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1 Introduction

Supersymmetry multiplets in ten-dimensional spacetime not only underpin the five critical

string theories (and their respective low-energy supergravity limits) but also encode the

intricate structure of extended supersymmetry in many interesting quantum field theories in

lower dimensions. For example, the Yang-Mills supermultiplet in ten dimensions elegantly

captures the structure of extended supersymmetry and R-symmetry for gauge couplings

in lower dimensions. Of course, in dimensions greater than four, even supersymmetric

quantum field theories are not expected to be renormalisable without some kind of non-

perturbative UV completion (indeed, this is precisely what string theory aims to provide).

Without this completion, they should merely be regarded as low-energy effective field

theories.
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In addition to the more familiar (gauged) type I, (Romans1) type IIA and type IIB

Poincaré gravity supermultiplets [1–8] associated with critical string theory, there is also a

conformal gravity supermultiplet in ten dimensions [9]. This conformal gravity supermulti-

plet can be gauged and the coupling described in [9] to a Yang-Mills supermultiplet in ten

dimensions is reminiscent of the analogous Chapline-Manton [1] coupling for type I super-

gravity. Unlike the Poincaré supergravity theories in ten dimensions though, this conformal

supergravity theory is manifestly off-shell and must be supplemented with some differential

constraints in order to render it local. As a supergravity theory, it is therefore somewhat

exotic but admits a consistent truncation to type I supergravity and reduces correctly to

known extended conformal supergravity theories in both four and five dimensions. There is

also a little conceptual deviation from the unextended conformal gravity supermultiplets in

lower dimensions which result from gauging one of the conformal superalgebras on Nahm’s

list [10]. Of course, this is not surprising since there are no conformal superalgebras of the

conventional type above dimension six.2 There do exist more general notions of a confor-

mal superalgebra where the conformal algebra is contained in a less obvious manner. In

particular, it was shown in [12] that the Lie superalgebra osp(1|32) can be thought of as

a conformal superalgebra for R9,1 with respect to a particular so(10, 2) < osp(1|32). Alas,
it remains unclear though whether conformal supergravity in ten dimensions is somehow

related to gauging this osp(1|32).
There is a vast literature on the classification of supersymmetric solutions of super-

gravity theories in diverse dimensions: that is to say, backgrounds which preserve some

amount of rigid supersymmetry and solve the supergravity field equations. Indeed, at least

for Poincaré supergravities, it is often the case that the preservation of a sufficient amount

of rigid supersymmetry will guarantee that all of the supergravity field equations are sat-

isfied. This typically comes from the so-called integrability conditions which result from

iterating the ‘Killing spinor’ equations imposed by the preservation of supersymmetry.

In recent years, there has been mounting interest in the somewhat broader task of

classifying supersymmetric backgrounds of conformal and Poincaré supergravity theories

(which need not necessarily solve the field equations, only the integrability conditions).

This is motivated primarily by a renewed curiosity in the general structure of quantum

field theories with rigid supersymmetry in curved space [13–93], for which supersymmetric

localisation has substantiated many important exact results and novel holographic appli-

cations [18, 20, 28, 31, 34, 47, 52, 53, 55, 57, 67, 78, 85, 87, 88]. The general strategy for

obtaining non-trivial background geometries which support rigid supersymmetry builds

on the pioneering work of Festuccia and Seiberg in four dimensions [15]. Given a rigid

supermultiplet in flat space, it is often possible to promote it to a local supermultiplet

in curved space via an appropriate supergravity coupling. For example, such a coupling

1This epithet is added when the zero-form RR flux in the type IIA gravity supermultiplet is non-zero.
2By this we mean that there exists no real Lie superalgebra obeying the axioms of [10] whose even part

is of the form so(s + 1, t + 1) ⊕ R, for any real Lie algebra R, if s + t > 6. Similarly, but with different

hypotheses, for n > 6, the maximal transitive prolongation of the Z-graded complex Lie superalgebra

h = h−1 ⊕ h−2, with h−1 a (not necessary irreducible) spinor module of son(C) and h−2 = C
n, the vector

representation, has no pieces in positive degree [11].
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can be induced holographically in a superconformal field theory in flat space that is dual

to a string theory in an asymptotically anti-de Sitter background. A judicious choice of

decoupling limit (in which the Planck mass becomes infinite) typically ensures that the

dynamics of the gravity supermultiplet are effectively frozen out, leaving only the fixed

bosonic supergravity fields as data encoding the geometry of the rigidly supersymmetric

curved background.

The aim of this paper is to explore various aspects of bosonic supersymmetric back-

grounds of conformal supergravity in ten dimensions and elucidate the structure of the

rigid Yang-Mills supermultiplet on these backgrounds. In particular, we will classify the

maximally supersymmetric conformal supergravity backgrounds, compute their associated

conformal symmetry superalgebras and show how they are related to each other via certain

algebraic limits. We will also show how to ascribe to any conformal supergravity back-

ground a conformal Killing superalgebra that is generated by its Killing spinors. Paying

close attention to the non-trivial Weyl symmetry which acts within this class of conformal

supergravity backgrounds, we will see how to recover the subclass of type I supergravity

backgrounds and how certain Weyl-transformed versions of the half-BPS string and five-

brane backgrounds of type I supergravity recover, in the near-horizon limit, the maximally

supersymmetric conformal supergravity backgrounds of Freund-Rubin type. We will then

describe the rigid supersymmetry transformations and invariant lagrangian for the Yang-

Mills supermultiplet on any bosonic supersymmetric conformal supergravity background.

This will be done both on-shell and in the partially off-shell formalism of [94–96]. We

conclude with a curious observation that several highly supersymmetric conformal super-

gravity backgrounds in ten dimensions can be embedded in solutions of eleven-dimensional

Poincaré supergravity which preserve twice as much supersymmetry.

This paper is organised as follows. In section 2 we discuss supersymmetric backgrounds

of ten-dimensional conformal supergravity. In sections 2.1 and 2.2 we discuss the confor-

mal gravity supermultiplet, the Killing spinor equation and its integrability condition. In

section 2.3 we define the notion of a conformal symmetry superalgebra and show that

every supersymmetric conformal supergravity background admits a conformal Killing su-

peralgebra, which we define to be the ideal of a conformal symmetry superalgebra that is

generated by the Killing spinors of the background. In section 2.4 we classify those con-

formal supergravity backgrounds preserving maximal supersymmetry. The results mimic

those of eleven-dimensional supergravity: besides the (conformally) flat background, we

have a pair of Freund-Rubin families and their plane-wave limit. In sections 2.4.1, 2.4.2

and 2.4.3 we work out the conformal symmetry superalgebras of these backgrounds and

show in section 2.4.4 that the Killing superalgebra of the plane-wave limit arises as an

Inönü-Wigner contraction of the Killing superalgebra of the Freund-Rubin backgrounds.

In section 2.4.5 we comment on the maximal superalgebra of the maximally supersymmetric

backgrounds, showing that it is isomorphic to osp(1|16) for the Freund-Rubin backgrounds

and non-existent for their plane-wave limit. In section 2.5 we discuss some of the half-

BPS backgrounds of conformal supergravity and show how the Freund-Rubin maximally

supersymmetric backgrounds arise as near-horizon geometries. In section 3 we introduce

the on-shell Yang-Mills supermultiplet and write down a supersymmetric lagrangian on
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any supersymmetric conformal supergravity background. We then describe a partially off-

shell formulation of supersymmetric Yang-Mills theory on any such background. Finally,

in section 4 we explore a possible relation between ten-dimensional conformal supergravity

and eleven-dimensional Poincaré supergravity suggested by the resemblance between their

maximally supersymmetric backgrounds and some of the half-BPS backgrounds of both

theories. Appendix A contains our Clifford algebra conventions.

2 Conformal supergravity backgrounds

2.1 Conformal gravity supermultiplet

The off-shell conformal gravity supermultiplet in ten dimensions was constructed in [9]. The

bosonic sector contains a metric gµν , a six-form gauge potential Cµ1...µ6 and an auxiliary

scalar φ. The fermionic sector contains a gravitino ψµ and an auxiliary spinor χ. Both

ψµ and χ are Majorana-Weyl spinor-valued, with opposite chiralities.3 The bosonic fields

gµν and Cµ1...µ6 contribute 44+84 off-shell degrees of freedom, matching the 8×16 off-

shell degrees of freedom from the fermionic field ψµ. The fields (gµν , Cµ1...µ6 , φ, ψµ, χ) are

assigned Weyl weights
(
2, 0, w, 12 ,−1

2

)
.

The supersymmetry variations for this theory can be found in equation (3.34) of [9]

and must be supplemented with the constraint defined in their equation (3.35). Their ‘Q’

and ‘S’ supersymmetry parameters are described by a pair of Majorana-Weyl spinors ǫ

and η with opposite chiralities: for definiteness, we shall take ǫ to have positive chirality,

i.e., Γǫ = ǫ. A bosonic supersymmetric background of this theory follows by solving the

equations obtained by setting to zero the combined ‘Q’ and ‘S’ supersymmetry variation

of ψµ and χ, evaluated at ψµ = 0 and χ = 0.

On a ten-dimensional lorentzian manifold (M, g) equipped with Levi-Civita connection

∇, the equations which follow from this procedure are

∇µǫ+
1

4
φ6/w(ΓµK + 2KΓµ)ǫ = Γµη

1

2w
φ−1( /∇φ)ǫ+

1

12
φ6/wKǫ = η ,

(2.1)

where K = dC. The constraint in equation (3.36) of [9] follows as an integrability condition

from (2.1). Notice that the second equation in (2.1), derived from the supersymmetry

variation of χ, is simply a definition of η in terms of the other background data. Substituting

this definition into the first equation in (2.1) thus yields the defining condition for a bosonic

supersymmetric background.

2.2 Supersymmetric backgrounds

Let us now define a more convenient set of background fields to work with:

Φ :=
3

w
lnφ and H := 4φ6/w⋆K , (2.2)

3Our spinor conventions are contained in appendix A.
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and write G = dΦ. The three-form H obeys d(e−2Φ⋆H) = 0 since K is a closed seven-form.

In terms of this data, the defining condition (2.1) for a bosonic supersymmetric background

(M, g,G,H) of conformal supergravity in ten dimensions becomes

∇µǫ =
1

6
ΓµGǫ+

1

24
ΓµHǫ+

1

8
HΓµǫ . (2.3)

Under a Weyl transformation gµν 7→ Ω2gµν , for some positive function Ω, it follows

that Γµ 7→ ΩΓµ and ǫ 7→
√
Ωǫ. The condition (2.3) is therefore preserved under any such

transformation provided H 7→ Ω2H and Φ 7→ Φ + 3 lnΩ. Consequently, performing this

transformation with Ω = e−Φ/3 allows one to fix G = 0 in equation (2.3) with H coclosed:

∇µǫ =
1

24
ΓµHǫ+

1

8
HΓµǫ and d⋆H = 0 . (2.4)

The condition (2.3) implies that the ‘Dirac current’ one-form ξµ = ǫΓµǫ and the self-

dual five-form ζµνρστ = ǫΓµνρστ ǫ obey

∇µξν =
1

3
gµνGξ +

1

3

(

Hµνρξ
ρ + 2G[µξν] +

1

12
ζµνρστH

ρστ

)

, (2.5)

and

∇τζµνρστ = 2ζµνρστG
τ − 4H[µνρξσ] . (2.6)

Taking the (µν) symmetric part of (2.5) implies Lξg = −2σξg with

σξ = − 1

10
∇µξ

µ = −1

3
LξΦ , (2.7)

which shows that ξ is a conformal Killing vector. Furthermore, acting with ∇σ on (2.6)

and using closure of e−2Φ⋆H and G together with (2.5) and (2.6) on the right hand side

implies

LξH = −2σξH . (2.8)

If H is closed then solutions of (2.3) with Gǫ = 1
2Hǫ describe bosonic supersymmetric

backgrounds of type I supergravity in ten dimensions. In that case, (2.3) reduces to ∇µǫ =
1
8HµνρΓ

νρǫ, ξ is a Killing vector and ιξH is closed. Clearly any such background is a special

case of (2.3) and so one can always perform a Weyl transformation to obtain a solution

of (2.4). However, if the original background had G 6= 0 then the new supersymmetric

background of conformal supergravity solving (2.4) will no longer be a supersymmetric

background of type I supergravity since the required Weyl transformation does not preserve

the defining conditions dH = 0 and Gǫ = 1
2Hǫ.
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Evaluating [∇µ,∇ν ]ǫ implies the integrability condition

1

4

(

Rµνρσ−
2

3
∇[µHν]ρσ−

1

6
HµραHνσ

α− 4

9
HµνρGσ

)

Γρσǫ+
1

18

(
1

24
HαβγH

αβγ −GαG
α

)

Γµνǫ

− 1

3

(

∇[µG
ρ +

1

3
G[µG

ρ − 1

24
Hρ

αβH[µ
αβ − 1

3
GαH[µ

ρα

)

Γν]ρǫ+
1

36
(HρσαGα) Γµνρσǫ

+
1

108

(

HµναHβγδ +
1

16
H[µ

ρσ⋆Hν]ρσαβγδ +
1

64
εµναβγδ

ρσθφHρσǫHθφ
ǫ

)

Γαβγδǫ

+
1

72

(

∇µHαβγ +HµαβGγ +
1

3
HαβγGµ −Hµα

ρHβγρ

)

Γν
αβγǫ

− 1

72

(

∇νHαβγ +HναβGγ +
1

3
HαβγGν −Hνα

ρHβγρ

)

Γµ
αβγǫ = 0 , (2.9)

for every ǫ solving (2.3). The geometric meaning of this equation is the following. Equa-

tion (2.3) defines a connection D on the spinor bundle by declaring that a spinor ǫ is

D-parallel if and only if it satisfies equation (2.3). Then equation (2.9) is simply the

statement that D-parallel spinors are invariant under the holonomy algebra of D and, in

particular, are annihilated by the curvature of D .

2.3 Conformal symmetry superalgebras

Let (M, g,G,H) be a bosonic supersymmetric background of conformal supergravity in

ten dimensions. Let C(M, g) denote the Lie algebra of conformal Killing vectors on the

ten-dimensional lorentzian manifold (M, g). The Lie subalgebra of homothetic conformal

Killing vectors will be written H(M, g) < C(M, g) which contains as an ideal the Lie algebra

of Killing vectors K(M, g)⊳ H(M, g).

Now let us ascribe to (M, g,G,H) a Z2-graded vector space s = s0̄⊕s1̄, with even part

s0̄ ⊂ C(M, g) and odd part s1̄ = kerD spanned by solutions ǫ of (2.3). We would like to

equip s with the structure of a Lie superalgebra. The first step is to define a bracket on s,

i.e., a skewsymmetric (in the graded sense) bilinear map [−,−] : s× s → s such that

[s0̄, s0̄] ⊂ s0̄ , [s0̄, s1̄] ⊂ s1̄ , and [s1̄, s1̄] ⊂ s0̄ . (2.10)

Any such bracket on s must obey the Jacobi identity in order to define a Lie superalgebra.

Each graded component of the Jacobi identity is of type [0̄0̄0̄], [0̄0̄1̄], [0̄1̄1̄] or [1̄1̄1̄]. The

first three graded components can be conceptualised as follows. The [0̄0̄0̄] part says that

s0̄ must be a Lie algebra with respect to [s0̄, s0̄], whence s0̄ < C(M, g). The [0̄0̄1̄] part says

that [s0̄, s1̄] must define a representation of s0̄ on s1̄. The [0̄1̄1̄] part says that the symmetric

bilinear map defined by [s1̄, s1̄] must be equivariant with respect to the s0̄-action defined

by [s0̄, s1̄]. Finally, the [1̄1̄1̄] part, being symmetric trilinear in its entries, is equivalent via

polarisation to the condition

[[ǫ, ǫ], ǫ] = 0 , (2.11)

for all ǫ ∈ s1̄. If s is a Lie superalgebra, notice that there exists a (possibly trivial) ideal

k0̄ := [s1̄, s1̄]⊳ s0̄ and indeed k := [s1̄, s1̄]⊕ s1̄ ⊳ s is a Lie superalgebra ideal.

– 6 –



J
H
E
P
0
3
(
2
0
1
6
)
0
8
7

The Kosmann-Schwarzbach Lie derivative

L̂X = ∇X +
1

4
(∇µXν)Γ

µν +
1

2
σX1 , (2.12)

along any X ∈ C(M, g) (i.e., LXg = −2σXg), defines a natural conformally equivariant

action of C(M, g) on spinors. It is therefore tempting to define

[X, ǫ] = L̂Xǫ , (2.13)

for all X ∈ s0̄ and ǫ ∈ s1̄. However, for any ǫ ∈ s1̄, one finds that L̂Xǫ ∈ s1̄ (i.e.,

solving (2.3)) only if

Γµ(4 /∇αX + βX)ǫ+ 3βXΓµǫ = 0 , (2.14)

where αX = GX + 3σX and βX = LXH + 2σXH, for all X ∈ s0̄. Under a Weyl transfor-

mation (g,G,H) 7→ (Ω2g,G+3d(lnΩ),Ω2H) of the background, for any X ∈ s0̄, it follows

that αX 7→ αX and βX 7→ Ω2βX . This implies that the condition (2.14) is Weyl-invariant.

If (2.14) is satisfied, the bracket (2.13) solves the [0̄0̄1̄] Jacobi.

Now recall from above (2.7) that any ǫ ∈ s1̄ has Dirac current ξǫ ∈ C(M, g). More-

over, (2.7) and (2.8) are precisely the conditions αξǫ = 0 and βξǫ = 0 which, if ξǫ ∈ s0̄ <

C(M, g), would ensure that (2.14) is satisfied. With this in mind, let us now define the

[s1̄, s1̄] bracket such that

[ǫ, ǫ] = ξǫ , (2.15)

for all ǫ ∈ s1̄. Being symmetric bilinear in its entries, the general [s1̄, s1̄] bracket follows via

the polarisation 1
2(ξǫ+ǫ′ − ξǫ − ξǫ′) = [ǫ, ǫ′], for any ǫ, ǫ′ ∈ s1̄. Given (2.14), it is straightfor-

ward to check that the symmetric bilinear map defined by (2.15) is indeed equivariant with

respect to the s0̄-action defined by (2.13), whence solving the [0̄1̄1̄] Jacobi. Furthermore,

it follows using (2.5) that

[ξǫ, ǫ] = L̂ξǫǫ = 0 , (2.16)

for all ǫ ∈ s1̄, so the final [1̄1̄1̄] Jacobi is satisfied identically.

In summary, we have shown that the brackets defined by (2.13) and (2.15) equip s

with the structure of Lie superalgebra provided the condition (2.14) is satisfied. Any such

Lie superalgebra s with s0̄ < C(M, g) maximal will be referred to as the conformal sym-

metry superalgebra of (M, g,G,H). By construction, a conformal symmetry superalgebra

s must have [s1̄, s1̄] ⊳ s0̄ < C(M, g). The s1̄-generated ideal k = [s1̄, s1̄] ⊕ s1̄ of a con-

formal symmetry superalgebra s will be referred to as the conformal Killing superalgebra

of (M, g,G,H). It follows that every bosonic supersymmetric background of conformal

supergravity in ten dimensions admits a conformal Killing superalgebra because (2.14) is

identically satisfied (as a consequence of (2.7) and (2.8)) for all conformal Killing vectors in

[s1̄, s1̄]. Of course, because the construction is manifestly Weyl-equivariant, strictly speak-

ing a conformal symmetry superalgebra is ascribed to a conformal class of supersymmetric

conformal supergravity backgrounds.

We will not attempt to obtain the general solution of (2.14) though it will be useful

to describe what happens for conformal supergravity backgrounds which preserve more

than half the maximal amount of supersymmetry. A simple algebraic proof was given

– 7 –
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in ([97], section 3.3) that any bosonic supersymmetric background of type I supergravity

in ten dimensions which preserves more than half the maximal amount of supersymmetry is

necessarily locally homogeneous. The same logic implies that any bosonic supersymmetric

background of conformal supergravity in ten dimensions which preserves more than half

the maximal amount of supersymmetry is necessarily locally conformally homogeneous.

In both cases, the trick is to show that, for any given x ∈ M , the values at x of all

(conformal) Killing vectors ξǫ obtained by ‘squaring’ supersymmetry parameters ǫ span

the tangent space TxM (i.e., the evaluation at x of the squaring map ǫ 7→ ξǫ is surjective).

Acting with ǫΓµ on (2.14) implies

LξǫαX = 0 , (2.17)

for all ǫ ∈ s1̄ and X ∈ s0̄. Therefore, in this case, the condition (2.17) says that αX must

be (locally) constant, for all X ∈ s0̄. The condition (2.14) then just says that, for any

vector field Y , the two-form ιY βX must annihilate ǫ, for all X ∈ s0̄ and ǫ ∈ s1̄. This

means that the element ιY βX ∈ spin(9, 1) ⊂ Cℓ(9, 1) annihilates a linear subspace of ∆
(9,1)
+

of dimension > 8 and hence by ([98], appendix B) (see also [99], table 2) it must vanish.

Thus, we have shown that demanding (2.14) for all ǫ ∈ s1̄ with dim s1̄ > 8 implies

dαX = 0 and βX = 0 , (2.18)

for all X ∈ s0̄, which then trivially implies (2.14), showing that they are equivalent.

Now consider the Weyl transformation defined above (2.4), which can be used to elim-

inate G. This maps a supersymmetric conformal supergravity background (M, g,G,H)

with supersymmetry parameter ǫ to another supersymmetric conformal supergravity back-

ground (M, g̃ = Ω2g, G̃ = 0, H̃ = Ω2H) with supersymmetry parameter ǫ̃ =
√
Ωǫ, where

Ω = e−Φ/3. If the conditions (2.18) are satisfied then

LX g̃ = −2

3
αX g̃ and LXH̃ = 0 , (2.19)

for all X ∈ s0̄. The first condition in (2.19) implies that every conformal Killing vector X

with respect to g is homothetic with respect to g̃ (since αX is constant), i.e., C(M, g) =

H(M, g̃). Moreover, since αξǫ = 0 for all ǫ ∈ s1̄, every conformal Killing vector in [s1̄, s1̄]

is a Killing vector with respect to g̃. In this case, (M, g) being (locally) conformally

homogeneous implies that (M, g̃) is (locally) homogeneous.

2.4 Maximally supersymmetric backgrounds

Maximally supersymmetric backgrounds are such that the connection D defined by equa-

tion (2.3) is flat. Hence one can determine the maximally supersymmetric backgrounds of

conformal supergravity in ten dimensions by solving the flatness equation which results by

abstracting ǫ from equation (2.9) and solving the resulting equation for endomorphisms of

the spinor bundle.

For maximally supersymmetric backgrounds of type I supergravity, the condition Gǫ =
1
2Hǫ implies G = 0, H = 0 and (2.9) then implies that the Riemann tensor must also vanish.

The only maximally supersymmetric background of type I supergravity in ten dimensions

is therefore locally isometric to Minkowski space, which is Theorem 4 in [100].

– 8 –
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For maximally supersymmetric backgrounds of conformal supergravity, the flatness

equation derived from (2.9) implies

∇µHνρσ = 0 , Hµν[ρHσαβ] = 0 , and HµνρGσ = 0 . (2.20)

The last equation gives rise to two branches of solutions: those with H = 0 and those

with H 6= 0 and hence G = 0. If H = 0 then (2.20) are trivially satisfied and the flatness

equation from (2.9) is equivalent to

Rµνρσ = −2

3
gρ[µ

(

∇ν]Gσ+
1

3
Gν]Gσ

)

+
2

3
gσ[µ

(

∇ν]Gρ+
1

3
Gν]Gρ

)

+
2

9
gρ[µgν]σGαG

α . (2.21)

The condition (2.21) just says that the Riemann tensor of the Weyl transformed metric

e−2Φ/3g is zero. In other words, g is conformally flat.

On the other hand, if H 6= 0, then the third condition in (2.20) implies that G = 0

and the flatness equation derived from (2.9) is equivalent to

Rµνρσ =
1

36

(

3Hµν
αHρσα + gρ[µHν]

αβHσαβ − gσ[µHν]
αβHραβ − 1

3
gρ[µgν]σH

αβγHαβγ

)

,

(2.22)

together with the first two conditions in (2.20). The first of those conditions says that H is

parallel with respect to the Levi-Civita connection ∇ and, by equation (2.22), so is the Rie-

mann tensor of g. In other words, the background must be locally isometric to a lorentzian

symmetric space. Now we shall classify maximally supersymmetric backgrounds of confor-

mal supergravity with G = 0, making use of several key techniques developed in [100].

The second condition in (2.20), written in a more invariant way, is

ιXιY H ∧H = 0 , (2.23)

for all vector fields X,Y . This is none other than the family of Plücker quadrics for H (see,

e.g., [101], Chapter 1), which is equivalent to H being decomposable; that is, H = α∧β∧γ,

for one-forms α, β, γ. Any background of interest is therefore locally isometric to a ten-

dimensional lorentzian symmetric space M equipped with a parallel decomposable three-

form H. These conditions are quite restrictive and solutions are distinguished according

to whether the constant ||H||2 := 1
6HµνρH

µνρ is positive, negative or zero. The geometric

meaning of this constant has to do with the metric nature of the tangent 3-planes which H

defines: they can be either euclidean, lorentzian or degenerate, according to whether ||H||2 is
positive, negative or zero, respectively. From (2.22), it follows that the constant scalar cur-

vature of g is R = −1
2 ||H||2. The maximally supersymmetric backgrounds are summarised

below (with the scalar curvature of each AdS and S factor denoted in parenthesis).

• If R > 0, M = AdS3

(
−4

3R
)
× S7

(
7
3R

)
with H =

√
2R volAdS3 .

• If R < 0, M = AdS7

(
7
3R

)
× S3

(
−4

3R
)
with H =

√
−2R volS3 .

• If R = 0, M = CW10(A) with A = −µ2

36 diag(4, 4, 1, 1, 1, 1, 1, 1) and H = µ dx− ∧
dx1 ∧ dx2.
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The background CW10(A) denotes a ten-dimensional Cahen-Wallach lorentzian sym-

metric space with metric

g = 2dx+dx− +

( 8∑

a,b=1

Aab x
axb

)

(dx−)2 +
8∑

a=1

(dxa)2 , (2.24)

in terms of local coordinates (x±, xa). For a general constant symmetric matrix A = (Aab),

it follows that g is conformally flat only if A is proportional to the identity matrix. Clearly

this is not the case for the particular A which defines the maximally supersymmetric back-

ground in the third item above (unless µ = 0, in which case CW10(0) = R9,1). Moreover,

the maximally supersymmetric backgrounds with R 6= 0 in the first two items above are

not conformally flat since, in each case, the constant sectional curvatures of the AdS and

S factors are not equal and opposite (e.g., see (1.167) in [102]).

It follows from ([103], section 4) that the Freund-Rubin backgrounds AdS3 × S7 and

AdS7×S3 found above have two distinct plane-wave (or Penrose-Güven) limits up to local

isometry. If the geodetic vector of the null geodesic along which we take the limit is tangent

to the anti-de Sitter space, then the limit is flat, whereas if the geodetic vector has a nonzero

component tangent to the sphere, the limit is isometric to the Cahen-Wallach background

we found above. Indeed, the ratio (= 4, in this case) between the two eigenvalues of the

symmetric matrix A defining the Cahen-Wallach metric is the square of the ratio (= 2, in

this case) of the radii of curvature of the 3- and 7-dimensional factors in the Freund-Rubin

geometry. This gives another proof that the Freund-Rubin backgrounds are not conformally

flat, since conformal flatness is a hereditary property under the plane-wave limit ([103],

section 3.2), but the CW10(A) geometry above is not conformally flat for µ 6= 0.

2.4.1 Conformal symmetry superalgebras

Let us now investigate how the construction of conformal symmetry superalgebras in sec-

tion 2.3 plays out for the maximally supersymmetric conformal supergravity backgrounds

we have just classified.

For the maximally supersymmetric background with H = 0, (M, g̃) is locally isometric

to R9,1. The supersymmetry condition (2.4) implies s1̄
∼= ∆

(9,1)
+ on R9,1. Surjectivity of

the squaring map then implies [s1̄, s1̄]
∼= R9,1. For any ǫ ∈ ∆

(9,1)
+ , L̂Xǫ ∈ ∆

(9,1)
+ only if the

conformal Killing vectorX does not involve a special conformal transformation in C(R9,1) ∼=
so(10, 2). This is just as expected from (2.18), so that the associated conformal factor σX
is constant. Thus, we must take s0̄ = H(R9,1) < C(R9,1), which consists of the obvious

Poincaré transformations generated by K(R9,1) ∼= so(9, 1) ⋉ R9,1 plus dilatation generated

by a proper homothetic conformal Killing vector θ. The Lie superalgebra obtained by

restricting to K(R9,1)⊳H(R9,1) is isomorphic to the Poincaré superalgebra in ten dimensions.

The conformal symmetry superalgebra s merely appends θ to this Poincaré superalgebra,

with the additional bracket [θ, ǫ] = 1
2ǫ, for all ǫ ∈ ∆

(9,1)
+ (which implies [θ, ξǫ] = ξǫ).

For all three maximally supersymmetric backgrounds with H 6= 0, G = 0 so

C(M, g) = H(M, g) because αX = 3σX is constant, for all X ∈ C(M, g). Given any

X,Y ∈ H(M, g) with σX 6= 0, then Y − σY

σX
X ∈ K(M, g). Hence, either H(M, g) = K(M, g)
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or dim(H(M, g)/K(M, g)) = 1. For the two maximally supersymmetric backgrounds

with constant scalar curvature R 6= 0, a quick calculation reveals that the scalar norm-

squared of the Weyl tensor W of g is ||W ||2 = 7
36R

2. Recall that the Weyl tensor obeys

LXW = −2σXW , for all X ∈ C(M, g), so LX ||W ||2 = 4σX ||W ||2. Hence, because in this

case ||W ||2 is a non-zero constant, it follows that H(M, g) = K(M, g). The third maximally

supersymmetric background with R = 0 does admit a proper homothetic conformal Killing

vector so dim(H(M, g)/K(M, g)) = 1.

2.4.2 s(AdS3 × S7) and s(AdS7 × S3)

The preceding discussion has established that the only conformal Killing vectors for these

two geometries are Killing vectors. Moreover, it is not difficult to prove that all such Killing

vectors correspond to Killing vectors on the individual AdS and S factors.

The supersymmetry condition (2.4) reduces to a pair of Killing spinor equations on the

individual AdS and S factors. In our conventions, a spinor ψ on a lorentzian/riemannian

spin manifold M is Killing if, for any vector field X on M , it obeys ∇Xψ = ±κ
2Xψ, for

some real/imaginary constant κ. In the case at hand, the Killing constants are given by

κAdS3 = iκS3 = 1
3

√

2|R| and κAdS7 = iκS7 = 1
6

√

2|R|.
Both AdSm and Sn can be described via the canonical quadric embedding in (an

open subset of) Rm−1,2 and Rn+1 respectively. Conversely, the flat metrics on both Rm−1,2

and Rn+1 can be written as (lorentzian and riemannian) cone metrics whose bases form

the respective AdSm and Sn geometries. This cone construction is particularly useful in

describing Killing vectors and Killing spinors on these geometries (see [104] for a review

in a similar context). Every Killing vector on the base lifts to a constant two-form on the

cone and vice versa. Thus K(AdSm) ∼= so(m − 1, 2) (∼= ∧2Rm−1,2 as a vector space) and

K(Sn) ∼= so(n+1) (∼= ∧2Rn+1 as a vector space). Every Killing spinor on the base lifts to a

constant spinor on the cone and vice versa. More precisely, if bothm and n are odd, there is

a bijection between Killing spinors on the base and constant chiral spinors on the cone. The

Kosmann-Schwarzbach Lie derivative of a Killing spinor along a Killing vector on the base

lifts to the obvious Clifford action of a constant two-form on a constant spinor on the cone.

The cleanest way to discuss the explicit structure of s(AdS3 × S7) and s(AdS7 × S3)

is as particular real forms of the same complex Lie superalgebra sC. The even part of sC is

sC
0̄
= so4(C) ⊕ so8(C). The odd part of sC is sC

1̄
= ∆

(4,C)
+ ⊗∆

(8,C)
+ , where ∆

(4,C)
+

∼= C2 and

∆
(8,C)
+

∼= C8 denote the chiral spinor representations of the respective so4(C) and so8(C)

factors in sC
0̄
. Let 〈−,−〉 denote the unique (up to scale) so4(C)-invariant skewsymmetric

complex bilinear form on ∆
(4,C)
+ and let (−,−) denote the unique (up to scale) so8(C)-

invariant symmetric complex bilinear form on ∆
(8,C)
+ .

Now fix a basis (LAB = −LBA,MIJ = −MJI) for sC
0̄
, where A,B = 1, 2, 3, 4 and

I, J = 1, . . . , 8. The brackets for sC are as follows

[LAB, LCD] = −δACLBD + δBCLAD + δADLBC − δBDLAC ,

[MIJ ,MKL] = −δIKMJL + δJKMIL + δILMJK − δJLMIK ,

[LAB, ψ ⊗ ϕ] =
1

2
γABψ ⊗ ϕ
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M s0̄ s1̄ type s

AdS3 × S7 so(2, 2)⊕ so(8) ∆
(2,2)
+ ⊗∆

(8)
+ R sl2(R)⊕ osp(8|2)

AdS7 × S3 so(6, 2)⊕ so(4) [∆
(6,2)
+ ⊗∆

(4)
+ ] H osp(6, 2|1)⊕ sp(1)

Table 1. Data for admissible real forms of sC ∼= sp1(C)⊕ osp8|1(C).

[MIJ , ψ ⊗ ϕ] =
1

2
ψ ⊗ γIJϕ ,

[ψ ⊗ ϕ, ψ′ ⊗ ϕ′] = 〈ψ, γABψ′〉(ϕ,ϕ′)LAB − 1

2
〈ψ, ψ′〉(ϕ, γIJϕ′)MIJ , (2.25)

for all ψ, ψ′ ∈ ∆
(4,C)
+ and ϕ,ϕ′ ∈ ∆

(8,C)
+ , where {γA} generate Cℓ(4) and {γI} generate

Cℓ(8). It is a straightforward exercise to check that (2.25) obey the graded Jacobi identities;

although the [1̄1̄1̄] component requires use of the following identities,

γABψ〈γABψ,−〉 = −4ψ〈ψ,−〉 (2.26)

and

γIJϕ(γIJϕ,−) = −8ϕ(ϕ,−) + 8(ϕ,ϕ)1 , (2.27)

which hold for all ψ ∈ ∆
(4,C)
+ and ϕ ∈ ∆

(8,C)
+ .

As a vector space, so4(C) ∼= ∧2C4 ∼= ∧2
+C4⊕∧2

−C4, in terms of the vector spaces ∧2
±C4 of

(anti)self-dual two-forms on C4 which span each sp1(C) factor in so4(C) ∼= sp1(C)⊕ sp1(C).

Let ε ∈ ∧4C4 with ε1234 = 1 and let γ = −γ1234 define the chirality matrix for Cℓ(4). It

follows that γABγ = 1
2εABCDγ

CD, so any ψ ∈ ∆
(4,C)
+ defines a self-dual two-form 〈ψ, γABψ〉.

This implies that the bracket defined by (2.25) of the sp1(C) < so4(C) spanned by ∧2
−C4

with every other element in sC is zero. The action of the other sp1(C) < so4(C) (spanned

by ∧2
+C4) on ∆

(4,C)
+ just corresponds to the defining representation ∆C of this sp1(C).

Excluding the decoupled sp1(C) factor from sC leaves a simple complex Lie superalgebra

that is isomorphic to osp8|1(C) (a.k.a. D(4, 1) in the Kac classification [105]), with even

part so8(C)⊕ sp1(C) and odd part ∆
(8,C)
+ ⊗∆C. Thus, sC ∼= sp1(C)⊕ osp8|1(C).

The real forms of all complex classical Lie superalgebras in [105] were classified in [106].

Up to isomorphism, the real forms of a given complex classical Lie superalgebra are uniquely

determined by the real forms of the complex reductive Lie algebra which constitutes its

even part. The even part of sC is sC
0̄
= so4(C)⊕ so8(C) which admits many non-isomorphic

real forms. However, of these real forms, only so(2, 2) ⊕ so(8) and so(6, 2) ⊕ so(4) are

isomorphic to the Lie algebra of isometries of AdS3 × S7 and AdS7 × S3, respectively. It

is then straightforward to deduce the associated real forms which describe their conformal

symmetry superalgebras s. The pertinent data is summarised in table 1.

We have opted for the more common physics notation to write the real form osp(8|2)
rather than its perhaps more logical alias osp8|1(R). The notation is that ∆

(p,q)
+ denotes

the positive-chirality spinor representation of so(p, q) when p + q is even. As vector

spaces, ∆
(2,2)
+

∼= R2, ∆
(8)
+

∼= R8, ∆
(6,2)
+

∼= H4 and ∆
(4)
+

∼= H. Given a pair of quater-

nionic representations W1 and W2, which we think of as complex representations equipped
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with invariant quaternionic structures J1 and J2, their tensor product J1 ⊗ J2 defines

a real structure on W1 ⊗ W2, where the tensor product is over C. This means that

W1 ⊗ W2
∼= C ⊗R [W1 ⊗ W2], where [W1 ⊗ W2] is a real representation which can be

identified with the subspace of real elements (i.e., fixed points of the real structure) in

W1⊗W2. Note that so(2, 2) ∼= sl2(R)⊕ sl2(R) with ∆
(2,2)
+

∼= ∆⊗R, in terms of the defining

representation ∆ of sl2(R), while so(4) ∼= sp(1)⊕ sp(1) with ∆
(4)
+

∼= ∆′ ⊗R, in terms of the

defining representation ∆′ of sp(1), where we use R for the trivial real representation.

2.4.3 s(CW10(A))

To describe the conformal Killing vectors of the Cahen-Wallach geometry (2.24) with A =

−µ2

36 diag(4, 4, 1, 1, 1, 1, 1, 1), it is convenient to partition the indices a, b, . . ., which take

values in {1, . . . , 8}, into α, β, . . . ∈ {1, 2} and i, j, . . . ∈ {3, . . . , 8}.
A basis of Killing vectors for this geometry is given by

ξ = ∂+

ζ = ∂−

J = x1∂2 − x2∂1

Mij = xi∂j − xj∂i

qα =
3

µ
sin

(µ

3
x−

)

∂α − xα cos
(µ

3
x−

)

∂+

qi =
6

µ
sin

(µ

6
x−

)

∂i − xi cos
(µ

6
x−

)

∂+

pα = cos
(µ

3
x−

)

∂α +
µ

3
xα sin

(µ

3
x−

)

∂+

pi = cos
(µ

6
x−

)

∂i +
µ

6
xi sin

(µ

6
x−

)

∂+ .

(2.28)

Their non-vanishing Lie brackets are as follows

[ζ, qα] = pα

[ζ, qi] = pi

[ζ, pα] = −µ2

9
qα

[ζ, pi] = −µ2

36
qi

[J, q1] = −q2

[J, q2] = q1

[J, p1] = −p2

[J, p2] = p1

[qi, pj ] = δijξ

[qα, pβ ] = δαβξ

[Mij , qk] = −δikqj + δjkqi

[Mij , pk] = −δikpj + δjkpi

(2.29)

in addition to

[Mij ,Mkl] = −δikMjl + δjkMil + δilMjk − δjlMik . (2.30)

The Killing vectors (ξ, q, p) are generic for plane wave geometries and we see from (2.29)

that they form a 17-dimensional Lie subalgebra isomorphic to the Heisenberg algebra

heis8(R). The Killing vectors (J,M) span the Lie subalgebra so(2) ⊕ so(6) < so(8) which

stabilises A.

In total, notice that dimK(CW10(A)) = 34 = dimK(AdS3 × S7) = dimK(AdS7 × S3).

However, CW10(A) admits an additional homothetic conformal Killing vector

θ = 2x+∂+ + xa∂a , (2.31)

normalised such that σθ = −1. Its non-vanishing Lie brackets with K(CW10(A)) are

[ξ, θ] = 2ξ , [qa, θ] = qa and [pa, θ] = pa . (2.32)
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Thus we have obtained s0̄(CW10(A)), defined with respect to the basis (ξ, q, p, ζ, J,M, θ) ∈
H(CW10(A)), subject to Lie brackets (2.29) and (2.32).

The general solution of (2.4) on CW10(A) yields a supersymmetry parameter of

the form

ǫ = exp
(µ

4
x−I

)

η+ +
1

2

(

Γ− +
µ

3

(

xαΓα − 1

2
xiΓi

)

I

)

exp
( µ

12
x−I

)

η− , (2.33)

in terms of I = Γ12 and any pair of constant spinors η± ∈ ∆
(9,1)
± with Γ+η± = 0. It is

perhaps worth noting that a spinor of the form (2.33) on CW10(A) cannot be parallel with

respect to the Levi-Civita connection ∇ unless it is identically zero because any ∇-parallel

spinor ψ on CW10(A) is necessarily constant with Γ+ψ = 0.

Now let us adopt the shorthand notation ǫ = Ψ(η+, η−) for any supersymmetry pa-

rameter of the form (2.33). Substituting (2.28), (2.31) and (2.33) into the Kosmann-

Schwarzbach Lie derivative (2.12) yields the following non-vanishing even-odd brackets for

s(CW10(A))

[ζ,Ψ(η+, η−)] =
µ

4
Ψ

(

Iη+,
1

3
Iη−

)

[J,Ψ(η+, η−)] =
1

2
Ψ(Iη+, Iη−)

[qα,Ψ(η+, η−)] = −1

2
Ψ(Γαη−, 0)

[pα,Ψ(η+, η−)] =
µ

6
Ψ(ΓαIη−, 0)

[θ,Ψ(η+, η−)] = −Ψ(η+, 0)

[Mij ,Ψ(η+, η−)] =
1

2
Ψ(Γijη+,Γijη−)

[qi,Ψ(η+, η−)] = −1

2
Ψ(Γiη−, 0)

[pi,Ψ(η+, η−)] = − µ

12
Ψ(ΓiIη−, 0) .

(2.34)

Notice, in particular, that ξ acts trivially on the Killing spinors.

Finally, substituting (2.33) into the squaring map ǫ 7→ ξǫ gives the odd-odd bracket

[ǫ, ǫ] = (η+Γ−η+)ξ −
1

2
(η−Γ−η−)

(

ζ +
µ

3
J
)

− µ

24
(η−Γ−Γ

ij
Iη−)Mij (2.35)

− µ

3
(η+Γ−Γ

α
Iη−)qα +

µ

6
(η+Γ−Γ

i
Iη−)qi − (η+Γ−Γ

αη−)pα − (η+Γ−Γ
iη−)pi .

Thus we have obtained s(CW10(A)) and it is a simple matter to confirm that the

brackets defined by equations (2.29), (2.30), (2.32), (2.34) and (2.35) indeed obey the

Jacobi identities. For any X ∈ H(CW10(A)), αX = 3σX is obviously constant and one can

check that βX = 0, as expected from (2.18), because the three-form H = µ dx−∧dx1∧dx2

obeys LXH = −2σXH.

2.4.4 Contractions

As we have seen, the Cahen-Wallach background is the plane-wave limit of the Freund-

Rubin backgrounds. Therefore we might expect, based on what happens in ten- and

eleven-dimensional Poincaré supergravities [103, 107], that s(CW10(A)) is a contraction

(in the sense of Inönü-Wigner) of s(AdS3×S7) and s(AdS7×S3). Indeed, it was precisely

that observation in [108] which led to the identification of the maximally supersymmetric

plane-wave solutions of eleven-dimensional and IIB supergravities as plane-wave limits of
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the corresponding Freund-Rubin solutions in [109]. We will give the details only for the

AdS3 × S7 Freund-Rubin background, and leave the similar calculation for AdS7 × S3 to

the imagination.

The contraction is easiest to describe in the following basis. Let s0̄ = so(2, 2)⊕so(8) be

the even part of s(AdS3×S7). We will choose a basis (Pµ, Lµν) for so(2, 2) and (Pm,Mmn)

for so(8), where µ, ν = 0, 1, 2 and m,n = 3, . . . , 9. The Lie brackets are given by

[Pµ, Pν ] = 4Lµν

[Lµν , Pρ] = −ηµρPν + ηνρPµ

[Pm, Pn] = −Mmn

[Mmn, Pp] = −δmpPn + δnpPm

(2.36)

and

[Lµν , Lρσ] = −ηµρLνσ + ηνρLµσ + ηµσLνρ − ηνσLµρ

[Mmn,Mpq] = −δmpMnq + δnpMmq + δmqMnp − δnqMmp ,
(2.37)

where η = diag(−1,+1,+1). Let Ψ : ∆
(9,1)
+ → s1̄ be a vector space isomorphism. The

even-odd brackets of the conformal symmetry superalgebra of AdS3 × S7 are given by

[Lµν ,Ψ(ε)] = Ψ

(
1

2
Γµνε

)

and [Mmn,Ψ(ε)] = Ψ

(
1

2
Γmnε

)

, (2.38)

[Pµ,Ψ(ε)] = Ψ(Γµνε) and [Pm,Ψ(ε)] = −1

2
Ψ(Γmνε) , (2.39)

in terms of the Cℓ(9, 1) gamma matrices and where ε ∈ ∆
(9,1)
+ and ν = Γ012. Finally, the

odd-odd brackets are given by

[Ψ(ε),Ψ(ε)] = (εΓµε)Pµ + (εΓmε)Pm − (εΓµννε)Lµν +
1

2
(εΓmnνε)Mmn . (2.40)

We now decompose ε = ε+ + ε−, with ε± ∈ ker Γ±, and expand the above Lie bracket as

follows, where the indices α, β ∈ {1, 2} and i, j ∈ {3, . . . , 8}:

[Ψ(ε),Ψ(ε)] = (ε+Γ−ε+)(P+ − L12)−
1

4
(ε+Γ

ij
IΓ−ε+)Mij

+ (ε−Γ+ε−)(P− + 2L12) +
1

2
(ε−Γ

ij
IΓ+ε−)Mij

+ 2(ε+Γ
αε−)Pα + 2(ε+Γ

iε−)Pi + 4(ε+Γ
α
Iε−)L0α − 2(ε+Γ

i
Iε−)M9i ,

(2.41)

where we have defined P+ = 1
2(P9 + P0) and P− = P9 − P0.

Let us now define a real Z2-graded vector space E = E0̄ ⊕ E1̄, where E0̄ is spanned

by the symbols (ξ′, ζ ′, J ′,M ′
ij , p

′
α, q

′
α, p

′
i, q

′
i) for α, β = 1, 2 and i, j = 3, . . . , 8 and E1̄ is the

isomorphic image of Ψ′ : ∆
(9,1)
+ → E1̄. We will define a family Υt : E → s of even Z2-graded

linear maps by extending the following maps linearly:

Υt(ξ
′) =

µ

12
t2 (P9 + P0)

Υt(ζ
′) =

µ

6
(P9 − P0)

Υt(J
′) = L12

Υt(M
′
ij) = Mij

Υt(p
′
α) =

µ

6
tPα

Υt(p
′
i) =

µ

6
tPi

Υt(q
′
α) = tL0α

Υt(q
′
i) = tM9i

(2.42)
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and where, for ε ∈ ∆
(9,1)
+ ,

Υt(Ψ
′(ε)) =

{

λtΨ(ε) , if ε ∈ ker Γ+

λΨ(ε) , if ε ∈ ker Γ− ,
(2.43)

with λ2 = µ
6 . (We tacitly assume µ > 0, but in fact the factor µ is inessential and can

always be taken to be 1, if nonzero.) It is clear by inspection that Υt defines a vector space

isomorphism for any t 6= 0. For definiteness, let us take t > 0. We may define a family of

Lie brackets [−,−]t on E by transporting the Lie bracket on s via Υt:

[x, y]t := Υ−1
t [Υt(x),Υt(y)] , (2.44)

for x, y ∈ E. By construction, for every t > 0, (E, [−,−]t) and (s, [−,−]) are isomorphic

Lie superalgebras. If the limit t → 0 exists, then (E, [−,−]0) defines a Lie superalgebra,

which is then a contraction of (s, [−,−]). One checks that for the map Υt defined in

equations (2.42) and (2.43), the limit t → 0 of the [−,−]t bracket does exist and that the

resulting bracket is precisely the one defined by equations (2.29), (2.30), (2.34) (without the

θ bracket) and (2.35), once we remove the primes from the symbols, and identify η+ = ε+
and η− = Γ+ε−.

Let us illustrate this with some examples. Firstly, let us consider the bracket [q′i, p
′
j ],

which is given by

[q′i, p
′
j ] = lim

t→0
Υ−1

t [Υt(q
′
i),Υt(p

′
j)]

= lim
t→0

Υ−1
t

[

tM9i,
µ

6
tPj

]

= lim
t→0

µ

6
t2Υ−1

t δijP9

= lim
t→0

δij
µ

6

(
6

µ
ξ′ +

3t2

µ
ζ ′
)

= δijξ
′ ,

(2.45)

which agrees with equation (2.29). Next we consider the bracket [p′α,Ψ
′(ε−)], for ε− ∈

ker Γ−, given by

[p′α,Ψ
′(ε−)] = lim

t→0
Υ−1

t [Υt(p
′
α),Υt(Ψ

′(ε−))]

= lim
t→0

Υ−1
t

[
µ

6
tPα, λΨ(ε−)

]

= lim
t→0

µλ

6
Υ−1

t tΨ(Γανε−)

=
µ

6
Ψ′(ΓαIΓ+ε−) ,

(2.46)

which shows that η− = Γ+ε− for agreement with equation (2.34). Next, we consider the
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bracket [Ψ′(ε+),Ψ
′(ε+)], where ε+ ∈ ker Γ+, whose contraction is

[Ψ′(ε+),Ψ
′(ε+)] = lim

t→0
Υ−1

t [Υt(Ψ
′(ε+)),Υt(Ψ

′(ε+))]

= λ2 lim
t→0

t2Υ−1
t [Ψ(ε+),Ψ(ε+)]

=
µ

6
lim
t→0

t2Υ−1
t

(

(ε+Γ−ε+)(P+ − L12)−
1

2
(ε+Γ

ij
IΓ−ε+)Mij

)

=
µ

6
lim
t→0

(

(ε+Γ−ε+)

(
6

µ
ξ′ − t2J ′

)

− 1

2
(ε+Γ

ij
IΓ−ε+)t

2M ′
ij

)

= (ε+Γ−ε+)ξ
′ ,

(2.47)

and [Ψ′(ε−),Ψ
′(ε−)], given by

[Ψ′(ε−),Ψ
′(ε−)] = lim

t→0
Υ−1

t [Υt(Ψ
′(ε−)),Υt(Ψ

′(ε−))]

= λ2 lim
t→0

Υ−1
t [Ψ(ε−),Ψ(ε−)]

=
µ

6
lim
t→0

Υ−1
t

(

(ε−Γ+ε−)(P− + 2L12) +
1

2
(ε−Γ

ij
IΓ+ε−)Mij

)

=
µ

6
lim
t→0

(

(ε−Γ+ε−)

(
6

µ
ζ ′ + 2J ′

)

+
1

2
(ε−Γ

ij
IΓ+ε−)M

′
ij

)

= (ε−Γ+ε−)
(

ζ ′ +
µ

3
J ′
)

+
µ

12
(ε−Γ

ij
IΓ+ε−)M

′
ij ,

(2.48)

which agree with the first line of equation (2.35), again using η− = Γ+ε−.

Finally, we should remark that the infinitesimal homothety θ of the Cahen-Wallach

background is not inherited from the Freund-Rubin backgrounds via the plane-wave limit,

hence we are not obtaining the full conformal symmetry superalgebra as a contraction. Of

course, this is not unexpected.

2.4.5 Maximal superalgebras

In [110] the notion of the maximal superalgebra of a supergravity background was intro-

duced, generalising to non-flat backgrounds the M-algebra of [111]. Given a supergravity

background with Killing superalgebra k = k0̄ ⊕ k1̄, the maximal superalgebra (should it

exist) is defined to be Lie superalgebra m = m0̄ ⊕m1̄, satisfying the following properties

1. m1̄ = k1̄ and k0̄ is a Lie subalgebra of m0̄;

2. the odd-odd bracket is an isomorphism ⊙2m1̄
∼= m0̄; and

3. the projection ⊙2m1̄ → k0̄ coincides with the odd-odd bracket of k and the restriction

to k0̄ of the bracket m0̄ ⊗m1̄ → m1̄ is the k-bracket.

In other words, writing m0̄ = k0̄ ⊕ z0̄, then the m-brackets [k0̄, k0̄], [k0̄,m1̄] and the k0̄-

component of [m1̄,m1̄] are, respectively, the [k0̄, k0̄], [k0̄, k1̄] and [k1̄, k1̄] brackets of k, and

only the brackets involving z0̄ are genuinely new.

As reviewed in [110], it follows from ([112], appendix A) that any Lie superalgebra

satisfying (2) — in particular, the maximal superalgebra of a background — is uniquely
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determined by some ω ∈
(
∧2m∗

1̄

)m0 ⊂
(
∧2k∗

1̄

)k0 . Indeed, by (2) above, if Qa is a basis for

m1̄, Zab := [Qa, Qb] is a basis for m0̄ and the Lie brackets in this basis are given by

[Zab, Qc] = ωacQb + ωbcQa

[Zab, Zcd] = ωacZbd + ωbcZad + ωadZbc + ωbdZac ,
(2.49)

where ωab := ω(Qa, Qb) and where the second equation follows from the first, using the Ja-

cobi identity and the definition of Zab. In this section we explore the maximal superalgebras

of the maximally supersymmetric backgrounds.

First of all, we show that the Cahen-Wallach background does not admit a maximal

superalgebra. The proof is virtually identical to the one for the Cahen-Wallach vacua of

eleven-dimensional and type IIB Poincaré supergravities in [110]. As explained in ([110],

section 3), for any maximal superalgebra m, k0̄ acts trivially on the radical k⊥
1̄
of the skew-

symmetric bilinear form ω characterising m. Now, inspecting equation (2.34) we see that

ζ = ∂− acts semisimply on k1̄ with nonzero eigenvalues, so that k
k0̄
1̄
= 0. Therefore ω, having

trivial radical, must be symplectic and hence, from equation (2.49), it follows that m must

have trivial centre. But now notice that ξ = ∂+ acts trivially on m1̄ and hence it is central

in m, thus contradicting the existence of a maximal superalgebra for the Cahen-Wallach

background.

Next we discuss the two maximally supersymmetric Freund-Rubin backgrounds

AdS7 × S3 and AdS3 × S7. Here it is convenient to again think of their Killing super-

algebras as different real forms of the same complex Lie superalgebra. At the same time

we must make a distinction between the symmetry superalgebra sC and the Killing super-

algebra, which is the ideal kC of sC generated by kC
1̄
. For the Freund-Rubin backgrounds,

sC is strictly larger, containing a simple ideal isomorphic to sl2(C), which acts trivially on

the Killing spinors.

In this case, we have kC
0̄
∼= sl2(C) ⊕ so8(C) and kC

1̄
∼= ∆C ⊗ ∆

(8,C)
+ as an kC

0̄
-module,

where ∆C is the defining representation of sl2(C) and the tensor product is over C. There

is precisely one invariant skew-symmetric bilinear form (up to scale) on kC
1̄
: it is the product

of the sl2(C)-invariant complex symplectic structure 〈−,−〉 on ∆C and the so8(C)-invariant

complex orthogonal structure (−,−) on ∆
(8,C)
+ . It is clearly nondegenerate, hence complex

symplectic. Therefore if kC admits a maximal superalgebra, it has to be the complexification

osp(1|16)C of osp(1|16). On the other hand, it is shown in [106] that osp(1|16) is the unique
real form of osp(1|16)C, so if ‘maximisation’ were to commute with complexification, we

would conclude that the maximal superalgebras of the Freund-Rubin backgrounds would be

isomorphic to osp(1|16). We do not have such a result at our disposal and it is unlikely that

such a general result actually exists since not every Lie superalgebra can be ‘maximised’,

as illustrated by the Killing superalgebra of the Cahen-Wallach backgrounds. This means

we need to work harder.

We start by showing that the maximal superalgebra of kC is indeed isomorphic to

osp(1|16)C, following the construction in [110], mutatis mutandis. First of all, let us de-
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compose the symmetric square of mC

1̄
into irreducible representations of kC

0̄
:

⊙2mC

1̄ = ⊙2
(

∆C ⊗∆
(8,C)
+

)

=
(

⊙2∆C ⊗⊙2∆
(8,C)
+

)

⊕
(

∧2∆C ⊗ ∧2∆
(8,C)
+

)

=
(

⊙2∆C ⊗
(

C ⊕⊙2
0∆

(8,C)
+

))

⊕
(

C ⊗ ∧2∆
(8,C)
+

)

= ⊙2∆C ⊕ ∧2∆
(8,C)
+ ⊕

(

⊙2∆C ⊗⊙2
0∆

(8,C)
+

)

∼= sl2(C)⊕ so8(C)⊕ zC0̄ ,

(2.50)

which defines zC
0̄
. Except for the zC

0̄
, this is precisely the odd-odd bracket of kC. It follows

from the discussion in ([110], section 4.3) that the action of k0̄ on k1̄, when viewed through

the lens of the cone construction, is via the Clifford action of the parallel 2-forms on the

cones of AdSp and Sq to which the special Killing 1-forms in k0̄ lift. Therefore we extend this

Clifford action to all of m0̄, which also lift as parallel forms to the cones. This complexifies

and gives the following construction of mC; although we prefer to use a different basis,

which unfortunately obscures the embedding of kC
0̄
into mC

0̄
.

If ψ1 ⊗ ϕ1, ψ2 ⊗ ϕ2 ∈ mC

1̄
, their symplectic inner product is given by

ω(ψ1 ⊗ ϕ1, ψ2 ⊗ ϕ2) = 〈ψ1, ψ2〉 (ϕ1, ϕ2) . (2.51)

We define the following rank-1 endomorphisms of ∆C and ∆
(8,C)
+ :

ψ1ψ2 := 〈ψ2,−〉ψ1 and ϕ1ϕ2 := (ϕ2,−)ϕ1 , (2.52)

and we define the odd-odd bracket in mC via

[ψ1 ⊗ ϕ1, ψ2 ⊗ ϕ2] = ψ1ψ2 ⊗ ϕ1ϕ2 + ψ2ψ1 ⊗ ϕ2ϕ1 . (2.53)

By a judicious use of the Fierz identities, the rank-1 endomorphisms above can be expressed

in terms of the standard basis for the Clifford algebra in terms of exterior forms, and in

this way clarify the embedding kC
0̄
⊂ mC

0̄
, but we have no need to do that. The action of

mC

0̄
on mC

1̄
is given simply by the Clifford action, which is

[ψ1ψ2 ⊗ ϕ1ϕ2+ψ2ψ1 ⊗ ϕ2ϕ1, ψ3 ⊗ ϕ3]=〈ψ2, ψ3〉 (ϕ2, ϕ3)ψ1 ⊗ ϕ1+〈ψ1, ψ3〉 (ϕ1, ϕ3)ψ2 ⊗ ϕ2

=ω(ψ2 ⊗ ϕ2, ψ3 ⊗ ϕ3)ψ1 ⊗ ϕ1

+ ω(ψ1 ⊗ ϕ1, ψ3 ⊗ ϕ3)ψ2 ⊗ ϕ2 , (2.54)

which agrees with the first equation in (2.49), showing that indeed mC ∼= osp(1|16)C.
How about the maximal subalgebras of k(AdS3 × S7) and k(S3 × AdS7)? Let k be

one of these Killing superalgebras. It is a real form of kC, so in particular k1̄ is the real

subspace of kC
1̄
defined by a k0̄-invariant conjugation. Now consider k1̄ as a real subspace

of mC

1̄
. It generates a real subalgebra of mC, which satisfies property (2) of a maximal

subalgebra because the restriction to k1̄ of the odd-odd bracket is an isomorphism onto its

image. This means that the brackets are of the form (2.49) with ω being the restriction
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of the complex-symplectic form on mC

1̄
to the real subspace k1̄. The other properties for

a maximal subalgebra are satisfied because kC is the complexification of k. Therefore we

see that k admits a maximal superalgebra, but to identify it we need to understand the

restriction of ω to k1̄. It pays to be a little bit more general.

Let (E,ω) be a complex symplectic vector space. Let g be a Lie algebra, whose

complexification gC acts on E preserving ω. Now suppose that c is a g-invariant conjugation

on E and let ER be its fixed (real) subspace; that is, E = ER⊗RC. Because c is g-invariant,

g acts on ER. Now, ω restricts to a real skewsymmetric bilinear form ωR on ER. Since ω is

gC-invariant, it is in particular also g-invariant and hence so is ωR. Its radical, therefore, is

a g-submodule of ER. Now suppose that ER is irreducible as a g-module. Then the radical

of ωR must either be trivial, in which case ωR is a symplectic form, or it must be all of ER,

in which case ωR = 0.

Now let us apply this to our situation, with the role of (E,ω) played by (kC
1̄
, ω). We

have that k1̄ is an irreducible module of k0̄, so that the restriction of ω to k1̄ is either

symplectic or zero. But it cannot be zero, because otherwise k0̄ would be central and in

particular, an abelian Lie algebra. Therefore we conclude that ω restricts to a symplectic

form on k1̄ and hence k1̄ generates a maximal superalgebra isomorphic to osp(1|16).

2.5 F1-string and NS5-brane, Weyl transformations and near-horizon limits

Backgrounds which solve (2.3) for precisely eight linearly independent supersymmetry pa-

rameters ǫ are called half-BPS. Two well-known half-BPS backgrounds in ten dimensions

are the F1-string [113] and the NS5-brane [114]. They solve (2.3) with dH = 0 and

Gǫ = 1
2Hǫ and thus define half-BPS backgrounds of type I supergravity in ten dimensions.

To define them, it is convenient to write gRp,q and volRp,q for the canonical flat metric and

volume form on Rp,q.

The F1-string background has metric and three-form given by

g = e2ΦgR1,1 + gR8 , H = volR1,1 ∧ de2Φ , (2.55)

where e−2Φ is a harmonic function on R8 so that d(e−2Φ ⋆ H) = 0. For example, thinking

of R8 as a cone over S7 with radial coordinate r, one can take e−2Φ = 1 + |k2|
r6

for some

constant k2. The supersymmetry parameter is given by

ǫ = eΦ/2ǫ0 , volR1,1 ǫ0 = ǫ0 , (2.56)

where ǫ0 is a constant positive chirality Majorana-Weyl spinor on R9,1.

Now consider the Weyl transformation (with Ω = e−Φ/3) of the F1-string that defines

a solution of (2.4). This is a new half-BPS background of conformal (but not Poincaré)

supergravity in ten dimensions. Its ‘near-horizon’ limit is defined by taking the radial

coordinate r → 0, which recovers precisely the maximally supersymmetric AdS3 × S7

background obtained in section 2.4 (identifying |k2|−1/3 = R/18).

The NS5-brane background has metric and three-form given by

g = gR5,1 + e2ΦgR4 , H = −⋆R4de2Φ , (2.57)
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where e2Φ is a harmonic function on R4 so that dH = 0. For example, thinking of R4 as

a cone over S3 with radial coordinate r, one can take e2Φ = 1 + |k6|
r2

for some constant k6.

The supersymmetry parameter is given by

ǫ = ǫ0 , volR4 ǫ0 = ǫ0 , (2.58)

where ǫ0 is a constant positive chirality Majorana-Weyl spinor on R9,1.

The near-horizon limit of the NS5-brane defines a metric on R5,1 × R+ × S3 and is

therefore not conformally equivalent to the maximally supersymmetric AdS7 × S3 back-

ground obtained section 2.4. However, it is important to stress that any choice of function

e2Φ on R4 for the NS5-brane defines a half-BPS background of conformal supergravity in

ten dimensions. Let us therefore not assume that e2Φ is harmonic on R4 and perform

the Weyl transformation (with Ω = e−Φ/3) to define a solution of (2.4). Now, for this

new half-BPS background of conformal supergravity, taking e2Φ = 1 +
|k′6|
r3

for some con-

stant k′6 (which is not harmonic on R4), one recovers in the near-horizon limit precisely

the maximally supersymmetric AdS7 × S3 background obtained in section 2.4 (identifying

|k′6|−2/3 = −2R/9).

3 Yang-Mills supermultiplet

The on-shell Yang-Mills supermultiplet in ten dimensions contains a bosonic gauge field Aµ

and a fermionic Majorana-Weyl spinor λ (we take λ with positive chirality, i.e., Γλ = λ).

Both fields are valued in a real Lie algebra g with invariant inner product (−,−).

The supersymmetry variations are

δǫAµ = ǫΓµλ

δǫλ = −Fǫ ,
(3.1)

where ǫ is a bosonic Majorana-Weyl spinor with positive chirality. The variations

in (3.1) are Weyl-invariant provided (Aµ, λ, ǫ) are assigned weights
(
0,−3

2 ,
1
2

)
. For a

bosonic supersymmetric conformal supergravity background, the supersymmetry parame-

ter ǫ obeys (2.3).

Up to boundary terms, the lagrangian

L = e−2Φ

(

−1

4
(Fµν , F

µν)− 1

2
(λ, /Dλ) +

1

8
(λ,Hλ) +

1

2
Hµνρ(Aµ, ∂νAρ +

1

3
[Aν , Aρ])

)

,

(3.2)

is invariant under (3.1), for any ǫ obeying (2.3). (This result was noted in [23] for the

subclass of bosonic supersymmetric backgrounds of type I supergravity in ten dimensions.)

The prefactor e−2Φ acts as an effective gauge coupling in (3.2). For generic backgrounds

with H 6= 0, notice that rigid supersymmetry necessitates both a mass term for λ and a

Chern-Simons coupling for the gauge field. Closure of e−2Φ ⋆ H ensures that the Chern-

Simons coupling is gauge-invariant.

Squaring δǫ in (3.1) with ǫ subject to (2.3) gives

δ2ǫAµ = −Fµνξ
ν = LξAµ +DµΛ

δ2ǫλ = Lξλ+
1

2
Gξλ+ [λ,Λ] +

(

ǫǫ− 1

2
ξ

)(

/Dλ−Gλ− 1

4
Hλ

)

,
(3.3)
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where ξµ = ǫΓµǫ and Λ = −Aξ. The Lie derivative LX along a conformal Killing vector

X is defined such that LXAµ = Xν∂νAµ + (∂µX
ν)Aν and LXλ = ∇Xλ+ 1

4(∇µXν)Γ
µνλ.

The final term on the right hand side of δ2ǫλ in (3.3) vanishes using the field equation

/Dλ−Gλ− 1
4Hλ = 0 for λ, derived from (3.2). Thus, on-shell, it follows that

δ2ǫ = Lξ + wσξ + δΛ (3.4)

on any field in the Yang-Mills supermultiplet with Weyl weight w, where σξ = − 1
10∇µξ

µ =

−1
3∂ξΦ is the parameter for a Weyl variation and δΛ denotes a gauge variation with pa-

rameter Λ = −Aξ.

A novel (partially) off-shell formulation of supersymmetric Yang-Mills theory on R9,1

was obtained by Berkovits in [94] (see also [95, 96]). To match the 16 off-shell fermionic de-

grees of freedom of λ, the 9 off-shell degrees of freedom of Aµ are supplemented by 7 bosonic

auxiliary scalar fields Yi (where i = 1, . . . , 7). All fields are g-valued. The supersymmetry

parameter ǫ is also supplemented by seven linearly independent bosonic Majorana-Weyl

spinors θi, each with the same positive chirality as ǫ. The index i corresponds to the vector

representation of the spin(7) factor in the isotropy algebra spin(7)⋉ R8 of ǫ.

Now consider the following supersymmetry variations for the partially off-shell Yang-

Mills supermultiplet on a bosonic supersymmetric conformal supergravity background

δǫAµ = ǫΓµλ

δǫλ = −Fǫ+ Yiθi

δǫYi = θi

(

/Dλ−Gλ− 1

4
Hλ

)

.

(3.5)

Under the Weyl transformation gµν 7→ Ω2gµν , Hµνρ 7→ Ω2Hµνρ, Φ 7→ Φ+ 3 lnΩ of the

background data that was described in section 2.1, the supersymmetry variations in (3.5)

are invariant provided we assign (Aµ, λ, Yi) their canonical weights (0,−3
2 ,−2), with ǫ

and θi both having weight 1
2 . (The Weyl transformation /∇ 7→ Ω−11/2 /∇Ω9/2 of the Dirac

operator in ten dimensions can be used to prove this for δǫYi.)

The supersymmetry parameters ǫ and θi are related such that

ǫΓµθi = 0 , θiΓµθj = δij ξµ and ǫǫ+ θiθi =
1

2
ξ . (3.6)

Squaring (3.5) subject to (3.6) gives precisely (3.4) on Aµ and λ, without needing to

impose the field equation for λ. Moreover,

δ2ǫYi = LξYi − 2σξYi + [Yi,Λ] + ΥijYj , (3.7)

where Υij = θ[i /∇θj] − 1
4θiHθj corresponds to a spin(7) rotation.

Up to boundary terms, the lagrangian

L = e−2Φ

(

−1

4
(Fµν , F

µν)− 1

2
(λ, /Dλ) +

1

2
(Yi, Yi) +

1

8
(λ,Hλ)

+
1

2
Hµνρ

(

Aµ, ∂νAρ +
1

3
[Aν , Aρ]

))

, (3.8)
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is invariant under (3.5). It is also manifestly invariant under spin(7) rotations of the

auxiliary fields. Moreover, the integral of (3.8) is Weyl-invariant with respect to the afore-

mentioned transformation rules for fields and background data.

Of all the bosonic supersymmetric conformal supergravity backgrounds the Yang-Mills

supermultiplet above can be defined upon, the maximally supersymmetric AdS3 × S7 and

AdS7 × S3 Freund-Rubin backgrounds classified in section 2.4 are perhaps the most com-

pelling. In particular, it would interesting to explore whether the Yang-Mills supermul-

tiplet on these conformal supergravity backgrounds admits a consistent truncation that

would recover one of the theories described in [13, 22, 24, 76, 92]. The relevant theories

in [13] (or [24]) would follow by dimensionally reducing the on-shell (or partially off-shell)

Yang-Mills supermultiplet on R9,1 to some lower dimension d equal to either 7 or 3, before

deforming the resulting supermultiplet in dimension d in such a way that it retains rigid

supersymmetry on a curved space admitting the maximum number of real or imaginary

Killing spinors, i.e., either AdSd or Sd. The deformation involves introducing several non-

minimal couplings that do not seem to figure in (3.1) and (3.2), though this discrepancy

may be the result of a non-standard reduction along some subset of Killing vectors of

S10−d or AdS10−d that is necessary for the conformal supergravity background instead of

along the obvious translations in R10−d or R9−d,1, as in [13, 24]. We leave this question for

future work.

4 Lifting to eleven dimensions

It should not have gone unnoticed that the supersymmetric backgrounds of conformal su-

pergravity in ten dimensions that we have been discussing bear a striking resemblance to

supersymmetric backgrounds of Poincaré supergravity in eleven dimensions. For instance,

each maximally supersymmetric background obtained in section 2.4 has an obvious max-

imally supersymmetric counterpart in Theorem 1 of [100]. Moreover, the structure of the

half-BPS string and five-brane backgrounds obtained in section 2.5 is virtually identical to

that of the well-known half-BPS M2-brane and M5-brane solutions of Poincaré supergravity

in eleven dimensions.

This empirical evidence hints at an embedding of (at least some) supersymmetric back-

grounds of ten-dimensional conformal supergravity in supersymmetric solutions of eleven-

dimensional Poincaré supergravity. Of course, this would be distinct from the well-known

Kaluza-Klein reduction along a spacelike Killing vector for supergravity backgrounds in

eleven dimensions, yielding backgrounds of type IIA supergravity in ten dimensions. After

a brief synopsis of the defining conditions for bosonic supersymmetric backgrounds and

solutions of eleven-dimensional Poincaré supergravity, we shall spend the rest of this final

section investigating a few different types of embedding for some of the backgrounds of

ten-dimensional conformal supergravity that we have already encountered. This will be-

gin with a review of the Kaluza-Klein embedding of supersymmetric backgrounds of type

I supergravity. We will then describe a novel ‘equatorial’ embedding for the maximally

supersymmetric Freund-Rubin backgrounds of ten-dimensional conformal supergravity in

their eleven-dimensional counterparts. Finally, we will describe the embedding of the half-

– 23 –



J
H
E
P
0
3
(
2
0
1
6
)
0
8
7

BPS string and five-brane backgrounds of ten-dimensional conformal supergravity and show

how to recover the maximally supersymmetric Freund-Rubin backgrounds via delocalisa-

tion and near-horizon limits.

4.1 Supersymmetric solutions in eleven dimensions

The bosonic fields of Poincaré supergravity in eleven dimensions consist of a metric ĝ

and a closed four-form F̂ . Following the conventions of [100], a bosonic supersymmetric

background is given by a solution of

∇̂M ǫ̂ = − 1

24
Γ̂M F̂ ǫ̂+

1

8
F̂ Γ̂M ǫ̂ , (4.1)

where ǫ̂ is a Majorana spinor in eleven dimensions. Any such background is called a

supersymmetric solution if it also obeys the field equations

R̂MN =
1

12
F̂MABC F̂N

ABC − 1

144
ĝMN F̂ABCDF̂

ABCD

d⋆̂F̂ = −1

2
F̂ ∧ F̂ .

(4.2)

Note that both (4.1) and (4.2) are invariant under the homothety (ĝ, F̂ ) 7→ (α2ĝ, α3F̂ ), for

any α ∈ R×.

4.2 Kaluza-Klein embedding of supersymmetric type I backgrounds

It is well-known that any supersymmetric solution of type IIA supergravity in ten dimen-

sions can be uplifted to a supersymmetric solution of supergravity in eleven dimensions via

the ‘string-frame’ Kaluza-Klein ansatz. This recovers only the subset of supersymmetric

solutions of supergravity in eleven dimensions which admit a spacelike Killing vector ξ with

LξF̂ = 0. At least locally, one can write ξ = ∂z in terms of the eleventh coordinate z.

Now consider the following special case of the aforementioned ansatz:

ĝ = e4Φ/3(dz)2 + e−2Φ/3g

F̂ = dz ∧H ,
(4.3)

in terms of a metric g, a function Φ and a three-form H in ten dimensions. It follows

that ⋆̂F̂ = e−2Φ⋆H. Plugging (4.3) into the second field equation in (4.2) therefore gives

d(e−2Φ⋆H) = 0. It also follows that dH = 0 since F̂ is closed.

The ansatz (4.3) allows one to define an idempotent element I = e−2Φ/3Γ̂z which anti-

commutes with every Γ̂µ (where µ is any index M 6= z). If ǫ̂ = Iǫ̂ then it can be identified

with a positive chirality Majorana-Weyl spinor e−Φ/6ǫ in ten dimensions. Assuming this

to be the case then plugging (4.3) into (4.1) gives

∇µǫ =
1

6
ΓµGǫ+

1

24
ΓµHǫ+

1

8
HΓµǫ

Gǫ =
1

2
Hǫ ,

(4.4)

with ∂zǫ = 0 and G = dΦ. The first condition in (4.4) is identified with (2.3) provided

d(e−2Φ⋆H) = 0. Since H is closed, the second condition in (4.4) then gives precisely the
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defining condition for a bosonic supersymmetric background of type I supergravity in ten

dimensions.

To summarise, we have shown that any bosonic supersymmetric background of type

I supergravity in ten dimensions can be embedded via (4.3) in a bosonic supersymmetric

background of Poincaré supergravity in eleven dimensions, obeying (4.1) for some ǫ̂ =

Iǫ̂ and the second field equation in (4.2). Of course, the projection condition in eleven

dimensions is because any background of type I supergravity in ten dimensions can preserve

no more than sixteen real supercharges (in contrast with the maximum of thirty two in

eleven dimensions).

4.3 Embedding of maximally supersymmetric Freund-Rubin backgrounds

Poincaré supergravity in eleven dimensions admits two well-known maximally supersym-

metric Freund-Rubin solutions. In terms of the scalar curvature R̂ of ĝ, they are of the form

• AdS4(8R̂)× S7(−7R̂) with F̂ =
√

−6R̂ volAdS4 (if R̂ < 0).

• AdS7(−7R̂)× S4(8R̂) with F̂ =
√

6R̂ volS4 (if R̂ > 0).

(The scalar curvature of each AdS and S factor is denoted in parenthesis.)

To make our description of the embedding as transparent as possible, let us adopt the

following notation. Let gn denote the ‘unit radius’ metric on either AdSn or Sn (i.e., the

metric with constant scalar curvature −n(n− 1) for AdSn or n(n− 1) for Sn). Any metric

of the form κ2gn+λ2gm will be assumed to be Lorentzian (i.e., AdSn×Sm or Sn×AdSm).

Let voln denote the volume form with respect to gn. Let ψn denote a Killing spinor with

respect to gn, obeying ∇µψn = ±1
2Γµψn for AdSn or ∇µψn = ± i

2Γµψn for Sn. For AdSn

(or Sn), ψn lifts to a constant spinor on the flat cone C(AdSn) ∼= Rn−1,2 (or C(Sn) ∼= Rn+1).

We shall refer to ψn as having unit Killing constant. Rescaling gn by a factor of κ2 rescales

the Killing constant by a factor of κ−1.

In terms of this notation, the data for the maximally supersymmetric Freund-Rubin

solutions of eleven-dimensional Poincaré supergravity is given by

ĝ = κ̂2(g4 + 4g7) and F̂ = 3κ̂3 vol4 , (4.5)

while the supersymmetry parameter ǫ̂ involves a tensor product of ψ4 (with Killing constant

κ̂−1) and ψ7 (with Killing constant (2κ̂)−1). The constant

κ̂ :=

√

3

2|R̂|
. (4.6)

Observe that the factors of κ̂ above are precisely the same as for the homothety noted at

the end of section 4.1, hence we can and will fix κ̂ = 1 via the action of a homothety with

α = κ̂−1.

On the other hand, the data for the maximally supersymmetric Freund-Rubin back-

grounds of ten-dimensional conformal supergravity is given by

g = κ2(g3 + 4g7) and H = 3κ2 vol3 , (4.7)
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while the supersymmetry parameter ǫ involves a tensor product of ψ3 (with Killing constant

κ−1) and ψ7 (with Killing constant (2κ)−1). The constant

κ :=

√

9

2|R| . (4.8)

Since G = 0 for this class of backgrounds, notice that the factors of κ above are precisely

the same as for a (constant) Weyl transformation. Therefore we shall fix κ = 1 via a Weyl

transformation with Ω = κ−1.

To embed (4.7) (with κ = 1) in (4.5) (with κ̂ = 1), it remains only to recognise the

canonical ‘equatorial’ embedding defined by

g4 = dz2 + f(z)2g3 , (4.9)

where f(z) is cosh(z) for AdS3 ⊂ AdS4 or cos(z) for S3 ⊂ S4, in terms of the ‘colatitude’

z. From (4.9), it follows that vol4 = f(z)3dz ∧ vol3 and hence that at z = 0, we have

ĝ = dz2 + g and F̂ = dz ∧H . (4.10)

The embedding of the supersymmetry parameter ǫ in ǫ̂ is prescribed by the embedding

of the unit Killing spinor ψ3 in ψ4 (the other Killing spinor ψ7 clearly just goes along for

the ride). Recall that ψ3 and ψ4 are completely specified by constant spinors on their

respective (flat) cones. By definition, in terms of a radial coordinate r, the relevant cone

metric gCn+1 is either −dr2 + r2gn for AdSn or dr2 + r2gn for Sn. For AdS3 ⊂ AdS4, it

follows that

gC5 = −dr2+r2g4 = −dr2+r2dz2+(r cosh(z))2g3 = dx2−dy2+y2g3 = dx2+gC4 , (4.11)

where x = r sinh(z) and y = r cosh(z). The embedding ∆
(2,2)
+ ⊂ ∆(3,2) of Killing spinors

here is therefore prescribed by restricting ∆(3,2) to the x = 0 hyperplane in C5
∼= R3,2.

Similarly, for S3 ⊂ S4, it follows that

gC5 = dr2 + r2g4 = dr2 + r2dz2 + (r cos(z))2g3 = dx2 + dy2 + y2g3 = dx2 + gC4 , (4.12)

where x = r sin(z) and y = r cos(z). Therefore the embedding ∆
(4)
+ ⊂ ∆(5) of Killing

spinors here is prescribed by restricting ∆(5) to the x = 0 hyperplane in C5
∼= R5.

4.4 Branes, delocalisation and near-horizon limits

Two well-known half-BPS solutions of supergravity in eleven dimensions are the M2-brane

and the M5-brane.

The M2-brane solution has metric and four-form given by

ĝ = f−2/3gR2,1 + f1/3gR8 and F̂ = volR2,1 ∧df−1 , (4.13)

where f is a harmonic function on R8 so that the second field equation in (4.2) is satisfied

(i.e., d⋆̂F̂ = 0 since F̂ ∧ F̂ = 0 for (4.13)). The supersymmetry parameter is given by

ǫ̂ = f−1/6ǫ̂0 with volR2,1 ǫ̂0 = ǫ̂0 , (4.14)

where ǫ̂0 is a constant Majorana spinor on R10,1.
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By identifying z with a spatial coordinate on R2,1 and f = e−2Φ, one recognises

that (4.13) is of the form (4.3). With respect to these identifications, the data (g,H)

in (4.3) gives precisely the F1-string background of type I supergravity in ten dimensions

in (2.55). The conformally related data (e−2Φ/3g, e−2Φ/3H) in ten dimensions gives pre-

cisely the half-BPS background of conformal supergravity with maximally supersymmetric

AdS3 × S7 near-horizon limit. On the other hand, the near-horizon limit of (4.13) in

eleven dimensions with f = e−2Φ = 1 + |k2|
r6

gives the maximally supersymmetric solution

AdS4(8R̂)× S7(−7R̂) with F̂ =
√

−6R̂ volAdS4 (after identifying |k2|−1/3 = −R̂/6).

The M5-brane solution has metric and four-form given by

ĝ = f−1/3gR5,1 + f2/3gR5 and ⋆̂F̂ = volR5,1 ∧df−1 , (4.15)

where f is a harmonic function on R5 so that dF̂ = 0. The supersymmetry parameter is

given by

ǫ̂ = f−1/12ǫ̂0 with volR5,1 ǫ̂0 = ǫ̂0 , (4.16)

where again ǫ̂0 is a constant Majorana spinor on R10,1.

By identifying z with a coordinate on R5 and f = e2Φ, one recognises that (4.15) is

of the form (4.3). However, ∂z is a Killing vector only if f is harmonic on the subspace

R4 ⊂ R5 orthogonal to the z-direction. Making this assumption is known as ‘delocalisation’

along the z-direction. With respect to these identifications, the data (g,H) in (4.3) for

the delocalised M5-brane gives precisely the NS5-brane background of type I supergravity

in ten dimensions in (2.57). The near-horizon limit of the delocalised M5-brane (4.15) in

eleven dimensions with f = e2Φ = 1+ |k6|
r2

defines a half-BPS background that is conformally

equivalent to R5,1×H2×S3 (cf. R5,1×R+×S3 in the near-horizon limit of the NS5-brane in

ten dimensions). On the other hand, without delocalisation, the near-horizon limit of (4.15)

with f = e2Φ = 1+
|k′6|
r3

gives the maximally supersymmetric solution AdS7(−7R̂)×S4(8R̂)

with F̂ =
√

6R̂ volS4 (after identifying the constant k′6 such that |k′6|−2/3 = 2R̂/3). Of

course, without delocalisation, the ansatz (4.3) cannot be used to reduce to ten dimensions.

Even so, notice that the data (e−2Φ/3g, e−2Φ/3H) in ten dimensions obtained by compar-

ing (4.3) with (4.15) without delocalisation gives precisely the half-BPS background of

conformal supergravity with maximally supersymmetric AdS7 × S3 near-horizon limit.
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A Clifford algebra and spinors in ten dimensions

In ten dimensions and in lorentzian signature, the ‘mostly plus’ and ‘mostly minus’ inner

products result in isomorphic Clifford algebras. Indeed, as real associative algebras, the

Clifford algebra Cℓ(9, 1) ∼= Cℓ(1, 9) ∼= Mat32(R). We shall work with Cℓ(9, 1) in this paper,

which is defined by the relation

ΓµΓν + ΓνΓµ = +2ηµν1 , (A.1)

where ηµν = diag(−1,+1, . . . ,+1
︸ ︷︷ ︸

9

) has mostly plus signature. In particular, (Γ0)
2 = −1.

It follows from the above isomorphism that Cℓ(9, 1) has a unique irreducible module up to

equivalence: let’s call it ∆(9,1). As a representation of the spin group Spin(9, 1) ⊂ Cℓ(9, 1),

∆(9,1) decomposes as a direct sum of two irreducible spinor representations ∆(9,1) =

∆
(9,1)
+ ⊕∆

(9,1)
− , where the subspaces ∆

(9,1)
± ⊂ ∆(9,1) correspond to the ±1-eigenspaces of the

idempotent ‘chirality matrix’ Γ = −Γ0Γ1 . . .Γ9, which is not central in Cℓ(9, 1) but does

commute with Spin(9, 1). In physics parlance, elements of ∆(9,1) are known as Majorana

spinors and elements of ∆
(9,1)
± are known as (± chirality) Majorana-Weyl spinors.

There exists on ∆(9,1) a unique (up to an overall scale) symplectic form C, the so-called

charge conjugation matrix, which obeys

C(Γµψ, χ) = −C(ψ,Γµχ) . (A.2)

It follows that C is Spin(9, 1)-invariant and, in addition, that the chirality matrix Γ is

skew-symmetric. This means that ∆
(9,1)
± are lagrangian subspaces, so C pairs ∆

(9,1)
+ non-

degenerately with ∆
(9,1)
− , thus providing an isomorphism ∆

(9,1)
+

∼= (∆
(9,1)
− )∗ of Spin(9, 1)

representations.

The Clifford algebra Cℓ(9, 1) inherits a filtration from the tensor algebra and the

associated graded algebra is the exterior algebra of R9,1. A convenient (vector space)

isomorphism is provided by the skewsymmetric products of the gamma matrices:

Γµ1...µk
= Γ[µ1

. . .Γµk] =
1

k!

∑

σ∈Sk

(−1)|σ|Γµσ(1)
. . .Γµσ(k)

, (A.3)

for degree k > 0 elements (i.e., unit-weight skewsymmetrisation of k distinct degree-one

basis elements) and the identity element 1 for k = 0. These form a basis for Cℓ(9, 1).

Some useful identities which follow are

ΓαΓµ1...µk
Γα = (−1)k(10− 2k)Γµ1...µk

ΓαβΓµ1...µk
Γαβ = (10− (10− 2k)2)Γµ1...µk

,
(A.4)

and

Γµ1...µk
Γ = σk−1

1

(10− k)!
εµ1...µkνk+1...ν10Γ

νk+1...ν10 , (A.5)

where σk = (−1)⌊
k+1
2

⌋ (i.e., σ1 = σ2 = −1, σk+2 = −σk) and ε01...9 = +1.
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Now let us write ψχ = C(ψ, χ), for any ψ, χ ∈ ∆(9,1). It follows that

ψΓµ1...µk
χ = −σk χΓµ1...µk

ψ , (A.6)

and

ψ±Γµ1...µ2k
χ± = 0 , (A.7)

for any ψ±, χ± ∈ ∆
(9,1)
± . Furthermore, we have the Fierz identities

ψ± χ± =
1

32

(

2(χ±Γ
µψ±)Γµ − 1

3
(χ±Γ

µνρψ±)Γµνρ +
1

5!
(χ±Γ

µνρστψ±)Γµνρστ

)

Π∓

ψ± χ∓ =
1

16

(

(χ∓ψ±)1 − 1

2
(χ∓Γ

µνψ±)Γµν +
1

4!
(χ∓Γ

µνρσψ±)Γµνρσ

)

Π± ,

(A.8)

where Π± = 1
2(1± Γ). The bilinear χ±Γµνρστψ± defines a five-form that is self-dual if the

spinors have positive chirality and anti-self-dual if the spinors have negative chirality.

It follows from (A.6) and (A.7) that, if ǫ ∈ ∆
(9,1)
+ , all bilinears built from ǫ vanish

identically except for ξµ = ǫΓµǫ and ζµνρστ = ǫΓµνρστ ǫ, which are nonzero for nonzero ǫ.

The Fierz identity (A.8) for ǫ reads

ǫǫ =
1

32
(2ξ + ζ)Π− , (A.9)

and a useful subsidiary identity is

− ΓµνǫǫΓν =

((

ǫǫ− 1

2
ξ

)

Γµ + ξµ1

)

Π+ . (A.10)

An unrelated source of ± signs comes from choosing a Witt (or ‘lightcone’) basis for

R9,1. We choose a somewhat asymmetrical definition:

Γ+ :=
1

2
(Γ9 + Γ0) and Γ− := Γ9 − Γ0 . (A.11)

It follows that Γ2
± = 0 and that

Γ+Γ− + Γ−Γ+ = 21 . (A.12)

This last identity means that we may decompose ∆
(9,1)
+ into the direct sum of the two

subspaces ker Γ± : ∆
(9,1)
+ → ∆

(9,1)
− , with 1

2Γ±Γ∓ the corresponding projectors.
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