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1 Introduction

Though the fundamental principles of M2-brane interactions are not clear, a particular class

of U(N) superconformal quiver Chern-Simons theories are proposed as the worldvolume

theory of the N -stack of interacting M2-branes. One of the supporting evidences is that

the large N limit of the free energy computed in these theories exhibit the N3/2 scaling.

This precisely reproduces the result obtained in the eleven dimensional supergravity on

AdS4×Y7 [1–3] (or their consistent truncations in 4d), where Y7 is some seven dimensional

manifold associated with the theory. Taking this gauge/gravity correspondence inversely,

the field theory analysis beyond the large N limit is expected to shed new lights on the

M-theory beyond the classical supergravity.

Among the theories of N M2-branes the ABJM theory [4] is the most symmetric

one, and hence have been studied with the greatest efforts. The ABJM theory is the

N = 6 U(N)k × U(N)−k quiver superconformal Chern-Simons theory. In the N = 2

notation, each vertex of the quiver is assigned with U(N) Chern-Simons vector multi-

plet (Aµ, σ, λ,D) with Chern-Simons levels ±k while each edge is assigned with a pair

of bifundamental hypermultiplets (φ, ψ, F ) and (φ̃, ψ̃, F̃ ) which are charged under U(1)R
as (R

φ,φ̃†
, R

ψ,ψ̃†
, R

F,F̃ †) = (1/2,−1/2,−3/2) [4, 5]. The dual geometry to this theory is

AdS4 × S7/Zk. With the help of the localization technique, the partition function of the
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ABJM theory can be reduced to a matrix model with 2N integration variables [6]. After

the determination of the leading N3/2 behavior [1], the matrix model was further analyzed

in the ’t Hooft limit k,N → ∞ with λ = N/k fixed [1, 7, 8], with the help of the relation

between the ’t Hooft expansion of the matrix model and the free energy of the topological

string theory on local P1 × P1 [9].

Later a new expression of the ABJM matrix model was discovered as the canonical

partition function of a quantum statistical system of N particle ideal Fermi gas, where the

level k is converted into the Planck constant ~ = 2πk in the statistical system [10]. This

relation enables us a systematic analysis of the large N expansion of the partition function

in the M-theoretical regime k <∞, in terms of the grand potential J(µ) defined by

eJ(µ) = 1 +
∑
N≥1

eµNZ(N). (1.1)

Here µ is an auxiliary parameter called chemical potential dual to N . The original partition

function can be recovered by following inverse transformation

Z(N) =

∫
dµ

2πi
eJ(µ)−µN . (1.2)

For finite value of k, the large N expansion of the partition function corresponds to the

large µ expansion of the grand potential.

After various efforts [10–15], finally all the 1/µ corrections were completely deter-

mined [16], including both perturbative and non-perturbative effects. The perturbative

part of the grand potential is a cubic polynomial in µ

Jpert(µ) =
C

3
µ3 +Bµ+A, (1.3)

with C, B and A some constants. In the partition function this turns into the all order

perturbative sum expressed as an Airy function (as obtained in [8])

Zpert(N) = eAC−
1
3 Ai

[
C−

1
3 (N −B)

]
. (1.4)

There are two kinds of non-perturbative effects in the grand potential: e−4mµ/k and

e−2nµ (m,n = 1, 2, · · · ). Through the inversion formula, these effects turn to the corrections

of O(e−
√
N/k) or O(e−

√
kN ) in the partition function. In gravity side, the non-perturbative

effects are quantitatively interpreted as the effects of fundamental M2-branes winding on

Y7. Indeed the exponents of the non-perturbative effects in the partition function are

proportional to R3
AdS and hence can be explained in terms of the excitation energy of

winding M2-branes. The first kind of non-perturbative effects O(e−4µ/k) correspond to

the M2-branes winding the Zk-orbifolded cycle and thus called the worldsheet instanton

effects [17], while the second ones O(e−2µ) correspond to the M2-branes winding in other

three directions and called the membrane (D2) instanton effects [7, 18]. Although the

Chern-Simons level k is originally integer, in the ABJM matrix model we can generalize

k to be an irrational number. This allows the separative analysis of two kinds of non-

perturbative effects, respectively by the ’t Hooft expansion of the partition function and
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the semiclassical expansion of the grand potential. For the complete determination of the

coefficients in front of these exponentials, however, it was essential to observe following

singular structures of them at finite and integral k [13, 14]. For integral k, the exponent of

two kind of non-perturbative effects coincide when m = kn/2. In this case, the individual

coefficients are divergent, while the divergence are completely cancelled between the two

coefficients. This structure, called as the HMO cancellation mechanism in [16], was used in

the extrapolation of the small k expansion of the coefficient of the second kind of instantons

for higher n and conjecture their uniformed expression.

Recently similar structures in the large N expansion was discovered in the more general

superconformal quiver Chern-Simons theories. The Airy function expression of the all order

perturbative corrections in 1/N was already claimed for the general U(N) N = 3 circular

quiver superconformal Chern-Simons theories in [10]. The non-perturbative effects were

also analyzed in detail for a special class of N = 4 superconformal quiver Chern-Simons

theory [19–24].1 Each of these theories are characterized by a integer k and the signs

sa = ±1 assigned on the edges with which the Chern-Simons level on the a-th vertex is

given as [29]

ka = k(sa − sa−1)/2. (1.5)

A set of signs {sa}Ma=1 is labelled by positive integers m, {qa}ma=1 and {pa}ma=1 as2

{sa}Ma=1 = {1, 1, · · · , 1︸ ︷︷ ︸
q1

,−1,−1, · · · ,−1︸ ︷︷ ︸
p1

, 1, 1, · · · , 1︸ ︷︷ ︸
q2

,−1,−1, · · · ,−1︸ ︷︷ ︸
p2

,

· · · , 1, 1, · · · , 1︸ ︷︷ ︸
qm

,−1,−1, · · · ,−1︸ ︷︷ ︸
pm

} (1.6)

which we shall abbreviate as

{sa}Ma=1 = {(+1)q1 , (−1)p1 , (+1)q2 , (−1)p2 , · · · , (+1)qm , (−1)pm}. (1.7)

The dual geometry of this theory is the product of AdS4 and a radial section of (C2/Zq ×
C2/Zp)/Zk, which was determined by analyzing the moduli space or the brane construc-

tion [31]. Here q and p are the number of edges with sa = ±1

q =
m∑
a=1

qa, p =
m∑
a=1

pa. (1.8)

The instantons effects in these theories were found to subdivide into four kinds e−2µ/q,

e−2µ/p, e−µ [22] and e−4µ/(kqp) [24] and have richer divergent structures than in the ABJM

case which are controlled by (k, q, p).

So far such detailed analyses, especially of the instanton effects, were successful only

in the superconformal quiver Chern-Simons theories. On the other hand, it was known

1The Airy function structure and the instanton effects are also revealed for the cases of non-circular

quivers [25, 26] or non-unitary gauge groups [27, 28].
2For k = 1, m = 1 and (q1, p1) = (Nf , 1) the matrix model is identical with the Nf matrix model studied

in [20, 30].
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that the leading N3/2 scaling behavior of the free energy is satisfied even in some theories

without conformal invariance. Such theories are expected to be dual to the geometries

which are asymptotically AdS4 while have non-trivial structure in the bulk and exhibit

completely different asymptotics in the opposite limit in the radial direction. Therefore it

is non-trivial and would be interesting whether the above structures hold, or how they are

generalized, in such non-conformal theories.

In this paper we consider following continuous deformation. Starting from the N = 4

circular quiver superconformal Chern-Simons theory with the levels (1.5), we modify the

R-charge assignments on the bifundamental hypermultiplets (φa, ψa, Fa) and (φ̃a, ψ̃a, F̃a)

on a-th edge

(Rφa , Rψa , RFa) =

(
1 + ζa

2
,
−1 + ζa

2
,
−3 + ζa

2

)
,

(R
φ̃a
, R

ψ̃a
, R

F̃a
) =

(
−1 + ζa

2
,

1 + ζa
2

,
3 + ζa

2

)
, (1.9)

with

−1 < ζa < 1. (1.10)

In the flat space these are just a matter of convention, for which we shall call the U(1)R
symmetry among the U(1) global symmetries of the theory. Once we realize the theory on

a three sphere, however, the choice is relevant to the curvature couplings and results in a

distinctive theory for each choice. The theory is conformal only for the canonical choice of

the R-charges ζa = 0. The partition function of this theory have been studied in detail in

the limit of N →∞ in the context of the F -theorem [32, 33], and the leading N3/2 scaling

was obtained with the explicit expression of its coefficient [34].

To analyze the large N expansion of the partition function, we first provide the Fermi

gas formalism of this theory, with which we can compute the large N expansion of the

partition function systematically through the grand potential J(µ). Restricting ourselves

to the minimal separation of sa = ±1

{sa}Ma=1 = {(+1)q, (−1)p}, (1.11)

we find that the perturbative corrections again sum up to an Airy function (1.4), with the

three parameters A, B and C given by

C =
2qp

π2k(q2 − ξ2)(p2 − η2)
, B =

π2C

3
− qp

6k

(
1

q2 − ξ2
+

1

p2 − η2

)
+
kqp

24
, (1.12)

A =
p2

4

(
AABJM((q+ξ)k)+AABJM((q−ξ)k)

)
+
q2

4

(
AABJM((p+η)k)+AABJM((p−η)k)

)
.

Here ξ and η are associated with the total deformation over the edges with sa = ±1

respectively as

ξ = −
q∑

a=1

ζa, η =

q+p∑
a=q+1

ζa, (1.13)
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and AABJM(k) is the quantity called the constant map in the ABJM theory [35]. These

expression for the coefficients are natural generalizations of the results in the conformal

case [21].

Analyzing the small k expansion exactly in µ, we also discover five kinds of non-

perturbative effects e−2µ/(q±ξ), e−2µ/(p±η) and e−µ which are the generalization of the

membrane instantons in the ABJM theory. The instanton exponents (4.13) depends on ξ

and η, and the individual coefficient diverges at some special values of ξ and η as in the

superconformal theories.

On the other hand, the counterparts of the worldsheet instantons are invisible in the

small k expansion, as they are non-perturbative in k. These effects will be accessible

from the exact values of the partition functions with various finite (k,N). We generalize

the method for the systematic computation of these values known in the superconformal

case [12, 23, 36] to the general choice of R-charges (1.9). The result is consistent with

the Airy function and strongly support the conjectural expression for A (1.12). On the

other hand, the deviations from the Airy function are significantly different from the non-

perturbative corrections obtained in the small k expansion and will correspond to the

worldsheet instantons.

The remaining part of this paper is organized as follows. In the next section we

introduce the Fermi gas formalism for general R-charge assignments (1.9), in slightly more

general framework of theN = 3 U(N) circular quiver superconformal Chern-Simons theory.

In the subsequent sections, we concentrate on the theory of minimal separations (1.11)

and compute the exact large N expansion of the partition function using the Fermi gas

formalism. In section 3 we compute the perturbative corrections in 1/µ and obtain the Airy

function expression (1.4) with the explicit expression of the coefficients B and C in (1.12).

In section 4 we analyze the small k expansion of the grand potential in more detail and

conjecture the expression of A in (1.12). We also determine the explicit coefficients of the

five kinds of membrane instantons and argue the mixing and divergent structures of the

instantons. In section 5 we explain the exact computation of the partition function and

compare the results with the small k expansion. Finally in section 6 we summarize our

results and comment on future directions.

2 Partition function in Fermi Gas formalism

In this section we provide the Fermi gas formalism for general R-charge assignments (1.9).

In the derivation we use the difference expression of the Chern-Simons levels (1.5), but not

the explicit values of sa. The Fermi gas formalism hold not only for sa = ±1 but also for

arbitrary values, which correspond to the general N = 3 circular quiver superconformal

Chern-Simons theories.

With the help of the localization technique, the partition function of this theory reduces

into following matrix model [6, 32, 37, 38]

Z(N) =
1

(N !)M

M∏
a=1

N∏
i=1

∫
Dλa,i

M∏
a=1

∏
i>j 2 sinh

λa,i−λa,j
2

∏
i>j 2 sinh

λa+1,i−λa+1,j

2∏
i,j 2 cosh

λa,i−λa+1,j−πiζa
2

, (2.1)
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where

Dλa,i =
dλa,i
2π

exp

[
ika
4π

λ2
a,i

]
(2.2)

with ka the Chern-Simons level on the a-th vertex given by (1.5).3 Compared with the

superconformal case ζa = 0, the only difference is the shift in the arguments of the cosine-

hyperbolic factors which come from the 1-loop determinant of the bifundamental hypermul-

tiplets. This fact allows the straightforward application of the computational techniques

in [9] to derive the Fermi gas formalism.4 First we rewrite the partition function as

Z(N) =
1

N !

N∏
i=1

∫
dλ1,i

2π
det
i,j
ρ0(λ1,i, λ1,j) , (2.3)

where

ρ0(v, w) =

M∏
a=2

∫
dza
2π

[
e
iks1v

2

8π
1

2 cosh v−z2−iπζ1
2

e−
iks1z

2
2

8π

][
e
iks2z

2
2

8π
1

2 cosh z2−z3−iπζ2
2

e−
iks2z

2
3

8π

]
· · ·
[
e
iksMz2M

8π
1

2 cosh zM−w−iπζ2
2

e−
iksMw2

8π

]
. (2.4)

The expression (2.3) can be derived with the help of the Cauchy determinant formula∏
i<j 2 sinh

xi−xj
2

∏
i<j 2 sinh

yi−yj
2∏

i,j 2 cosh
xi−yj−∆

2

= det
i,j

1

2 cosh
xi−yj−∆

2

(2.5)

and the formula (see appendix A in [43])

1

N !

∫
dzN

[
det
i,j
f(xi, zj)

][
det
i,j
g(zi, yj)

]
= det

i,j

[∫
dzf(xi, z)g(z, yj)

]
. (2.6)

Using the Fourier transformation formula

1

2 cosh z−πiζ
2

=

∫
dp

2π
e
ipz
2π

e
ζp
2

2 cosh p
2

, (2.7)

each factor in the square bracket can be rewritten as

e
iksaz

2
a

8π
1

2 cosh za−za+1−iπζ2
2

e−
iksaz

2
a+1

8π = k ·
〈
x=kza

∣∣∣∣e isax̂28πk
e
ζp̂
2

2 cosh p̂
2

e−
isax̂

2

8πk

∣∣∣∣x=kza+1

〉
, (2.8)

3If we take ζa to be pure imaginary, this matrix model completely coincide to that with the mass

deformations, whose large N limit have been studied for real Chern-Simons level k in [39] and for complex

k in [40, 41].
4The Fermi gas formalism for mass-deformed U(N)×U(N) theory with fundamental matter multiplets

was also constructed in [42].
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where we have introduced the canonical position/momentum operators (x̂, p̂) and their

eigenstates (|x〉, |p〉) normalized so that

[x̂, p̂] = i~, (~ = 2πk)

〈x|x′〉 = 2πδ(x− x′), 〈p|p′〉 = 2πδ(p− p′), 〈x|p〉 =
1√
k
e
ipx
2πk . (2.9)

In the operator formalism, the (M − 1) integrals in ρ0 (2.4) together with the k factored

out in (2.8) are interpreted as the insertion of unity

1 =

∫
dx

2π
|x〉〈x|, (x = kz) (2.10)

hence the partition function (2.3) can be written as

Z(N) =
1

N !

N∏
i=1

∫
dxi
2π

det
i,j
〈xi|ρ̂|xj〉 (2.11)

with

ρ̂ =
e
ζ1
2

(p̂− s1
2
x̂)

2 cosh[1
2(p̂− s1

2 x̂)]

e
ζ2
2

(p̂− s2
2
x̂)

2 cosh[1
2(p̂− s2

2 x̂)]
· · · e

ζM
2

(p̂− sM
2
x̂)

2 cosh[1
2(p̂− sM

2 x̂)]
, (2.12)

where we have used (2.8) and the formula

e
i
2~ x̂

2
f(p̂)e−

i
2~ x̂

2
= f(p̂− x̂). (2.13)

Using the Fredholm determinant formula, the grand potential (1.1) can be written as

J(µ) = Tr log(1 + eµρ̂). (2.14)

This is the same form as the grand potential of a quantum statistical system of ideal

Fermi gas.

As in the superconformal case, a special simplification occurs if the original theory

have the N = 4 supersymmetry (1.7). Since sa takes ±1 in this case there are only two

kinds of argument in the density matrix

Q̂ = −p̂+
x̂

2
, P̂ = p̂+

x̂

2
, ([Q̂, P̂ ] = i~). (2.15)

In the remaining part of this paper, we further focus on the class of minimal separation

of sa = ±1 (1.11) where the (hermitized) density matrix is

ρ̂ =
e
ξQ̂
4(

2 cosh Q̂
2

) q
2

e
ηP̂
2(

2 cosh P̂
2

)p e
ξQ̂
4(

2 cosh Q̂
2

) q
2

. (2.16)

with ξ and η given as (1.13). Since ζa on each edge is bounded as (1.10), ξ and η are

bounded as

−q < ξ < q, −p < η < p. (2.17)

This ensures that the density matrix decays at the infinity of the phase space and thus the

trace Tr in (2.14) is well defined.
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3 Perturbative expansion in 1/N

In this section we show that the large µ expansion of the grand potential J(µ) takes the

form of (1.3), with C,B and A given as (1.12), up to the non-perturbative corrections

O(e−µ). Here C,B and A are µ-independent constants given as (1.12). Plugging these

expressions into the inversion formula (1.1), we obtain the all order perturbative expansion

of the partition function in 1/N , which sum up to an Airy function as (1.4).

As argued in [9], the perturbative expansion of J(µ) (1.3) follows from the large E

expansion of the number of states n(E) with energy below E

n(E) = Tr θ(E − Ĥ) = CE2 +B − π2C

3
+O(e−E), (3.1)

where Ĥ is the Hamiltonian operator given by the logarithm of the density matrix:

e−Ĥ = e−U(Q̂)/2e−T (P̂ )e−U(Q̂)/2 (3.2)

with

U(Q̂) = q log

[
2 cosh

Q̂

2

]
− ξQ̂

2
, T (P̂ ) = p log

[
2 cosh

P̂

2

]
− ηP̂

2
. (3.3)

Below we shall derive the behavior (3.1) as well as the explicit expressions for C and B. On

the other hand, the overall constant A requires a non-perturbative analysis of the grand

potential and treated in the next section.

First of all, we introduce the Wigner transformation (X̂)W of an arbitrary operator X̂

(X̂)W =

∫
dQ′

2π

〈
Q− Q′

2

∣∣∣∣X̂∣∣∣∣Q+
Q′

2

〉
e
iQ′P

~ . (3.4)

Then n(E) is approximately given by the volume inside the region F = {(Q,P ) ∈ R2|HW ≤
E} divided by 2π~ as5

n(E) ≈
∫
dQdP

2π~
θ(E −HW ). (3.5)

In the limit of E →∞ we can approximate the Wigner Hamiltonian HW with the classical

Hamiltonian

H0 = U(Q) + T (P ) (3.6)

and further approximate the functions U(Q) and T (P ) as U ≈ (q|Q| − ξQ)/2, T ≈ (p|P | −
ηP )/2. In this limit the region F approaches a polygon

Fpol =

{
(Q,P ) ∈ R2

∣∣∣∣q|Q| − ξQ2
+
p|P | − ηP

2
≤ E

}
(3.7)

and the leading part of n(E) is straightforwardly obtained as

n(E) = CE2 + δn (3.8)

with C given by (1.12).

5The approximation “≈” in (3.5) is due to the fact that f(Ô)W 6= f(OW ) in general. The deviation,

however, is irrelevant to the perturbative expansion (3.1) as argued in [10, 21].
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To compute the correction δn, we have to take into account two effects which deform the

boundary of F from that of the polygon Fpol: (i) the deviation of the Wigner Hamiltonian

from the classical Hamiltonian H0 (3.6), and (ii) the deviation of U(Q) and T (P ) (3.3)

from the linear functions. First consider the deviation (i). The Wigner Hamiltonian can

be computed order by order in ~, by first compute the Hamiltonian operator (3.2) and then

perform the Wigner transformation using the formulas

f(Q̂)W = f(Q), f(P̂ )W = f(P ), (X̂Ŷ )W = XW ? YW , (3.9)

where ? is the non-commutative product

? = exp

[
i~
2

(←−
∂Q
−→
∂P −

←−
∂P
−→
∂Q

)]
. (3.10)

Notice that the second derivatives of U(Q) and T (P ) are exponentially suppressed for large

arguments. Therefore, since at least one of Q and P is of order E on the boundary of the

polygon Fpol, we can neglect all the terms containing (∂mQU)(∂nPT ) with m,n ≥ 2 for the

purpose to compute the deviation δn perturbatively in 1/E, and the Wigner Hamiltonian

can be approximated with

HW = U+T+
~2

24
(U ′)2T (2)− ~2

12
U (2)(T ′)2+

∑
`≥3

(
c

(`)
U (U ′)`T (`) + c

(`)
T (T ′)`U (`)

)
+· · · , (3.11)

where c
(`)
U and c

(`)
T are some constants, while U (`) = ∂`QU and T (`) = ∂`PT . The boundary

HW (Q,P ) = E of the region F is displayed in figure 1. The deformation of the surface is

negligible except around the four corners of the polygon where the deviation (ii) is relevant.

To compute δn we shall decompose it into the contributions around each corner

δn = − 1

2π~
(vol(I) + vol(II) + vol(III) + vol(IV)). (3.12)

First let us consider the region I. Since Q ∼ E in this region, we can replace U → (q−ξ)Q/2
in our calculation without loss of any perturbative corrections. Under this approximation

the Fermi surface adjacent to region I is characterized as

E =
q − ξ

2
Q+ T +

~2(q − ξ)2

96
T (2) +

∑
`≥3

c
(`)
U

(q − ξ
2

)`
T (`). (3.13)

Denoting the points on the boundary of F as (QF (P ), P ) while those on the boundary of

the polygon (Qpol(P ), P ), we can compute the volume of region I as

vol(I) =

∫ P+

P−

dP (Qpol −QF )

=
2

q − ξ

∫ P+

P−

(
T − p|P | − ηP

2
+

~2(q − ξ)2

96
T (2) +

∑
`≥3

c
(`)
U

(q − ξ
2

)`
T (`)

)
. (3.14)

Here P± correspond to some upper/lower bound: the midpoints of the edges of the ap-

proaching polygon for instance. Since P± ∼ E, at the perturbative level we can replace

them with ±∞ as the integrand in (3.14) is exponentially suppressed for large P , to obtain

vol(I) =
π2p

3(q − ξ)
+
π2k2p(q − ξ)

12
. (3.15)
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P
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IV

Figure 1. The boundary of the region F with (q, ξ; p, η, E) = (1, 1/3; 1, 1/2, 4) (dashed blue line)

and that of the polygon Fpol (solid red line).

Note that the last terms in (3.14) do not contribute as they give vanishing boundary terms.

Similarly we can evaluate the volume of region II, III and IV as

vol(II) =
π2q

3(p− η)
− π2k2q(p− η)

6
, vol(III) =

π2p

3(q + ξ)
+
π2k2p(q + ξ)

12
,

vol(IV) =
π2q

3(p+ η)
− π2k2q(p+ η)

6
. (3.16)

Substituting these results into δn (3.12), we finally obtain the expression of B in (1.12).

4 Non-perturbative effects in grand potential

In this section we study the non-perturbative corrections to the grand potential which we

shall call the instantons, as well as the constant A.

To evaluate the large µ expansion of the grand potential systematically, we shall use

following Mellin-Barnes expression of the grand potential (ε > 0) [44]

J(µ) = −
∫ ε+i∞

ε−i∞

dt

2πi
Γ(t)Γ(−t)Z(t)etµ (4.1)

with

Z(t) = Tr e−tĤ . (4.2)

If we assume µ < 0 the r.h.s. of (4.1) can be evaluated by pinching the integration contour

surrounding the right-half of the whole complex plane C. Collecting the residues in this

region, i.e. the residues at t = 1, 2, · · · we indeed obtain the small eµ expansion of the
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original expression (2.14). On the other hand, if µ > 0 we can pinch the contour so that it

surrounds the left-half of C. As a result, the grand potential is expressed as the sum of the

residues over Re(t) ≤ 0. Due to the factor etµ in the integrand the residues are typically

small or at most polynomial for large µ, which immediately give the large µ expansion of

the grand potential.

We can compute Z(n) order by order in the small ~ expansion

Z(n) =
∞∑
s=0

~2s−1Z2s(n) (4.3)

by the similar calculation as in the case of ξ = η = 0 performed in [21, 22]. Indeed, the

only difference between the density matrix ρ̂ = e−Ĥ with Ĥ (3.2) and that for ξ = η = 0

is the definition of unmixed operators U(Q̂) and T (P̂ ). After the tedious calculation, we

have obtained Z0, Z2, Z4 and Z6. The first few terms are found to have relatively simple

expressions

Z0(n) =
1

2π
B

[
q + ξ

2
n,
q − ξ

2
n

]
B

[
p+ η

2
n,
p− η

2
n

]
,

Z2(n) = −n
2(−1 + n2)(q2 − ξ2)(p2 − η2)

384(1 + qn)(1 + pn)
Z0(n),

Z4(n) =
n2(1− n2)(q2 − ξ2)(p2 − η2)

92160(1 + qn)(1 + pn)

[
(8q + 3n(q2 − ξ2))(8p+ 3n(p2 − η2))

16(3 + qn)(3 + pn)
(−9 + n2)

+
((2q + n(q2 − ξ2))(2p+ n(p2 − η2))

(2 + qn)(2 + pn)
(4− n2)

]
Z0(n), (4.4)

where B is the Euler beta function

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
. (4.5)

4.1 A in the perturbative part

Before going on to the non-perturbative part, let us look the perturbative part of the grand

potential again. In the Mellin-Barnes representation (4.1), this comes from the residue at

t = 0. From the explicit expression of Z2s(n) in (4.3) ((4.4) for small s), we obtain

Jpert(µ) =
C

3
µ3 +Bµ+A. (4.6)

Here C and B are constants which we have already computed in section 1.4, and A is

A =
qp(q3 − qξ2 + p3 − pη2)ζ(3)

π2(q2 − ξ2)(p2 − η2)k
− qp(q + p)k

24
− π2qp(qp(q + p) + 3pξ2 + 3qη2)k3

8640

+
π4qp(qp(q3 + p3) + 5(pξ4 + qη4) + 10qp(qξ2 + pη2))k5

1814400
+O(k7). (4.7)

At first sight the expression looks complicated. With the simple decomposition structure

we conjectured in the superconformal case [21] in mind, however, we figure out following

decomposition structure again in this case

A =
p2

4
(f((q + ξ)k) + f((q − ξ)k)) +

q2

4
(f((p+ η)k) + f((p− η)k)), (4.8)

– 11 –
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where f(k) is given in a series expansion as

f(k) =
2ζ(3)

π2k
− k

12
− π2k3

4320
+

π4k5

907200
+O(k7). (4.9)

The series f(k) coincide with the small k expansion of the constant map in the ABJM

theory AABJM(k). Indeed once the structure (4.8) is postulated, we can deduce that f(k) =

AABJM(k) by taking the limit (q, ξ; p, η) → (1, 0; 1, 0) where our theory reduces to the

ABJM theory. From these observations we conjecture the exact expression of A for finite

k as (1.12). The conjecture is also confirmed from the exact computations of the partition

function for k ∈ N in section 5.

4.2 Instantons

Due to the factor etµ in the Mellin-Barnes representation (4.1), all the residue at poles

with Re(t) < 0 are exponentially suppressed in µ. In this section we consider these non-

perturbative effects in the grand potential, which we shall call the membrane instantons in

an analogy of the ABJM case.

First we observe following universal structure of Zs(n)

Zs(n) = fs(n)×Z0(n), (4.10)

where fs(n) are some rational functions of n. Each fs(n) have at most a finite number of

poles, all of which are cancelled with the zeroes of Z0(n) at the same n. This property also

hold for Z6(n), though we do not display its explicit expression. From these structure it

follows that the instanton species are independent of the order of small ~ expansion. Here

we shall display only the O(~−1) part of the non-perturbative part of the grand potential,

Jnp(µ) =
1

~
Jnp

0 +O(~) (4.11)

with

Jnp0 =
∞∑
n=1

c(1)
n e
− 2nµ
q+ξ +

∞∑
n=1

c(2)
n e
− 2nµ
q−ξ +

∞∑
n=1

c(3)
n e
− 2nµ
q+η +

∞∑
n=1

c(4)
n e
− 2nµ
q−η +

∞∑
n=1

c(5)
n e−nµ. (4.12)

The instanton coefficients are

c(1)
n =

(−1)n−1

πn!(q + ξ)

Γ
(
− 2n
q+ξ

)
Γ
(

2n
q+ξ

)
Γ
(
− q−ξ
q+ξn

)
Γ
(
−p+η
q+ξn

)
Γ
(
−p−η
q+ξn

)
Γ
(
− 2q
q+ξn

)
Γ
(
− 2p
q+ξn

) ,

c(2)
n =

(−1)n−1

πn!(q − ξ)
Γ
(
− 2n
q−ξ
)
Γ
(

2n
q−ξ
)
Γ
(
− q+ξ
q−ξn

)
Γ
(
−p+η
q−ξn

)
Γ
(
−p−η
q−ξn

)
Γ
(
− 2q
q−ξn

)
Γ
(
− 2p
q−ξn

) ,

c(3)
n =

(−1)n−1

πn!(p+ η)

Γ
(
− 2n
p+η

)
Γ
(

2n
p+η

)
Γ
(
−p−η
p+ηn

)
Γ
(
− q+ξ
p+ηn

)
Γ
(
− q−ξ
q+ηn

)
Γ
(
− 2p
p+ηn

)
Γ
(
− 2q
p+ηn

) ,

c(4)
n =

(−1)n−1

πn!(p− η)

Γ
(
− 2n
p−η
)
Γ
(

2n
p−η
)
Γ
(
−p+η
p−ηn

)
Γ
(
− q+ξ
p−ηn

)
Γ
(
− q−ξ
q−ηn

)
Γ
(
− 2p
p−ηn

)
Γ
(
− 2q
p−ηn

) ,

c(5)
n = −(−1)n−1

2πn

Γ
(
− q+ξ

2 n
)
Γ
(
− q−ξ

2 n
)
Γ
(
−p+η

2 n
)
Γ
(
−p−η

2 n
)

Γ(−qn)Γ(−pn)
, (4.13)
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where we have used the expression for the Euler beta function B(x, y) in the Gamma

functions (4.5) to clarify the pole structure of the instanton coefficients.

4.3 Divergence and mixing of instantons

Lastly let us study the divergent structure of the instantons. Respecting the original setup

of the quiver Chern-Simons theory here we assume q, p ∈ N.

First we consider the fifth kind of instanton. Since the coefficients of this instanton c
(5)
n

contain divergent factors Γ(−qn)Γ(−pn) in the denominator, the coefficients generically

vanishes for all n ≥ 1. The only exception happens if the arguments of the Gamma

functions in the denominator are also negative integers so that the divergences in the

numerator compensate the divergences in the denominator. In those case the exponent

coincides that of some instantons in the other four kinds and the HMO pole cancellation

mechanism occurs [13, 22]. In this sense, these fifth kind of instantons never produce

distinctive instanton effects, as called the “ghost instantons” in [22].

Next we consider the other four kinds of instantons. In the superconformal limit

ξ = η = 0 they reduce to the two kinds of membrane instantons (e−2µ/q, e−2µ/p) which

would be associated with the Zq- and Zp-orbifold in the background geometry. Indeed each

instanton coefficient (4.13) have similar structure individually. The rules for divergence and

mixing are, however, slightly complicated than that in the superconformal case:

• In the superconformal case, the coefficient always diverges when the instanton ex-

ponent coincide with that of another instanton. This divergence is cancelled by the

divergence of the other instanton with same exponent. For the mixing among the four

instantons in current case, this is not alway the case. When the mixing is between

only the first two (e−2µ/(q+ξ), e−2µ/(q−ξ)) or the last two (e−2µ/(p+η), e−2µ/(p−η)) the

individual coefficients remains finite.

• In the superconformal case, the mixing and pole cancellation are inevitable, since

q, p ∈ N as obvious from their roles in the orbifold. Due to this restriction the slight

modification such as q → q + ε to disentangle the mixing pair is unphysical. In

current case, however, ξ, η are continuous parameters of the original theory. This

suggest that, not only the finite part remaining after the cancellation but also the

divergence itself would have some gravitational counterpart.

5 Exact partition function for finite (k,N)

In the superconformal case ξ = η = 0, a particular structure of the density matrix allows

the systematic computation of the partition function with finite k,N ∈ N. As we will see

below, the method can be generalized for the case without superconformal symmetry if

ξ, η are rational numbers. In this section we concentrate on the deformation of the ABJM

theory, q = p = 1 and compute the partition function for various k,N ∈ N and ξ, η ∈ Q.
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5.1 Systematic computation of partition function

In this section we display the algorithm to compute the traces of the density matrix Tr ρ̂n

of given k, ξ, η recursively in n. The partition functions Z(N) can be read off through the

definition of the grand potential (1.1) and (2.14). Here we would like to consider only the

case with q = p = 1. The way to extend the method for the case with general q, p ∈ N is

identical to that in the superconformal case [23, 24].

The essence for this method is following schematic structure of the density matrix

ρ(Q1, Q2) =
1

2π
〈Q1|ρ̂|Q2〉 =

E(Q1)E(Q2)

αA(Q1) + α−1A(Q2)
. (5.1)

The explicit expression of each ingredient is

E(Q) =
e( ξ

4
+ 1

2k
)Q(

2 cosh Q
2

) 1
2

, A(Q) = 2πke
Q
k , α = e−

πiη
2 . (5.2)

From the structure (5.1) the powers of the density matrix are

ρn(Q1, Q2) =
1

2π
〈Q1|ρ̂n|Q2〉

=
E(Q1)E(Q2)

A(Q1)− (−1)nα−2nA(Q2)

n−1∑
m=0

(−1)mα−2m−1ψm(Q1)φn−m−1(Q2) (5.3)

with

ψm(Q) =
1

E(Q)

∫
dQ′ρm(Q,Q′)E(Q′), φm(Q) =

∫
dQ′E(Q′)ρm(Q′, Q)

1

E(Q)
. (5.4)

Note that φm are related to ψm through the complex conjugation of the replacement

α → α−1. Now the task to compute the powers of matrix ρn(Q1, Q2) is reduced into the

computation of vectors ψn(Q) and φn(Q). Moreover, these vectors can be computed by

simple iterative steps if ξ ∈ Q, as we shall see below.

We would like to focus on the vector ψm which obeys the recursion relation

ψm+1(Q) =
1

E(Q)

∫
dQ′ρ(Q,Q′)E(Q′)ψm(Q′). (5.5)

For ξ being a rational number, say ξ = b/a for some a, b ∈ N (a ⊥ b), we can introduce new

integration variable u = eQ/w with w = lcm(2a, k) to rewrite the recursion relation (5.5) as

ψm+1(u) =
xα

2π

∫ ∞
0

dv
1

vx + α2ux
vx+y+w

2
−1

vw + 1
ψm(v). (5.6)

Here x and y are integers given by x = w/k and y = wξ/2. This integration relation is in

the same type as that used in the ABJM theory [12] and can be simplified by expanding

ψm(u) in the series of log u

ψm(u) =
∑
j≥0

ψ(j)
m (u)(log u)j (5.7)
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with ψ
(j)
m (u) rational functions in u, as

ψm(u)=−xα
2π

∑
j≥0

(2πi)j+1

j + 1

∑
va∈C\R+

Res

[
1

vx+α2ux
vx+y+w

2
−1

vw + 1
ψ(j)
m (v)Bj+1

[
log(+) v

2πi

]
, v→va

]
.

(5.8)

Here log(+) is the logarithm function with branch cut on R+, and Bj(z) are the Bernoulli

polynomials. In the contribution of the poles associated with the first factor 1/(vx +α2ux)

we assume u ∈ R+.

Once ψm and φm are computed in this manner, the integration in the computation

of Tr ρ̂n from (5.1) can be manipulated in the same way, and we finally obtain when

(−1)nα−2n 6= 1

Trρ̂n=− x

2π

1

1−(−1)nα−2n

∑
j≥0

(2πi)j+1

j + 1
Res

 ∑
va∈C\R+

vy+w
2
−1

vw + 1
f (j)
n (v)Bj+1

[
log′ v

2πi

]
, v→va

,
(5.9)

while for (−1)nα−2n = 1

Trρ̂n = − 1

2π

∑
j≥0

(2πi)j+1

j + 1
Res

 ∑
va∈C\R+

vy+w
2

vw + 1
g(j)
n (v)Bj+1

[
log′ v

2πi

]
, v → va

 . (5.10)

Here f
(j)
n (u) and g

(j)
n (u) are the rational functions defined by

∑
j≥0

f (j)
n (u)(log u)j =

n−1∑
m=0

(−1)mα−2m−1ψm(u)φn−m−1(u),

∑
j≥0

g(j)
n (u)(log u)j =

n−1∑
m=0

(−1)mα−2m−1∂uψm(u)φn−m−1(u). (5.11)

5.1.1 Poles generated by iterations

In the case η = 0, the poles we need to take into account in the iteration (5.8) are always

following two series

v = e
πi(2`−1)

x α
2
xu, (` = 1, 2, · · ·x)

v = eπi(2`−1)/w, (` = 1, 2, · · ·w) (5.12)

where the poles in the first line come from the first factor 1/(vx + α2ux) and the second

line from the second factor 1/(vw + 1).

The situation is different for general values of η, since the third factor ψ
(j)
m (v) may have

distinct poles. These poles are generated by both the residue at the u-dependent poles and

that for the u-independent poles. To clarify the pole contents of ψm,6 first let us study

6Here we do not mind the order of each pole.
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ξ\η 1/4 1/3 1/2

0 4 5 8

1/4 3 4 5

1/3 – 2 6

1/2 – – 5

Table 1. The values of Nmax for each (k = 4, ξ, η) in our computation. We have chosen ξ, η as

ξ ≤ η since the matrix model is trivially symmetric under ξ ↔ η.

the poles generated in the step ψ1 → ψ2. From the residues at the poles in the first line

of (5.12), we find

ψ2(u) ∝ 1

(α
2
xue

πi(2j−1)
x )w + 1

∝ 1

uw + eπikα−2k
, (5.13)

where we have used the fact w/x = k ∈ N. On the other hand the poles in the second line

in (5.12) generates

ψ2(u) ∝ 1

(e
πi(2`−1)

w )x + α2ux

∝ 1

uw + eπikα−2k
, (5.14)

where in the second line we have reduced together the fractions with ` = 1, 2, · · ·w. From

these results we conclude that ψ2(u) have new poles associated with the factor 1/(uw +

eπikα−2k). In the step ψ2 → ψ3 the cross substitution of the poles of this factor and those

of the first factor in (5.8) again generates the new pole factors 1/(uw + α−4k). Repeating

these arguments we conclude that ψm have following poles

ψm ∝
m−1∏
`=0

1

uw + eπik`α−2k`
. (5.15)

In the computation of ψm (5.8) and Trρ̂n (5.9), (5.10), we need to take into account of

these poles.

5.2 Comparison with small k expansion

In this section we compare the exact values with the results of the semiclassical analysis

in section 3, 4 to confirm the conjectural expression for A (1.12) and observe the non-

perturbative effects corresponding to the worldsheet instantons O(e−
µ
k ). For this purpose

we have computed the exact partition functions for k = 4 and various pairs of ξ, η, Z
(ξ;η)
k (N)

with N = 1, 2, · · · , Nmax, where the values of Nmax are listed in table 1. The exact values

are collected in appendix A.

The expression of A in (1.12) can be evaluated for finite k by the integral expression

of the constant map in the ABJM theory [20]

AABJM(k) =
2ζ(3)

π2k

(
1− k3

16

)
+
k2

π2

∫ ∞
0

dx
x

ekx − 1
log(1− e−2x). (5.16)
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Log@Z�Zpert-1D

Hk=4, Ξ=0, Η=1�2L

Figure 2. The non-perturbative part of the exact partition function remaining after the subtraction

of the perturbative part Zpert(N) for (k, ξ, η) = (4, 0, 1/2). The combination Z(N)/Zpert(N) − 1

behaves like e−ω
√

N−B
C even for small N .

Comparing these values and those obtained by fitting the exact values of the partition

function (A.1)–(A.9) with the Airy function (1.4) with B and C (1.12), we confirm that

our conjecture (1.12) is indeed correct (see table 2 for k = 4).

Next let us compare the instanton exponent. With the help of the inversion for-

mula (1.2), the leading non-perturbative effect can be directly related to the exact

values as [12]

J(µ)− Jpert(µ) ∼ e−ωµ ⇐⇒ Z(N)

Zpert(N)
− 1 ∼ e−

√
N−B
C . (5.17)

We observe that this approximation for the exact values holds even for small N (see figure 2)

and thus we can estimate the leading instanton exponents ω by fitting as in table 2.

Since the results are considerably different from the leading exponent e−2µ/(1+η) obtained

from the WKB expansion, we conclude that they correspond to the worldsheet instanton

effects O(e−
µ
k ).

6 Discussion

In this paper we have studied the partition function of a continuous deformation of the

U(N) circular quiver superconformal Chern-Simons theories. The deformation corresponds

to general R-charge assignments on the bifundamental matter fields. Formally the partition

function of the deformed theory have similar structures as the superconformal case. We can

use the Fermi gas formalism to compute the large N expansion of the partition function.

Applying this technique to the deformation of N = 4 theory with the levels characterized

by two integers q and p through (1.5) and (1.11), we have achieved to determine all order

perturbative corrections in 1/N , which sum up to an Airy function. The restriction to N =

4 theories with special choice (1.11) allows us the complete determination of the coefficients

B and A appearing in the Airy function, as well as the discovery of the five series of non-

perturbative effects (membrane instantons). We find a beautiful decomposition structure

of A (1.12) which is a natural generalization of the similar structure in the undeformed

theories. Though there are no clear explanation so far, the rule of decomposition is strongly
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k ξ η A (1.12) A (fitting) fitting/(1.12) ω(fitting) 2
1+η

4
k(1+ξ)(1+η)

4 0 1/4 −0.38131 −0.38134 1.00009 0.79 1.6 0.8

4 0 1/3 −0.38442 −0.38443 1.00004 0.74 1.5 0.75

4 0 1/2 −0.39191 −0.39194 1.00007 0.66 1.3 0.67

4 1/4 1/4 −0.3856 −0.3862 1.0015 0.66 1.6 0.64

4 1/4 1/3 −0.3887 −0.3893 1.0016 0.61 1.5 0.6

4 1/4 1/2 −0.3962 −0.3976 1.0036 0.55 1.3 0.53

4 1/3 1/3 −0.3918 −0.3936 1.0045 0.57 1.5 0.56

4 1/3 1/2 −0.3993 −0.4008 1.0037 0.51 1.3 0.5

4 1/2 1/2 −0.4068 −0.4107 1.0096 0.45 1.3 0.44

Table 2. Left: the value of A in (1.12) computed with (5.16) and the results of fitting. Right:

the leading instanton exponent ω estimated by fitting, which disagree with the leading exponents

expected from WKB expansion 2/(1+η) but rather agree with the conjectural worldsheet instanton

exponent 4/(k(1 + ξ)(1 + η)).

correlated to the subdivision of the membrane instantons.7 We wish to provide some

interpretation to this structure in future.

We can also determine the instanton coefficients in the limit k → 0 while exactly in

the other parameters (q, p, ξ, η). We find the singular structure of the coefficients with

respect to these parameters, which are again reminiscent of the superconformal case. The

major difference from the superconformal case is the subdivision of the membrane instan-

tons (4.13) by the two continuous deformation parameters (ξ, η) (1.13). Correspondingly,

the instanton coefficients diverge for special values of ξ and η. The interpretation of these

divergences is conceptually different from those appearing in the superconformal case. In

the original superconformal theory q and p are associated to the number of vertices and

must be positive integers. Especially, since they characterize the orbifold structure of

Y7 [31] in the gravity side, there are no dual geometry corresponding to the non-integral

(q, p). Though we can visualize the divergence of the coefficients by continuing these pa-

rameters to irrational numbers in the analysis of the matrix model, at the physical values

of (k, q, p) there only remain the finite coefficients resulting after the pole cancellation.

In contrast, the R-charge assignments ξ and η can be chosen to be arbitrary real num-

ber under (2.17), and thus the coefficient of individual instanton can be infinitely large.

This implies that the divergences would be meaningful phenomena in the context of the

AdS/CFT correspondence.

On the other hand, our deformation drastically modify the dual geometry. Any non-

canonical choice of the R-charges break the conformal symmetry, which induces in the

gravity side a non-trivial dependence on the radial direction or holographic RG flow [45, 46].

It will be interesting to reveal the dual geometry to our theory, construct instanton solution

in that background and reveal what occurs near the special values of (q, p, ξ, η) where the

individual instanton coefficients (4.13) diverge in the field theory side.

7Similar decomposition structure was observed also in the supercoformal theories with affine D-type

quiver [26] and those with O(N) and USp(2N) gauge groups [28].
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We have also analyzed the non-perturbative effects in 1/N for finite k and found

disagreement with the membrane instantons. We have concluded them to be the analog

of the worldsheet instantons and conjecture the exponents as e
− 4`µ
k(q±ξ)(p±η) (` = 1, 2, · · · ).

Though we have confirmed the exponents for k = 4 (and also for k = 3, 6 with few

undisplayed data), we could not determine the exact values of their coefficients. We wish

to determine these effects more quantitatively in future. It would also be interesting to

consider similar continuous deformation for the theories with non-circular quiver [25, 26]

or non-unitary gauge groups [27, 28, 47]
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A List of exact values Z
(ξ;η)
4 (N)

Z
(0;1/4)
4 (1) =

√
2

8
sin

π

8
, Z

(0;1/4)
4 (2) =

−4 + 3
√

2

512
,

Z
(0;1/4)
4 (3) =

16(2+
√

2)+(1−13
√

2)π

2048π
sin

π

8
, Z

(0;1/4)
4 (4) =

−128(2+
√

2)+(9+92
√

2)π

262144π
,

(A.1)

Z
(0;1/3)
4 (1) =

√
3

24
, Z

(0;1/3)
4 (2) =

1

1728
, Z

(0;1/3)
4 (3) =

−216 + (216− 85
√

3)π

20736π
,

Z
(0;1/3)
4 (4) =

4320
√

3+(−137−1296
√

3)π

5971968π
, Z

(0;1/3)
4 (5) =

−10584+(25056−12521
√

3)π

35831808π
,

(A.2)

Z
(0;1/2)
4 (1) =

√
2

16
, Z

(0;1/2)
4 (2) =

4− π
256π

, Z
(0;1/2)
4 (3) =

−8
√

2 + 12
√

2π − 3
√

2π2

4096π2
,

Z
(0;1/2)
4 (4) =

−304− 120π + 69π2

393216π2
,

Z
(0;1/2)
4 (5) =

−192
√

2− 960
√

2π − 3424
√

2π2 − 1832
√

2π3 + 963
√

2π4

18874368π4
,

Z
(0;1/2)
4 (6) =

−3840− 20160π + 42640π2 + 36236π3 − 15165π4

1509949440π4
,

Z
(0;1/2)
4 (7) =

23040
√

2− 241920
√

2π + 3019200
√

2π2 − 7891200
√

2π3 − 1138088
√

2π4

1087163596800π6

+
6964164

√
2π5 − 1877175

√
2π6

1087163596800π6
,
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Z
(0;1/2)
4 (8) =

−3870720 + 16441600π + 85612800π2 − 107341600π3 − 115970736π4

54116587929600π5

+
44873325π5

54116587929600π5
, (A.3)

Z
(1/4;1/4)
4 (1) =

2−
√

2

8
, Z

(1/4;1/4)
4 (2) =

1− 2
√

2 + 2(1 +
√

2) sin π
8

32
,

Z
(1/4;1/4)
4 (3) =

−(4 + 3
√

2) sin π
8 + (4− (5 + 2

√
2) sin π

8 )π

128π
, (A.4)

Z
(1/4;1/3)
4 (1) =

√
6

12
sin

π

8
, Z

(1/4;1/3)
4 (2) =

−1−
√

2 +
√

6

48
,

Z
(1/4;1/3)
4 (3) =

72 + 36
√

2 + (18 + 81
√

2− 68
√

3− 22
√

6)π

1728π
sin

π

8
,

Z
(1/4;1/3)
4 (4) =

24
√

6 +
(

228− 77
√

2 + 84
√

3− 120
√

6 + 3
√

6(443− 180
√

6)
)
π

27648π
, (A.5)

Z
(1/4;1/2)
4 (1) =

1

4
sin

π

8
, Z

(1/4;1/2)
4 (2) =

3− 2
√

2

128
,

Z
(1/4;1/2)
4 (3) =

−32− 16
√

2 + (16 +
√

2)π

2048π
sin

π

8
, Z

(1/4;1/2)
4 (4) =

−64 + (43− 16
√

2)π

131072π
,

Z
(1/4;1/2)
4 (5) =

768 + 768
√

2 + (3424 + 3712
√

2)π + (−2079− 615
√

2)π2

3145728π2
sin

π

8
, (A.6)

Z
(1/3;1/3)
4 (1) =

1

12
, Z

(1/3;1/3)
4 (2) =

−3 + 4
√

3 sin π
9 + 4 sin π

18

72
, (A.7)

Z
(1/3;1/2)
4 (1) =

√
6

24
, Z

(1/3;1/2)
4 (2)=

−3+2
√

3

288
, Z

(1/3;1/2)
4 (3)=

144
√

2+(−96
√

2+29
√

6)π

13824π
,

Z
(1/3;1/2)
4 (4) =

−64
√

3 + (63− 16
√

3)π

221184π
,

Z
(1/3;1/2)
4 (5) =

−1344
√

2 + 384
√

6 + (−1632
√

2 + 1067
√

6)π

5308416π
,

Z
(1/3;1/2)
4 (6) =

311040 + (1009152 + 159840
√

3)π − 1141425π2 + 404470
√

3π2

2866544640π2
, (A.8)

Z
(1/2;1/2)
4 (1) =

1

8
, Z

(1/2;1/2)
4 (2) =

−2 + π

128π
, Z

(1/2;1/2)
4 (3) =

2− 10π + 3π2

1024π2
,

Z
(1/2;1/2)
4 (4) =

70 + 6π − 9π2

49152π2
, Z

(1/2;1/2)
4 (5) =

3 + 66π + 406π2 + 175π3 − 99π4

589824π4
. (A.9)
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