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1 Introduction

To understand the M-theory, it should be important to study the M2-branes and the M5-

branes. Recently, it was proposed that the stack of N M2-branes on the orbifold C4/Zk
(k = 1, 2, · · · ) can be studied by a three dimensional U(N)×U(N) superconformal Chern-

Simons matter theory [1], which is called the ABJM theory. Similarly, the M5-branes are

believed to be described by some non-trivial six dimensional field theory. The field theory

on the M5-branes itself would also be interesting and play important roles to understand

various non-perturbative properties of supersymmetric gauge theories. However, there are

no explicit field theoretical descriptions for the multiple M5-branes so far.

On the other hand, the M5-branes can be realized as the solitons in the ABJM theory.

Indeed we can construct BPS solitons which are the analogues of the Nahm data for the

non-abelian monopoles in (3 + 1) dimensional gauge theory [2–4].1 In these solutions the

M5-branes are realized as the M2-branes blowing up into a fuzzy sphere. There is also a

noncommutative-plane-like construction of the M5-branes [12, 13]. These solutions enable

us to investigate the M5-branes via the ABJM theory.

1This structure is an extension of the work [5] which motivate the early proposal of the field theory on

multiple M2-branes [6–9] (see also [10, 11]).
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Similar fuzzy sphere structure appears also as non-trivial vacua in the mass deformed

ABJM theory [10] (see also [14]). This configuration does not carry net M5-brane charges,

but carries the dipole M5-brane charges. This is an analogue of the Myers effect for the

D-branes [15], which is, of course, related to the Nahm construction of the monopoles. The

mass deformed ABJM theory should also be a useful tool to study the M5-branes.

Relation to the M5-branes is also observed in the gravity side. The UV limit of the

mass deformed ABJM theory is same as the ABJM theory itself. On the other hand, the

mass deformation breaks the conformal invariance and hence should result in the different

IR behavior. Indeed the analyses of the holographic RG flow [16, 17] suggest that the

theory would describe a particular configuration of the M5-branes in the IR limit. Hence

it is interesting to study the mass deformed ABJM theory for large N .

In this paper, as a simple example we shall study the partition function (free energy)

of the mass deformed ABJM theory on S3 in the large N limit. With the help of the

localization technique [18–20], the partition function can be exactly computed by a 2N

dimensional matrix model [21–23]. Though it is still difficult to perform these integrals

for general large number N , in the large N limit we can evaluate the partition function

by the saddle point approximation. We achieve to solve the saddle point equations for

finite values of the Chern-Simons levels and the mass deformation parameter, i.e. in the

M-theoretical regime. With the solutions (eigenvalue distributions), we compute the exact

large N partition function.

Interestingly, we find two different solutions, which cause a first order phase transition

in the large N limit. Since the theory we consider coincide to the ABJM theory in the UV

limit, the dual geometry will be characterized by the same asymptotics as in the ABJM

case: it will be asymptotically AdS4 × S7/Zk where the boundary of AdS4 is S3. Our

result may predict the existence of new solutions of this class and a phase transition in the

gravity side.

Among various mass deformations of the ABJM theory, the theory we consider have

the largest N = 6 supersymmetry; the same amount as the undeformed ABJM theory.

In this sence our setup is the “simplest” example of the non-conformally deformed field

theories. Hopefully, the mass deformed ABJM theory we consider would play important

roles of the toy model to reveal fundamental structures in the theories with non-trivial

RG flow.

This paper is organized as follows. In the next section we shall briefly review the mass

deformation of the ABJM theory. In section 3 we display the matrix model expression of

the partition function resulting from the localization, and the saddle point equation for

this matrix model. If we formally take the mass parameter pure imaginary, the partition

function coincide with that of the ABJM theory with the non-canonical R-charge assign-

ments which have been studied intensively [22, 24] in the context of the F-theorem [22, 25].

To compare with our main results, we also provide the solution to the saddle point equa-

tion for the imaginary mass. In section 4 we solve the saddle point equation for real mass

parameter. We find two distinctive solutions and evaluate the partition function for these

solutions. In section 5 we summarize our results with discussion and future directions.

– 2 –



J
H
E
P
0
3
(
2
0
1
6
)
0
6
3

2 Brief review of mass deformed ABJM theory

In this section we review the ABJM theory and its mass deformation [10] concerned in this

paper. The ABJM theory is the (2 + 1) dimensional N = 6 U(N)×U(N) superconformal

Chern-Simons theory with the Chern-Simons levels ±k coupled with four bifundamental

matter fields. In terms of the N = 2 superfields [26], the field content of the ABJM theory

consists of the two vector multiplets

V = (Aµ, σ, χ,D), Ṽ = (Ãµ, σ̃, χ̃, D̃) (2.1)

and four chiral multiplets (α = 1, 2, α̇ = 1, 2)

Zα = (Aα, ϕα, Fα), Wα̇ = (Bα̇, ψα̇, Gα̇) (2.2)

which are in the bifundamental representation (N, N̄) and (N̄ ,N) of the gauge group

U(N)×U(N) respectively. The action of the ABJM theory is written as

SABJM = SCS + Smat + Spot (2.3)

with

SCS = − ik
8π

∫
dx3dθ4

∫ 1

0
dt
[
TrVD̄a(etVDae

−tV)− Tr ṼD̄a(etṼDae
−tṼ)

]
,

Smat = −
∫
dx3dθ4

(
Tr Z̄αe−VZαeṼ + Tr W̄ α̇e−ṼWα̇e

V
)
,

Spot =
2π

k

∫
dx3dθ2

(
Tr εαβεα̇β̇ZαWα̇ZβWβ̇ + Tr εαβεα̇β̇Z̄

αW̄ α̇Z̄βW̄ β̇
)
. (2.4)

The chiral multiplets Zα and Wα̇ transforms under SU(2) × SU(2) R-symmetry respec-

tively. The symmetry actually enhances to SO(6)R, hence the theory have the N = 6

supersymmetry. Integrating out the auxiliary fields D and D̃ in the vector multiplets from

the Chern-Simons term SCS and the matter kinetic term Smat, we obtain following D-term

potential for the scalars in the matter multiplets

VD = Tr |σAα −Aασ̃|2 + Tr |Bα̇σ − σ̃Bα̇|2 (2.5)

together with the constraints

σ =
2π

k
(AαA

†α −B†α̇Bα̇), σ̃ =
2π

k
(A†αAα −Bα̇B†α̇). (2.6)

Eliminating σ and σ̃ we indeed obtain the sextic potential for the scalars which is essential

to describe the M5-branes as a fuzzy funnel as discussed in [5].

In this paper we shall introduce the mass deformation through following Fayet-

Iliopoulos D-term [10]

SFI =
ζ

2π

∫
dx3dθ4(TrV + Tr Ṽ) =

ζ

2π

∫
d3x(TrD + Tr D̃) (2.7)
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with the FI parameter ζ ∈ R. Though this deformation breaks the SO(6)R symmetry down

to SU(2) × SU(2) × U(1) × Z2, the deformed theory still have N = 6 supersymmetry. In

this case, the constraints (2.6) are shifted by the FI parameter

σ =
2π

k
(AαA

†α −B†α̇Bα̇) +
ζ

k
, σ̃ =

2π

k
(A†αAα −Bα̇B†α̇)− ζ

k
. (2.8)

Thus the potential (2.5) gives the mass terms with the same mass m = ζ/k to all the four

scalars. There are also some terms including the fermions and we can confirm that the

theory indeed have the N = 6 supersymmetry.2

The classical vacua of the mass deformed theory was studied in [10, 14]. These vacua

are also given by the matrices representing the fuzzy three sphere [2, 11]. This is an

analogue of the Myers effect in the D-brane system, and the mass deformed ABJM theory

represent the M2-M5 brane system where the M2-branes brow up into spherical M5-branes.

3 Large N saddle point equations

In this section we analyze the partition function of the mass deformed ABJM theory on

S3 with unit radius.3 We take the limit N → ∞ while keeping the level k and the mass

deformation ζ finite.4 Thus we are considering the M2-branes in eleven dimension, with

finite background flux depending on ζ.

The supersymmetric gauge theories on S3 were studied in [21–23]. With the help of

the localization technique, they showed that the partition function of our theory is given

by following matrix integral

Z(N) =

N∏

i=1

∫
dλidλ̃ie

−f(λ,λ̃), (3.1)

where

f(λ, λ̃) = πik

(∑

i≥1
λ2i −

∑

i≥1
λ̃2i

)
− 2πiζ

(∑

i≥1
λi +

∑

i≥1
λ̃i

)

−
∑

i>j

log sinh2 π(λi − λj)−
∑

i>j

log sinh2 π(λ̃i − λ̃j)

+
∑

i,j≥1
log cosh2 π(λi − λ̃j). (3.2)

Here λi and λ̃i (i = 1, . . . , N) denote the eigenvalues of σ and σ̃ which are constant for the

saddle points in the localization.

2The superpotential mass term [10], on the other hand, breaks some supersymmetries. We will concen-

trate on the maximally supersymmetric theory in this paper for simplicity.
3We can recover the radius by the replacement ζ → ζ · rS3 since there are no other dimensionful

parameters in the theory.
4As we will see later, the large N behaviors may be different for ζ/k < 1/4 and ζ/k > 1/4. In this

paper we shall concentrate on the former case ζ/k < 1/4, which is different from the situation considered

in [27, 28].
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For the large N limit, the integrals can be evaluated by the saddle point approximation.

The saddle point configuration is the solution of following saddle point equations

0 =
∂f(λ, λ̃)

∂λi
= 2πikλi − 2πiζ − 2π

∑

j 6=i
cothπ(λi − λj) + 2π

∑

j

tanhπ(λi − λ̃j),

0 =
∂f(λ, λ̃)

∂λ̃i
= −2πikλ̃i − 2πiζ − 2π

∑

j 6=i
cothπ(λ̃i − λ̃j)− 2π

∑

j

tanhπ(λj − λ̃i). (3.3)

The free energy F = − logZ(N) can be evaluated by the saddle point configuration

F ≈ f(λ, λ̃)|saddle. (3.4)

Note that the saddle point configurations may be complex although λi and λ̃i are real in

the original integration contours in (3.1).

Below we will find the solutions of the saddle point equations (3.3). For this purpose

the symmetries of the equations are helpful, as argued in [29]. In the case of the ABJM

theory, i.e. ζ = 0, the saddle point equations (3.3) are invariant under both of the exchanges

of λi → ±λ̃∗i . Under these exchanges the free energy transforms as f(λ, λ̃) → (f(λ, λ̃))∗.

The solutions are always paired, except for the case λi = ±λ̃∗i . Then, it is natural to

assume that the lowest free energy will be realized by such self-conjugate configurations.5

This fact was indeed confirmed in the ABJM theory.

For a general complex deformation, these exchange symmetries are broken. There are

two special choice of ζ, however, where one of the Z2 symmetry remains. For a real ζ,

which corresponds to the mass deformation, the saddle point equations are invariant under

λi → −λ̃∗i . Hence we will pose the ansatz λi = −λ̃∗i to solve the saddle point equations.

The other choice is the pure imaginary ζ, where the remaining symmetry is λi → λ̃∗i and

we should assume λi = λ̃∗i .

3.1 Imaginary FI-parameter (known case)

Before going on to the real mass deformation, we shall investigate the case with pure

imaginary FI-parameter6

ζ = −iξ, ξ ∈ R. (3.5)

Though the matrix model is equivalent to that for the R-charge deformation of the ABJM

theory studied in [22, 24] (see also [25]), it is useful to consider these model for a demon-

stration of the general ideas in the evaluation of the free energy in the large N limit.

Interestingly, however, the results for mass deformed ABJM theory and its “analytic con-

tinued” version we consider here are substantially different in various ways, contrary to the

naive expectation.

5If we assume a dual gravity description, paired solutions will correspond to the semi-classical solutions

which are not allowed as a lowest free energy configuration.
6The reader concerning only the results for mass deformed ABJM theory may skip this subsection.
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3.1.1 Analytical solution in large N limit

In the case of pure imaginary FI parameter, we can find the solution to the saddle point

equations (3.3) in the large N limit by evaluating the equations up to O(N0). As we discuss

above we set

λi = λ̃∗i . (3.6)

Furthermore, we shall assume

λi = Nαxi + iyi, λ̃i = Nαxi − iyi, (3.7)

with xi and yi being of order O(N0). We have introduced a factor Nα to represent the

growth of the real part of the eigenvalues, where the scaling exponent α will be deter-

mined later.7

In the large N limit, we can define continuous functions x(s), y(s) : [0, 1] → R to

replace xi and yi as

xi = x
( i
N

)
, yi = y

( i
N

)
. (3.8)

Here we have ordered the eigenvalues so that x(s) is a strictly increasing function. It is

more reasonable to take the real part of the eigenvalues x as the fundamental variable

rather than s and introduce the eigenvalue density ρ(x) in the x-direction

ρ(x) =
ds

dx
(3.9)

which is normalized to unity
∫

I
dxρ(x) = 1 (3.10)

so that

∑

i

(· · · )i → N

∫

I
dxρ(x)(· · · )(x). (3.11)

Here I is the support of the eigenvalues which we shall assume to be a single finite interval

I = [a, b]. In the continuum notation the saddle point equations (3.3) become

0 = −ik(Nαx+ iy(x)) + ξ +N

∫

I
dx′ρ(x′) cothπ

[
(x− x′)Nα + i(y(x)− y(x′))

]

−N
∫

I
dx′ρ(x′) tanhπ

[
(x− x′)Nα + i(y(x) + y(x′))

]
. (3.12)

We regard the integral whose integrand is singular at x = x′ as the principal value integral.

Now to solve the saddle point equation (3.12) means to find the functions y(x) and ρ(x)

which satisfy (3.12) and the normalization (3.10).

7Although it is difficult to show there are no solutions without the assumption, we believe this assumption

is valid for the lowest free energy configuration, partially based on some numerical calculations.
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Now we shall consider the large N expansion of the last two terms in (3.12) including

the integration over x′. Since the arguments of coth and tanh are scaled by Nα, this

is achieved by approximating them by the sign of the real part of the arguments and

evaluating the deviations by the integration by parts. First, we notice following expansion

formulas

tanh(z) =





1− 2

∞∑

n=1

(−1)n−1e−2nz (Re(z) ≥ 0)

−1 + 2
∞∑

n=1

(−1)n−1e2nz (Re(z) < 0)

,

coth(z) =





1 + 2

∞∑

n=1

e−2nz (Re(z) ≥ 0)

−1− 2
∞∑

n=1

e2nz (Re(z) < 0)

. (3.13)

The leading terms in (3.13) come from the sign function approximation. In the two integrals

they are precisely canceled together

N

∫

I
dx′ρ(x′) cothπ

[
(x− x′)Nα + i(y(x)− y(x′))

]

−N
∫

I
dx′ρ(x′) tanhπ

[
(x− x′)Nα + i(y(x) + y(x′))

]

∼ N
∫

I
dx′ρ(x′) sgn(x− x′)−N

∫

I
dx′ρ(x′) sgn(x− x′) = 0. (3.14)

Since the real part of the arguments grows with Nα, the contributions from the remaining

terms e−2nz in (3.13) seem to be exponentially suppressed in large N limit and do not

contribute to the 1/N expansion. However, the contributions of the integration near z ∼ 0

give 1/Nα corrections. We can evaluate these terms in (3.13) by separating the integration

interval into x > x′ and x < x′ and integrating by parts

N

∫

I
dx′ρ(x′) cothπ

[
(x− x′)Nα + i(y(x)− y(x′))

]

−N
∫

I
dx′ρ(x′) tanhπ

[
(x− x′)Nα + i(y(x) + y(x′))

]

= −2iN1−αρ(x)

∞∑

n=1

(−1)n−1

πn
sin(4nπy(x))−N1−2αρ̇(x)

∞∑

n=1

(−1)n−1

π2n2
cos(4nπy(x))

−N1−2αρ̇(x)

∞∑

n=1

1

π2n2
+ 2N1−2αρ(x)ẏ(x)

∞∑

n=1

(−1)n−1

πn
sin(4nπy(x)) +O(N1−3α),

(3.15)

where we have used following formula
∫ b

a
g(x)eAx+iy(x)dx =

∞∑

`=0

(−1)`

A`+1

[
d`

dx`
(
g(x)eiy(x)

)
eAx
]b

a

(3.16)
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with A an arbitrary constant. In our case A is proportional to Nα and this formula gives

the 1/Nα expansion. Here we have kept the terms up to O(N1−2α) since these terms will

be the leading contributions.

Plugging (3.15) into the saddle point equation (3.12), we finally obtain two equations

from the real part and the imaginary part





(imaginary part) = 0 → −kNαx− 4N1−αρ(x)y(x) = 0

(real part) = 0 → ky(x) + ξ −N1−2αρ̇(x)

[
1

4
− 4y2(x)

]
+ 4N1−2αρ(x)y(x)ẏ(x) = 0

, (3.17)

where dot “·” is the abbreviation for the differential over x. We have used following Fourier

series expansion formulas by assuming −1
4 ≤ y(x) ≤ 1

4 :

∞∑

n=1

(−1)n−1

n2
cos(4πny) =

π2

12
− 4π2y2, − 1

4
≤ y ≤ 1

4
, (3.18)

∞∑

n=1

(−1)n−1

n
sin(4πny) =2πy, − 1

4
≤ y ≤ 1

4
. (3.19)

Outside the range −1
4 ≤ y(x) ≤ 1

4 , (3.17) is no longer correct. Although we will not consider

this possibility here, the formulas can be generalized by considering the periodicity of the

trigonometric functions. In order to obtain a non-trivial solution we have to balance the

scalings of the two terms in the imaginary part of (3.17), hence we shall choose

α =
1

2
. (3.20)

This choice also balance the scalings of all the terms in the real part of (3.17).

Note that the non-local saddle point equations (3.12) have reduced to the local differ-

ential equations (3.17). This is because the non-local part of the equation vanishes under

the assumption λi = λ̃∗i , as we have seen in (3.14). The saddle point equations can be

solved by

y(x) = − kx

4(4ξx+ C)
, ρ(x) = 4ξx+ C, (3.21)

where C is an integration constant which is determined from the normalization condi-

tion (3.10) as

C =
1

b− a
− 2ξ(b+ a). (3.22)

Formally the solution (3.21) implies y(x) diverges at x = − C
4ξ , and the density ρ(x) is

negative for x < − C
4ξ which obviously contradicts to the notion of the eigenvalue density.

We assume that these points are excluded from the support I.

Note that although we have found the solution (y(x), ρ(x)) the support I is still com-

pletely undetermined. The support is determined by the extremization of the free energy,

as we will see in the next section.
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3.1.2 Leading behavior of free energy

From the solution (3.21) we have obtained in the last section, we can compute the free

energy in the large N limit (3.2). We will obtain the free energy as a function of the edges

of the support (a, b). As in the case of the ABJM theory, we can determine the support

by choosing the local minimum of the free energy under the variation of a and b.

We shall start with the continuum limit of the free energy (3.2)

f(λ, λ̃) =− 4N
3
2πk

∫

I
dxxρ(x)y(x)− 4N

3
2πξ

∫

I
dxρ(x)x

− 2N2Re

∫

I
dx

∫

I
dx′ρ(x)ρ(x′) log sinhN

1
2π
[
(x− x′) + i(y(x)− y(x′))

]

+ 2N2

∫

I
dx

∫

I
dx′ρ(x)ρ(x′) log coshN

1
2π
[
(x− x′) + i(y(x) + y(x′))

]
. (3.23)

The last two double integrations can be evaluated in the parallel way as in the last section,

with the help of the formulas obtained by integrating (3.13)

log cosh(z) =





z +

∞∑

n=1

(−1)n−1e−2nz

n
− log 2 (Re(z) ≥ 0)

−z +
∞∑

n=1

(−1)n−1e2nz

n
− log 2 (Re(z) < 0)

,

log sinh(z) =





z −
∞∑

n=1

e−2nz

n
− log 2 (Re(z) ≥ 0)

−z −
∞∑

n=1

e2nz

n
− log 2± iπ (Re(z) < 0)

. (3.24)

The contributions to the free-energy from the first terms in (3.24) are again canceled, hence

there are no terms including double integration in the free energy. The contribution from

the second terms in (3.24) are evaluated by the integration by parts with the formula (3.16)

and we obtain

2πN2− 1
2

∫

I
dx

[
1

4
− 4y2(x)

]
ρ2(x), (3.25)

where we have used the formula (3.18) to reorganize the sum over n. It is enough to keep

the terms up to N
3
2 since the Chern-Simons terms and FI terms are already of O(N

3
2 )

for α = 1
2 .

Plugging (3.25) into (3.23) and performing the single integrations for the solu-

tion (3.21), we finally obtain

f

πN
3
2

=
k2(b3 − a3)

6

(
1− 16ξ2

k2

)
+

1

2(b− a)
− 2ξ(b+ a) + 2ξ2(b+ a)2(b− a). (3.26)

In order for the free energy to have a local minimum with respect to (a, b), the deformation

ξ is required to satisfy the inequality

1− 16ξ2

k2
> 0. (3.27)
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Inside this region, the values of a and b can be uniquely determined as8

a = − 1√
2k

(
1− 4ξ

k

)
, b =

1√
2k

(
1 +

4ξ

k

)
, (3.29)

on which the free energy is

F =

√
2

3
πN

3
2k

1
2

(
1− 16ξ2

k2

)
. (3.30)

Substituting these vaules of (a, b) into the solution (3.21) we finally obtain

y(x) = − kx

4
[
4ξx+

√
k
2

(
1− 16ξ2

k2

)] , ρ(x) = 4ξx+

√
k

2

(
1− 16ξ2

k2

)
. (3.31)

Note that the solution indeed satisfies the bound −1
4 ≤ y(x) ≤ 1

4 we have assumed and the

positivity of the density ρ(x) on the support.

Before closing this section we shall comment on the relation to the results obtained

in [24] where the ABJM theory was deformed by assigning the non-canonical R-charges ∆

to the bifundamental matter fields Ai and Bi. Our solution (3.21) and (3.30) correspond

to the special case of their results (See section 5 in [24]) with the parameters related as

∆A1 = ∆A2 = 1
2 + 2ξ

k , ∆B1 = ∆B2 = 1
2 −

2ξ
k and ∆m = 0. The dual gravity solution was

also constructed [30] which is consistent with the field theory result.

In the next section, we will consider the case of real mass with the similar method

used here. The naive guess is that the free energy and the eigenvalue distribution in the

mass deformed ABJM theory would be obtained by simply replacing ξ → iζ and assuming

ζ ∈ R. Such an “analytic continuation” of the parameter, however, is not allowed generally.9

Indeed, the behavior of the matrix model (3.2) greatly depends on whether the FI parameter

ζ is real or imaginary.

4 Large N behavior of mass deformed ABJM theory

In this section, we investigate the leading behavior of the mass deformed ABJM theory by

the saddle point approximation. Though the method we will use is parallel with that in the

last section, the results are substantially different. We will see that there is a solution for

8So far we have not considered the other non-local constraint following by integrating the real part of

the saddle point equation (3.12)

k

∫ b

a

dxρ(x)y(x) + ξ = 0, (3.28)

which should have been considered before the variation of the free energy. The solutions (a, b) (3.29) indeed

satisfy this condition.
9Our calculation in the large N limit breaks the holomorphy in the sense that the eigenvalue distribution

is separated into the real part and imaginary part, which are real functions. However, it is expected that

the partition function (3.1) is holomorphic at least around ζ = 0 from the general argument in [31]. In

fact, we will confirm that the partition function is holomorphic in the large N limit when the parameter is

sufficiently small in the section 4.
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Figure 1. The numerical solutions {λi}Ni=1 of the saddle point equation (3.3) with reality con-

dition (4.1). The blue circles are the eigenvalue distribution of N = 20, k = 5, ζ = 0.05, while the

red triangles are that for N = 80, k = 5, ζ = 0.05. The solutions are obtained by introducing the

fictitious time t and analyze late time solution λi(t) of the heat equation dλi/dt = ∂f/∂λi [29].

The graph indicates that the maximum of Re[λi] is doubled as N being quadrupled.

a real ζ where the free energy is the “analytic continuation” of (3.30) while the eigenvalue

distribution is completely different from (3.21). Moreover there is another solution which

gives smaller free energy for (3−2
√

2)/4 ≤ ζ/k ≤ 1/4, thus there occurs a phase transition

as we increase ζ. These results may reflect the nontrivial structure of the vacua of the mass

deformed ABJM theory.

Below we first provide the general solutions to the saddle point equations (3.3) with

real mass ζ ∈ R in section 4.1. We shall assume k > 0 and ζ > 0 without loss of generality.

As in the case of imaginary FI parameter the solutions contains some integration constants

to be determined by the non-local constraints. In section 4.2 we determine these constants

and evaluate the free energy for each solutions.

4.1 General solutions as continuous distribution

To solve the saddle point equations, we need to pose several ansatz on the eigenvalue

distributions. First we impose following reality condition on the eigenvalues

λ̃i = −λ∗i , (4.1)

as discussed in the previous section. Second we switch to continuous distributions on the

x-support I as in the previous section:

λi → λ(x) = N
1
2 (x+ iy(x)), λ̃i → λ̃(x) = N

1
2 (−x+ iy(x)), x ∈ I. (4.2)

The overall scaling N
1
2 is observed in the numerical analysis of the saddle point equa-

tions (3.3) (see figure 1). The eigenvalue distribution in the x-direction is encoded in the
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density ρ(x) normalized as (3.10). Taking the continuum limit, the saddle point equa-

tion (3.3) becomes

0 = −iN
1
2k(x+ iy(x)) + iζ +N

∫

I
dx′ρ(x′) cothπN

1
2
[
(x− x′) + i(y(x)− y(x′))

]

−N
∫

I
dx′ρ(x′) tanhπN

1
2
[
(x+ x′) + i(y(x)− y(x′))

]
. (4.3)

Now let us evaluate the last two integrations with the expansion formulas (3.13). In current

case the non-local contributions from the first terms in the formula (3.13) do not cancel:

N

∫

I
dx′ρ(x′)

[
sgn(x− x′)− sgn(x+ x′)

]
. (4.4)

These terms in the saddle point equation would be of O(N). If these are no cancellation

in this non-local contributions, it is impossible to solve the saddle point equations (3.3)

since there are no other terms with comparable order. However, we can decrease the order

in N of the non-local contribution by assuming the support I to be symmetric under the

reflection x → −x. With this choice of I it is reasonable to define the odd and the even

function parts of ρ(x) as

ρ(x) = ρev(x) +N−
1
2 ρod(x), (4.5)

where the scalings of the even/odd part are indeed required from the normalization condi-

tion (3.10) and the condition

N
1
2

∫

I
dxρ(x)x =

ζ

k
(4.6)

which is the continuum version of the summation of the imaginary part of the saddle point

equation (3.3) over the index i. The odd part of the distribution is of O(N−
1
2 ) because

the r.h.s. of (4.6) is N -independent. The non-local part in the saddle point equation (4.3)

becomes

N

∫

I
dx′ρ(x′)

[
sgn(x− x′)− sgn(x+ x′)

]
= 2N

1
2

∫

I
dx′ρod(x) sgn(x− x′). (4.7)

Though the contribution is still non-vanishing, we have achieved to reduce the order in N .

To solve the saddle point equations (4.3) it is necessary to postulate the different

scalings in N also for the even/odd-function part of y(x) as

y(x) = yev(x) +N−
1
2 yod(x). (4.8)

The scaling of each part is required for the consistency of the saddle point equations. See

appendix A for details.

Let us continue to evaluate the last two terms in (4.3) with the formulas (3.13). After

substituting above ansatz, the second terms in (3.24) are evaluated by dividing the inte-

gration interval of x′ into two intervals x > x′ and x < x′. Then we can integrate them by

parts as we have done in section 3.1.1. The leading part of the saddle point equations (4.3)
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can also be divided into four parts, the real/imaginary and the even/odd-function parts.

Massaging the resulting equations, we finally obtain following four equations:

0 = k
d

dx

[
xyev(x)

]
+2

∫

I
dx′ρod(x′) sgn(x− x′), (4.9)

0 = kx+
4ρev(yod + h sgn(x))

1 + ẏ2ev
, (4.10)

0 = − 2kẏev(x)hsgn(x) + ζ(1− ẏ2ev(x)) +
1

4

ρev(x)ÿev(x)

1 + ẏ2ev(x)
, (4.11)

0 = − khsgn(x)− ζẏev(x)− 1

4

d

dx

[
ρev(x)

1 + ẏ2ev(x)

]
. (4.12)

where we abbreviated the differential ∂x to dots “·” as in the last section. Here h ∈ Z/2 is

determined such that

−1

4
≤ yod(x) + h sgn(x) <

1

4
. (4.13)

For the details of the derivation, see appendix B.

Differentiating the first equation (4.9), we obtain a set of four differential equations

against four unknown functions (yev(x), yod(x), ρev(x), ρod(x)), whose general solutions are

following two

I





yev(x) = −ω|x| −
√

(1 + ω2)(x2 + a) + b

yod(x) = − kx

16ζ
√

(1 + ω2)(x2 + a)
− h sgn(x)

ρev(x) = 4ζ(1 + ω2)

[
(2x2 + a)

√
1 + ω2

x2 + a
+ 2ω|x|

]

ρod(x) =
kx
√

1 + ω2(2x2 + 3a)

4(x2 + a)
3
2

+
kω sgn(x)

2

,

II





yev(x) = −(ω +
√

1 + ω2)|x|+ a

yod(x) = −kx
2

√
1 + ω2(

√
1 + ω2 + ω)

8ζ|x|(1 + ω2)(
√

1 + ω2 + ω) + b
− h sgn(x)

ρev(x) = 8ζ(1 + ω2)(
√

1 + ω2 + ω)|x|+ b

ρod(x) =
k(
√

1 + ω2 + ω) sgn(x)

2

, (4.14)

where

ω =
hk

ζ
. (4.15)

Here a, b ∈ R are integration constants. These constants, together with the choice of the

support I, should be determined by the non-local constraints (3.10), (4.6) and (4.9). We

stress that there are two independent solutions. As we shall see below, only one of these

solutions is connected to that of the ABJM theory in the undeformed limit.
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4.2 Free energy

The contribution to the free energy in the continuum limit can be written as

f(λ, λ̃) =− 4πN2k

∫

I
dxxρ(x)y(x) + 4N

3
2πζ

∫

I
dxρ(x)y(x)

− 2N2Re

∫

I
dx

∫

I
dx′ρ(x)ρ(x′) log sinhN

1
2π
[
(x− x′) + i(y(x)− y(x′))

]

+ 2N2

∫

I
dx

∫

I
dx′ρ(x)ρ(x′) log coshN

1
2π
[
(x+ x′) + i(y(x)− y(x′))

]
. (4.16)

After substituting the ansatz (4.2), (4.5) and (4.8) in section 4.1, we can evaluate the last

terms in (4.16) by formula (3.24) as in section 3.1.2 (see appendix A for the details):

f(λ, λ̃) = N
3
2

[
−4πk

∫

I
dx
(
xρev(x)yod(x) + xρod(x)yev(x)

)
+ 4πζ

∫

I
dxyev(x)ρev(x)

− 4π

∫

I
dx

∫

I
dx′ρod(x)ρod(x′)|x− x′|

+ 2π

∫

I
dx

ρ2ev(x)

1 + ẏ2ev

(
1

4
− 4(yod(x) + h sgn(x))2

)]
. (4.17)

In this section we compute this quantity for each solution to the saddle point equa-

tions (4.14). For simplicity we shall assume the support I to be a single segment sur-

rounding the origin:

I = (−L,L). (4.18)

4.2.1 Free energy for solution I

To compute the free energy of the solution I in (4.14), we need to determine the integra-

tion constants (a, b) and the support I. Under the assumption of single support (4.18),

we have three parameters (a, b, L) to be determined. Using the three non-local con-

straints (3.10), (4.6) and (4.9) we will completely determine these parameters.10

We first note that a must be non-negative so that the solution is well defined on the

support. From the constraints (3.10) and (4.6) it follows that

√
1 +

a

L2
=
−(X − 1)ω +

√
(X − 1)2ω2 + 4X(1 + ω2)

2X
√

1 + ω2
(4.19)

with X = 16(h2 + ζ2/k2). We can show that the r.h.s., regarded as a function of two

variables (X,ω), is always smaller than 1 for X > 1, hence we conclude that the solution

I is valid only when

h = 0,
ζ

k
≤ 1

4
. (4.20)

10This is in contrast to the ABJM theory and the R-charge deformation considered in section 3.1.2 where

the parameters were not completely determined from the saddle point equations but were chosen so that

the free energy is minimized.
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Under these condition the three parameters are determined as

a =
k

32ζ2

(
1− 16ζ2

k2

)
, b =

√
k

4
√

2ζ

(
1 +

16ζ2

k2

)
, L =

1√
2k
. (4.21)

Substituting these values the solution I are written as

yev(x) =

√
k

4
√

2ζ

(
1 +

16ζ2

k2

)
−

√
x2 +

k

32ζ2

(
1− 16ζ2

k2

)
,

yod(x) = − k

16ζ

x√
x2 + k

32ζ2

(
1− 16ζ2

k2

) ,

ρev(x) = 4ζ
d

dx

(
x
√
x2 + a

)
= 4ζ ·

2x2 + k
32ζ2

(
1− 16ζ2

k2

)

√
x2 + k

32ζ2

(
1− 16ζ2

k2

) ,

ρod(x) = −k
4

d2

dx2
(
xyev(x)

)
=
kx

4
·

2x2 + 3 k
32ζ2

(
1− 16ζ2

k2

)

[
x2 + k

32ζ2

(
1− 16ζ2

k2

)] 3
2

. (4.22)

In figure 2 we compare the solution with the numerically obtained eigenvalue distribution.

We can see that the numerical one coincides with the analytical one with good accuracy.

Now that the solution is completely determined, we can compute the free energy (4.17)

and obtain

fI =
π
√

2kN
3
2

3

(
1 +

16ζ2

k2

)
. (4.23)

Note that this free energy is obtained from (3.30) by just changing parameter ξ → iζ while

the solution y(x) and ρ(x) is greatly different from (3.21) and (3.29). This solution can be

regarded as the solution connected to that of the ABJM theory in the sense that the saddle

point configuration and the free energy are equal to those obtained in [29] when we take

the undeformed limit ζ → 0. As ζ increases the free energy monotonically increases until

ζ = k
4 , in contrast with (3.30). However, as we will see later, the free energy corresponding

to the solution II becomes smaller than that of the solution I as ζ crosses a certain threshold

in 0 < ζ < k
4 .

4.2.2 Free energy for solution II

The free energy for the solution II in (4.14) with the assumption of single support (4.18) can

be evaluated in similar way. Interestingly, the same condition for h and ζ (4.20) follows

from (3.10), (4.6) and the constraint b > 0 which is required for the positivity of the

eigenvalue density ρev(x). Together with the remaining equation (4.9), we can determine

the three parameters (a, b, L) as

a =
2
√

2ζ

k
, b =

k

2
√

2ζ

(
1− 16ζ2

k2

)
, L =

√
2ζ

k
. (4.24)
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Figure 2. The blue line is λ(x) = N
1
2 (x+ iy(x)) for solution I (4.22), while the red dots are the

eigenvalue distribution obtained by a numerical analysis.

With these relations the complete expression of the solution II is

yev(x) = −|x|+ 2
√

2ζ

k
,

yod(x) = − kx

16ζ|x|+ k√
2ζ

(
1− 16ζ2

k2

) ,

ρev(x) = 8ζ|x|+ k

2
√

2ζ

(
1− 16ζ2

k2

)
,

ρod(x) =
k

2
sgn(x). (4.25)

The free energy is computed as

fII =
π
√

2kN
3
2

3

√
k

ζ

(
3

16
+

14ζ2

k2
− 16ζ4

k4

)
. (4.26)

This solution II is not connected to that of the ABJM theory since the free energy becomes

infinite as ζ → 0. The free energies for the two solutions are plotted in figure 3. In the

point of view of the saddle point approximation, the smallest free energy is dominant in

the large N limit. In this sense fI is preferred when 0 ≤ ζ/k ≤ (3 − 2
√

2)/4 while fII
is preferred for (3 − 2

√
2)/4 ≤ ζ/k ≤ 1/4. Therefore, we conclude that there is a first

order phase transition in the large N limit of the mass deformed ABJM theory on S3, with

respect to the mass parameter ζ/k in this region.11

It is interesting to consider the gravity dual of this theory. For the imaginary FI

parameter ζ or the R-charge deformation, the corresponding gravity solution in the four

dimensional supergravity was obtained in [30] and the free energy (3.30) was reproduced.

11Note that the phase transition occurs only in the large N limit. For finite N and finite volume, the free

energy is expected to be an analytic function of ζ.
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Figure 3. The solid blue line is the free energy for solution I, while the dashed red line for solution II.

fABJM = π
√

2k/3 is the value for the ABJM theory. The intersection point is at ζ/k = (3−2
√

2)/4

and at ζ/k = 1/4.

We can see that the parameter of the dual geometry corresponding to the R-charge can

be consistently replaced into pure imaginary, which realize the same free energy as the

solution I. Our result indicates that there exist another gravity solution corresponding to

the solution II and that the phase transition also occurs in the gravity side. We hope to

investigate these points in future.

5 Discussion

In this paper we have calculated the large N behavior of the free energy of the mass

deformed ABJM theory. With the localization method in [21–23], the theory on S3 reduces

to the matrix model. To investigate the large N behavior of the free energy we have used

the saddle point approximation to the matrix model and solved the saddle point equations.

The crucial point in the analysis is that we can not take the reality condition λ = λ̃∗

in contrast to the ABJM case and the case of the R-charge deformation in [24]. As a

result, we can not eliminate the non-local terms in the saddle point equations coming from

the one-loop determinant, whatever ansatz we choose for the eigenvalue density ρ(x). We

have to consider the support of ρ(x) to be symmetric: I = [−b, b] to solve the saddle point

equations. Once we take I = [−b, b], we can guess that it is necessary to impose the even

and the odd parts of ρ(x) and y(x) to have different scalings in N .

It is also important that there are two solutions of the saddle point equations: one is

connected to that of the ABJM theory while the other is not. It depends on the value of

ζ/k which solution is dominant among those two. This is a novel phenomenon, which was

absent in the ABJM theory and the theory deformed by an imaginary FI parameter where

the saddle point configuratoin was uniquely determined. Thus it would be related to the

non-trivial vacuum structure of the mass deformed ABJM theory. We also stress that the

free energy we obtained in this paper scales as N
3
2 in the large N limit even though the

non-local contributions survive in the free energy.
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There remains several problems to be concerned in future works. In this paper we

have assumed that the support I of the eigenvalues is a single segment for simplicity. It is

interesting whether we can determine the solutions supported by multiple segments, and

whether these solutions can be more preferable than currently obtained solutions or not. It

would also be important to reveal what occurs in the regime ζ > k
4 outside the bound (4.20).

For example, the decompactification limit of the three sphere, studied in [32], corresponds

to the limit ζ → ∞. Since the bound automatically follows from our ansatz (4.8), it is

necessary to seek another ansatz to solve the saddle point equations.12

Furthermore, there are many interesting extension of our analysis. For examples, the

’t Hooft limit of the mass deformed ABJM theory and the theory with a boundary defined

in [34] are interesting to be studied. Also, though we have only considered the strict large N

limit, it is interesting to study the large N expansion including the sub-leading corrections

in 1/N (see recent work [35] and [36] for R-charge deformations). We hope to investigate

these issues in near future.
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A Leading behavior of free energy in large N limit

In this section, we derive the leading behavior of the free energy for real mass (4.17)

from (3.2) in the continuum limit. We begin with the large N expansion of λ(x) and

ρ(x) (4.2), (4.8) with more general ansatz on Im(λ)

y(x) = Nαyev(x) +Nβyod(x), (A.1)

which reduces to the ansatz (4.2) when

α = 0, β = −1

2
. (A.2)

Below we argue that the exponent (α, β) are fixed to these values if we require that the

contribution of the free energy from the Chern-Simons terms, FI terms and the one-loop

determinant terms to balance each other. With these conditions, we also find that the free

energy indeed scales as f(λ, λ̃) ∼ N
3
2 . We further collect all the leading terms in the large

N limit to decide leading coefficient of the free energy as (4.17).

12See [33] for recent analysis in gravity side.
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In the continuum limit, the free energy (3.2) becomes

f(λ, λ̃) =− 4πk

∫

I
dx
[
N2+βxρev(x)yod(x) +N

3
2
+αxρod(x)yev(x)

]

+ 4N
3
2
+απζ

∫

I
dxρev(x)yev(x)

− 2N2Re

∫

I
dx

∫

I
dx′ρ(x)ρ(x′) log sinhN

1
2π
[
(x− x′) + i(y(x)− y(x′))

]

+ 2N2

∫

I
dx

∫

I
dx′ρ(x)ρ(x′) log coshN

1
2π
[
(x+ x′) + i(y(x)− y(x′))

]
. (A.3)

The last two terms containing double integration can be evaluated by applying the ex-

pansion formulas (3.24). The contributions from the first terms in (3.24) can be explicitly

evaluated and found to scale as N
3
2

− 2N
5
2π

∫

I
dx

∫

I
dx′ρ(x)ρ(x′)|x− x′|+ 2N

5
2π

∫

I
dx

∫

I
dx′ρ(x)ρ(x′)|x+ x′|

= −4N
3
2π

∫

I
dx

∫

I
dx′ρod(x)ρod(x′)|x− x′|, (A.4)

where we have neglected the imaginary part since the reality of the free energy is manifest.

On the other hand, the contributions coming from the second terms in (3.24) can be

estimated as N2− 1
2 = N

3
2 since the exponents are of order O(N

1
2 ). Therefore the balance

condition is

N
3
2
+α = N2+β = N

3
2 , (A.5)

which determine α and β as (A.2).

Now we look the contributions from the second terms in (3.24) in more detail

2N2Re

∫

I
dx

∫

I
dx′ρ(x)ρ(x′)

∞∑

n=1

1

n
e−2nN

1
2 π sgn(x−x′)(x−x′+i(y(x)−y(x′)))

+ 2N2

∫

I
dx

∫

I
dx′ρ(x)ρ(x′)

∞∑

n=1

(−1)n−1

n
e−2nN

1
2 π sgn(x+x′)(x+x′+i(y(x)−y(x′))). (A.6)

Separating the integration domain of x′ into x > x′ and x < x′ and integrating by parts,

we obtain

2N
3
2

∫

I
dx

ρ2ev(x)

1 + ẏ2ev(x)

∞∑

n=1

[
(−1)n−1

πn2
cos(4nπyod(x)) +

1

πn2

]
+O(N1). (A.7)

Here dot “·” stands for the differential ∂x. In the integration by parts, we have used the

following formula:

∫ b

a
g(x)eA(x+iy(x))dx =

∞∑

`=0

1

A`+1

[
1

1 + iẏ(x)
(D`g(x))eA(x+iy(x))

]b

a

,

Dg(x) ≡ − d

dx

(
g(x)

1 + iẏ(x)

)
, (A.8)

– 19 –



J
H
E
P
0
3
(
2
0
1
6
)
0
6
3

where A is some constant, which follows from the Leibniz rule

g(x)eA(x+iy(x)) =
d

dx

[
g(x)eA(x+iy(x))

A(1 + iẏ(x)
)
]
+

1

A

(
Dg(x)

)
eA(x+iy(x)). (A.9)

In this case the constant A is proportional to N
1
2 , thus the formula (A.8) implies that

the integrals can be approximated as the sign functions and have N−
1
2 correction. In

the derivation of (A.6), the boundary terms from x′ = ±L are ignored since they are

exponentially suppressed O(e−N
1
2L) compared with the boundary terms from x′ = ±x.

We can compute the sum over n with the help of the formula

∞∑

n=1

(−1)n−1

n2
cos(4πny) =

π2

12
− 4π2(y + h)2, −1

4
≤ y + h ≤ 1

4
, h ∈ Z/2, (A.10)

and obtain

2N
3
2π

∫

I
dx

ρ2ev(x)

1 + ẏ2ev(x)

[
1

4
− 4(yod + hsgn(x))2

]
. (A.11)

Here the shift parameter h is introduced as in (4.13). Plugging this result and the re-

sult (A.4) into (A.3), we obtain the leading coefficient of the free energy (4.17).

B Evaluation of saddle point equation in large N limit

In this section, we derive the saddle point equations (4.9), (4.10), (4.11) and (4.12) in detail

with the assumptions (4.2), (4.5) and (4.8). The computations in this section are parallel

with those in appendix A. In the continuum limit, the saddle point equation (3.3) becomes

0 = −iN
1
2k(x+ iy(x)) + iζ +N

∫

I
dx′ρ(x′) cothπN

1
2
[
(x− x′) + i(y(x)− y(x′))

]

−N
∫

I
dx′ρ(x′) tanhπN

1
2
[
(x+ x′) + i(y(x)− y(x′))

]
. (B.1)

We now evaluate the last two integrations by using the expansion formulas (3.13).

The contributions to the saddle point equation from the first terms in these formulas are

of order N1− 1
2 :

N

∫

I
dx′ρ(x′)

[
sgn(x− x′)− sgn(x+ x′)

]
= 2N

1
2

∫

I
dx′ρod(x′) sgn(x− x′). (B.2)

The deviation from the sign functions can be computed by using the formula (A.8),

which are N−
1
2 corrections. The saddle point equation is decomposed to the real and the

imaginary parts. Moreover, since we separated ρ(x) and y(x) into the even and the odd-

function parts, the saddle point equation is also separated to the even and the odd parts.

It can be seen that the leading contributions of these four separated parts have different

scalings in N . To obtain all of the four leading parts, we need to evaluate the deviations
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up to O(N0):

2N

∫

I
dx′ρ(x′)sgn(x− x′)

∞∑

n=1

e−2nπN
1
2 sgn(x−x′)

[
x−x′+i(y(x)−y(x′))

]

+ 2N

∫

I
dx′ρ(x′)sgn(x+ x′)

∞∑

n=1

(−1)n−1e−2nπN
1
2 sgn(x+x′)

[
x+x′+i(y(x)−y(x′))

]
(B.3)

= −N
1
2

∞∑

n=1

2iρ(−x)

1− iẏ(−x)

(−1)n−1

nπ
sin(4nπyod(x))

+
∞∑

n=1

1

π2
1

1− iẏ(−x)

d

dx′

[
ρ(x′)

1− iẏ(x′)

]

x′=−x

[
(−1)n−1

n2
cos(4nπyod(x))

]

−
∞∑

n=1

1

π2n2
1

1 + iẏ(x)

d

dx′

[
ρ(x′)

1 + iẏ(x′)

]

x′=x

. (B.4)

Substituting this and (B.2), we obtain the leading contributions of saddle point equation

in which the sum over n can be reorganized with the formula (A.10). Finally we find that

the leading terms in the saddle point equation (B.1) decompose as

0 = N
1
2Gr,e +Gr,o + i

(
N

1
2Gi,o +Gi,e

)
+ . . . (B.5)

where Gr,e(Gi,e) and Gr,o(Gi,o) denote the leading contributions of even and odd part of

the real (imaginary) part of the saddle point equation and are defined as

Gr,e = kyev + 2

∫

I
dx′ρod(x′) sgn(x− x′)− 4ρev(yod + h sgn(x))ẏev

1 + ˙y2ev
, (B.6)

Gr,o = kyod +
4(ρevẏod + ρodẏev)(yod + h sgn(x))

1 + ẏ2ev
− 8ρev(yod + h sgn(x))ẏ2evẏod

(1 + ẏ2ev)2

−
[
ρ̇ev(1− ẏ2ev)

(1 + ẏ2ev)2
− ρevÿev(3ẏev − ẏ3ev)

(1 + ẏ2ev)3

](
1

4
− 4(yod + hsgn(x))2

)
, (B.7)

Gi,e = ζ +
4ρod(yod + h sgn(x))

1 + ẏ2ev
− 8ρev(yod + h sgn(x))ẏevẏod

(1 + ẏ2ev)2

−
[
−4(yod + h sgn(x))2 +

1

4

][
− 2ρ̇evẏev

(1 + ẏ2ev)2
+
ρevÿev(−1 + 3ẏ2ev)

(1 + ẏ2ev)3

]
, (B.8)

Gi,o = − kx− 4ρev(yod + h sgn(x))

1 + ẏ2ev
. (B.9)

These equations can be simplified to the set of the equations (4.9), (4.10), (4.11)

and (4.12), as follows. The first equation (4.9) can be obtained by considering

0 = Gr,e − ẏevGi,o. (B.10)

To derive the third and fourth equations, (4.11) and (4.12), we notice the following relation

obtained by differentiating (4.9)

0 = k
d2

dx2
[
xyev(x)

]
+4ρod(x), (B.11)
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and consider the following two combinations

0 = 2ẏev(x)Gr,o + (1− ẏ2ev(x))Gi,e,

0 = Gr,o − ẏevGi,e. (B.12)

The explicit form of the first combination is

2ẏev(x)Gr,o + (1− ẏ2ev(x))Gi,e

= 2kẏev(x)yod(x) + ζ(1− ẏ2ev(x)) + 4ρod(x)
(
yod(x) + hsgn(x)

)
(B.13)

+
1

4

ρev(x)ÿev
1 + ẏ2ev(x)

− 4
ρev(x)

(
yod(x) + hsgn(x)

)

1 + ẏ2ev(x)
ÿev(x)

(
yod(x) + hsgn(x)

)

which reduces to the r.h.s. of (4.11) with the help of (B.9) and (B.11), while the second

combination is

Gr,o − ẏevGi,e = kyod(x)− ζẏev(x)− 1

4

d

dx

[
ρev(x)

1 + ẏ2ev(x)

]

+ 4
d

dx

[
ρev(x)(yod(x) + hsgn(x))

1 + ẏ2ev(x)

]
(yod(x) + hsgn(x)) (B.14)

which reduces to the r.h.s. of (4.12) due to (B.9).
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