =
1

2

(
Daξ

a +D−
α ξ

α+ −D−−
v λ++

v

)
. (5.6)

Let us now introduce the analytic basis of rigid complex harmonic superspace. We

choose complex harmonic coordinates ui±, z±± and z0 defined as in section 2 and take

θ̂+α =
θiαv

+
i

(v+, w−)
= θiαu

+
i , θ̂−α = θiαw

−
i = θiαu

−
i ,

x̂m = xm − 2iθ(iσmθ̄j)
viw̄j

(v, w̄)
= xm − 2iθ(iσmθ̄j)u+i u

−
j . (5.7)

The coordinates x̂m, θ̂+α , and u± parametrize the analytic superspace in the analytic basis.

Note that the Grassmann coordinates carry U(1)w charge, whereas the spinor derivatives

carry U(1)v charge. In this coordinate system, the superspace derivatives become

Da = ∂̂m , D+
α = z0

∂

∂θ̂α−
,
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D−
α = −

1

z0

(
∂

∂θ̂α+
− 2i(σm ˆ̄θ−)α ∂̂m − z−− ∂

∂θ̂α−

)
,

D̄−
α̇ = −

1

z0

(
∂

∂ ˆ̄θα̇+
+ 2i(θ̂−σm)α̇ ∂̂m − z−− ∂

∂θ̂α̇−

)
. (5.8)

Three of the harmonic derivatives remain quite simple,

D++
v = (z0)2

∂

∂z−−
, D0

v = z0
∂

∂z0
, D−−

w =
∂

∂z++
, (5.9)

with the others are moderately more complicated,

D++
w = ∂++

u − 2i(θ̂+σm ˆ̄θ+ )̂̂∂m + θ̂α+∂α− − z++∂0
u

− (z++)2
∂

∂z++
+ z++z0

∂

∂z0
+ (2z++z−− − 1)

∂

∂z−−
,

D−−
v =

1

(z0)2

(
∂−−
u − 2i(θ̂−σm ˆ̄θ−)∂̂m + θ̂α−∂α+ −

∂

∂z++
+ z−−z0

∂

∂z0
+ (z−−)2

∂

∂z−−

)
,

D0
w = ∂0

u + θ̂α+∂̂α+ − θ̂α−∂̂α− + 2z++∂z++ − 2z−−∂z−− − z0
∂

∂z0
. (5.10)

Any twisted biholomorphic superfield F (n,m) corresponds to a complex harmonic su-

perfield F (n+m) via F (n,m) = (z0)nF (n+m)(x̂, θ̂+, u±), which transforms as

δF (n+m) = λm∂mF (n+m) + λα+∂α+F
(n+m) − λ++

u ∂−−
u F (n+m) + nΛF (n+m) ,

λm = ξm − 2i(ξiσm ˆ̄θ−)u+i − 2i(θ̂−σmξ̄i)u+i + 2iλ++
u (θ̂−σm ˆ̄θ−) ,

λα+ = ξαiu+i − λ++
u θ̂α− . (5.11)

The parameters λm, λα+, λ++
u , and Λ are independent of θα−, z++, z−− and z0. They are

interpreted as arising from the analytic general coordinate transformation

δ∗ui+ = λ++
u ui− , δ∗u−i = 0 , δ∗x̂m = −λm , δ∗θ̂α+ = −λα+ , (5.12)

on the analytic space (x̂, θ̂+, u±), with Λ given by half of the infinitesimal Berezinian, Λ =
1
2

(
∂mλm − ∂α+λ

α+ − ∂−−
u λ++

u

)
, equivalent to (5.6). Any analytic superfield transforming

as (5.11) is called a primary analytic scalar of weight n. From the above results, one may

show that the action

S =
i

2π

∫

S
U++ ∧ U−−

∫
d4x̂ d4θ̂+ L

+4 (5.13)

is a superconformal invariant provided L +4 is an analytic scalar of weight two. This is

just the rigid formulation of conventional harmonic superspace on the complexified S2, and

reproduces the rigid limit of the analytic superspace action principle (4.5) after taking

L
(2,2) = (z0)2L +4 , E(−2,−2) = (z0)−2

(
U++
ζ U−−

ζ̃
− U++

ζ̃
U−−
ζ̃

)
. (5.14)
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5.2 The analytic basis in complex harmonic superspace

In order to construct the curved analogue of (5.13), we must introduce the analytic basis

in a curved geometry. We assume that this analytic basis (or analytic gauge) is accom-

plished using a twisted biholomorphic gauge transformation with gauge parameters that

are homogeneous of degree zero in vi and w̄i separately. Schematically, the analytic gauge

arises as ∇̂A = eB∇Ae
−B where ∇A is the covariant derivative in central gauge and eB

is a bridge operator. For the coordinates themselves, the bridge can be represented as a

twisted biholomorphic coordinate transformation, taking the central basis zM to analytic

basis ẑM given by the generalization of (5.7),

x̂m = xm + bm , θ̂µ+ =
θµiv+i

(v+, w−)
+ bµ+ , θ̂µ− = θµiw−

i + bµ− ,

v̂i± = vj±bj
i , ŵi± = wi± , (5.15)

in terms of twisted biholomorphic bridges b that depend only on the harmonics vi+ and

w−
i . These bridges carry vanishing SU(2)v charge and their SU(2)w charge is indicated; in

addition, bj
i must have unit determinant. Because ∇+

α annihilates wi± in the central gauge

(i.e. there is no SU(2)w connection), it is evident that no bridge needs to be introduced

for those harmonics. However, the presence of the SU(2)v connection in the central basis

requires the bridges bj
i to be nonzero, because in the central basis ∇Av

i+ = VA
i
j v

j+ 6= 0.

As a consequence of the twisted biholomorphy of the bridges, one can see that a number

of harmonic derivatives take simple forms in the analytic basis:

∇̂0
w = ∂̂0

w + θ̂µ+∂̂µ+ − θ̂µ−∂̂µ− , ∇̂−−
w = ∂̂−−

w , ∇̂0
v = ∂̂0

v , ∇̂++
v = ∂̂++

v . (5.16)

In addition, there is no obstruction to choosing ∇̂+
α to simply be given by

∇̂+
α = (v̂+, w−) δα

µ ∂

∂θ̂µ−
. (5.17)

This involves not just a choice of analytic coordinates but also a choice of all the other

gauges as well, both to trivialize the vielbein terms and to eliminate the connections; this

is possible as a consequence of (3.13).10 The expression for ∇̂++
w is more elaborate:

∇̂++
w = ∂̂++

w −H(2,2)∂̂−−
v +H(0,2)∂̂0

v+H(−2,2)∂̂++
v +H(0,2)m∂̂m+H(0,3)µ∂̂µ++H(0,1)µ∂̂µ−

−
1

2
Ω++ab

w Mba −A++
w A−B++

w D− F (0,2)aKa − F (1,2)αS−
α + F (−1,2)αS+

α . (5.18)

The contributions to the vielbein, denoted by H, coincide with the similarly-named objects

in the conventional harmonic superspace approach [52] (and which were introduced earlier

in [37]) up to redefinitions to be discussed in a moment.

A key observation one should make about (5.18) is the absence of additional contribu-

tions involving ∂̂0
w and ∂̂−−

w . This is a consequence of the simple form for the analytic basis

10We took in [10] the analytic gauge ∇+
α = ∂+

α , choosing the θ+ coordinates to carry U(1)v charge. This

choice is also possible here at the cost of breaking with standard harmonic superspace conventions.
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for the SU(2)w harmonics. However, there is a complication hidden within (5.18): not all

of the connections are twisted biholomorphic. In particular,

∂̂++
v F (−1,2)α = F (1,2)α , ∂̂++

v F (1,2)α = 0 ,

∂̂++
v H(−2,2) = 2H(0,2) , ∂̂++

v H(0,2) = H(2,2) , ∂̂++
v H(2,2) = 0 , (5.19)

while the vielbeins H(0,3)µ and H(0,1)µ obey

∂̂−−
w H(0,3)µ = −θ̂µ+ , ∂̂−−

w H(0,1)µ = −θ̂µ− . (5.20)

To make these features explicit, it will be useful to adopt a change of coordinates to the

complex variables ui±, z±±, and z0 defined in section 2.3. Analogous definitions in the

analytic basis of ûi±, ẑ±±, and ẑ0 in terms of v̂i± and ŵi± leads to

ẑ++ = z++ + b++ , ẑ0 = z0 b0 , ẑ−− = (b0)2(z−− + b−−) ,

ûi+ = ui+ − b++ui− , û−i = u−i . (5.21)

The three bridges b±± and b0 are nonlinearly related to the SU(2)v bridge bi
j . The bridges

b++, bm, bµ+ and bµ− appeared in the harmonic superspace context in [52]; the bridges b0

and b−− did not appear there because the additional complex coordinates ẑ0 and ẑ−− are

not needed to describe analytic superfields.11 In terms of these coordinates, we now have

∇̂0
w = ∂̂0

u + 2ẑ++∂ẑ++ − 2ẑ−−∂̂z−− − ẑ0∂̂z0 + θ̂µ+∂̂µ+ − θ̂µ−∂̂µ− ,

∇̂−−
w =

∂

∂ẑ++
, ∇̂++

v = (ẑ0)2
∂

∂ẑ−−
, ∇̂0

v = ẑ0
∂

∂ẑ0
,

∇̂+
α = ẑ0δα

µ ∂

∂θ̂µ−
. (5.22)

To simplify the conditions (5.19) on the connections for ∇++
w , it will be useful to introduce

new vielbeins H that are independent of ẑ±± and ẑ0:

Hm(0,2) ≡ H++m , H(0,3)µ ≡ H+++µ − ẑ++ θ̂µ+ , H(0,1)µ ≡ H+µ − ẑ++ θ̂µ− ,

H(2,2)

(ẑ0)2
≡ H+4 , H(0,2) ≡ H++ + ẑ−−H+4 ,

(ẑ0)2H(−2,2) ≡ H0 + 2ẑ−−H++ + (ẑ−−)2H+4 . (5.23)

It is convenient to similarly modify the S-supersymmetry connections as well:

F (1,2)α ≡ ẑ0F+++α , F (−1,2)α ≡
1

ẑ0

(
F+α + ẑ−−F+++α

)
. (5.24)

Then (5.18) may be rewritten

∇̂++
w = ∂̂++

u − ẑ++∇̂0
w + (ẑ++)2∇̂−−

w +H+4
(
∂̂z++ − ∂̂−−

u

)
+H++

(
∇̂0

v + 2ẑ−−∂̂z−−

)

11These bridges match those given in [38] for the complex harmonic description of quaternionic sigma

models. This is a natural consequence of the biholomorphic analyticity assumed there, which we follow.
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+ (H0 − 1)∂̂z−− +H++m∂̂m +H+++µ∂̂µ+ +H+µ∂̂µ− −
1

2
Ω++ab

w Mba

−A++
w A−B++

w D− F++a
w Ka + F+αS+

α −F+++α

(
ẑ0S−

α −
ẑ−−

ẑ0
S+
α

)
. (5.25)

Each of the connection superfields above is twisted biholomorphic with vanishing U(1)v
charge, depending only on the complex harmonics. Up to sign conventions, the superfields

H+4, H+++µ, H++m, and H+µ coincide with similarly named objects in the conventional

harmonic superspace description of conformal supergravity [37, 52]. The importance of

the connections B++
w and H++ will be addressed in the next subsection. The absence of

the remaining connections in [52] is apparent when one recalls that ∇̂++
w always acts on

analytic twisted biholomorphic primary scalars, and so these connections tend to drop out.

At this stage, we could proceed further and analyze the full structure of the analytic

basis, including the connections within ∇̂−−
v . However, this will not be directly necessary:

our main motivation is to provide a covariant description, and a full construction of the

analytic basis connections is not necessary for that purpose. However, it may be useful to

note the consequences of [∇̂++
w , ∇̂+

α ] = 0. One finds (using ∂+
α ≡ ∂α−) that several of the

vielbeins and the combination H++ −B++
w are analytic,

∂+
αH

+4 = ∂+
αH

++m = ∂+
αH

+++µ = ∂+
α (H

++ −B++
w ) = 0 , (5.26)

while the other vielbeins are less strongly constrained,

∂+
αH

+µ̇ = 0 , (∂+)2H0 = (∂̄+)2H0 = 0 . (5.27)

The other connections are entirely determined in terms of the vielbeins as

B++
w = 2H++ −

1

2
(∂+

αH
α+ + ∂̄+

α̇H
α̇+) , Ω++

w αβ = −∂+
(αH

+
β) ,

A++
w = −

i

4
(∂+

αH
α+ − ∂̄+

α̇H
α̇+) , F++

w αβ̇ = −
i

4
∂+
α ∂̄

+

β̇
H0 ,

F+++α = −
1

8
(∂+)2Hα+ , F+α = −

1

4
∂α+H0 . (5.28)

The conditions (5.27) and (5.28) are a consequence of the strong gauge choice (5.17) made

for ∇+
α . These can be simplified still further by imposing the additional gauges H++ =

H0 = 0 and Hµ+ = θ̂µ+, which imply that ẑ0, ẑ−−, and θ̂µ− are respectively chosen to

solve ∇++
w log ẑ0 = ẑ++, ∇++

w

(
ẑ−−/(ẑ0)2

)
= −1/(ẑ0)2, and ∇++

w (θ̂µ−/ẑ0) = θ̂µ+/ẑ0.

5.3 Curved harmonic superspace and analytic densities

In the conventional formulation of curved harmonic superspace [52], one remains in the

analytic gauge while generalizing the transformations (5.12) and the action (5.13). That

is, on the analytic superspace, the coordinates x̂, θ̂+, and û± transform as

δ∗ûi+ = λ̂++ûi− , δ∗ûi− = 0 , δ∗x̂m = −λ̂m , δ∗θ̂α+ = −λ̂α+ , (5.29)

involving unconstrained analytic parameters λ̂. The action

S =
i

2π

∫

S
Û++ ∧ Û−−

∫
d4x̂ d4θ̂+ L̂

+4 (5.30)
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is invariant provided L̂ +4 transforms as a primary analytic scalar of weight two,

δL̂ +4 =
(
λ̂m∂̂m + λ̂α+∂̂α+ − λ̂++∂̂−−

u

)
L̂

+4 + 2Λ̂L̂
+4 , (5.31)

where 2Λ̂ := ∂̂mλ̂m − ∂̂α+λ̂
α+ − ∂̂−−

u λ̂++.

To establish the action above, it helps to slightly modify our formulation (4.5) for the

action in a general gauge. Instead of the measure factor d2ζ built out of the coordinates ζ

and ζ̃ parametrizing S directly, we wish to use the complex harmonic measure U++∧U−−,

with the complex harmonics u± implicitly depending on ζ and ζ̃. So we first reexpand the

vielbein one-forms using the complex harmonic coordinates:

EA = dzMEM
A + U++Eu++

A + U0Eu0
A + U−−Eu−−

A

+ dz++Ez++
A + dz−−Ez−−

A + dz0Ez0
A . (5.32)

The one-forms U++, U−− and U0 constitute a fixed anholonomic frame. Then the analytic

superspace action (4.5) becomes

i

2π

∫

S
U++ ∧ U−−

∫
d4x d4θ+ E(−2,−2)

L
(2,2) ,

E(−2,−2) = sdet




Em
a Em

α+ Em
v++ Em

w−−

Eµ+
a Eµ+

α+ Eµ+
v++ Eµ+

w−−

Eu++
a Eu++

α+ Eu++
v++ Eu++

w−−

Eu−−
a Eu−−

α+ Eu−−
v++ Eu−−

w−−




. (5.33)

Under a diffeomorphism, one still finds δEM
A = ξN∂NEM

A + ∂MξNEN
A but must in-

terpret ∂M as including the non-commuting derivatives ∂±±
u and ∂0

u . In particular, the

measure E(−2,−2) transforms under diffeomorphisms of the coordinates x, θ+, u±i as

δE(−2,−2) = (−)m∂m

(
ξmE(−2,−2)

)
, m = (m,µ+, u ++, u−−) (5.34)

Now let us go to the analytic basis. Using the results in appendix A, one can show

that within the analytic gauge, Ê(−2,−2) is independent of θ̂µ− and ẑ±±,

∇̂+
α Ê

(−2,−2) = ∇̂++
v Ê(−2,−2) = ∇̂−−

w Ê(−2,−2) = 0 (5.35)

and possesses charge (−2,+2) under the action of the U(1)v ×U(1)w derivatives:

∇̂0
v Ê

(−2,−2) = −2 Ê(−2,−2) , ∇̂0
wÊ

(−2,−2) = +2 Ê(−2,−2) . (5.36)

Note that these differential conditions are distinct from the transformation properties of

the measure under covariant diffeomorphisms. The above conditions hold only in the

analytic gauge and arise as a consequence of the explicit way we have chosen the Grassmann

coordinates. Now combine the scalar Lagrangian with the measure to give the Lagrangian

density with (analytic) charge (0,+4),

L̂
+4 = Ê(−2,−2)

L
(2,2) . ∇̂0

vL̂
+4 = 0 , ∇̂0

wL̂
+4 = +4 L̂+4 . (5.37)

It transforms under analytic coordinate transformations precisely as in (5.31). For the

invariant action, we recover (5.30).
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5.4 Examples in the analytic basis

Let us verify agreement with [52] by constructing two simple actions in the analytic basis.

The Q+ hypermultiplet action. We start with the general form of the Qa+ hyper-

multiplet action

L
(2,2) =

1

2
L+
a ∇

++
w Qa+ +H(2,2) . (5.38)

Qa+ is a scalar multiplet of weight 1, while L+
a and H(2,2) are functions of the appropriate

homogeneities for their weights. Let us denote Ê ≡ Ê(−2,−2) in this section to keep notation

relatively simple. Then we make the change of variables to the scalar density Q̂a+ =

(Ê)1/2Qa+. Using the conformal properties of the fields, we find

L+
a (Q,w−) = (Ê)−1/2L+

a (Q̂
+, w−) , H(2,2) = (Ê)−1H+4(Q̂+, w−) . (5.39)

Then the analytic Lagrangian L̂ +4 ≡ ÊL (2,2) can be written

L̂
+4 =

1

2
L+
a Ê1/2

(
D̂++ + (H++ −B++

w )
)Q̂a+

Ê1/2
+H+4 ,

D̂++ ≡ ∂̂++
u −H+4∂̂−−

u +H++m∂̂m +H+++µ∂̂µ+ . (5.40)

To proceed further, we require the following identity in the analytic basis:

D̂++Ê − 2(H++ −B++
w )Ê =

(
∂̂−−
u H+4 − ∂̂mH++m + ∂̂µ+H

+++µ
)
Ê ≡ −Γ++Ê . (5.41)

Its proof follows by noting that the harmonic superspace integral of

Ê∇̂++
w F (2,0) = Ê

(
D̂++F (2,0) + 2 (H++ −B++

w )F (2,0)
)

(5.42)

is a total derivative for any F (2,0). Then we recover

L̂
+4 =

1

2
L+
a

(
D̂++ +

1

2
Γ++

)
Q̂a+ +H+4 . (5.43)

This is the correct analytic basis action, expressed in terms of scalar densities Q̂a+. As

anticipated, the connection (H++−B++
w ) has been replaced by the analytic quantity 1

2Γ
++.

The improved tensor multiplet action. As a similar exercise, we now show how to

recover the improved tensor multiplet action in the analytic basis. Beginning with (4.30),

we must make the change of variables Q̂i+
0 = (Ê)1/2Qi+

0 and L̂++ = Ê L++. Then the

analytic Lagrangian density becomes

L̂
+4 =

1

2

(ĝ++)2

(Ω̂0)2
+

1

2
Q̂+

0i D̂
++Q̂i+

0 − 2
ĝ++cijw

i−

Ω̂0

(
D̂++ +

1

2
Γ++

)
Q̂j+

0 . (5.44)

We know that Q̂i+
0 may be any analytic function: in the analytic gauge, we can simply

choose it to be ûi+. Doing so, it is not hard to show

L̂
+4 =

1

2
(ĝ++)2 − Γ++C−+ĝ++ +

1

2
H+4(1 + 4 ĝ++C−−) . (5.45)

This matches the action of [56] up to the redefinitions C++ → 1
2C

++ and L++ → 1
2L

++,

the difference in sign H+4 → −H+4, and an overall normalization.
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5.5 Harmonic superspace on M4|8 × S2

Finally, let us address the relationship between the covariant formulation presented here

and that of Galperin, Ky, and Sokatchev [26] (see also [25]). These papers established

that within a superspace gauging only the Lorentz group and superdiffeomorphisms, the

integrability conditions for analytic superfields coincided with the torsion constraints

of the simplest version of N = 2 Einstein supergravity [50, 51]. Because of absence of

SU(2)R connections, one can introduce harmonics as external coordinates annihilated by

the covariant spinor derivatives. The harmonics are identified simply with the external

automorphism group SU(2)A, and so a single set of real harmonics and a real auxiliary S2

is sufficient. Within this framework, the analytic prepotentials of Einstein supergravity

were uncovered and explicit formulae for connections and vielbeins were worked out.

However, certain features were not explored. A general component action analogous

to (4.18) was not given, nor were the superspace actions cast in a manifestly covariant

form. Although it is clear that such results could be constructed directly as we have

done using conformal superspace, it is instructive to consider instead how to recover this

Poincaré harmonic superspace framework directly from the conformal one.

Recall that this N = 2 Einstein supergravity corresponds to conformal supergravity

coupled to two compensators: a vector multiplet W and a non-linear multiplet La
i. Their

lowest components fix the dilatation and the SU(2) × U(1) R-symmetries and lead to an

off-shell supergravity involving only gauged Lorentz transformations, diffeomorphisms, and

supersymmetry. One of the lowest fermions fixes the S-supersymmetry gauge and the other

becomes a dimension-1/2 matter field.

To describe the same supergravity at the superfield level, one can introduce superfields

W and La
i in conformal superspace and adopt the dilatation-U(1)R gauge W = 1 and the

SU(2)R gauge La
i = δa

i. Actually, it is instructive to construct the new superspace not by

gauge-fixing explicitly but by using the superfields to redefine the vielbein and spin connec-

tion to compensate the symmetries that should be fixed. We may do this in two steps. First,

using the superfield W , convert conformal superspace derivatives ∇A to SU(2) superspace

derivatives DA (see [28] for the N = 2 case or [58] for a pedagogical discussion in N = 1).

The DA carry no dilatation weight or U(1)R charge and are conformally inert. Provided one

acts only on primary superfields whose Weyl and U(1)R weights have been removed with

the compensator, the dilatation, U(1)R and special conformal connections become inert.

Next, using SU(2) superspace, we can repeat the construction of covariant harmonic

superspace. The main details do not change; in particular, because the supergeometry

includes the SU(2) R-symmetry group, two sets of real harmonics are still necessary. The

algebra of spinor covariant derivatives D+
α is [21]

{D+
α ,D

+
β } = 2S++Mαβ + 4YαβD

++
v , {D+

α , D̄
+

β̇
} = Gαβ̇D

++
v , (5.46)

consistent with the existence of twisted biholomorphic analytic scalars. Now we may in-

troduce the second compensator and build SU(2)R-inert derivatives in the central basis:

D̃αa = La
i
(
Dαi + (DαiLb

j)Lb
kI

k
j

)
. (5.47)

– 35 –



J
H
E
P
0
3
(
2
0
1
6
)
1
0
7

The second term modifies the SU(2)R connection so that La
i is covariantly constant. In

the gauge where La
i = δa

i, its effect is to eliminate the SU(2)R connection entirely. An

important check is to verify that the algebra of covariant derivatives still permits analytic

multiplets. One finds that12

{D̃(a
α , D̃

b)
β } = Ψ

(a
(αD̃

b)
β) + curvatures , (5.48)

where the fermion Ψa
α is the dimension-1/2 fermion present in the non-linear compensator,

now reinterpreted as a torsion superfield. We refer to the superspace associated with D̃A

as “Einstein superspace”.13

This shows how to arrive at the right supergeometry from the central basis, but what

about from a more general gauge? Let the general gauge covariant derivatives in complex

harmonic SU(2) superspace be denoted DA = (DA,Dva,Dwā). The non-linear multiplet

superfields L±± and L∓± carry both U(1)w and U(1)v charge (in the central basis these

are Laiw±
a v

±
i and Laiw∓

a v
±
i ). We introduce the compensated harmonic derivatives

D̃++ := D++
w +

1

(L−+)2
D++

v +N++D0
w − (N++)2D−−

w ,

D̃0 := D0
v +D0

w + 2
L−−

L−+
D++

v − 2N++D−−
w ,

D̃−− := (L−+)2D−−
v +D−−

w − (L−−)2D++
v − L−−L−+D0

v . (5.49)

These act on twisted biholomorphic superfields, preserving their twisted biholomorphy.

They also annihilate L±± and L∓±, and on the field dependent combinations Ua+ := La+

L−+

and Ua− := wa− the compensated harmonic derivatives formally act as if they were simple

harmonic derivatives, i.e. D̃++Ua− = Ua+, etc. Furthermore, because L−+ is covariantly

constant and twisted biholomorphic, one may use it to trade U(1)v for U(1)w charge of any

superfield. These observations are clear in the central gauge where La
i = δa

i. There L−+

is just z0, Ua± = ua±, and D̃±± and D̃0 reduce to ∂±±
u and ∂0

u .

The corresponding spinor derivatives in a general gauge are built from the SU(2)

superspace derivatives as

D̃+
α =

1

L−+

(
D+

α + (D+
αL

+
b )L

b−D0
v + (D+

αL
−
b )L

b−D++
v

)
,

D̃−
α = L−+

(
D−

α − (D−
αL

+
b )L

b+D−−
v + (D−

αL
+
b )L

b−D0
v

)
− L−−L−+D̃+

α . (5.50)

The new derivatives D̃±
α carry only U(1)w charge and are themselves twisted biholomorphic:

[D++
v , D̃±

α ] = [D−−
w , D̃±

α ] = [D0
v , D̃

±
α ] = 0 . (5.51)

12If La
i were a general superfield with detLa

i = 1 but not obeying the constraint of a non-linear superfield,

more complicated torsion terms would forbid analytic multiplets. This is one way of understanding why

the SU(2) compensator must be a non-linear multiplet.
13It is also possible to further modify the definition (5.47) by an additional spin connection piece to

eliminate the dimension-1/2 torsion. Doing so recovers precisely the supergeometry employed in [25, 26]

(except for the central charge, which is easy to introduce). This supergeometry was introduced in [59, 60].
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They also obey the relations [D̃++, D̃+
α ] = 0 and [D̃−−, D̃+

α ] = D̃−
α and annihilate the

harmonics and L−+. It is not hard to see that in the central basis D̃±
α = U±

a D̃a
α. These

reduce in the gauge La
i = δa

i to the harmonic derivatives constructed directly in [25, 26].

To summarize: starting with the conformal superspace description, one can first trans-

late all formula to SU(2) superspace, and then translate again to the Einstein superspace.

Using the non-linear compensator, one can rewrite all formulae, including the component

reduction formula, to be manifestly twisted biholomorphic. This completely eliminates any

dependence on z±± and z0, so that all fields and operators depend purely on the complex

harmonics ui±. Going to the gauge where La
i = δa

i, the field dependent compensator Ua+

can then be identified with the complex harmonics themselves and one recovers the covari-

ant formulation of [25, 26]. However, as has been found in a number of recent publications

(see e.g. [11, 30] and references therein), the conformal superspace approach is often a more

efficient scheme for analyzing superspace actions; therefore, we will refrain from giving the

translations explicitly and remain with the manifestly superconformal framework.

There is one last issue which we would like to address within this section. Even within

the superconformal framework, it is possible to interpret a non-linear multiplet as underly-

ing the complex harmonic description [52]. Begin by choosing a gauge where H+4 vanishes.

Because the independent auxiliary field D of conformal supergravity is naturally found as

the highest component of H+4, this gauge must amount to one where D is composite —

exactly the indicator that one is employing a non-linear compensator. So where is the com-

pensator if we haven’t introduced it explicitly? As explained in [52], the vanishing of H+4

implies that ∇++
w ẑ++ = −(ẑ++)2. Provided one has chosen ∇+

α ẑ
++ = 0 without fixing any

gauges but the coordinate choice, ẑ++ can be interpreted as a covariant non-linear primary

superfield. What we wish to add to this old observation is that upon rewriting ẑ++ as

ẑ++ =
v̂i+w+

i

v̂i+w−
i

=
vj+bj

iw+
i

vj+bj iw
−
i

(5.52)

in terms of the bridge superfield bj
i, one can show that the bridge bj

i is actually harmonic-

independent — it is precisely the non-linear multiplet compensator Lai = −δak ǫ
ijbj

k.

6 Superconformal sigma models from curved harmonic superspace

As an application of the covariant harmonic superspace methods presented in earlier sec-

tions, we will derive the general component action for a hyperkähler sigma model coupled

to conformal supergravity [44] using harmonic superspace methods. Because of the co-

variance of the approach, we can largely follow the same scheme used in rigid harmonic

superspace.14 A similar calculation was performed by Ivanov and Valent using prepotential

methods in [29].15 The projective superspace version of this calculation appeared in [27].

Our starting point is the superconformal harmonic superspace Lagrangian (4.23). The

conditions (4.24) are exactly those associated with a superconformal sigma model in har-

14See the pedagogical discussion in chapter 11 of the monograph [2].
15Ref. [29] addressed quaternionic sigma models coupled to supergravity with a hypermultiplet compen-

sator. This is equivalent to hyperkähler sigma models coupled to conformal supergravity after gauge-fixing.
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monic superspace and will lead to a hyperkähler cone in the target space upon elimination

of the auxiliary fields. Indices are raised and lowered with an Sp(n) matrix Ωab,

Qa+ = ΩabQ+
b , Q+

a = Qb+Ωba , ΩabΩbc = −δac . (6.1)

In order to eliminate the auxiliary fields, we must solve their equations of motion. In

the rigid approach, these were analyzed at the component level, but we will analyze them

directly at the superfield level. Varying the Lagrangian (4.23) and discarding a total

derivative, one finds

δL (2,2) = −δQa+
(
∇++

w Q+
a − ∂a+H

(2,2)
)
= 0 . (6.2)

The term in parentheses must vanish, leading to the superfield equation of motion. It

vanishes component-by-component in its θ+ expansion as we place each component of

Qa+ on-shell. Because we only wish to set the auxiliary fields on-shell, we should impose

∇++
w Q+

a = ∂a+H
(2,2) component-by-component except for the highest two components,

which contain the equations of motion for the physical bosons and fermions.

Before proceeding with calculation, we first review how the hyperkähler geometry

emerges, including the structure of gauged isometries, superconformal isometries, and su-

persymmetry transformations of the physical component fields. These properties are in-

sensitive to whether the physical equations of motion are imposed or not, so we will be

able to impose the full superfield equations of motion to aid our discussion. In addition,

all of the formulae from here on will be taken in the central basis to simplify matters.

6.1 Hyperkähler geometry and on-shell N = 2 superfields

Harmonic superspace and hyperkähler geometry. The harmonic superspace ap-

proach to hyperkähler geometry was introduced in [61, 62]. Here we provide only a concise

summary of the results of these papers necessary for the evaluation of the component action

of (4.23). The main difference with [61, 62] is that we will employ a complex harmonic

formulation: that is, we complexify the real harmonics to u+i = v+i /z
0 and u−i = w−

i , with

various factors of z0 = (v+, w−) appearing as needed.

The lowest component of the superfield equation of motion (6.2) takes the form

D++
w q+a (φ, v

+, w−) = ∂a+H
(2,2)(q+, v+, w−) (6.3)

and possesses a solution with 4n real fields φµ parametrizing a hyperkähler manifold M.

For now we will allow H(2,2) to depend also on vi+; later on, we will discuss the specific

features associated with cones. A special choice of coordinates is given by taking φµ as the

leading terms fai in the harmonic expansion qa+ = z0(f
aiu+i + · · · ); however, the specific

choice of φµ will not be relevant here. Once some choice is made, the geometry of the

target space M can be summarized as follows. The solutions qa+(φ, v+, w−) to (6.3) can

be used to construct a closed two-form

Ω++ =
1

2
dqa+ ∧ dqb+Ωab =

1

2
dq+a ∧ dqa+ , (6.4)
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which is annihilated by D++
w . This means it possesses a terminating harmonic expansion

Ω++ = (z0)
2Ωiju+i u

+
j = Ωijv+i v

+
j . The two-forms Ωµν

ij are the three hyperkähler two-

forms. Introducing Eµ
a+ via dqa+ = dφµEµ

a+, we find

Ω++ =
1

2
dφµ ∧ dφν Eµ

a+Eν
b+Ωab =⇒ Ωµν

iju+i u
+
j = Eµ

a+Eν
b+Ωab . (6.5)

The harmonic-dependent function Eµ
a+ can be interpreted as (half of) a local vielbein on

M× TCP 1. Its local analytic Sp(n) structure group leaves the two-form Ω++ invariant.

The form of (6.5) suggests the existence of a local Sp(n) transformation Lb
a(φ, u±)

whereby

Eµ
b+Lb

a = eµ
aiv+i , eµ

ai = eµ
ai(φ) , Ωµν

ij = eµ
a(ieν

bj)Ωab . (6.6)

Noting that D++
w eµ

a+ = 0, one can show that

D++
w Eµ

a+ := D++
w Eµ

a+ − Eµ
b+ω(0,2)

b
a = 0 , ω(0,2)

b
a = Lb

cD++
w (L−1)c

a , (6.7)

where D++
w is interpreted as an Sp(n)-covariant derivative in the analytic Sp(n) gauge with

connection ω(0,2)
b
a. This connection can alternatively be specified in terms of H(2,2),

ω(0,2)
ab = ∂a+∂b+H

(2,2) . (6.8)

From the two different expressions for ω(0,2)
ab, the Sp(n) transformation Lb

a may be de-

termined up to a harmonic-independent piece. This permits one to find the vielbein eµ
ai,

from which the hyperkähler metric gµν is constructed as

gµν = −eµ
aieν

bjǫijΩab = eµ
aieνai . (6.9)

The usual vielbein postulate ∇µeν
ai = ∂µeν

ai − Γµν
ρeρ

ai − eν
biωµb

a = 0 (equivalently

using the vanishing of the torsion tensor) allows one to determine the target space Sp(n)

connection ωµb
a in the central Sp(n) gauge.

There is one additional piece of necessary information. The hyperkähler Riemann

tensor Rµνρσ possesses the tangent space decomposition

Rai bj ck dl := eai
µ ebj

ν eck
ρ edl

σ Rµνρσ = ǫijǫkl Rabcd (6.10)

where Rabcd is a totally symmetric Sp(n) tensor. Applying the local Sp(n) transformation

La
b, we find a new tensor

Rabcd = La
a′ Lb

b′ Lc
c′Ld

d′Ra′b′c′d′ , D++
w Rabcd = 0 . (6.11)

One can show that Rabcd obeys

(z0)
−2Rabcd = H

(−2,2)
abcd + 3ω−

(ab
eH

(−1,2)
cd)e −D++

w B−−
abcd ,

H
(−1,2)
abc := ∂a+∂b+∂c+H

(2,2) , H
(−2,2)
abcd := ∂a+∂b+∂c+∂d+H

(2,2) , (6.12)

– 39 –



J
H
E
P
0
3
(
2
0
1
6
)
1
0
7

where ω−
abc is the solution to the equation

D++
w ω−

abc = H
(−1,2)
abc , (6.13)

and B−−
abcd is a twisted biholomorphic quantity.16

Because these results follow from the equation of motion (6.3), they must hold as

superfield equations provided (6.2) holds. Then we should find the superfields Qa+ are

completely determined in terms of 4n real superfields Φµ, so that any variation becomes

δQa+ = δΦµEµ
a+ . (6.14)

In particular, this means that the two-form Ω++ defined on the target space,

Ω++ =
1

2
dQa+ ∧ dQb+Ωab =

1

2
dΦµ ∧ dΦν eµ

a+eν
b+Ωab , (6.15)

may be generalized to any antisymmetrized variation

1

2
δQa+ ∧ δQb+Ωab =

1

2
δΦµ ∧ δΦν eµ

a+eν
b+Ωab . (6.16)

Replacing δ with various local symmetry operations leads to useful results, some of which

we will come across in the next few subsections.

Gauged isometries from harmonic superspace. We will be including the possibility

of gauged isometries in the action. These were originally described in harmonic super-

space in [63], whose results we summarize here. Suppose that the harmonic superspace

Lagrangian possesses some isometries under which

δQa+ = λrJ a+
r (Q+, v+, w−) , (6.17)

for constant parameters λr. In the superconformal case, J a+
r must actually be independent

of vi+, but we will remain with this more general case for the moment. In order for this to

be an invariance of the action, it must obey

J a+
r = Ωab∂b+D

++
r , J a+

r ∂a+H
(2,2) = ∂++

w D++
r . (6.18)

for some biholomorphic function D++
r of charge (2, 0), defined up to a shift by constant

c++
r = cijr v

+
i v

+
j . The second equation in (6.18) determines the explicit dependence of

D++
r on w−

i . When the equations of motion are imposed, so that Qa+ is determined as a

function of the harmonics, the first condition of (6.18) is interpreted as the requirement

of invariance of the hyperkähler two-form Ω++, while the second relation of (6.18) implies

that D++
r is w−

i -independent,

D++
w D++

r = 0 =⇒ D++
r = Dij

r v
+
i v

+
j . (6.19)

The function D++
r is the Killing potential (or moment map) of the hyperkähler manifold.

On-shell, the gauge transformations of Qa+ must manifest on the fields φµ of the target

16In the framework of [61, 62], B−−

abcd = D−

a ω−

bcd and ω−

abc is the Sp(n) connection for the covariant target

space derivative D−

a in the analytic gauge.
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space as δφµ = λrJr
µ(φ). As a consequence of (6.14), one finds J a+

r = Jr
µEµ

a+.

From (6.18), one finds ∂µDr
ij = −(Ωij)µνJr

ν .

We are interested in situations where the Lagrangian (and not just the action) is gauge

invariant and where it can be gauged in a manifestly covariant way — that is, by simply

adding the appropriate connection to D++
w . In these cases, the Killing potential may be

chosen in special form D++
r = −1

2Q
+
a J

a+
r .17 When the Lagrangian is superconformal,

this is always possible. By taking (6.16) and replacing one δ with a gauge transformation

and the other with a dilatation, one may find the special form of the moment map on a

hyperkähler cone, Dr
ij = −1

2χ
µ(Ωij)µνJ

ν
r .

Superconformal isometries and the hyperkähler potential. Now let us analyze

the superconformal properties of the target space. The hypermultiplet Qa+ transforms

locally under dilatations and SU(2)R as

δQa+ = ΛDDQ
a+ + λi

jI
j
iQ

a+ = (ΛD + λ−+
v )Qa+ − λ++

v ∇−−
v Qa+ ,

λ++
v = λijv+i v

+
j , λ+−

v = λijv+i v
−
j , (6.20)

and is inert under U(1)R. On the target space, δΦµ = ΛDk
µ
D + λi

jk
j
i
µ for some choice of

vectors kµD := DΦµ and kij
µ := IijΦ

µ. Using (6.14), one may show that

kµDEµ
a+ = Qa+ , (k+−

v )µEµ
a+ =

1

2
Qa+ ,

(k−−
v )µEµ

a+ = D−−
v Qa+ , (k++

v )µEµ
a+ = 0 . (6.21)

These conditions imply that

IijΦ
µ ≡ (kij)

µ = (Ωi
j)

µ
νk

ν
D . (6.22)

Now using the transformation properties of the hyperkähler two-form, one can prove that

kµD is a homothetic conformal Killing vector on the target space, ∇µk
ν
D = δµ

ν . In particular,

there exists a globally-defined hyperkähler potential K for which

K =
1

2
kµDkDµ , ∂µK = kDµ . (6.23)

There is a very useful alternative form for the hyperkähler potential:

K = −Q+
a D

−−
v Qa+ . (6.24)

To prove this agrees with (6.23), observe that when Qa+ obeys its equation of motion, K

obeys D++
w K = 0 and so is harmonic independent. Now we use

−Q+
a D

−−
v Qa+ = −2 (k+−

v )µ(k−−
v )νE+

µaEν
a+ = −2 (k+−

v )µ(k−−
v )νΩµν

++ =
1

2
kµDkDµ (6.25)

after applying (6.22), and so the equality between (6.23) and (6.24) follows. This expression

also follows by replacing the variations in (6.16) with D0
v and D−−

v : in other words, the

function K is a component of the pullback of Ω++ to the complex harmonic manifold.

17This choice for the Killing potential is actually always possible provided we do not adopt the special

gauge L+
a = Q+

a . As is familiar from Kähler target spaces in N = 1 theories [64], it is possible to introduce

non-dynamical multiplets with vanishing kinetic terms whose sole purpose is to render the Lagrangian com-

pletely gauge invariant, so that minimal substitution may proceed. The cost of this approach in harmonic

superspace would be zero eigenvalues of the harmonic “kinetic matrix” ∂[a+L
+
b].
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Supersymmetry and fermion transformations. Up until now, we have discussed

only the physical bosonic field φµ and its superfield lift Φµ. The sigma model also involves

an Sp(n) fermion ζα
b related to φ by supersymmetry. Here we will review how it emerges

from the harmonic structure. Following [2], we define the fermion Ψα
a := ∇−

αQ
a+|, which

is twisted biholomorphic and obeys

D++
w Ψα

a := D++
w Ψα

a −Ψα
b ω(0,2)

b
a = 0 (6.26)

when Qa+ is on-shell. This implies that we can introduce the harmonic-independent phys-

ical fermions ζα
a via Ψα

a ≡ ζα
b(L−1)b

a In accordance with (6.14), one finds that

∇−
αΦ

µ|Eµ
a+ = ζα

b(L−1)b
a =⇒ ∇αiΦ

µ| = ζα
aeai

µ , (6.27)

which implies the supersymmetry transformations

δQφ
µ = ξiζ

b eb
iµ + ξ̄iζ̄b ebi

µ (6.28)

where ξαi and ξ̄iα̇ are the SUSY parameters. The target space vielbeine eµ
ai and their

inverses eai
µ coincide with corresponding quantities introduced in [65, 66] (see also [67]

and [44]). The fermions obey the condition (ζα
b)∗ = ζ̄α̇b.

In a similar way, we can calculate the supersymmetry and S-supersymmetry transfor-

mations of the fermions,

δζaα = −2i∇αβ̇φ
µ eµi

a ξ̄β̇i − 2W̄ rJr
iaξαi + 4ηiαAi

a + δφµ ζcα ωµc
a ,

δζ̄α̇a = +2i∇α̇βφµ eµ
i
a ξβi − 2W rJriaξ̄

α̇i − 4η̄α̇i A
i
a − δφµ ζ̄α̇c ωµa

c , (6.29)

where ηiα and η̄iα̇ are the S-supersymmetry parameters and W r is the complex scalar of

the vector multiplet. We employ the same conventions for the vector multiplet as [10]. We

have introduced the pseudoreal Sp(n) × Sp(1) sections Aia associated with the conformal

Killing vectors [44]

Aia := kµD eµ
ia , (Aia)∗ = Aia , Aa+ = Qb+Lb

a . (6.30)

It is helpful to note that ∇aφ
µeµ

ai = ∇̂aA
ai where ∇̂a also carries the Sp(n) connection.

For reference, we also give the transformations of the fermions under gauged isometries,

δgζ
a
α =

1

2
λrζbαebj

µ(∇µJ
ν
r )eν

ja + δgφ
µ ζcα ωµc

a ,

δg ζ̄
α̇
a =

1

2
λr ζ̄α̇b e

bjµ(∇µJ
ν
r )eνja − δgφ

µ ζ̄α̇c ωµa
c . (6.31)

Some useful identities. Finally, we will need some useful identities arising from (6.16).

For example, taking the spinor part of the pullback of Ω++ to M4|8 leads to

Ωαβ = ∇−
αQ

+
a | ∇

−
βQ

a+| = ζαa ζβ
a . (6.32)

Each of the quantities Ωαβ , Ωαβ̇ and Ωα̇β̇ are harmonic-independent at lowest order in their

θ expansion. Similar expressions arise using the vector derivatives or the gauge generator,

Ω+
α b := ∇−

αQ
+
a | ∇bQ

a+| = ζαa∇̂bA
a+ , Ω+

α r := ∇−
αQ

+
a |XrQ

a+| = ζαaJr
a+ . (6.33)
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Other expressions such as Ω++
rb or Ω++

ab could be introduced, but we won’t need them. We

will however need spinor derivatives of the hyperkähler potential and moment map:

∇+
αK| = Q+

a ∇
−
αQ

a+| = A+
a ζα

a , ∇−
αK| = A−

a ζα
a = D−−

v Q+
a ∇

−
αQ

a+| ,

∇−
αD

++
r | = −Ω+

αr . (6.34)

6.2 The component fields of Qa+ and auxiliary equations of motion

Now we are prepared to set up the component calculation. Begin by defining the compo-

nents of Qa+, largely following [2]:

Ψa
α := ∇−

αQ
a+| , Ψa

α̇ := ∇̄−
α̇Q

a+| , (6.35a)

Ma− := −
1

4
(∇−)2Qa+| , Na− := −

1

4
(∇̄−)2Qa+| , (6.35b)

Aa−
αβ̇

:= −i∇−
α∇

−
β̇
Qa+| , (6.35c)

Ξa−−
α :=

1

8
∇−

α (∇̄
−)2Qa+| , Ξa−−

α̇ :=
1

8
∇̄−

α̇ (∇
−)2Qa+| , (6.35d)

P a(−3) :=
1

16
(∇−)2(∇̄−)2Qa+| . (6.35e)

These will be the most convenient definitions for the component calculation we will soon

undertake, but they possess one important disadvantage that must be kept in mind. Each

of the terms aside from Ψa
α is not twisted biholomorphic. In particular, one can show that

D++
v Ab

a− = −2∇bq
a+ , D++

v Ma− = −W̄ rJr
a+ , D++

v Na− = −W rJr
a+ . (6.36)

The expressions for D++
v Ξa−−

α and D++
v P a(−3) are more complicated and can be derived

from similar formulae given in [10]

D++
v Ξa−−

α = −
i

2
∇αβ̇∇̄

β̇−Qa+ + 2λr−
α J a+

r +
1

2
W r∇−

αJ
a+
r

−
1

2
Wα

β∇−
βQ

a+ −
3

2
χ−
αQ

a+ +
3

2
χ+
αD

−−Qa+ , (6.37a)

D++
v P a(−3) = −

i

2
∇α̇α∇−

α∇
−
α̇Q

a+ − 3DD−−Qa+

+
3

2
χα+D−−∇−

αQ
a+ −

3

2
χ̄+
α̇D

−−∇̄α̇−Qa+

+ 2λαr−∇−
αJ

a+
r − 2λ̄r−

α̇ ∇̄α̇−J a+
r

+
1

4
W̄ r(∇̄−)2J a+

r +
1

4
W r(∇−)2J a+

r + 3Y r−−J a+
r . (6.37b)

The vector multiplet gaugino is denoted λαi
r and the pseudo-real auxiliary is Yij

r, again

following [10]. To keep notation simple, we have omitted the explicit component projection.

The equations of motion of the component fields correspond to the action of D++
w

and can be derived by successively taking spinor derivatives of the superfield equation of

motion (6.2). They are summarized in table 1. We impose these only through the θ2 level:

D++
w q+a = ∂a+H

(2,2) , (6.38a)
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component field =⇒ equation of motion

P a(−3) =⇒ D++
w q+a = ∂a+H

(2,2)

Ξa−−
α =⇒ D++

w Ψαa = ∇−
α (∂a+H

(2,2))|

Na− =⇒ D++
w M−

a = −1
4(∇

−)2(∂a+H
(2,2))|

Aa−
αα̇ =⇒ D++

w A−
αα̇b = −i∇−

α ∇̄
−
α̇ (∂b+H

(2,2))|

Ma− =⇒ D++
w N−

a = −1
4(∇̄

−)2(∂a+H
(2,2))|

Ψa
α =⇒ D++

w Ξ−−
αb = 1

8∇
−
α (∇̄

−)2(∂a+H
(2,2))|

qa+ =⇒ D++
w P

(−3)
a = (∇−)4(∂a+H

(2,2))|

Table 1. Component field equations of motion.

D++
w Ψαa ≡ D++

w Ψαa −Ψb
αH

(0,2)
ba = 0 , (6.38b)

D++
w M−

a ≡ D++
w M−

a −Mb−H
(0,2)
ba = −

1

4
ΨbΨcH

(−1,2)
abc , (6.38c)

D++
w N−

a ≡ D++
w N−

a −Nb−H
(0,2)
ba = −

1

4
Ψ̄bΨ̄cH

(−1,2)
abc , (6.38d)

D++
w A−

αα̇ a ≡ D++
w A−

αα̇ a −Ab−
αα̇H

(0,2)
ba = −iΨb

αΨ̄
c
α̇H

(−1,2)
abc . (6.38e)

The solutions completely determine the harmonic expansions of qa+, Ψa
α, M

a−, Na−, and

Ab
a− in terms of the physical fields φµ and ζbα. We have already explained how these arise

in qa+ and Ψa
α. For the others, we find

M−
a = −W̄ rJ −

ra −
z−−

(z0)2
W̄ rJ +

ra −
1

4
ΨbΨc ω−

abc , (6.39a)

N−
a = −W rJ −

ra −
z−−

(z0)2
W rJ +

ra −
1

4
Ψ̄bΨ̄c ω−

abc , (6.39b)

Aa−
αα̇ = −2∇αα̇φ

µEµ
a− − 2

z−−

(z0)2
∇αα̇q

a+ − iΨb
αΨ̄

c
α̇ ω

−
bc

a , (6.39c)

where J a−
r and Eµ

a− are twisted biholomorphic solutions to the equations

(z0)2D++
w J a−

r = J a+
r , (z0)2D++

w Eµ
a− = Eµ

a+ . (6.40)

Note that they are chosen to carry U(1)v charge. This means that

Eµ
b+Lb

a = eµ
aiv+i , Eµ

b−Lb
a = eµ

ai w
−
i

z0
, Jr

a± = Jr
µEµ

a± . (6.41)

6.3 Summary of the component calculation

All the pieces are now in place to work out the component reduction. Here one important

observation will drastically simplify the analysis: when Qa+ is placed fully on-shell, the

superconformal Lagrangian L (2,2) completely vanishes as a consequence of the homogeneity

of H(2,2). Now we are only imposing the equations of motion to the θ2 level, so this means
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that in evaluating the component Lagrangian we only need to keep the terms at higher

order than θ2. (This same observation simplified the projective superspace calculation

of [27].) Thus the component reduction formula (4.18) simplifies to evaluating two terms:

S =
i

2π

∫
d4x e

∫

S
V++ ∧W−−

(
T
(−2,2)
0 + T

(−2,2)
1

)
,

T
(−2,2)
0 =

1

16
(∇−)2(∇̄−)2L (2,2)| , T

(−2,2)
1 = −

i

8
(ψ̄−

mσ̄m)α∇−
α (∇̄

−)2L (2,2)|+ h.c. (6.42)

Let us begin with the leading order term. Imposing the superfield equation of motion

through the θ2 level, one can show (recalling that D++
w commutes with ∇−

α )

T
(−2,2)
0 =

1

2
D++

w

(
q+a P

a(−3)
)
+

1

2
D++

w

(
Ψα

aΞ
a−−
α + h.c.

)

−
1

8
H

(−1,2)
abc

(
ΨaΨbN c− + Ψ̄aΨ̄bM c−

)
+

i

8
H

(−1,2)
abc Ψa

αΨ̄
b
α̇A

α̇α c−

+
1

16
H

(−2,2)
abcd ΨaΨbΨ̄cΨ̄d . (6.43)

Using (6.12) and (6.13), this can be rewritten

T
(−2,2)
0 =

1

2
D++

w

(
q+a P

a(−3)
)
+

1

2
D++

w

(
Ψα

aΞ
a−−
α + h.c.

)

+
1

16
(z0)−2RabcdΨ

aΨbΨ̄cΨ̄d +
1

16
D++

w

(
BabcdΨ

aΨbΨ̄cΨ̄d
)

+
1

8
D++

w

[
ω−
abc

(
iΨa

αΨ̄
b
α̇A

α̇α c− −ΨaΨbN c− − Ψ̄aΨ̄bM c−
)]

−
1

8
ω−
abc

(
iΨa

αΨ̄
b
α̇D

++
w Aα̇α c− −ΨaΨbD++

w N c− − Ψ̄aΨ̄bD++
w M c−

)

−
1

32
ω−
ab

eH
(−1,2)
cde ΨaΨbΨ̄cΨ̄d −

1

32
ω−
ab

eH
(−1,2)
cde Ψ̄aΨ̄bΨcΨd

−
1

8
ω−
ac

eH
(−1,2)
bde ΨaΨbΨ̄cΨ̄d . (6.44)

Imposing the equations of motion for the auxiliaries, we find that the last three lines cancel.

Furthermore, RabcdΨ
aΨbΨ̄cΨ̄d simplifies to the harmonic-independent Rabcd ζ

aζbζ̄cζ̄d. All

of these manipulations correspond so far (as they must) to the rigid harmonic superspace

calculation [2]. Now we need to integrate by parts. Using (2.14b), we can write

i

2π

∫
V++ ∧W−− T

(−2,2)
0 =

i

2π

∫
V++ ∧ V−− T ′

0 (6.45)

for some new quantity T ′
0 given by

T ′
0 = −

1

4
q+a ∇

α̇αAa−
αα̇ +

(
i

4
Ψα

a ∇̂αα̇Ψ̄
α̇a + h.c.

)
+

1

16
Rabcd ζ

aζbζ̄cζ̄d

−
i

4
ω−
abcΨ

a
αΨ̄

b
α̇∇

α̇αqc+ −
1

8
ω−
abc

(
ΨaΨbW rJc+

r + h.c.
)

+
3

2
D q+a D

−−
v qa+ −

1

4
WαβΨaαΨ

a
β −

1

4
W̄α̇β̇Ψ̄

α̇
a Ψ̄

β̇a

+ 3Y −−rD++
r +

(
2λrα−∇−

αD
++
r + h.c.

)
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+

(
1

4
W r(∇−)2D++

r −
1

2
W rM−

a Ja+
r + h.c.

)

+

(
3

2
χα+D−−q+b Ψ

b
α −

3

2
D−−

v

(
χα+q+b Ψ

b
α

)
+ h.c.

)
. (6.46)

In arriving at this result, we have extensively used (6.36) and (6.37) and have written the

fermion kinetic term with the analytic basis Sp(n) connection

∇̂αα̇Ψ̄
α̇a = ∇αα̇Ψ̄

α̇a +∇αα̇q
c+ω−

c
abΨ̄α̇

b . (6.47)

Now we can reconstruct the kinetic terms. The one for the physical fermions emerges after

rewriting Ψα
a ∇̂αα̇Ψ̄

α̇a = ζαa ∇̂αα̇ζ̄
α̇a where now ∇̂a is in the central basis. To find the correct

bosonic kinetic term, we use ∇αα̇q
a+ = ∇αα̇φ

µEµ
a+ and gµν = 2E(µ

a+Eν)
−
a to give

−
1

4
q+a ∇

α̇αAa−
αα̇ = −

1

4
∇α̇α(q+a A

a−
αα̇)−

1

4
∇aφµ∇aφ

ν gµν +
i

4
∇α̇αqa+Ψb

αΨ
c
α̇ ω

−
abc (6.48)

=
1

2
Kµ∇̂

a∇aφ
µ +∇α̇α

(
1

4
Kµ∇αα̇φ

µ −
1

4
q+a A

a−
αα̇

)
+

i

4
∇α̇αqa+Ψb

αΨ
c
α̇ ω

−
abc ,

whereKµ = kDµ = ∂µK is the derivative of the hyperkähler potential. The covariant deriva-

tive ∇̂a should be understood to also carry the target space affine connection. To simplify

the remaining terms, we need the solution for M−
a and the expression for (∇−)2D++

r |:

(∇−)2D++
r | = −4W̄ sfsr

tD+−
t − 2W̄ sJµ

s Jrµ +
1

2
ζaζbDajJrb

j (6.49)

where D+−
r ≡ Dr

ijv+i v
−
j = 1

2D
−−
v D++

r . This leads to

T ′
0 =

1

2
Kµ∇̂

a∇aφ
µ +

(
i

4
ζαa ∇̂αα̇ζ̄

α̇a + h.c.

)
+

1

16
Rabcd ζ

aζbζ̄cζ̄d

+

(
1

4
W rζaζbDajJrb

j + 2λrα−Ω+
rα −

1

4
Wαβζaαζ

a
β + h.c.

)

−
1

2
W rW̄ sJµ

s Jrµ + 3Y −−rD++
r −

3

2
DK

+

(
3

2
χα+D−−

v q+b Ψ
b
α −

3

2
D−−

v

(
χα+q+b Ψ

b
α

)
+ h.c.

)

+∇α̇α

(
1

4
Kµ∇αα̇φ

µ −
1

4
q+a A

a−
αα̇

)
. (6.50)

Each of the expressions in the first three lines depends on the vi± harmonics and not on

w±
i . Because we are integrating against the SU(2)v/U(1)v measure V++ ∧ V−−, the naive

rules of harmonic integration apply now for the v±i harmonics, leading to

T ′
0 =

[
1

2
Kµ∇̂

a∇aφ
µ +

(
i

4
ζαa ∇̂αα̇ζ̄

α̇a + h.c.

)
+

1

16
Rabcd ζ

aζbζ̄cζ̄d

+

(
1

4
W rζaζbDajJrb

j − λrα
i ζαaJr

ai −
1

4
Wαβζaαζ

a
β −

3

4
χα
i Ab

iζα
b + h.c.

)

−
1

2
W rW̄ sJµ

s Jrµ + Y ijrDr ij −
3

2
DK

]
+∇α̇α

(
1

4
Kµ∇αα̇φ

µ −
1

4
q+a A

a−
αα̇

)
. (6.51)
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The bracketed terms will end up in the final Lagrangian. The next step is to integrate by

parts the final term. We can swap the order of integration to yield

i

2π

∫
d4x e∇α̇α

∫

S
V++ ∧ V−−

(
1

4
∇αα̇K −

1

4
q+a A

a−
αα̇

)
. (6.52)

The term in parentheses actually vanishes at this order in its θ-expansion because it can

be rewritten as
i

8
D−−

v ∇+
α ∇̄

+
α̇K where to this order K is harmonic independent. This

expression now vanishes using usual rules of harmonic integration. The lacunae in this ar-

gument is that the gravitino contributions lead to an O(θ3) term, which must be separately

addressed. Denote these by T ′
0|Q:

T ′
0|Q =

1

4
ψα̇αβ−q+b ∇βα̇Ψ

b
α + iψα̇α−

α λ̄
r−
α̇ D++

r +
i

4
(ψ−

mσmΨ̄c)W̄ rq+b ∂c+Jr
b+

−
i

2
ψα̇α+

α q
+
b Ξ

b−−
α̇ −

1

8
ψα̇αβ+ΨβbA

b−
αα̇ −

1

8
ψα̇αβ

j∇αα̇∇β
jK|

−
i

8
ψαα̇

α
j W̄

α̇
β̇ ζ̄

β̇aAa
j +

3i

8
(ψmjσ

mχ̄j)K + h.c. (6.53)

Now we return to the explicit gravitino terms in (6.42). They can be written

T
(−2,2)
1 = −

i

2
D++

w

(
(ψ−

mσm)α̇ q
+
b Ξα̇b−− −

1

8
(ψ−

mσmΨ̄a)ΨbΨcω−
abc

)
+ h.c. (6.54)

where we imposed the equations of motion through O(θ2). Proceeding as in (6.45) gives

T ′
1 =

i

2
(ψ+

mσm)α̇ q
+
b Ξα̇b−− −

i

16
(ψ+

mσmΨ̄a)ΨbΨcω−
abc

−
1

4
(ψ−

a σ
aσ̄b)βq+b ∇bΨ

b+
β −

i

4
(ψ−

mσm)α̇W̄
α̇
β̇ q

+
b Ψ̄

β̇b+ +
3i

4
(ψ−

mσmχ̄+)K

+ 2i(ψ−
mσmλ̄r−)D++

r +
i

4
(ψ−

mσmΨ̄c)q+b W̄
r∂c+J

b+
r + h.c. (6.55)

Combining terms gives

T ′
0|Q + T ′

1 = −(ψ−
a σ

ab)βq+b ∇bΨ
b+
β + 3i(ψ−

mσmλ̄r−)D++
r −

i

2
(ψ−

mσmΨ̄b)W̄ rJrb
+

−
1

4
ψα̇αβ−Ψβb∇αα̇q

b+ −
1

8
ψα̇αβ

j∇αα̇∇β
jK −

i

8
ψαα̇

α
j W̄

α̇
β̇ ζ̄

β̇aAa
j

−
i

4
(ψ−

mσm)α̇W̄
α̇
β̇ q

+
b Ψ̄

β̇b +
3i

8
(ψmjσ

mχ̄j)K +
3i

4
(ψ−

mσmχ̄+)K

+D++
v

[
−

1

8
ψα̇αβ−ΨβbA

b−
αα̇ −

i

16
(ψ−

mσmΨ̄a)ΨbΨcω−
abc

]
+ h.c. (6.56)

The argument of D++
v in the last line is actually independent of the w±

i harmonics, so it

vanishes under the harmonic integral. Other terms can be simplified in analogous ways.

Putting everything together, the full component Lagrangian for the sigma model of a

hyperkähler cone coupled to conformal supergravity is

L =
1

2
Kµ�̂φµ +

(
i

4
ζαa ∇̂αα̇ζ̄

α̇a + h.c.

)
+

1

16
Rabcd ζ

aζbζ̄cζ̄d

– 47 –



J
H
E
P
0
3
(
2
0
1
6
)
1
0
7

+ Y ijrDr ij + λrα
i ζaαJra

i − λr
α̇
i ζ̄α̇a Jr

a
i −

1

2
W rW̄ sJµ

s Jrµ

+
1

4
W rζaζbDajJrb

j +
1

4
W̄ r ζ̄aζ̄bDajJrb

j

−
3

2
DK −

1

4
(Wαβζaαζ

a
β + W̄α̇β̇ ζ̄

α̇
a ζ̄

β̇a)−
3

4
(χα

iζ
b
α Ab

i − χ̄α̇
iζ̄α̇b Ab

i)

+(ψmjσ
m)α̇

(
1

4
∇̂α̇αζαbA

bj−
i

4
W̄ α̇

β̇ ζ̄
β̇bAb

j+
3i

4
χ̄α̇jK−

i

4
ζ̄α̇bW̄ rJrb

j+iλ̄α̇r
k Dr

jk

)

+(ψ̄j
mσ̄m)α

(
1

4
∇̂αα̇ζ̄

α̇
b Ab

j−
i

4
Wα

βζβbA
b
j+

3i

4
χαjK−

i

4
ζαbW

rJb
r j−iλk

αrDrjk

)
. (6.57)

This agrees with the same result derived in projective superspace [10] and can be compared

with the original component reference [44].

7 Further applications and outlook

The main goal of this paper has been to construct a covariant formulation of harmonic

superspace based on the geometry of conformal superspace. This included (i) the construc-

tion of invariant actions in a general gauge; (ii) the specification of how to pass covariantly

between full harmonic and analytic superspaces; and (iii) the explicit component reduc-

tion formula in the central basis. One important task which we have not pursued is the

complete specification of the vielbeins and connections in the analytic basis in terms of

the prepotentials. This was the main result of [25, 26]. Although that approach used a

different superspace (equivalent to conformal supergravity coupled to vector and non-linear

multiplet compensators), one could follow essentially identical steps within conformal su-

perspace to arrive at comparable results. The reverse is also true: within the framework

of [25, 26], one could derive e.g. the explicit component reduction rule in the central basis.

We have sketched how this could be accomplished by introducing compensated derivatives.

The explicit expressions are expected to be substantially more complicated due to the pres-

ence of additional torsion tensors, including a dimension-1/2 spinor superfield. Of course,

when the action in question is superconformal, all dependence on the compensators must

drop out of the final component action; the advantage of conformal superspace is that such

extraneous objects are avoided from the beginning, leading to vastly simpler computations.

Although we have chosen to limit the scope of this investigation to the above goal and

the sample calculation in section 6, a number of applications become immediately apparent.

In the remainder of this concluding section, we will briefly sketch several proposals.

Projective superspace and prepotentials

One particular aspect we have not explored is the full connection between the curved

harmonic and projective superspaces, which was in part a driving motivation of this re-

search. Certainly in the central basis the mapping sketched in the introduction between

complex harmonic and projective superfields must hold. A more interesting question is

how to use this mapping to convert harmonic supergravity prepotentials into projective

ones. For gauge prepotentials, this was sketched by Jain and Siegel [33]. The analytic
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gauge prepotential V in projective superspace is given by [5]

eV = e−VSeVN (7.1)

in terms of two bridge superfields.18 VN is the arctic multiplet bridge, converting analytic

arctic multiplets into covariant ones, while VS is the antarctic bridge. VN is well-defined

near the north pole and VS near the south pole, but neither is itself analytic. Using the

mapping between harmonic and projective multiplets, VN and VS can be written in terms

of the complex harmonic bridge B as

VN (v) = iB(v, w)|w−

i =(1,0) , VS(v) = iB(v, w)|w−

i =(0,1) . (7.2)

It is easy to confirm that while VN and VS are not themselves analytic, the combination (7.1)

is and transforms appropriately under the arctic and antarctic λ-groups. Extending this

idea to the supergravity prepotentials would seem to be reasonably straightforward. For

example, the harmonic bridges for the coordinates should similarly decompose into separate

arctic and antarctic bridges. However, a more explicit investigation is warranted.

Quaternion-Kähler superspace

One of the many successes of harmonic superspace is its very elegant description of general

hypermultiplet systems, including supergravity-matter couplings. Rigid harmonic super-

space admits general off-shell hypermultiplet actions, with the harmonic potential encoding

the sigma model geometry. In a similar way, curved harmonic superspace admits off-shell

hypermultiplet actions, with the potential function(s) encoding the sigma model [38, 52, 63].

There are two existing formulations. The first, following the same conventions as in

section 6, involves the Lagrangian

L
(2,2) =

1

2
Q+

a ∇
++
w Qa+ +H(2,2)(Q+, w−) (7.3)

with superfields Qa+ with a = 1, · · · , 2(n + 1) describing the sigma model of a 4(n + 1)-

dimensional hyperkähler cone coupled to conformal supergravity. Each of the superfields

has Weyl weight one and charge (1, 0) under U(1)v × U(1)w. As is well-known, a 4(n +

1)-dimensional hyperkähler cone is in one-to-one correspondence with a 4n-dimensional

quaternion-Kähler manifold [68] (see also [69]). This structure can be made more apparent

in superspace, which leads to the second formulation [63]. One makes the field redefinition

Qa+ → (ωQa+, qi+), where the superfields qi+ have Weyl weight one and charge (1, 0),

Qa+, a = 1, · · · , 2n, have vanishing Weyl weight and charge (0, 1), and ω := qi+w−
i . The

Lagrangian becomes

L
(2,2) =

1

2
q+i ∇

++
w qi+ + ω2

[
1

2
Q+

a ∇
++
w Qa+ +H+4(Q+, qi+/ω,w−

i )

]
. (7.4)

The term within square braces has charge (0, 4) and vanishing Weyl weight. The hypermul-

tiplet qi+ is interpreted as a compensating multiplet while Qa+ are the matter multiplets.

18See also [12] and [11] for recent discussions in curved 3D and 5D projective superspace.
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This is equivalent (up to a gauge choice and a sign change in the compensator kinetic term)

to the original form given in [52]. It was shown in [38] that the general quaternion-Kähler

sigma model is described by two prepotentials La
+ and L+4, and the action above is just

the special gauge L+
a = Q+

a (with L+4 → H+4) of this general form.

The two expressions (7.3) and (7.4) bear a striking similarity to analogous formulae in-

volving chiral superfields in N = 1 superspace. There the action for a 2(n+1)-dimensional

Kähler cone sigma model coupled to conformal supergravity involves the superspace La-

grangian

L = K(Φa, Φ̄ā) (7.5)

with chiral superfields Φa for a = 1, · · · , n + 1. The function K is the Kähler potential

for a Kähler cone. Reorganizing the chiral superfields as Φa → (φϕa, φ) where φ has Weyl

weight one and ϕa, a = 1, · · · , n are weight zero, the Lagrangian can be rewritten

L = −3φφ̄ e−K/3 (7.6)

where K is the potential for a 2n-dimensional Hodge-Kähler manifold. The fields ϕa are

matter fields and φ is a chiral compensator. The usual factor of 3 is chosen for convenience

and the negative sign is consistent with the role of φ as a compensator.

The N = 1 action actually has a third form, which is in many applications more

useful. Recall that the component reduction of (7.6) still requires an inconvenient

set of super-Weyl gauge choices to be imposed to canonically normalize the graviton

and gravitino actions (see e.g. the discussion in [70]). This can be directly addressed

at the superfield level by absorbing the Hodge-Kähler potential into the superspace

vielbein [71, 72]. Equivalently, one can interpret K as if it were the prepotential for

some additional U(1)K symmetry under which the compensator φ is charged. Moving to

covariantly chiral superfields φ, the Lagrangian simplifies to

L = −3φφ̄ . (7.7)

Now the matter fields are encoded within the composite U(1)K connection, and the matter

action appears within the composite auxiliary field D associated with U(1)K. Adopting

the gauge φ = 1 fixes the Weyl gauge and a linear combination of U(1)R and U(1)K,

leaving another linear combination as the composite Kähler U(1) symmetry of the physical

action. This geometrizes the Kähler potential, ensuring that the U(1)R gauge field of

supergravity is identified with the composite U(1) potential of the Kähler line bundle

while also canonically normalizing all terms in the component action. The resulting

superspace is known as Kähler superspace [71, 72] and provides a general framework for

handling N = 1 supergravity-matter systems, even including higher-derivative couplings

in a Kähler covariant form. For example, a simple class of such higher-derivative terms is

given by a full superspace integral of

L = c1RR̄+ c2G
aGa + c3K

αα̇Kαα̇ (7.8)

for real constants ci, where R and Ga are the torsion superfields of Kähler superspace and

Kαα̇ = Kab̄Dαϕ
aD̄α̇ϕ̄

b̄. Writing such Kähler-covariant terms in the original superspace

frame is significantly more complicated.
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In light of these observations, it is natural to conjecture a third formulation of N = 2

superspace corresponding to a slight reformulation of (7.4), just as (7.7) reformulates (7.6).

The idea is that (7.4) can be rewritten

L
(2,2) =

1

2
q+i (∇

++
w qi+ − Vw

i
jq

j+) (7.9)

where Vw
i
j is a composite prepotential for an additional “matter” SU(2) group rotating the

qi+; this is known as the Pauli-Gürsey group SU(2)PG [2]. In the central basis for SU(2)PG,

the equations of motion set qi+ to be a covariant O(1) multiplet, qi+ = f i
jv

j+. The Weyl

gauge along with a linear combination of SU(2)R and SU(2)PG is fixed by taking f i
j = δij ,

and the other linear combination of SU(2)R and SU(2)PG survives as the composite SU(2)

symmetry of the quaternion-Kähler manifold. This strongly suggests that one can construct

a quaternion-Kähler superspace as the N = 2 analogue of Kähler superspace. We intend

to explore this subject in the near future.

Higher-derivative terms

The advantage of a covariant approach is the ease of component reductions, including all

couplings to supergravity. We demonstrated this by deriving the general two-derivative

hyperkähler cone action, but it would be plausible to address higher-derivative actions as

well. Large classes of these have been discussed recently in projective superspace [73] and

comparable calculations could undoubtedly be pursued within the harmonic approach (see

e.g. the rigid higher-derivative terms of [74]).

If indeed one can construct a quaternion-Kähler superspace as the N = 2 analogue

of Kähler superspace, it would undoubtedly provide the natural framework for addressing

higher-derivative terms involving hypermultiplets. For example, in the gauge-fixed formu-

lation of N = 2 superspace, there exist torsion superfields Sij and Ga
ij . It is plausible

that from these one could construct a higher-derivative harmonic superspace Lagrangian

analogous to (7.8), corresponding to a new curvature-squared invariant.

It was shown recently in [75] that a certain Ricci-squared invariant could be con-

structed, given by the chiral superspace Lagrangian, Lc = 1
6D̄

ijS̄ij + S̄ijS̄ij + Ȳα̇β̇Ȳ
α̇β̇ ,

in SU(2) superspace. This is compensator-independent and, when combined with the

known Weyl-squared invariant, gives the N = 2 Gauss-Bonnet. Compensator-dependent

higher-derivative invariants have been constructed e.g. using the trick of building com-

posite vector multiplets out of fundamental tensor multiplets [49, 73, 76, 77]. Because

a tensor multiplet is dual to a general Q+ hypermultiplet, it is possible that such terms

may be constructed for general quaternionic-Kähler manifolds; if so, one might be able

to construct the N = 2 analogue of one of the N = 1 invariants (7.8). Its form in the

proposed quaternion-Kähler superspace might be particularly elegant.

Supergravity prepotentials and higher derivative terms

Finally, we should mention that one important application of having both a covariant form

of harmonic superspace as well as the analytic basis prepotentials is that one could more

easily find harmonic-independent prepotentials. It was shown in [78] that the fundamental
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scalar prepotential H of N = 2 conformal supergravity could be uncovered in this way,

and one could analyze how it appears within the central-basis superspace vielbeins, mir-

roring the harmonic construction of [26]. This would be useful e.g. for understanding the

supercurrents of higher-derivative Lagrangians such as the ones discussed above.
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A Analytic integrals and densities

This appendix is a summary and continuation of appendix B of [10], which addressed

covariant integration over supermanifolds. Let us recall the basics. A supermanifold M

(without boundary) of dimension D possesses local coordinates zM , M = 1, . . . , D, a

vielbein EM
A, and separate connection HM

a associated with internal symmetries, which

we denoteH. Under diffeomorphisms both connections transform as one-forms, while under

H-gauge transformations,

δHEM
A = EM

BgcfcB
A , δHHM

a = ∂Mga + EM
BgcfcB

a +HM
bgcfcb

a . (A.1)

The parameters f are structure constants of a soft algebra including the covariant cur-

vatures associated with the vielbein and H-connection (see e.g. the discussion in [45]).

When diffeomorphisms are covariantized with the H-connection, the full transformation

rules become

δEM
A = ∂MξA +HM

bξCfCb
A + EM

BgcfcB
A + EM

BξCTCB
A ,

δHM
a = ∂Mga + EM

BgcfcB
a +HM

bgcfcb
a +HM

bξCfCb
a + EM

BξCRCB
a . (A.2)

An action over the full supermanifold,
∫
dDz E L , is invariant provided L is a scalar under

diffeomorphisms and transforms under H as δHL = −(−)AgbfbA
A L .

A.1 Analytic submanifolds

We are interested in an analytic submanifold M (without boundary) of dimension d with

local coordinates zm, m = 1, . . . , d. We have in mind a situation where the original coordi-

nates can be decomposed as zM = (zm, yµ) with the submanifold M corresponding to the

surface parametrized by zm with (for example) yµ = 0. The coordinates zm and yµ may

be bosonic or fermionic; we denote the grading of a coordinate zM by (−)M . The vielbein

and its inverse are given by

EM
A =

(
Em

a Em
α

Eµ
a Eµ

α

)
, EA

M =

(
Ea

m Ea
µ

Eα
m φα

µ

)
, (A.3)
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with the assumption that both Em
a and φα

µ are invertible, with inverses Ea
m and φµ

α,

respectively. This allows one to compactly specify all the remaining components of the

vielbein and its inverse in terms of these quantities, Em
α, and Eα

m:

EM
A =

(
Em

a Em
α

−φµ
βEβ

nEna φµ
α − φµ

βEβ
nEn

α

)
,

EA
M =

(
Ea

m − Ea
nEn

βEβ
m −Ea

nEn
βφβ

µ

Eα
m φα

µ

)
. (A.4)

No assumptions have been made about Em
α or Eα

m. We treat Em
a as the vielbein of the

submanifold M. In particular, the class of diffeomorphisms acting on zm induce

δEm
a = ∂mξnEn

a + ξn∂nEm
a , ξM = (ξm, 0) (A.5)

as required for a vielbein. This formula holds even if ξm depends on yµ.

The submanifold is an analytic submanifold (although not yet in the analytic basis)

if the following properties are satisfied. Under H-gauge transformations and covariant

diffeomorphisms generated by ξA = (0, ξα), the analytic vielbein transforms into itself via

δEm
a = Em

bξγTγb
a + Em

bgcfcb
a , ξA = (0, ξα) . (A.6)

These conditions derive from the transformation rules of EM
A assuming the vanishing

of the torsion tensor Tγβ
a and the structure constants fcβ

a, which permit the existence

of superfields annihilated by ∇α. It is convenient to decompose the full set of possible

transformations into the diffeomorphisms on M with ξM = (ξm, 0), the covariant diffeo-

morphisms generated by ξA = (0, ξα), and the H-gauge transformations. This is always

possible to do using the invertibility of φα
µ and Em

a.

We will not actually require that all analytic superfields be annihilated by each of the

∇α. We have in mind the situation where some of the ∇α have an interpretation as charge

generators. In harmonic superspace, these would be ∇0
v and ∇0

w. So we instead call an

analytic superfield Ψ one for which

∇αΨ = c(Ψ)
α Ψ (A.7)

where c
(Ψ)
α is a (possibly vanishing) constant number. Only bosonic covariant derivatives

may possess non-vanishing c
(Ψ)
α .

Suppose now we have a scalar Lagrangian L that obeys

∇αL = −(−)bTαb
b L ≡ c(L)α L , δHL = −(−)agbfba

a L . (A.8)

where the expression Tαb
b(−)b built from the torsion tensor is constant (and possibly van-

ishing). We may define an analytic action S over the submanifold M,

S =

∫
ddz E L , E = sdet Em

a . (A.9)

Using (A.5) and (A.6), one finds that under a general transformation parametrized as

δ = ξm∂m + ξα∇α + δH, the integrand of (A.9) transforms as a total derivative, δ(EL) =
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∂m(ξmEL) so the action is invariant. In particular, the action (A.9) is invariant even under

diffeomorphisms in yµ. These can be interpreted as arbitrary small deformations of the

embedding of M in M. In other words, the particular choice of the embedding has no

effect on the action integral.

As an example of a covariant action principle, let us take harmonic superspace on the

analytic submanifold. We group the derivatives as

∇a = (∇a,∇
−
α ,∇

−−
v ,∇++

w ) , ∇α = (∇+
α ,∇

++
v ,∇−−

w ,∇0
v,∇

0
w) , (A.10)

with the coordinates zm = (xm, θµ+, ζ, ζ̃) parametrizing the submanifold M = M4|4 × S.

From the torsion constraints, the covariant Lagrangian L must obey

∇+
αL = ∇++

v L = ∇−−
w L = 0 , ∇0

vL = ∇0
wL = 2 . (A.11)

The measure E in turn transforms under covariant ξα diffeomorphisms as

δE = −2(ξ0v + ξ0w) E . (A.12)

For these reasons we denote the Lagrangian and measure by L (2,2) and E(−2,−2), respec-

tively. The covariant action is then just (4.5).

Actually, even “full” harmonic superspace is an analytic superspace in a sense, as we

always restrict to twisted biholomorphic quantities of fixed U(1)v ×U(1)w charge. Now the

decomposition of derivatives is

∇a = (∇a,∇
±
α ,∇

−−
v ,∇++

w ) , ∇α = (∇++
v ,∇−−

w ,∇0
v,∇

0
w) , (A.13)

with the coordinates zm = (xm, θµ±, ζ, ζ̃) on M4|8 × S. Lagrangians obey

∇++
v L = ∇−−

w L = 0 , ∇0
vL = −2L , ∇0

wL = 2L . (A.14)

The measure E transforms under covariant ξα diffeomorphisms as

δE = 2(ξ0v − ξ0w) E . (A.15)

For these reasons we denote the Lagrangian and measure by L (−2,2) and E(+2,−2), respec-

tively. The covariant action is then just (4.2).

A.2 Analytic gauge, densities and transformation rules

Now let us make a special choice for the embedding. Suppose we can adopt a basis ẑm for

the analytic coordinates where

∇αẑ
m = c(m)

α ẑm (A.16)

for some (possibly vanishing) bosonic constants c
(m)
α . We will call this an analytic coordi-

nate system, and it is equivalent to requiring Êα
m = c

(m)
α ẑm. Consistency requires

∇βÊα
m = c

(m)
β c(m)

α ẑm , ∇bÊα
m = c(m)

α Êb
m , δHÊα

m = −gbfbα
βÊβ

m = 0 . (A.17)
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We will further assume that the other coordinates ŷµ have been chosen so that φα
µ =

φα
µ(y) is independent of zm; this is possible using the vanishing of the torsion tensor

Tαβ
c and applying Frobenius’ theorem. Now an analytic diffeomorphism is defined as a

diffeomorphism preserving the above conditions. This leads to

δ∗ẑm = −ξm(ẑ) , ∇αξ̂
m = c(n)α ẑn∂nξ̂

m = c(m)
α ξ̂m . (A.18)

This condition ensures that the ∇α charge of the analytic parameter ξ̂m matches that of

the coordinate ẑm.

Using these assumptions, one may show that the analytic measure E is analytic in the

sense of (A.7),

∇αE =

(
Tαb

b(−)b −
∑

m

c(m)
α (−)m

)
E . (A.19)

Now it is easy to show that the Lagrangian density, L̂ = EL is analytic, obeying

∇αL̂ = −
∑

m

c(m)
α (−)m L̂ . (A.20)

It may perhaps be useful to illustrate these points using the analytic harmonic super-

space as an example. We choose the analytic basis coordinates ẑm = (x̂m, θ̂µ+, û±i ). We

can choose each of these to be annihilated by ∇+
α , ∇

++
v , ∇−−

w , and ∇0
v, while

∇0
wx̂

m = 0 , ∇0
wθ̂

µ+ = θ̂µ+ , ∇0
wû

±
i = ±û±i . (A.21)

Now one can show, in contrast with (A.12), that

∇0
vE = −2E , ∇0

wE = +2E (A.22)

and so the Lagrangian density L̂ now obeys

∇0
vL̂ = 0 , ∇0

wL̂ = 4L̂ . (A.23)

In a similar way, we can adopt an “analytic basis” for full harmonic superspace: the

simplest choice is actually the central basis! Now we have zm = (xm, θµı, v
i+, w−

i ), where

each is annihilated by ∇++
v and ∇−−

w . We easily see that E is independent of the harmon-

ics — in fact, it is just the Berezinian sdetEM
A in the central basis — and the action

integral becomes (4.1). From this perspective, the measure factor V++ ∧W−− is just the

anholonomic measure associated with the constrained coordinates vi+ and w−
i .

A.3 Rules for total derivatives

We will need some general rules for integrating total derivatives. It is a simple exercise to

show that for the full supermanifold M,
∫

dDz E∇AV
A(−)A =

∫
dDz

[
∇M

(
EVAEA

M
)
(−)M − E VATAB

B(−)B
]
. (A.24)

The term involving ∇M may be decomposed into ∂M , which may be discarded, and a

connection piece. The connection piece may be non-trivial as EVAEA
M might transform
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under some of theH group. We are really interested in integrals on the analytic submanifold

M, where

∫
ddz E ∇aV

a(−)a =

∫
dd z

[
∇m

(
EVaEa

m
)
(−)m − E VaTab

b(−)b

− EEa
mEm

α
(
∇αV

a + Tαb
bVa(−)b + VbTbα

a
)
(−)a

]
. (A.25)

Again ∇m may be decomposed into ∂m, which may be discarded, and a connection piece.

The expression (A.25) can be a bit unwieldy, so a few examples should help. Let us

take full harmonic superspace, which is the analytic superspace of twisted biholomorphic

fields with fixed charges. We choose the non-vanishing components of VA to be Vw−−

and Vv++. Keeping in mind that the Lagrangian in this case must carry charge (−2, 2),

these components may be labeled V(−2,0) and V(0,2) (up to a sign). The Lagrangian is

L (−2,2) = ∇++
w V(−2,0) + ∇−−

v V(0,2). These are both valid integrands provided V(−2,0)

and V(0,2) are twisted biholomorphic and invariant with respect to the gauge symmetries.

Using (A.25), it is easy to show that this is a total derivative.

As another example, we take analytic superspace and choose a single non-vanishing

component Vw−−. Because the Lagrangian now must have charge (2, 2), this component

may be labeled V(2,0). The Lagrangian L (2,2) = ∇++
w V(2,0) is covariant provided V(2,0) is

a twisted biholomorphic analytic primary. It is easy to check this is a total derivative. In

contrast, the expression ∇−−
v V(4,2) is not even generically a covariant Lagrangian because

it is not annihilated by ∇++
v .

Open Access. This article is distributed under the terms of the Creative Commons
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