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1 Introduction

A long-standing goal of the S-matrix program is to be able to construct formulas for the

scattering amplitudes of a quantum field theory based on general principles and physical

constraints. As amplitudes are expected (at finite order in perturbation theory) to be

holomorphic functions of the kinematic data, with isolated poles and branch cuts, a thor-

ough understanding of their analytic structure is clearly of paramount importance towards

this goal. In 1959 Landau formulated a simple set of equations [1] whose solutions pa-

rameterize the locus, in the space of kinematic data, where a given Feynman integral can

develop branch points. Subsequent developments are reviewed in the classic book [2], now

celebrating its fiftieth year, and more recently in chapter 13 of ref. [3].

In a large variety of theories many of the simplest (and hence best understood) scatter-

ing amplitudes can be expressed in terms of a class of generalized polylogarithm functions

known also as Chen iterated integrals [4]. Much of the information about the analytic

structure of a function f of this type, in particular the locations of its logarithmic branch

points, is conveniently encapsulated in an object called the symbol of f [5, 6]. The entries

of a symbol (often called the “letters” of its “symbol alphabet”) are various algebraic func-

tions of the kinematic data whose zeros represent branch point singularities (not necessarily

on the principal sheet) of the corresponding function.

– 1 –



J
H
E
P
0
3
(
2
0
1
6
)
0
6
9

As recently pointed out by Maldacena et al. in ref. [7], for amplitudes of generalized

polylogarithm type (or, as is commonly the case, of this type together with an algebraic

prefactor), there should evidently be a close connection between symbol entries and solu-

tions of the Landau equations. Specifically, the symbol entries appearing in any amplitude

(in fact even in any individual Feynman integral) should be such that their zeros specify

values of external momenta where solutions of the Landau equations exist. Aspects of this

connection have played a role in refs. [8, 9], where various one- and two-loop examples

were studied.

Although the Landau/symbol connection ought to be quite general, in this paper we

focus on examples drawn from N = 4 super-Yang-Mills (SYM) theory, specifically the one-

and two-loop MHV amplitudes. Although the latter involve double pentagon integrals

which are superficially more complicated than the examples studied in refs. [8, 9], our

analysis benefits from the fact that the kinematic domain for scattering amplitudes in

SYM theory is much simpler than in general field theories.

As we review in section 2, in general the Landau equations admit many families of solu-

tions which are naturally stratified into sets called the leading Landau singularities (LLS),

sub-leading Landau singularities (SLLS), sub-sub-leading (S2LLS) etc. We introduce these

abbreviations to carefully distinguish the Landau singularities of integrals from the (closely

related) “leading singularities” of integrands (see for example ref. [10]) which are a key con-

cept in modern work on the mathematical structure of SYM theory. To amplify this point:

the leading singularities of an L-loop integrand are the points in the 4L-dimensional space

of loop integration variables where the integrand, a rational function, has nonzero residues

(the term is also commonly used to refer to the values of these residues, not their locations);

these leading singularities exist for generic values of the external kinematics. In contrast,

the Landau singularities of an n-point integral or amplitude are the loci in the 3(n − 5)-

dimensional space of external kinematic data where the Landau equations admit solutions

and where branch points are located. Note that there is no canonical way to distinguish

between the leading, sub-leading, etc. Landau singularities of an amplitude — it may de-

pend on the particular representation of the amplitude in terms of Feynman integrals. We

therefore refer to the LLS, SLLS, etc. collectively as “the Landau singularities.”

Section 2 contains a lightning review of the Landau equations, the projective geometry

used for describing the kinematics of SYM theory, and the Landau singularities for various

simple one-loop integrals. In section 3 we tabulate the Landau singularities of the chiral

pentagon integral, which forms the basic building block for all one-loop MHV amplitudes.

We find an exact correspondence between the SLLS and S2LLS and the symbol entries of

this integral. The double pentagon integral, in terms of which all two-loop MHV amplitudes

are expressed, is analyzed in section 4. Finally we conclude with a discussion of our results

and questions for further research.

2 Lightning review

2.1 Landau singularities

The Landau equations for a given Feynman integral are a set of kinematic constraints that

are necessary for the appearance of a pole or branch point in the integrated function (as a
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function of external kinematics and masses). There are multiple ways to formulate them

(see ref. [1] for a thorough review), although in this paper we stick to the formulation from

the Feynman parameterized integral, where the integrand is a function of loop momenta

and Feynman parameters, (`µr , αi):

I = c

∫ L∏
r=1

dD`r

∫
αi≥0

dνα δ

(
1−

∑ν

i=1
αi

)
N (`µr , p

µ
i , . . .)

Dν
(2.1)

with

D =

ν∑
i=1

αi(q
2
i −m2

i ) , (2.2)

and c a prefactor that will not enter into our discussion. Here, qµi is the momentum flowing

along propagator i, pµi are external momenta, and N is some numerator function of the

kinematic data. There are two distinct situations in which I can develop a singularity or

branch point:

1. The surface D = 0 pinches the integration contour in all (`r, αi) simultaneously.

The kinematic locations at which this happens are called “Leading Landau Singular-

ities” (LLS).

2. The surface D = 0 hits the boundary of the integration contour, at αi = 0 for some

subset of the Feynman parameters, and pinches the contour in all other variables.

These are called “Non-leading Landau Singularities,” which we stratify into “Sub-

leading” (SLLS), “Sub-sub-leading,” (S2LLS) and so forth, according to how many

of the αi are vanishing.

Although we do not review the derivation here, these two situations are captured by the

following set of simultaneous equations:∑
i∈loop

αiq
µ
i = 0 ∀ loops, (2.3)

αi(q
2
i −m2

i ) = 0 ∀i. (2.4)

On the principal sheet, the integration in `µr and αi in (2.1) is taken over the real axis,

with αi ≥ 0. Branch points on the principal sheet require the solution to (2.3) and (2.4)

to pinch this contour. When discussing symbol entries, however, we are also interested

in branch points on higher sheets, which are exposed by analytically continuing (2.1) to

generic contours. Therefore, throughout this paper we will look more generally for solutions

to (2.3) and (2.4) with `µr , αi ∈ C.

2.2 One-loop bubbles, triangles, and boxes

The Landau equations (2.3) and (2.4) are easily solved for one-loop bubble, triangle, and

box integrals in four dimensions. Equation (2.4) puts all of the propagators on-shell, with
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Figure 1. The scalar bubble and triangle integrals. All propagators are taken to be massless.
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Figure 2. The scalar box integral and its degenerations. All propagators are taken to be massless.

no constraints on external kinematics, while the solvability of the loop rule (2.3) gives a

determinantal constraint after contracting with each of the propagator momenta qµi .

For the bubble and triangle integrals shown in figure 1, the locations of the LLS are

given by

Bubble: 0 = x2ij , (2.5)

Triangle: 0 = x2ij x
2
jk x

2
ik , (2.6)

where the region momenta xµi are defined through pµi = xµi − x
µ
i−1 and x2ij ≡ (xi − xj)2.

In degenerations of the triangle integral when one or more of the corners is on-shell, (2.6)

is trivially satisfied for any kinematics. In four dimensions, this is often indicative of the

presence of an infrared divergence. More generally, any infrared divergent integral will have

either LLS or some SkLLS at unconstrained kinematics.

The scalar box integrals are shown in figure 2. As is well known [1], they have the

following LLS:

Box (a): 0 = (x2ijx
2
kl − x2ikx2jl + x2ilx

2
jk)

2 − 4x2ijx
2
jkx

2
klx

2
il (2.7)

Box (b): 0 = 〈i(i−1, i+1)(j, j+1)(k, k+1)〉 (2.8)

Box (c): 0 = 〈i−1 i i+1 i+2〉〈i i+1 j j+1〉 (2.9)

Box (d): 0 = 〈i j〉〈i j〉 (2.10)

Box (e): 0 = 〈i−1 i i+1 i+2〉〈i i+1 i+2 i+3〉 (2.11)

The LLS for (b)–(e) are merely degenerations of (a), and we have written them using

momentum twistors (reviewed in the next subsection) for easy comparison with the results

of the remainder of this paper. The infrared divergences in boxes (b)–(e) are indicated
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by trivial vanishing of some triangle-like SLLS. Inspection of explicit formulas for these

integrals [11] reveals a number of branch points not captured by the Landau singularities;

we will postpone discussion of these other branch points until section 5.

2.3 Projective geometry and momentum twistors

We begin by reviewing some essential facts about momentum twistor variables [12], which

very conveniently parameterize the kinematic configuration space for massless scattering

in planar gauge theories, where (for each color-ordered partial amplitude) the particles are

endowed with a specific cyclic ordering. We will see that momentum twistors enormously

simplify the problem of analyzing the Landau equations in such theories, for the same

reason that they simplify the analysis of leading singularities of the integrand (see ref. [13]

for several examples of such calculations).

Momentum twistors are based on the correspondence between null rays in (com-

plexified) Minkowski space and points in twistor space (P3); or equivalently, between

(complex) lines in P3 and points in Minkowski space. We use ZA, ZB, etc. to denote

points in P3, which may be represented using four-component homogeneous coordinates

ZA = (Z1
A, Z

2
A, Z

3
A, Z

4
A) subject to the identification ZA ∼ tZA for any nonzero com-

plex number t. We use (A,B) to denote the line in P3 containing two given points

ZA, ZB. Similarly, (A,B,C) denotes the plane containing the three points ZA, ZB, ZC ,

and (A,B,C) ∩ (D,E, F ) denotes the line where this plane intersects the plane (D,E, F ).

Treating the homogeneous coordinates of each momentum twistor as a vector in C4,

there is a natural SL(4,C) invariant denoted by

〈ABC D〉 ≡ εIJKLZIAZJBZKC ZLD . (2.12)

We will often be interested to have a geometric understanding of the locus where such four-

brackets might vanish, which can be pictured in several ways. For example, 〈ABC D〉 = 0

only if the two lines (A,B) and (C,D) intersect, or equivalently if the lines (A,C), (B,D)

intersect, or if the point A lies in the plane (B,C,D), or if the point C lies on the plane

(A,B,D), etc. Computations of four-brackets involving intersections may be carried out

explicitly with the rule

〈(A,B,C) ∩ (D,E, F )GH〉 = 〈ABC G〉〈DE F H〉 − 〈ABC H〉〈DE F G〉 . (2.13)

This is manifestly antisymmetric under exchanging any two of the points specifying the

plane (A,B,C), or of any two in (D,E, F ), or under exchanging the two planes. In case

the two planes are specified with one common point, say F = C, it is convenient to use the

shorthand notation

〈C(A,B)(D,E)(G,H)〉 ≡ 〈(A,B,C) ∩ (D,E,C)GH〉 . (2.14)

This quantity is also manifestly antisymmetric under exchanging A ↔ B, D ↔ E, or

G ↔ H. Moreover, and less obviously, is also fully antisymmetric under exchange of

any of the three lines (A,B), (D,E), (G,H). This may be seen with the help of the

Schouten identity

〈ABC D〉ZE + 〈BC DE〉ZA + 〈C DEA〉ZB + 〈DEAB〉ZC + 〈E ABC〉ZD = 0 . (2.15)
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Figure 3. The four-mass box integral.

Now we turn to Hodges’ construction [12]. To gain a working understanding of this

correspondence it is instructive to take a look at an explicit example, such as the one-loop

four-mass box integral shown in figure 3. In a Feynman diagram it is standard to label

each edge according to the momentum carried by the associated propagator: q1, q2, etc. In

a planar diagram it is equally appropriate to label the edges by dual momenta (or region

momenta): x1, x2, etc. If two faces labeled xa and xb share an edge qc, then the momentum

running along that edge is qc = xa−xb (an overall orientation must be specified so that the

sign of each q in the diagram is consistent with momentum conservation at each vertex).

The external legs in figure 3 are labeled 1, . . . , n where n is the total number of particles.

The kinematic data needed to specify the scattering configuration consists of either the

collection p1, . . . , pn of (incoming) momenta of these particles, or a collection Z1, . . . , Zn of

n momentum twistors in P3. The former are related to the dual momenta by pa = xa−xa−1.
It follows that the four external face variables labeled xi, xj , xk, xl in figure 3 are related to

the external momenta by (xi − xj)2 = (pi+1 + pi+2 + · · ·+ pj)
2, etc. Hodges’ construction

for n-point kinematics associates the point xa in Minkowski space to the line (a, a+1) in

P3 containing the two points Za, Za+1. One final standard notation worth mentioning is

that ā denotes the plane (a−1, a, a+1).

If x, y are points in Minkowski space associated to two lines (A,B), (C,D) in P3, then

their dual spacetime separation may be computed from the formula

(x− y)2 =
〈ABC D〉
〈I AB〉〈I C D〉

, (2.16)

where I is the “infinity twistor” — the line in twistor space associated to the dual spacetime

point at spatial infinity. The denominator factors are necessary in order to obtain the flat

Minkowski metric in x space, but we will henceforth ignore them as they always drop out

of any dual conformal invariant result.

To carry out the integration for the Feynman diagram shown in figure 3 we should

associate some dual momentum x to the interior face of the diagram, and then integrate

the product of the four propagators 1/(x − xi)
2, etc., over d4x. In momentum twistor

space, the point x is represented by a line (A,B), and we must integrate the product

of the four propagators 1/〈AB i i+1〉, etc., over the space of lines in P3. Details about

how to construct the measure of integration may be found in ref. [13]. Note that the

singularity in the propagator 1/(x−xi)2 which arises when x becomes null separated from

xi is manifested in momentum twistor space as the singularity in 1/〈AB i i+1〉 when the

line (A,B) intersects the line (i, i+1).

– 6 –
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3 One-loop MHV amplitudes

We now turn our attention to the chiral pentagon integral, which is the basic building block

for one-loop MHV amplitudes. This analysis is extremely simple, but it is instructive to

go through it carefully as a warm-up for the following section.

3.1 The chiral pentagon

The one-loop MHV amplitude for n particles in SYM theory may be expressed as [13]

A1−loop
MHV

Atree
MHV

=

∫
AB

∑
1<i<j<n

j

n1

i

(3.1)

in terms of the chiral pentagon integrand

j

n1

i

=
〈AB ī ∩ j̄〉〈i j n 1〉

〈AB i−1 i〉〈AB i i+1〉〈AB j−1 j〉〈AB j j+1〉〈AB n 1〉
. (3.2)

It is useful to recall several comments from ref. [13]. First of all, the full integrand in (3.1)

is cyclic invariant despite the appearance of the apparently preferred line (n, 1) on the

bottom edge of the pentagon; the formula would be equally valid if (n, 1) were replaced by

(k, k+1) for any k (and the summation taken over k + 1 < i < j < k).

Second, the numerator factors in (3.2) are specially chosen so that all of its leading

singularities are normalized to 1. In fact it would not be inappropriate to say that half of

them are 1 and half of them are 0: the scalar pentagon integral has twice as many non-zero

leading singularities as the chiral pentagon, but the numerator factors in (3.2) vanish on

half of them.

Third, for generic i and j the chiral pentagon integral (3.2) is infrared finite; the

numerator factor 〈AB ī ∩ j̄〉 softens the behavior of the integral precisely in the regions of

integration where soft or collinear divergences might appear. This cancellation fails only

for certain boundary terms in the sum (specifically, when i = 2 or j− i = 1 or j = n−1) in

which case the pentagon degenerates to an IR divergent box integral. Henceforth we ignore

these degenerate cases since the box integrals were already reviewed in the previous section.

An explicit formula for the chiral integral was obtained in ref. [13]:

∫
AB

j

n1

i

=

Li2 (1− un,i−1,i,j)− Li2 (1− uj,n,i,j−1) + Li2 (1− uj,n,i−1,j−1)
−Li2 (1− ui,j−1,n,i−1) + Li2 (1− ui,j−1,j,i−1)
+ log (uj,n,i−1,j−1) log (un,i−1,i,j)

(3.3)
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in terms of the dual spacetime cross-ratio

ui,j,k,l =
〈i i+1 j j+1〉〈k k+1 l l+1〉
〈l l+1 j j+1〉〈k k+1i i+1〉

=
x2ijx

2
kl

x2ljx
2
ki

. (3.4)

From this explicit result we can easily read off the letters appearing in the symbol

of the chiral pentagon. It is already apparent from (3.3) that only the dual spacetime

distances x2ab can appear in the first entry of the symbol, reflecting the physically allowed

branch points for a scattering amplitude on the physical sheet [14]. In terms of momentum

twistors, the 8 letters that appear in the first entry are

〈i−1 i j−1 j〉 , 〈i−1 i j j+1〉 , 〈i−1 i n 1〉 , 〈i i+1 j−1 j〉 ,
〈i i+1 j j+1〉 , 〈i i+1 n 1〉 , 〈j−1 j n 1〉 , 〈j j+1 n 1〉 .

(3.5)

Six additional letters make an appearance only in the second entry of the symbol:

〈̄ij〉 , 〈i(i−1, i+1)(j, j+1)(n, 1)〉 , 〈i(i−1, i+1)(j−1, j)(n, 1)〉 ,
〈j̄i〉 , 〈j(j−1, j+1)(i, i+1)(n, 1)〉 , 〈j(j−1, j+1)(i−1, i)(n, 1)〉 .

(3.6)

Four of the letters listed in (3.5) also can appear in the second entry of the symbol:

〈i−1 i n 1〉, 〈i i+1n 1〉, 〈j−1 j n 1〉 and 〈j j+1n 1〉.

3.2 Landau singularities

To find the LLS of the pentagon, one must solve the Landau equations

α1〈AB i−1 i〉 = α2〈AB i i+1〉 = α3〈AB j−1 j〉 = α4〈AB j j+1〉 = α5〈AB n 1〉 = 0 ,

α1(xAB − xi−1) + α2(xAB − xi) + α3(xAB − xj−1) + α4(xAB − xj) + α5(xAB − xn) = 0

(3.7)

for all five αi being nonzero. The equation on the second line of (3.7) is content-free in this

case — it tells us to find a vanishing linear combination of five four-component vectors,

which is always possible as long as none of the vectors are zero.

The first four equations tell us to find lines (A,B) which intersect the four given lines

(i−1, i), (i, i+1), (j−1, j) and (j, j+1). For generic i, j (as we have assumed) there are

precisely two solutions to this Schubert problem [13]:

(A,B) = (i, j) or (A,B) = ī ∩ j̄ . (3.8)

Geometrically this is clear: we can either take (A,B) to be the line (i, j) which contains the

two points Zi, Zj , or we can take (A,B) to be the intersection of the planes (i−1, i, i+1)

and (j−1, j, j+1).

It only remains to solve the equation 〈AB n 1〉 = 0, but upon plugging in the solu-

tion (3.8) this becomes a constraint on the external kinematics:

(LLS) 〈i j n 1〉〈n 1 ī ∩ j̄〉 = 0 . (3.9)

To conclude: solutions of the Landau equations (3.7) with all αi 6= 0 exist only on the locus

in kinematic space where (3.9) is satisfied.

– 8 –
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The SLLS of the pentagon are found by solving the Landau equations (3.7) with four

of the five α’s being nonzero. Each case amounts to a degeneration of the pentagon to a

box, so we can simply transcribe the results of the previous solution. For vanishing α1, α2,

α3, α4 or α5 we find respectively that the SLLS lie on the loci:

(SLLS)

〈j(j−1, j+1)(i, i+1)(n, 1)〉 = 0 ,

〈j(j−1, j+1)(i−1, i)(n, 1)〉 = 0 ,

〈i(i−1, i+1)(j, j+1)(n, 1)〉 = 0 ,

〈i(i−1, i+1)(j−1, j)(n, 1)〉 = 0 ,

〈̄ij〉〈ij̄〉 = 0 .

(3.10)

The S2LLS are given by solutions of (3.7) with only three nonzero α’s, which correspond

to degenerations of the pentagon to various triangles. The four non-trivial cases, arising

from three-mass triangles, are

(S2LLS)

〈i−1 i j−1 j〉〈j−1 j n 1〉〈n 1 i−1 i〉 = 0 ,

〈i i+1 j−1 j〉〈j−1 j n 1〉〈n 1 i i+1〉 = 0 ,

〈i−1 i j j+1〉〈j j+1 n 1〉〈n 1 i−1 i〉 = 0 ,

〈i i+1 j j+1〉〈j j+1 n 1〉〈n 1 i i+1〉 = 0 .

(3.11)

Degenerations which lead to two-mass triangles give solutions of the Landau equations for

all kinematics, as reviewed in the previous section. These singularities, in the case of the

scalar pentagon, are indicative of the soft and collinear IR singularities of the integral. We

know however that (for generic i, j, as always) the numerator factor in (3.2) eliminates

these singularities.

We could go one step further, down to bubbles, but this provides no new information:

all bubbles are either fully singular or have Landau singularities on the vanishing loci of

brackets which already appear in (3.11).

3.3 Summary

We have tabulated all Landau singularities of the pentagon integral. Some sufficiently

degenerate singularities exist for all kinematics. Often such singularities are indicative of

IR divergences, but we know that for this particular integral (and for generic i, j) these are

canceled by the numerator factor in (3.2). Let us emphasize that except for appealing to

this fact, the analysis of the previous section applies to the scalar pentagon integral just as

well as the chiral integral, since the Landau equations by definition only know about the

propagator structure of a diagram.

The singularities that exist only on various nontrivial submanifolds of kinematic space

are indicated in equations (3.9), (3.10) and (3.11). Upon comparison with equations (3.5)

and (3.6) we notice a striking pattern: sub-sub-leading Landau singularities (3.11) exist

only on the loci where the leftmost symbol entries (3.5) vanish, while sub-leading singu-

larities (3.10) appear on a different set of loci corresponding to the locations where the

– 9 –
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second-entry symbol entries (3.6) vanish. (However let us not forget that (3.6) only lists

the new letters which start to appear in the second entry.)

What about the LLS, which lives on the locus 〈i j n 1〉〈n 1 ī ∩ j̄〉 = 0? This quantity

indeed makes an appearance in the overall prefactor in the scalar pentagon integral, which

evaluates (see for example ref. [15]) schematically to 1/∆ times a transcendental function

of uniform weight 2, where ∆ ∝ 〈i j̄〉〈̄i j〉〈i j n 1〉〈n 1 ī∩ j̄〉. The chiral pentagon, however, is

a pure integral: as is evident from (3.3), it evaluates to a transcendental function with no

algebraic prefactor. This cancellation is achieved by the carefully chosen numerator of the

chiral pentagon, and it is intimately connected with the fact that its integrand has “unit

leading singularities,” as emphasized in ref. [13].

Evidently this is a happy example where there is a very clear separation between

the LLS, which tell us only about the overall algebraic singularities of the amplitude (and

which actually end up washed out by the fact that the leading singularities of the integrand

are normalized to 1), and the sub-(sub-)leading Landau singularities which probe past the

prefactor and into the symbol. Let us recall that MHV amplitudes are expected to evaluate

to pure transcendental functions, with no algebraic prefactors (other than the tree-level

MHV amplitude indicated on the left-hand side of (3.1)) to all orders in perturbation

theory [16].

4 Two-loop MHV amplitudes

We now turn our attention to the chiral double pentagon integral, which is the basic

building block for two-loop MHV amplitudes.

4.1 The chiral double pentagon

The two-loop MHV amplitude for n particles in SYM theory may be expressed as [13]

A2−loop
MHV

Atree
MHV

=

∫
AB

∫
CD

1

2

∑
i<j<k<l<i

k

li

j

(4.1)

in terms of the chiral double pentagon integrand

k

li

j

=

〈i j k l〉
〈ABCD〉

× 〈AB ī ∩ j̄〉
〈AB i−1 i〉〈AB i i+1〉〈AB j−1 j〉〈AB j j+1〉

× 〈CD k̄ ∩ l̄〉
〈CD k−1 k〉〈CD k k+1〉〈CD l−1 l〉〈CD l l+1〉

.

(4.2)

The numerator factors in (4.2) serve the same purpose as in the one-loop pentagon

discussed in the previous section. Each of the two nontrivial numerator factors vanishes
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on half of the leading singularities of the scalar double pentagon integrand; their product

is non-zero on one quarter of them. The integrand is normalized to have residue 1 on these

leading singularities. The numerator factors also suppress the soft/collinear divergences,

rendering the integral finite for generic i, j, k, l.

Explicit analytic results for the chiral double pentagon integral have been obtained

only for the special case l = k+ 2 = j+ 3 = i+ 5 at n = 6 [17]. However it is expected that

for generic i, j, k, l the integral is expressible as a generalized polylogarithm with a symbol

alphabet similar to that described in (3.5) and (3.6). Specifically, the letters appearing in

the first entry of the symbol are expected on general physical grounds [14] to be

〈a a+1 b b+1〉, a, b ∈ {i−1, i, j−1, j, k−1, k, l−1, l} . (4.3)

In the second entry we expect to start seeing additional letters of the type

〈ab̄〉 , 〈a(a−1, a+1)(c, c+1)(d, d+1)〉 (4.4)

for a, b ∈ {i, j, k, l} and c, d ∈ {i−1, i, j−1, j, k−1, k, l−1, l}.
We are less certain about the symbol alphabet for the third and fourth entries of the

chiral double pentagon integral. For guidance we rely on the symbol of the full two-loop

n-point MHV amplitude (4.1), which was determined in ref. [18] and which contains, in its

third and fourth entries, letters of the form

〈a a+1 b c〉 and 〈a a+1 b̄ ∩ c̄〉 . (4.5)

We cannot rule out the possibility that individual chiral double pentagon integrals might

have an even larger symbol alphabet, with nontrivial cancellation in the sum (4.1). Indeed

some cancellation is known to occur: the final entry of the symbol of an MHV amplitude

is always of the form 〈a b̄〉 [18], but we do not expect this to be true for each individual

chiral double pentagon integral.

4.2 Landau singularities

To find the leading Landau singularities of the double pentagon we must solve for AB, CD

which put all nine propagators on-shell. The loop rule (2.3) plays no role in this case for

the same reason discussed under (3.7). The eight propagators

〈AB i−1 i〉 = 〈AB i i+1〉 = 〈AB j−1 j〉 = 〈AB j j+1〉 = 0

〈CD k−1 k〉 = 〈CD k k+1〉 = 〈CD l−1 l〉 = 〈CD l l+1〉 = 0
(4.6)

are put on shell just as in (3.8), by

(A,B) = (i, j) or ī ∩ j̄ and (C,D) = (k, l) or k̄ ∩ l̄ . (4.7)

It remains only to set the ninth propagator 〈ABCD〉 to zero, but in light of (4.7) this

becomes a constraint on the external kinematics:

(LLS) 〈i j k l〉〈i j k̄ ∩ l̄〉〈̄i ∩ j̄ k l〉〈̄i ∩ j̄ k̄ ∩ l̄〉 = 0 . (4.8)

– 11 –



J
H
E
P
0
3
(
2
0
1
6
)
0
6
9

The Landau equations for the double pentagon admit a leading solution only on the locus

in kinematic space where (4.8) is satisfied.

At sub-leading order there are two possible topologies. If the α associated to the

internal propagator 〈ABCD〉 is set to zero then we simply get two kissing boxes of type

(d) in figure 2, whose Landau singularities, according to (2.10), lie on the intersection of

(SLLS) 〈ij̄〉〈̄ij〉 = 0 and 〈kl̄〉〈k̄l〉 = 0 . (4.9)

On the other hand if the α associated to one of the eight propagators displayed in (4.6)

is set to zero then the diagram degenerates to a pentagon-box. Suppose for example that

we collapse the edge (i, i+1). Then the AB loop becomes a 3-mass box whose leading

Landau singularity is at

〈j(j−1, j+1)(i, i−1)CD〉 = 0 (4.10)

according to (2.8). Meanwhile CD is determined by the same four equations on the second

line of (4.6) to be (C,D) = (k, l) or (C,D) = k̄ ∩ l̄. This particular sub-leading Landau

singularity therefore lives on the locus

〈j(j−1, j+1)(i, i−1)(k, l)〉〈j(j−1, j+1)(i, i−1) k̄ ∩ l̄〉 = 0 . (4.11)

Altogether there are a total of eight such sub-leading singularities:

(SLLS)

〈j(j−1, j+1)(i−1, i)(k, l)〉〈j(j−1, j+1)(i−1, i) k̄ ∩ l̄〉 = 0 ,

〈j(j−1, j+1)(i, i+1)(k, l)〉〈j(j−1, j+1)(i−1, i) k̄ ∩ l̄〉 = 0 ,

〈i(i−1, i+1)(j−1, j)(k, l)〉〈j(j−1, j+1)(i−1, i) k̄ ∩ l̄〉 = 0 ,

〈i(i−1, i+1)(j, j+1)(k, l)〉〈j(j−1, j+1)(i−1, i) k̄ ∩ l̄〉 = 0 .

(4.12)

and four more of the same type but with ij and kl exchanged.

At sub-sub-leading order we can have a triangle-pentagon or a double-box. The former

can be obtained by further collapsing the AB integral from a box, as we have just discussed,

down to a triangle. Using (2.6) we find a total of eight non-trivial triangle-pentagon

singularities:

(S2LLS)

〈i i+1 j−1 j〉〈j−1 j k l〉〈k l i i+1〉〈j−1 j k̄ ∩ l̄〉〈k̄ ∩ l̄ i i+1〉 = 0 ,

〈i−1 i j−1 j〉〈j−1 j k l〉〈k l i−1 i〉〈j−1 j k̄ ∩ l̄〉〈k̄ ∩ l̄ i−1 i〉 = 0 ,

〈i i+1 j j+1〉〈j j+1 k l〉〈k l i i+1〉〈j−1 j k̄ ∩ l̄〉〈k̄ ∩ l̄ i−1 i〉 = 0 ,

〈i−1 i j j+1〉〈j j+1 k l〉〈k l i−1 i〉〈j−1 j k̄ ∩ l̄〉〈k̄ ∩ l̄ i−1 i〉 = 0 ,

(4.13)

and again four more of the same type but with ij and kl exchanged. We have included on

this list only those degenerations which lead to a three-mass triangle diagram. As discussed

earlier, two-mass triangles admit solutions to the Landau equations for generic kinematics.

Next we consider the sub-sub-leading singularities of double box type. Suppose we

collapse the edges (i, i+1) and (l−1, l). The three-mass box on the right has a leading
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Landau singularity on the locus 〈k(k−1, k+1)(l, l+1)AB〉 = 0. Taking this condition

together with the three remaining propagators

〈AB i−1 i〉 = 〈AB j−1 j〉 = 〈AB j j+1〉 = 〈k(k−1, k+1)(l, l+1)AB〉 = 0 , (4.14)

we see that the left box is also of three-mass type, specified by the four lines (i−1, i),

(j−1, j), (j, j+1) and, with the help of (2.14), k(k−1, k+1)(l, l+1) = k̄ ∩ (k, l, l+1). This

three-mass box has its leading Landau singularity on the locus

〈j(j−1, j+1)(i−i, i) k̄ ∩ (k, l, l+1)〉 = 〈j̄ ∩ (i−1, i, j) k̄ ∩ (k, l, l+1)〉 = 0 . (4.15)

The double pentagon has a total of 16 sub-subleading singularities of this type, given by:

(S2LLS)

〈̄i ∩ (i, j−1, j) l̄ ∩ (k, k+1, l)〉 = 0 ,

〈̄i ∩ (i, j, j+1) l̄ ∩ (k, k+1, l)〉 = 0 ,

〈̄i ∩ (i, j−1, j) l̄ ∩ (k−1, k, l)〉 = 0 ,

〈̄i ∩ (i, j, j+1) l̄ ∩ (k−1, k, l)〉 = 0 ,

(4.16)

and the same with i↔ j or k ↔ l.

At sub3-leading order we can have singularities coming from triangle-box topologies.

There are a total of 32 degenerations of this type involving a three-mass triangle and a

three-mass box, with Landau singularities at the following loci in kinematic space:

(S3LLS)

〈i i+1 j−1 j〉〈k(k−1, k+1)(l, l+1)(j−1, j)〉〈k(k−1, k+1)(l, l+1)(i, i+1)〉 = 0 ,

〈i i+1 j j+1〉〈k(k−1, k+1)(l, l+1)(j, j+1)〉〈k(k−1, k+1)(l, l+1)(i, i+1)〉 = 0 ,

〈i−1 i j−1 j〉〈k(k−1, k+1)(l, l+1)(j−1, j)〉〈k(k−1, k+1)(l, l+1)(i−1, i)〉 = 0 ,

〈i−1 i j j+1〉〈k(k−1, k+1)(l, l+1)(j, j+1)〉〈k(k−1, k+1)(l, l+1)(i−1, i)〉 = 0 ,

(4.17)

then four more like these but with (l−1, l) instead of (l, l+1), and then another eight given

by taking k ↔ l, and finally another sixteen given by those described so far but with ij

and kl exchanged.

We could go further down to degenerations involving bubbles, or the triangle-triangle

graph, but we will stop here as we have already encountered in the Landau singularities

seen so far all of the four-brackets which are known to appear in the symbol of the two-loop

MHV amplitudes. In fact we expect that all triangle-triangle and bubble-∗ diagrams to be

either fully singular or to have Landau singularities on the vanishing loci of four-brackets

which already appear.

4.3 Summary and discussion

The chiral double pentagon integral has quite a long laundry list of Landau singularities.

Actually, as we confess in the following section, there are additional classes of singularities

that we have not even looked at. It is however clear that all of the symbol entries of
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the two-loop MHV amplitudes, shown in (4.3), (4.4) and (4.5), do vanish on loci where

the Landau equations admit solutions. It is an important question for future work to

discover whether it is possible to make a stronger statement explaining why the various

other Landau singularities do not seem to manifest themselves as symbol entries.

In particular the S2LLS of double box type, shown in (4.16), involve more complicated

four-brackets than those which appear in actual two-loop MHV amplitudes. These brackets

bear a resemblance to some of the more complicated cluster A-coordinates which appear

in the Gr(4, n) Grassmannian cluster algebra that is apparently relevant for scattering

amplitudes in planar SYM theory [19] (see in particular eq. (6.18)). We comment on

the intriguing possibility of a deeper connection between Landau singularities and cluster

algebras at the end of the next section.

5 Conclusion and caveats

Motivated by the observation of ref. [7] that there should be a close connection between

symbol entries and solutions of the Landau equations, in this paper we initiated a study

of the Landau singularities of Feynman integrals relevant to one- and two-loop MHV am-

plitudes in planar SYM theory. On general physical grounds it is expected that a quantity

may appear in the symbol of some Feynman integral only if the locus where it vanishes

corresponds to some Landau singularity; i.e. only if the Landau equations admit a solution

on that locus.

At one loop we found a surprising crisp statement: the sub-sub-leading Landau singu-

larities of the pentagon live on the loci where the first entries of the symbols of the MHV

amplitudes vanish, while the sub-leading Landau singularities live on the loci where the

second entries vanish. The leading Landau singularity appears as an overall pole in the

scalar pentagon integral but is canceled by the numerator factor in the chiral pentagon

integral (3.2) whose role is to unit normalize the leading singularity of the integrand.

The analysis of the two-loop Landau equations is more complicated. Although we did

verify that all of the symbol entries (4.3), (4.4) and (4.5) which are known to appear in

two-loop MHV amplitudes vanish on loci where the Landau equations admit solutions, we

also found numerous additional solutions which seem not to have a direct connection with

the symbol alphabet. We do not have a satisfactory explanation that accounts for the

presence of some Landau singularities as symbol letters, while others are excluded.

However, it is very intriguing to note, by comparing (4.3)–(4.5) to (3.9)–(3.11), that

all of the symbol entries of the two-loop MHV amplitudes were already present in our

classification of the Landau singularities of the one-loop chiral pentagon integral! The

two-loop chiral double pentagon certainly has a large list of new Landau singularities,

but none of these make any appearance in the symbol of the two-loop amplitude. It is

tempting to speculate that this is connected with the fact that for MHV amplitudes, all

possible Yangian invariants are exhausted already at one loop [16]; this means that the

L-loop MHV integrand has no new leading singularities beyond those which are present at

one loop. Clearly it would be interesting to extend our analysis to the NMHV amplitudes

and beyond. (The two-loop NMHV integrands were written in ref. [13], and all two-loop

integrands were constructed in ref. [20].)
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It is clear that we have only taken the first steps in exploring a potentially fruitful

connection between symbology and the Landau equations. In the next few paragraphs we

discuss several important caveats regarding our analysis. Properly understanding each of

these caveats is an interesting, new research direction.

(1) Perhaps the most important caveat is that the Landau equations themselves are

completely insensitive to the numerator structure of a Feynman integral; they only identify

the locus in kinematic space where a singularity may occur. Yet we know very well that

numerator factors in the integrand of SYM theory are not just some afterthought thrown

on top of a product of propagators, they are part and parcel of the deep mathematical

structure of the integrand. At one loop we were able, with a little bit of handwaving, to

explain away the absence of certain Landau singularities in the symbol by appealing to the

numerator factor. Clearly it would be important to have a more systematic understanding

of the role of numerator factors in SYM theory vis à vis the Landau singularity analysis.

(2) In the analyses of sections 3 and 4, we have ignored an entire class of branch

points called “second-type singularities” [2, 21, 22]. These are not solutions to the Landau

equations (2.3) and (2.4). Instead, they are pinch singularities of (2.1) at infinite loop

momenta, for which (2.3) and (2.4) need to be modified. However, due to dual conformal

symmetry, there is no invariant notion of “infinite momentum” in planar SYM theory, so

these second-type singularities should be absent except when using an infrared regulator

that breaks the dual conformal symmetry. We therefore expect these singularities to be

intimately tied to the infrared divergences of SYM theory, and we believe they are com-

pletely captured by the BDS subtraction prescription [23] (which can be implemented in

a dual conformal preserving way [24]). In any case, recall that the chiral double pentagon

integral is actually finite (and hence dual conformal invariant) except for certain boundary

cases in i, j, k, l.

In non-dual-conformally invariant theories, second-type singularities are ubiquitous

and not directly tied to IR divergences. As a simple example, consider the three-mass

triangle integral which evaluates explicitly to [15, 25, 26]

I3 =
i√
∆

3∑
i=1

(
Li2(xi)− Li2(1/xi)

)
, xi =

p21 + p22 + p23 − 2p2i +
√
−∆

p21 + p22 + p23 − 2p2i −
√
−∆

, (5.1)

where

∆ = −(p21)
2 − (p22)

2 − (p23)
2 + 2 p21 p

2
2 + 2 p22 p

2
3 + 2 p21 p

2
3 (5.2)

is the triangle Gram determinant. This integral is IR finite yet has an algebraic branch

point at a second-type singularity, when ∆ = 0.

(3) We were fortunate in our analysis of the one- and two-loop pentagons that the

Landau singularities we found always live on the vanishing locus of simple geometric quan-

tities expressible in terms of four-brackets of twistors, and that the symbol entries of the

corresponding amplitudes were similarly expressible simply in terms of four-brackets. In

general, we should not expect the Landau equation analysis to tell us what the symbol

entries are, only where they vanish. The three-mass triangle presented above illustrates a
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more complicated case: the LLS of the triangle are located at p2i = 0, and there is a second-

type singularity at ∆ = 0, but the arguments of the dilogarithms, and hence the symbol

entries, are much more complicated quantities. Closer inspection of these arguments re-

veals that they do vanish (or become infinite), as required, precisely on the leading Landau

singularity locus where (2.6) is satisfied. However one would have been hard-pressed to

guess the exact form of these symbol entries just knowing that the Landau singularities are

at p2i = 0 and ∆ = 0. In many cases at one loop, the actual symbol entries are understood

geometrically [27, 28], but there is a shortage of appropriate data on higher-loop integrals.

We can hope that planar SYM theory is sufficiently special that it is possible to make a

more direct connection between Landau singularities and symbol alphabets.

(4) We should emphasize again that our two-loop Landau equation analysis focused on

an individual chiral double pentagon integral, which we compared to the symbol alphabet

of the full amplitude given by the sum (4.1). Therefore we must acknowledge the possibility

of nontrivial cancellation in the sum, such that some symbol entries appearing in individual

double pentagon integrals might drop out of the full amplitude.

(5) Finally, although we consider this very implausible, we should acknowledge the

possibility that the amplitude, or individual integrals, might have singularities which are

only present in beyond-the-symbol terms.

One of the more speculative motivations for this work was the tantalizing possibility

that there might exist a physical principle which could dictate the symbol alphabet for a

given integral or amplitude; often in actual calculations one must start with an ansatz. We

are still very far from understanding whether such a principle exists or may be useful, but

it is worthwhile to explore this question since the payoff could be so great. In particular,

all evidence available to date is consistent with the hypothesis that all n-point MHV and

NMHV amplitudes in planar SYM theory have symbol alphabets consisting of the set

of cluster coordinates on the Gr(4, n) Grassmannian cluster algebra [19]. This has been

exploited in some of the recent work calculating remainder and ratio functions [29–36].

It would be very interesting to explore the interplay between the physical principle that

the singularities of amplitudes are encoded in the Landau equations, and the empirically

observed mathematical fact that their singularities are dictated by cluster algebras.
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