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1 Introduction

When studying string compactifications in many occasions one faces a set of choices among

a discrete set of parameters. For instance in certain N = 2 models one has to fix a Calabi-

Yau variety, labelled for example by its Hodge numbers; similarly certain N = 1 effective

models are parametrized by the choice of a collection of integers, representing flux quanta,

subject to various constraints. In all these cases we are presented with many possibilities,

all of which seem equivalent before a detailed study of the low energy effective theory.

There are by now many available techniques to perform such an analysis, yet one can

wonder if there is a simpler setting in which one can understand qualitative features of this

set of choices.

We can represent this collection of choices with a set of points. Each point could

represent a particular compactification manifold, or the set of parameters determining a

vacuum for a fixed background geometry. For example in a flux compactification these

points could be associated with integral fluxes which stabilize the physical moduli. Or

their origin could be more mysterious, for example associated with a (yet not understood)

distribution of manifolds with certain properties. In the former case these points arise from

studying the equations associated with the physical model, as minima of a superpotential;
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in the latter from some ad hoc mathematical construction, as part of the open problem of

classifying higher dimensional manifolds.

In this note we pose the following question: is there any particular topological struc-

ture in these set of points? For example one can ask if vacua in a given distribution have

the tendency to cluster in distinct regions, or if the distribution of vacua presents holes or

analog higher dimensional structures. Similarly one can wonder if a distribution of vacua

characterized by certain physical properties is “simple”, with almost no topological fea-

ture, or “complex”, with many non-trivial homology generators. We will study topological

features of distributions of vacua, in the appropriate sense, and consider the possibility

that such topological information could be of physical relevance. We will do so by applying

techniques from topological data analysis to the problem of counting vacua in string theory.

Topological data analysis studies how homological features of a dataset persist over

a long range of scales. This is obtained by constructing a family of simplicial complexes

out of a dataset and studying its homologies at various length scales. This approach to

topological spaces is called persistence [1, 2]. The basic idea is that those homological

features which are more persistent over the range of length scales can be used to give a

topological characterization of the original dataset, as reviewed for example in [3–5]. We

will discuss how this characterization can be used to analyze the physical significance of

a distribution of vacua; for example by measuring its topological complexity in terms of

its non-trivial persistent homology classes in higher degree, or if there are certain physical

requirements on the parameters which correspond to distinctive topological features.

Such techniques are becoming standard practice in data analysis, with a long range

of applications, from biology and neuroscience to complex networks, natural images and

syntax, see [6–10] for a sample of the literature. Among the strengths of topological data

analysis is its robustness respect to noisy samples, since spurious features typically show

up as very short-lived persistent homology classes. For an application to the study of BPS

states and enumerative problems in string and field theory see [11].

In plain words, the idea behind this note is simple. First of all, we take a set of string

vacua, for example obtained as critical points in a flux compactification, or as a collection

of compactification spaces. Out of this collection we construct a point cloud, a set of points

in RN each representing a vacuum. Then we “fatten” each point into a sphere of radius ε.

To this configurations we associate a continuous family of simplicial complexes by declaring

that a number of points form an edge, a face or a higher dimensional simplex, if the asso-

ciated spheres of radius ε intersect pairwise. The main idea of topological data analysis is

to study such complexes as a function of ε. To obtain topologically invariant information,

we then pass to the homology of this continuous family of complexes, and obtain a family

of homology groups parametrized by ε. A little thought shows that the only thing that can

happen is for an homology class to be born at some value ε1 and then to die at ε2 > ε1. We

finally plot the lifespans (their persistence) of all the homology classes: these are called bar-

codes. At the end, we have associated a collection of barcodes to each distribution of vacua.

Such a collection captures the topological features of the distribution at every length scale.

One could envision a program to study systematically string vacua from this per-

spective and ask which subsets of physically relevant vacua are characterized by which
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topological features. In this note we take a small step towards this direction by studying

the persistent homology associated with a few distributions of vacua, with N = 2 and

N = 1 supersymmetry. In this context we will learn how to interpret and extract physical

information from the barcodes.

As a first step we will discuss N = 2 vacua obtained from Calabi-Yau compactifi-

cations of the type II string or from Landau-Ginzburg models. Many Calabi-Yau vari-

eties are known and have been constructed explicitly. An example is the Skarke-Kreuzer

list [12], which parametrizes Calabi-Yau varieties obtained from reflexive polyhedra in four-

dimensions. Such lists offer only samples of the full set of Calabi-Yau varieties and indeed

no systematic general construction is known. From a more geometrical perspective, study-

ing these vacua is akin to studying the topological properties of the distributions of known

Calabi-Yau varieties. We will consider the question if such distributions present any par-

ticular homological feature, and if distinctive characteristics appear when restricting to

geometries with certain properties, for example low Euler characteristics. We will take a

similar approach to Landau-Ginzburg models.

Next we will discuss flux vacua in type IIB compactifications. As originally pointed

out in [13, 14] this is a very promising avenue to apply statistical techniques to distribu-

tions of string vacua. A great amount of work has been dedicated to understanding the

distribution of the number of flux vacua with certain properties, as reviewed for exam-

ple in [15–17], and part of these results have been put on firmer ground using tools from

random algebraic geometry [18]. Here we take a topological approach, which is different

from the statistical counting of vacua with certain properties and can in principle address

the topological structure of the whole distribution of vacua. In this note we content our-

selves with discussing the counterpart of results already known in the literature from the

perspective of persistence, leaving a more detailed analysis for the future.

Finally we end with a very cursory look at a class of promising heterotic models

constructed in [19–21]. Such models are characterized by a Calabi-Yau and an holomorphic

bundle, plus a series of additional choices. We will consider N = 1 models which give rise

to an SU(5) gut, which then can be higgsed by Wilson lines giving a Standard Model-like

spectrum. We will study the topological features of a distribution of vacua parametrized by

the Hodge numbers of the underlying Calabi-Yau and the Chern classes of the holomorphic

bundle. Then we will take a somewhat different perspective, and study in a simple example

how these topological features change as we vary a certain physical parameter in the gut

spectrum. We will use this example to make more precise the statement that a collection

of vacua has a higher degree of topological complexity compared to others.

In this note we content ourselves to understand how to use techniques of compu-

tational topology to extract physical information from distributions of string vacua and

discuss which kind of facts one might hope to learn. Of course this is just a first step

and one could obtain a deeper intuition by enlarging the datasets available or consider-

ing different collections of vacua. Hopefully by working with collections of larger datasets

corresponding to phenomenologically viable models, one could use these methods to gain

physical insights, such as if specific physical characteristics are accompanied by certain

topological features. At this stage we have no evidence for this intriguing idea, and plan

to investigate it more thoroughly in the future.
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All the persistent homology computations in this paper have been done with matlab

using the javaplex library from [22].1 The accompanying software and dataset can be

found at [23]. Manipulations of datasets have been carried out with mathematica.

This note is organized as follows. Section 2 gives a basic introduction to topologi-

cal data analysis, presenting all the elements that we will need. In section 3 we discuss

N = 2 vacua obtained from Calabi-Yau compactifications and Landau-Ginzburg models.

Sections 4 and 5 contain applications of persistent homology to the study of flux vacua in

type IIB compactifications and to certain phenomenologically realistic heterotic models,

respectively. Finally in section 6 we summarize our findings.

2 An introduction to topological data analysis

Topological data analysis is a relatively recent approach at managing large sets of data using

techniques based on computational topology [1, 2]. It applies homological methods to col-

lections of data arranged as point clouds to extract qualitative information. The results are

only sensitive to topological information and not to geometrical quantities, such as a choice

of a metric or of a system of coordinates. Furthermore it has the advantage of being func-

torial by construction, by studying the relations between objects as the parameters of the

model are varied. The analysis of data based on topology is rapidly gaining momentum in

fields such as biology, computer vision, neuroscience, languages or complex systems [6–10].

In this section we will survey some basic ideas and techniques of topological data

analysis. The reader interested in a more in depth discussion should consult the reviews [3–

5], which we will follow. For a more detailed discussion aimed at physicists and various

examples, see [11]. After reviewing some basic elements of algebraic topology, we introduce

the Vietoris-Rips complex and persistent homology. We also discuss some approximation

schemes in the computation of barcodes and discuss how to set up the topological analysis.

2.1 Elements of algebraic topology

We start with a quick review of some notions of algebraic topology that we shall use in

the following. In many applications it is useful to approximate a topological space by a

triangulation. This can by done by means of a simplicial complex. A simplex is the convex

hull of a series of points, its vertices. Its dimension is the number of vertices minus one:

a 0-simplex is a single vertex, a 1-simplex is an edge between two vertices, a 2-simplex is

a triangle, and so on. A face of a simplex is the convex hull of a subset of its vertices. A

simplicial complex is basically a collection of simplices with the property that if a simplex

is part of it, then so are all of its faces. We can state this more abstractly as follows: a

simplicial complex S is a collection of non-empty sets Σ, its simplices, such that if σ ∈ Σ

and τ ⊆ σ, then τ ∈ Σ. We say that σ ∈ Σ is a k-simplex if it has cardinality k + 1.

One can define maps between simplicial complexes in the natural way. A simplicial map f

between two simplicial complexes S1 and S2, is a map between the corresponding vertex

sets such that a simplex σ of S1 is mapped into a simplex f(σ) of S2. A simplicial map

takes a p-simplex into a k-simplex, with k ≤ p.
1Software available at http://appliedtopology.github.io/javaplex/.
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Let us consider a couple of examples. A simple simplicial complex which can be

attached to a topological space X is the nerve of a covering U , NervU . Consider a covering

U = {Ui}i∈I labelled by a set I. The nerve of U is then defined in terms of non-empty

sub-collections of sets S as

NervU =
{
S ⊆ U |

⋂
S 6= 0

}
, (2.1)

that is, as the simplicial complex whose vertex set is I and where a set σ = {i0, · · · , ip} ⊆ I
defines a simplex if and only if Ui0 ∩ · · · ∩ Uip 6= ∅. This construction does not depend on

the particular details of the covering. In particular, under general assumptions, NervU is

homotopy equivalent to the space X.

For a metric space X consider for example the covering given by radius ε > 0 balls,

Bε(X) = {Bε(x)}x∈X . In particular assume we can write X =
⋃
i∈I Bε(i) for a subset

I ⊆ X. Then the nerve construction Nerv applied to the covering {Bε(i)}i∈I gives the

Čech complex Čechε(I) associated to the set I and to ε. Note that as ε increases, the balls

get bigger and bigger and therefore whenever ε1 ≤ ε2 we have that Čechε1(I) ⊆ Čechε2(I).

From a simplicial complex we can get interesting topological information by passing to

its homology. Assume we have a simplicial complex S, with an ordering of the vertex set.

We form the vector space of k-chains Ck by considering linear combinations c =
∑

i ai σi,

where σi is a k-simplex in S and ai ∈ Zp (typically for p a small prime). The boundary

of a k-simplex σ is the union of its (k − 1)-subsimplices τ ⊆ σ. One defines the boundary

operator ∂k : Ck −→ Ck−1 as

∂k ([v0, v1, · · · , vk]) =
k∑
i=0

(−1)i[v0, · · · , v̂i, · · · , vk] , (2.2)

where the hatted variables are omitted. We can now form the chain complex

· · · −→ Ck+1 −→ Ck −→ Ck−1 −→ · · · (2.3)

and define the spaces of k-cycles Zk = ker ∂k and k-boundaries Bk = Im ∂k+1. We define

the homology Hk(C•;Zp) as the quotient Zk/Bk and its Betti numbers bk = dimHk =

dimZk − dimBk. If the simplicial complex S is derived from an underlying topological

space X, for example via the Nerv or Čech construction, the Betti numbers give information

about the topology of X. Heuristically bk measures the number of independent holes of

dimension k.

Perhaps the most important feature of this construction is that it is functorial. Con-

sider a continuous map f : S1 −→ S2 between two simplicial complexes S1 and S2, for

example induced by a map between the two underlying topological spaces. This map in-

duces the chain map C•(f) : C•(S1) −→ C•(S2) between chain complexes, such that the

diagram

· · · // Cp(S1)
∂
S1
p //

Cp(f)

��

Cp−1(S1) //

Cp−1(f)

��

· · ·

· · · // Cp(S1)
∂
S2
p // Cp−1(S1) // · · ·

(2.4)
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commutes. The map f induces the homomorphism f? : H•(S1;Zp) −→ H•(S2;Zp) at the

level of the homologies, such that f?[σ] = [f ◦ σ]. We will use these facts extensively in

the following; in our case the map between two different simplices S1 and S2 will be the

inclusion. Then functoriality can be used to understand the fate of the homology classes

of H•(S1;Zp) in H•(S2;Zp). This idea leads to persistent homology.

2.2 Point clouds and the Rips-Vietoris complex

We will be interested in a version of the previous constructions. The starting point is not

anymore a topological space, but a finite collection of points {xi}i∈I in Rn. We will call such

a collection X a point cloud. In most practical applications a point cloud is constructed out

of a multidimensional data set. Topological data analysis is basically a framework which

associates topological information to a point cloud, via the homology of a certain complex.

Given a point cloud X it is natural to define a simplicial complex whose vertices cor-

respond to the set of points in X. To define k-simplices we use a version of the Nerv

construction. From X we define the space Xε =
⋃

xi∈XBε(xi), by fattening the points of X.

In Xε each point of X is replaced by a ball of radius ε > 0, also called the proximity param-

eter. For example now we can associate to Xε the Čech complex Čechε(X) whose vertex set

is the set of points of X and its k-simplices are collections of points σ = {xi0 , . . . , xik} such

that
⋂k
n=0Bε(xin) 6= ∅.

The problem with the Čech complex Čechε(X) is that it is computationally lengthy to

check all the intersections. It is useful to approximate the Čech complex with a simpler vari-

ant, the Vietoris-Rips complex VRε(X). To the set of points in X we associate the Vietoris-

Rips simplicial complex as follows. Given a proximity parameter ε, a k-simplex in VRε(X)

is a collection of k + 1 points {xi0 , . . . , xik} whose pairwise distance is less than ε, that is

d(xi, xj) ≤ ε , for 0 ≤ i, j ≤ ε . (2.5)

Equivalently we assign balls of radius ε/2 to each point, and we connect two points by an

edge anytime their balls intersect. The natural orientation is given by declaring that the

p-simplex [v0, · · · , vk] changes sign under an odd permutation.

The main difference with the Čech complex Čechε(X), is that in defining the Vietoris-

Rips complex VRε(X) we only have to compute the distance for a pair of points at a time.

Furthermore the fact that in the former the parameter ε is the radius of the balls, while in

the latter is the distance between the centers, leads to the inclusions

Čechε(X) ⊆ VR2ε(X) ⊆ Čech2ε(X) . (2.6)

Finally now that we know how to construct the Vietoris-Rips complex VRε(X) of a point

cloud X, we can compute its homology Hi(VRε(X);Zp).

2.3 Persistent homology and barcodes

The idea behind persistent homology is to study the homology spaces Hi(VRε(X);Zp) as a

function of ε. Instead of a simplicial complex, now we have a collection of them, VRε(X)

parametrized by ε, which leads to a family of homology spaces Hi(VRε(X);Zp), again
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parametrized by ε. While these in principle are continuous families, there will be only a

finite number of inequivalent simplicial complexes which appear at finitely many ε’s. We

label these values of ε as {εa}a∈J where J is a finite set.

From the point cloud X we construct the sequence of inclusions of spaces

Xε0 ↪→ Xε1 ↪→ Xε2 ↪→ · · · , (2.7)

for 0 = ε0 < ε1 < ε2 < · · · . For each Xεa we can construct the associated Vietoris-Rips

complex VRε(X). This leads to the filtration of simplicial complexes

VRε0(X) ↪→ VRε1(X) ↪→ VRε2(X) ↪→ · · · . (2.8)

Taking the i-th homology gives

Hi(VRε0(X);Zp) ↪→ Hi(VRε1(X);Zp) ↪→ Hi(VRε2(X);Zp) ↪→ · · · . (2.9)

We will see momentarily that this is an example of an N-persistence module, and that it is

completely characterized by its barcode. Let us however begin with a couple of remarks.

First of all what we have defined is technically an R-persistence module, since ε is a real

variable. However only finitely many simplicial complexes will be distinct and therefore

we can consider this a N-persistence module. To do this we have to chose an ordering

preserving map f : N −→ R; any choice will do, but a choice has to be made.

Secondly, it can be useful to think a bit more about (2.9). The maps in (2.9) are the lift

to homology of the inclusions between the Vietoris-Rips complexes in (2.8). Since homology

is functorial, these maps keep track of the corresponding homology classes. In other words

we know if the same homology class is present both in Hi(VRεa(X);Zp) and Hi(VRεb(X);Zp)
for arbitrary a and b. Therefore the only thing that can happen is for an homology class to

be born at a certain “time” εa and then to die at a subsequent “time” εb, with a < b (we

allow for the case εb = +∞). Barcodes are a simple tool to visualize homological features

of a data set. They are precisely what keeps tracks of these births and deaths. The idea of

persistence is to look for features which persist over a large range of ε’s. Here “large” can

have different meaning, depending on the point cloud or on the particular questions one

is asking. Persistent features are a measure of the underlying topological structure of the

dataset. On the other hand, short-lived signatures are interpreted as noise, which depend

on the particular approximations one is using when constructing the dataset.

Let us make the above discussion a bit more precise. Let K be a field. A N-persistence

module over K is a family of vector spaces {Vi}i∈N over K, together with a collections

of homomorphisms ρi,j : Vi −→ Vj for every i ≤ j, such that whenever i ≤ k ≤ j, the

homomorphisms are compatible (in the sense that ρi,k · ρk,j = ρi,j). Persistence modules

can be added, to create a new persistence module. Viceversa we can ask if a persistence

module can be decomposed in simpler modules.

The usefulness of persistence modules is the existence of a classification result. This

is a generalization of the similar result from elementary linear algebra, which states that

finite dimensional vector spaces are classified by their dimension, up to isomorphisms. In

the same fashion, certain classes of persistence modules are classified by their barcodes.
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We say that the persistence module {Vi}i∈N is tame if each Vi is finite dimensional and

ρn,n+1 : Vn −→ Vn+1 is an isomorphism for large enough n. Given two integers (m,n) so

that m ≤ n, we introduce the “interval” N-persistence module K (m,n), given by

K (m,n) =

{
0, if i < m or i > n

K otherwise
(2.10)

where ρi,j = idK for m ≤ i < j ≤ n. In words K(m,n) assigns the vector space K to the

interval [m,n]. Note that we can extend this definition for n = +∞. Then the classification

result states that any tame N-persistence module over K can be decomposed as

{Vi}i '
N⊕
j=0

K (mj , nj) , (2.11)

for a certain N , and the decomposition is unique up to the ordering of the factors. In plain

words a tame persistence module is completely determined by the intervals in N where we

assign non zero vector spaces. Therefore a tame N-persistence module is equivalent to the

assignment of a collection of pairs of non-negative integers (mi, ni), where 0 ≤ mi ≤ ni
and we allow ni to be +∞. We call such an assignment a barcode and we represent it

graphically by a collection of bars, each one associated with the aforementioned intervals.

Each collection of maps and vector spaces (2.9) is clearly an N-persistence module.

Since the point cloud X is finite, it is also tame. Each N-persistence module (2.9), obtained

by taking homology in degree i, is then uniquely determined by its barcode. In the rest of

this paper we will compute the barcodes associated to N-persistence modules which arise

from certain point clouds and discuss the physical interpretation of their persistent features.

2.4 Approximation schemes and witness complexes

When a point cloud X consists of a large number of points, the computation of the Vietoris-

Rips simplicial complexes and of the associated N-persistence modules can become quite

intractable. We will now discuss certain approximation schemes, based on the idea that

one could select only a limited subset L of X as vertices of the simplicial complexes.

A landmark selector is an operator which chooses the subset L from X. Each landmark

selector has its own advantages and disadvantages and it is important to be aware of them.

An obvious landmark selector picks the elements of L at random. This is quite useful,

although depending on how scattered is the dataset, it may miss important features. We

will mostly use a so-called maxmin selector. The idea is to select points by induction,

in order to maximize the distance from the already chosen set. More precisely we start

from a randomly chosen point. The remaining ones are chosen by induction: if Li consists

of i chosen landmark points, then the next i + 1-th landmark point is chosen in order to

maximize the function z −→ d(Li, z), where d(Li, z) is the distance between the landmark

set Li and the point z ∈ X. Note that with a maxmin landmark selection, the landmark set

will consist of points spreading apart from each other as much as possible. As a consequence

the set will cover the dataset, in principle better than a random selection. The drawback

is that the maxmin algorithm will generically choose outlier points.

– 8 –
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A landmark selector can greatly simplify the computation of the homology. We will

use landmark selection to define approximations to the Vietoris-Rips complex, the witness

complexes. Assume we have chosen a landmark set L from a point cloud X. We define the

witness complex W(X, L, ε) as follows. The vertex set of W(X, L, ε) is given by L. To define

simplexes, we pick a point x ∈ X and we denote by mk(x) the distance between x and its

k + 1-th closest landmark point. Then a collection of k > 0 vertices li form a k-simplex

[l0 . . . lk] if all its faces are in W(X, L, ε) and there exists a witness point x ∈ X so that

max{d(l0, x), d(l1, x), . . . , d(lk, x)} ≤ mk(x) + ε . (2.12)

In particular we have the inclusion W(X, L, ε1) ⊆ W(X, L, ε2) when ε1 < ε2. Therefore we

can construct a filtration of witness complexes as function of the proximity parameter ε.

Passing to the homology defines N-persistence modules and we can study their persistent

features by looking at the barcodes.

Another approximation scheme is the lazy witness complex LW(X, L, ε). Again this

complex depends on a landmark selection, but this time an extra parameter ν ∈ N is in-

volved. The vertex set of LW(X, L, ε) is again given by L. To define simplexes we need to in-

troduce a notion of distance. For x ∈ X we define m(x) as the distance between x and the ν-

th closest landmark point if ν is non zero, and set m(x) = 0 otherwise. Then, given two ver-

tices l1 and l2 in L, the edge [l1l2] is in LW(X, L, ε) if we can find a witness point x ∈ X so that

max{d(l1, x), d(l2, x)} ≤ m(x) + ε . (2.13)

Finally a higher dimensional simplex is an element of the lazy witness complex LW(X, L, ε)

if all of its edges are. Note that again the inclusion LW(X, L, ε1) ⊂ LW(X, L, ε2) holds when-

ever ε1 < ε2 and again we can construct filtrations by inclusion. The usefulness of the lazy

witness complex is that it is less computationally involved since it is determined from its

1-skeleton. The lazy witness complex is the simplest way to study the persistent homology

of a dataset. In this paper we will always set ν = 1.

In this paper we will use matlab to perform all the homology computations and our

programs will employ the library javaplex, available from [22]. We will use mathematica

for the manipulations of the datasets. Our matlab programs and datasets are available

at [23].

2.5 Topological analysis

Finally we collect some qualitative ideas on how the topological analysis based on persistent

homology will be used in our context. Again we refer the reader to [3–5] for more examples

of the practical uses of these techniques.

1. Topological data analysis provides qualitative information about a dataset. Heuris-

tically it determines the topological properties of a dataset, such as its clustering in

connected components, or the presence of loops or in general higher dimensional sur-

faces. Being topological, this information is independent on the set of coordinates or

any metric used for the analysis. For example by regarding a dataset as a statistical
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approximation to an underlying topological manifold at a certain length scale, one

computes the Betti numbers of such a manifold. From the barcodes one obtains in-

formation about the homologically non-trivial n-cycles as well as their characteristic

length scale as measured by the proximity parameter ε.

2. The presence of barcodes in higher degree indicates that the data are organized

forming higher dimensional homologically non-trivial cycles, at least at a certain

length scale. This can be seen as evidence of existing correlations between the data.

For example, if in a certain region of the point cloud the points are disposed along

an n-cycle, it is possible that there exists relations between themselves, in the form

of a series of algebraic equations which describe the n-cycle.

3. Short-lived persistent homology classes are generically regarded as noise, while long-

lived classes point out towards homologically robust features. This is intuitively

clear and follows from the definition of the Vietoris-Rips complex and its variations.

Therefore one is lead to look for long-lived bars, encoding the persistent homology

classes. Of course, what does it mean to be short- or long-lived is somewhat subjective

and depends sensitively on the physical problem. We will see example of physically

interesting but short-lived persistent homology classes. In particular this can happen

when the existence of a symmetry or modular property forces the same behavior at

various length scales.

4. The topological analysis can be most effective when comparing different datasets.

This perspective is commonly used in fields such as biology or neuroscience, where

the barcodes of different datasets can reveal if a certain drug was effective or not. In

our case one can for example select string vacua with or without a certain feature,

say a certain particle present in the low energy spectrum, and ask if this comports

qualitative differences, and of which type.

In the following we will apply these ideas on certain distributions of string vacua.

3 N = 2 vacua

Having set up our main computational tools, we proceed to use them in a few specific

examples of N = 2 vacua of the type II string. Examples of such vacua include Calabi-Yau

manifolds and Landau-Ginzburg models. The construction of Calabi-Yaus is an art on its

own and while hundreds of thousands of examples are known explicitly, the list is far from

exhaustive. The classification problem is still wide open, and the origin of Calabi-Yau vari-

eties still rather mysterious. It is natural to wonder if the techniques we have exposed so far

can be applied to the known distributions of Calabi-Yau varieties, and what kind of informa-

tion can we hope to gain. Similar arguments hold in the case of Landau-Ginzburg models,

which play an important part in the classification of N = 2 superconformal field theories.

In particular we will study the following (incomplete) set of string vacua:
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• The Skarke-Keuzer list from [24], containing Calabi-Yaus which can be realized as a

hypersurface in a toric variety, and correspond to four dimensional reflexive polyhe-

dra. Of this list, 30108 varieties have distinct Hodge numbers.

• Complete Intersection Calabi-Yaus (CICYs), which are constructed via a complete

intersection of polynomials within a product of projective spaces. We take the list

from [25], which contains the 7890 CICYs constructed in [26]. From this list we take

the 266 pairs of distinct Hodge numbers and add their mirrors.

• A list of Landau-Ginzburg models, their abelian orbifolds and certain models with

discrete torsion, taken from [27]. We parametrize these models by (χ, n + n̄) (for

simplicity we remove by hand all those models which need an extra label, which are

characterized by χ = 0).

3.1 Calabi-Yau compactifications

We begin by considering vacua of the type II string which have the form R3,1×X where X is

a Calabi-Yau threefold, a complex three dimensional manifold with trivial canonical bundle.

These compactifications preserve N = 2 supersymmetry in R3,1. The Calabi-Yau theorem

states that for each Kähler class ω ∈ H1,1(X;C) there exists a unique Ricci flat Kähler met-

ric. The moduli space of Calabi-Yau metrics is parametrized by h2,1(X) = dimH2,1(X;C)

complex structure deformations and h1,1(X) = dimH1,1(X;C) Kähler moduli, which cor-

respond to scalar fields in the effective four dimensional theory. These Hodge numbers

characterize the low energy effective action by determining geometrically the number of

vector multiplets and hypermultiplets. The Euler characteristic of a Calabi-Yau is given

by χ(X) = 2(h1,1(X)− h2,1(X)).

The superconformal theories which describe the propagation of strings on Calabi-Yaus

come in pairs, a phenomenon known as mirror symmetry. Mirror symmetry has been

established for many pairs of Calabi-Yaus. In this case we say that two Calabi-Yaus

form a mirror pair (X,Y ) and they represent the same physical vacuum. The Hodge

numbers for mirror pairs are related as h1,1(X) = h2,1(Y ) and h2,1(X) = h1,1(Y ). More

deeply complexified Kähler moduli and complex structure moduli are exchanged. Often

certain quantities associated with a Calabi-Yau can be computed exactly and this leads

to interesting mathematical predictions for the mirror manifold. For example quantum

corrections due to worldsheet instantons, which modify the low energy effective action,

are associated with an extremely interesting enumerative problem, Gromov-Witten theory,

counting holomorphic curves on X. Gromov-Witten theory produces symplectic invariants

of X. In this note we will only consider the cruder topological information contained

in the Hodge numbers and Euler characteristic; applications of persistent homology to

enumerative problems of Calabi-Yau appear in [11].

Therefore as a first approximation we label a Calabi-Yau compactification by its Hodge

numbers and Euler characteristic as (h1,1(X) + h1,2(X), χ(X)). Of course this is a rather

crude approximation, since different Calabi-Yaus can have the same Hodge numbers. We

would like to consider a distribution of these values as a point cloud X, where a Calabi-

Yau X corresponds to the point x = (h1,1(X) + h1,2(X), χ(X)), and study its persistent
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Figure 1. Barcode computation for the distribution of Calabi-Yau manifolds. The point cloud

X is constructed assigning to a Calabi-Yau X the vector x = (h1,1(X) + h1,2(X), χ(X)). The

computation of the persistent homology is done using the lazy witness complex LW(X, L, ε). The

landmark set consists of 200 points in both cases. Left. The Kreuzer-Skarke list of Calabi-Yaus.

The point cloud consists of 30108 points; the homology computations runs over 49744 simplices.

Right. Complete Intersection Calabi-Yaus, with their mirrors. The point cloud has 532 elements,

and the homology computation involves 251926 simplices.

homology. A related question is if point clouds X obtained in this way from collections

of varieties arising from different constructions have different topological features, as seen

from their barcodes. We will address these questions with certain known lists of Hodge

numbers of Calabi-Yaus.

The simplest construction of a Calabi-Yau manifold is as a hypersurface in a complex

projective space. For example the quintic threefold can be seen as the vanishing locus

of a homogenous polynomial of degree five f5(z1, . . . , z5) = 0, where [z1, . . . , z5] denote

the homogeneous coordinates of P4. The Kähler form ω of the quintic descends from the

Kähler form of P4, while the complex structure moduli correspond to the independent de-

formations of the defining equation f5(z1, . . . , z5) = 0. More general constructions can be

thought of as more elaborate versions of this simple example and many lists of Calabi-Yau

families are available in the literature.

An example of such a list is the class of complete intersection Calabi-Yaus (CICYs),

that is those which can be constructed via the complete intersection of polynomials in a

product of projective spaces. Their classification was completed in [26, 28] and their Hodge

numbers computed in [29]. Such a list is available at [25] (to which we add the mirror Hodge

numbers). Another list was obtained by Kreuzer and Skarke in [12], by classifying reflexive

polyhedra in four-dimensions. Reflexive polyhedra in four-dimensions describe Calabi-Yau

threefolds by realizing them as hypersurfaces in toric varieties [30], and the classification

proceeds using the powerful combinatorial techniques of toric geometry.

Out of each one of these two lists we construct a point cloud and study its persistent

homology using the lazy witness complex LW(X, L, ε). To do so we wrote a program in

matlab, available at [23], using the library javaplex. The results are shown in figure 1.

On the left we have the barcodes corresponding to the modules H•(LW(X, L, ε);Z2) for

the Kreuzer-Skarke list of Calabi-Yaus corresponding to reflexive polyhedra, on the right
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the list of CICYs to which we have added the mirror Hodge numbers. Recall that bars

corresponding to N-persistence modules in degree zero (we will informally call these “Betti

number 0”) are a measure of the number of connected components, at every length scale.

Similarly a barcode in degree one is a signature of non-trivial 1-cycles. The collection of

varieties under consideration does not have any barcode in higher degree. The appearance

of 1-cycles in figure 1 on the left, measured by the barcode in degree one, means that

there are zones where no Calabi-Yau is present,2 in the list we are considering. The empty

regions in the distribution of Calabi-Yaus are detected at values of ε for which the points

surrounding these areas are closer than ε (at this value we see the birth of an homology

class) and disappear at values of ε greater than the characteristic length of the empty region,

which is now filled up (and the homology class dies because it becomes a boundary).

Most bars in the barcode in degree zero are relatively short-lived. This is a sign that

the distribution of manifolds is generically rather dense, since at small values of ε nearby

points become part of the same simplex, ceasing to be isolated connected components. For

visible values of ε in figure 1 (left) the vast majority of connected components associated

with individual points has already disappeared. This is not true for every bar, pointing

to the existence of isolated points or clusters in the distribution. An interesting feature of

figure 1 is that certain bars come in pairs: this is a consequence of mirror symmetry, or

more down to earth the symmetry of the Hodge numbers. The mirror bars correspond to

two areas of the distribution with exactly the same behavior. Of course this is not true for

any bars: areas which are close to the symmetry axis in the Hodge numbers distribution

will start to “interact” with each other as ε increases before showing any mirror structure,

becoming a single connected component.

Of course all these features could equivalently be “seen” by plotting the Hodge number

distribution. The purpose of this discussion is to turn them into a mathematically precise

statement concerning its topological features. The formalism of N-persistence modules

provides the necessary tools.

A similar discussion holds for the distribution of CICYs, in figure 1 (right). Note that

all sign of non-trivial homological structures disappear at values ε ∼ 30 of the proximity

parameter, much smaller than in the case of the KS list. Now the barcode in degree one

shows even less structure, a sign that the CICYs are more evenly distributed and the

formation of 1-cycles is accidental. This is an example of short-lived homology classes

which can be regarded as “noise” and excluded from the persistence analysis.3 From this

perspective the set of CICYs is topologically simpler than the set of varieties in the KS list.

Now we focus on a particular zone, namely the “tip” of the distribution, that is the

region with small h1,1(X) + h2,1(X). This region was identified as special in [31], on the

ground that heterotic models with small Hodge numbers engineer supersymmetric exten-

sions of the Standard Model with few generations of fermions. Such Calabi-Yaus appear to

be rather rare and the corresponding area quite unpopulated. We wish to examine this area

2Of course one should also take into account that the Hodge numbers are integers while the proximity

parameter is a real variable. This will induce a few spurious 1-cycles, which are however too small to be

noticed in figure 1.
3We have confirmed this conclusion by repeating the computation for different landmark selections.
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Figure 2. Barcode computation for Calabi-Yau varieties with small Hodge numbers. The point

cloud is constructed as in figure 1. Left. The point cloud parametrizes Calabi-Yaus with h1,1(X) +

h2,1(X) < 40 and consists 479 points. The persistent homology is computed via the lazy witness

complex LW(X, L, ε) over Z2 with a landmark selection L of 170 points, and run over 118362 simplices.

Right. The point cloud parametrizes 23 Calabi-Yaus with h1,1(X) + h2,1(X) < 22. The filtered

homology computation employs the Vietoris-Rips complex VRε(X) over Z2 and run overs 827

simplices.

from the point of view of persistent homology. To begin with we collect all the manifolds

in the KS and CICY lists, and add the other small Hodge number Calabi-Yaus pointed out

in [31, table 1], and their mirrors. We stress again that we are parametrizing Calabi-Yaus

by their Hodge numbers, which is a very crude approximation since distinct varieties have

the same Hodge numbers. In figure 2 we show the barcodes for said distributions, with

Hodge numbers h1,1(X) + h2,1(X) < 40 (left) and h1,1(X) + h2,1(X) < 22 (right). Let us

consider the figure on the left. We see that in degree one two bars stand out with respect

to the others, signaling the formation of two 1-cycles at a larger length scale. Such cycles

are larger than the rest, as they appear at larger values of ε.

We can try to give a topological rephrasing of the philosophy of [31], according to which

Calabi-Yau varieties with small Hodge numbers are “special”. In our language this would

translate into the statement that the distribution of Calabi-Yaus with small values of the

Hodge numbers has certain distinctive topological features. Indeed these specific 1-cycles

continue to exist if we restrict our point cloud to Calabi-Yaus with h1,1(X)+h2,1(X) < 22,

as shown in figure 2 on the right. The two odd features at Betti number one appear clearly,

even if rather short-lived. The fact that they come in a pair is a consequence of mirror

symmetry.

We have seen an instance of one of the main themes of this paper, that special vacua

are associated with characteristic topological features. Clearly the analysis so far has

been rather limited; however we think it elucidates the principle that one might expect

that topological interesting structures at the level of persistent homology correspond to

physical interesting settings.
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3.2 Landau-Ginzburg vacua

Now we turn to Landau-Ginzuburg vacua. Such models describe two dimensional N = 2

superconformal field theories. They are governed by a number of chiral superfields Φi,

i = 1, . . . , N interacting via a quasi-homogeneous superpotential W (Φi). We will assume

that W (Φi) has isolated and non-degenerate critical points only. Ground states are related

to elements of the chiral ring R, obtained by taking the quotient of the space spanned by

the chiral superfields by the Jacobian ideal of the superpotential W (Φi)

R =
C[Φ1, . . . ,ΦN ]

〈∂W (Φi)〉
. (3.1)

The degeneracies of chiral primaries are encoded into the Poincaré polynomial

P (t, t) = trRt
J0t

J0 =
∑
ij

pijt
it̄j , (3.2)

expressed in terms of generators of the superconformal algebra. We will also consider

only Landau-Ginzburg models with central charge c = 9. Certain orbifolds of N = 2

Landau-Ginzburg models describe conformal field theories at certain points of the Calabi-

Yau moduli spaces. Such models can also be used in heterotic string compactifications,

where they engineer an effective four dimensional theory with E6 gauge symmetry and

matter in the 27 representation. The fermionic spectrum is determined by the chiral ring

R from (3.2), namely p11 = n27 is the number of fermion in the 27 representation and

p12 = n27. If the Landau-Ginzburg model has a geometrical interpretation as strings

propagating in a Calabi-Yau X, then we can identify the Hodge numbers h1,1(X) = p12

and h2,1(X) = p11. We will assume that the other non-trivial coefficients of (3.2) vanish,

if necessary discarding the respective models from the lists of consistent vacua.

We consider the collection of 10839 models constructed in [32] by the classification of

non-degenerate quasi-homogeneous polynomials which can play the role of a superpotential

of a c = 9 model. The massless spectra can be computed from (3.2) and result in 2997 differ-

ent spectra (or pairs of Hodge numbers). This list was extended in [33] by classifying all the

abelian symmetries of the above potentials which can be used to construct abelian orbifolds.

This results in 3798 inequivalent spectra, which we will use for our analysis. An additional

list of models can be obtained by considering discrete torsion as in [34], which results in

138 extra spectra. We have studied the persistent homology for the distributions of abelian

orbifolds and discrete torsion models, taking as input the set of inequivalent spectra. We

have labeled a Landau-Ginzburg spectrum by the vectors x = (χ = 2(p12 − p11), p11 + p12)

as explained above, and used these to define our point cloud X. We have then computed the

associated homology groups using the lazy witness complex LW(X, L, ε) as a function of ε.

The barcodes resulting from the homology computation for Hi (LW(X, L, ε);Z2) are

shown in figure 3. The distribution of abelian orbifold vacua, on the left, appears to be

the most complex from a topological viewpoint, also with respect to figures 1 and 2. This

is most apparent in degree one, where several 1-cycles appear with no obvious regularity.

In degree zero the figure shows the existence of many long-lived connected components, a
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Figure 3. Barcodes for Landau-Ginzburg models. The point clouds X are constructed out of vectors

of the form x = (χ = 2(p12 − p11), p11 + p12). To pass to the homology we use the lazy witness

complex LW(X, L, ε) over Z2. Left. Abelian orbifolds. The point cloud X consists of 3792 points and

the landmark set L of 200. The computation of filtered homology requires 123057 simplices. Right.

Discrete torsion models. The point cloud X parametrizes 128 models, 100 of which constitute the

landmark set L. The homology computation runs over 57090 simplices.

signal that the vacua tend to cluster in certain regions. On the other hand the distribution

of discrete torsion models is extremely simple, with no features in degree one.

From this perspective the two type of vacua appear topologically very different, despite

arising from similar constructions. In this sense the topological analysis can discriminate

between two physically similar situations.

4 Persistence in flux vacua

Now we proceed to apply our techniques to flux vacua of the type II B string. These are

realized by an orientifold of a Calabi-Yau compactification, with fluxes turned on along

compact cycles and a collection of D-branes. We will only consider complex structure

and axion-dilaton moduli, stabilized by the flux induced superpotential. We are not really

interested (yet) in fully stabilized and phenomenologically viable models, but we wish to

analyze simple examples to show how to use techniques of topological data analysis and

which kind of results one can expect.

4.1 Flux compactifications

Before discussing the uses of persistent homology, we briefly review some basic elements of

flux compactifications. We will consider II B/F-theory vacua obtained by an orientifold of

a Calabi-Yau compactification, as reviewed in [15–17]. In general one can use D3 branes,

extended in the directions transverse to X, and D7 branes, wrapping holomorphic cycles

to obtain a quasi-realistic N = 1 model where moduli are stabilized by fluxes and quantum

corrections. We will be mostly interested in the distributions of flux vacua, and ignore

issues of phenomenological viability of the model or of the simplifying assumptions.

We take a Calabi-Yau X, with h2,1(X) complex structure deformations and h1,1(X)

Kähler moduli. For simplicity we will fix the Kähler class, so that Calabi-Yau metrics are
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parametrized by complex structure deformations. The relevant moduli space parametriz-

ing physical configurations is non-compact and has the form M = Mc × H/SL(2;Z),

where Mc is the complex structure moduli space and H is the upper half plane where

the axion-dilaton τ takes values. The axion-dilaton τ = C0 + i /gs is a function of the

Ramond-Ramond scalar C0 and the string coupling constant gs. Equivalently such a space

can be interpreted in F-theory as the moduli space of Calabi-Yau metrics on X×T2 where

the T2 is elliptically fibered over X.

Let {Aa, Ba} with a, b = 1, . . . , h2,1 +1 be a symplectic basis of H3(X,R) and {αa, βa}
its Poincaré dual integral cohomology basis, so that∫

Aa

αb = δab ,

∫
Bb

βa = −δab ,
∫
X
αa ∧ βb = δba . (4.1)

A choice of the complex structure z ∈Mc determines the Hodge decomposition

H3(X,C) = H3,0
z (X)⊕H2,1

z (X)⊕H1,2
z (X)⊕H0,3

z (X) . (4.2)

On a Calabi-Yau H3,0
z (X) is one dimensional and the fibration H3,0

z (X) −→Mc defines the

Hodge bundle. Take Ωz ∈ H3,0
z (X). Similar arguments hold for the axion-dilaton modulus,

so the actual Hodge bundle of physical interest here is H3,0
z (X)⊗H1,0

τ (T2) −→M, where

we write ωτ ∈ H1,0
τ (T2) as ωτ = dx+ τ dy.

In our basis the (3, 0) form Ωz for z ∈ Mc can be represented as Ωz = za αa − Ga βa

in terms of its periods ∫
Aa

Ωz = za ,

∫
Ba

Ωz = Ga(z) , (4.3)

where za are local projective coordinates on the complex structure moduli space, and the

functions Ga(z) can be expressed as the derivatives of a single function, the prepotential

G(z), as Ga(z) = ∂a G(z). The period vector Π(z) = (Gb(z), za) plays an important role in

the determination of the Kähler potential and flux superpotential. The Hodge bundle has

a natural hermitian metric, the Weil-Petersson metric and the associated Kähler potential

on M is

K(z, τ) = − log

(
i

∫
X

Ω ∧ Ω̄

)
− log (− i (τ − τ̄))

= − log
(
− i Π† · Σ ·Π

)
− log (− i (τ − τ̄)) , (4.4)

where and Σ is the symplectic matrix of rank 2h2,1 + 2.

Now we turn on fluxes in the NS and RR field strengths F3, H3 ∈ H3(X,Z). Since

fluxes are quantized, they can be expressed in terms of the integer valued vectors f and h as

F3 = −(2π)2α′ (fa α
a + fa+h2,1+1 βa) , (4.5)

H3 = −(2π)2α′ (ha α
a + ha+h2,1+1 βa) . (4.6)

with a = 1, . . . , h2,1(X) + 1. We assemble these fluxes in the 4-form on X × T2 given by

G3 = F3 ∧ dy +H3 ∧ dx.
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The presence of non-trivial fluxes generates a non-trivial superpotential [35] which

stabilizes complex structure moduli. Such a superpotential is a section of the line bundle

L dual to the Hodge bundle, given by the functional

WG(z, τ) =

∫
X×T2

G3 ∧ Ωz ∧ ωτ (4.7)

=

∫
X

(F3 − τ H3) ∧ Ωz = (2π)2α′ (f − τ h) ·Π(z) (4.8)

acting on sections Ωz ∧ ωτ of the Hodge bundle.

In local coordinates the F-term equations which follow from the superpotential

WG(z, τ) are

DτWG(z, τ) = ∂τWG(z, τ) +WG(z, τ) ∂τ K(z, τ)

= (2π)2α′ (f − τ̄ h) ·Π(z) = 0 , (4.9)

DzaWG(z, τ) = ∂zaWG(z, τ) +WG(z, τ) ∂za K(z, τ)

= (2π)2α′ (f − τ h) · (∂za Π(z) + Π(z) ∂zaK(z, τ)) = 0 , (4.10)

where D is the connection associated with the Weil-Petersson metric on M. The critical

point equations (4.9) and (4.10) define supersymmetric vacua.

Turning on fluxes gives a contribution to the total D3 brane charge

Nflux =
1

(2π)4(α′)2

∫
X
F3 ∧H3 = f · Σ · h . (4.11)

If we denote by ND3 the number of D3 branes transverse to X, consistency of the com-

pactification requires the tadpole cancellation condition

Nflux +ND3 = L . (4.12)

In our cases, the orientifold can be seen as arising from an F-theory compactification.

This involves a four-fold Z which is an elliptic fibration over X/g, with g the orientifold

involution. In this case L = χ(Z)/24. In particular this sets a bound Nflux ≤ L on the

total amount of flux available. Therefore to find supersymmetric critical points, one has to

solve the equations (4.10) in a certain region of the moduli space, as the fluxes take values

satisfying the tadpole constraint.

Compactifications of this sort have been widely studied since they provide workable

models where ideas about the statistical distributions of string vacua can be tested [13,

14, 36]. We will have nothing to say about this approach, but we mention a few points for

completeness. A simple distribution of string vacua is the density

dµ(z) =
∑
i

δz (DiWG(z, τ)) , (4.13)

which is just a sum of delta function contributions, each one centered at a supersymmetric

vacuum (here i runs over axion-dilaton and complex moduli and we are again neglecting

Kähler moduli). This distribution is in general pretty intractable and often it is simpler to
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deal with an approximate continuum distribution ρ(z). The integral of such a distribution

over a certain region U of the moduli space corresponds to the number of supersymmetric

vacua satisfying certain properties, which enter in the definition of ρ(z). A slightly different

approach is to define an index density d I which differs from (4.13) only in that each delta

function is weighted by the sign of the Jacobian (−1)F = sgn deti,j D
2WG(z, τ). One

motivation for doing so is that such an index appears to be the proper generalization of the

Morse index for dealing with vacua in supergravity. Indeed while in rigid supersymmetry

the total number of vacua is often given by a topological formula, in supergravity vacua

can be created or destroyed in pairs, precisely the situation of Morse theory. This analogy,

discussed more in depth in [36], suggests that techniques based on persistent homology,

which can be thought of as a version of Morse theory, could be usefully applied to the

statistical distributions of vacua. In this paper we will focus on actual solution of the F-

term equations, and leave the analysis of statistical distributions to the future. An example

of such a index density is [14]

I ∼
∫
M

ctop (T ∗M⊗L) , (4.14)

the top Chern class of the bundle where DWG(z, τ) takes values. Physically such an integral

gives an estimate of the number of supersymmetric vacua. One can refine such a formula

by counting vacua with specific properties, say a certain value of the cosmological constant.

We will not consider such counting problems in this paper. However it is interesting to

note that the number of vacua from (4.14) is almost a topological quantity (it would be

for compact M).

The point which is important for us is that a high degree of topological complexity of

the moduli space of physical configurationsM or of the dual Hodge bundle L, corresponds

to a large number of critical points for the superpotential WG(z, τ) and therefore to a large

number of supersymmetric vacua. In other words we expect a distribution of vacua to

have a high degree of topological complexity. Persistent homology is precisely a tool which

can measure the topological complexity of a distribution of points. We therefore expect to

obtain interesting information by applying techniques of statistical topology to ensembles

of string vacua. In the remaining of this section we will see examples of such applications

in simple models.

4.2 Rigid Calabi-Yau

We begin with the simplest case, a rigid Calabi-Yau with no complex structure moduli, as

studied in [14]. Having no complex structure moduli, h2,1 vanishes and therefore b3 = 2 +

2h2,1 = 2. This implies that the periods of the holomorphic three form Ω over the symplectic

basis {A,B} of (4.1) can be taken to be Π = (1, i ). Therefore the flux superpotential is

WG(τ) = (−h1 − ih2) τ + (f1 + i f2) , (4.15)

where the fluxes vectors f = (f1, f2) and h = (h1, h2) take values in H3(X,Z) and are

constrained by the tadpole cancellation condition f1 h2 − h1 f2 ≤ L. The F-term equation
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Figure 4. Barcodes for the distribution of flux vacua in a rigid Calabi-Yau. The point cloud X

consists of 1064958 inequivalent vacua. We compute the persistent homology using the lazy witness

complex LW(X, L, ε) with a landmark set L consisting of 140 points. The computation runs over

203362 simplices.

Dτ WG(τ) = 0 has the simple solution

τ =
f2 + i f1

h2 + ih2
. (4.16)

The moduli space is the upper half plane H modulo the action of SL(2,Z). To solve this

equation we use mathematica to generate random vectors of integral fluxes obeying the

tadpole constraint and only retain those values of τ which lie in a fundamental domain F
for SL(2,Z) in H. This restriction is to avoid overcounting of physically equivalent vacua

which lie in the same SL(2,Z) orbit.

Then we use the values x = (Re τ, Im τ) to construct a point cloud X and study

its persistent homology via the lazy witness complex LW(X, L, ε). The corresponding

barcodes are shown in figure 4. From the distribution of the barcodes we learn the

following facts. The structure of the barcode with Betti number one imply the presence

of relatively long-lived and short-lived regularly distributed 1-cycles in the point cloud.

These corresponds to the “voids” in the distribution of vacua, already noted in [14]: the

distribution contains holes, at the center of which there is a big degeneracy of vacua.

The presence of these holes implies that at certain values of the filtration parameter ε,

non-trivial 1-cycles will form in the filtered homology. These cycles have different sizes,

some are smaller (short-lived bars) and other are larger (long-lived bars). The presence

of several degree one bars which are born and die at the same value of ε implies that the

corresponding cycles have roughly the same size. The long-lived bars correspond to bigger

cycles, since it takes more ε time to cover them up.
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The presence of a big degeneracy of vacua at the center of these holes shows up as a

connected component in the degree zero barcode. Such bars are the very short-lived classes

in figure 4. This identification follows from the fact that a number of these connected com-

ponents disappear from the barcode’s plot roughly at the same ε time as the 1-cycles. This

is an example of what we can learn not just by looking at the barcodes by themselves

but also at the correlations between the barcodes in different degrees. Note that such a

perspective is typically not common in topological data analysis, where the very short-lived

bars in the barcode in degree zero would have been interpreted as noise. We must be very

careful in applying such techniques to string theory vacua since due to the action of the

mapping class group on the moduli spaceM it is possible that interesting physical features

are mapped to short-lived homology classes in the fundamental domain. This mechanism is

important and worth stressing. The SL(2,C) action is a symmetry which relates physically

equivalent configurations. To avoid overcounting one has to restrict the attention to a fun-

damental domain F , which contains precisely a single representative for each SL(2,C) orbit.

However nothing guarantees that topological interesting features which are prominent in a

fundamental domain, will remain so in another. One way in which we can avoid misiden-

tifying these features is to cross correlate the barcodes’ plots at different degrees, at least

in our example. Most importantly we have now learned how to recognize such features.

On the other hand the formation of long-lived bars in degree zero, which implies the

existence of more connected components at larger values of ε is a consequence of the data

set being limited. This is a sign that the flux vacua are not uniformly distributed but tend

to accumulate at small values of Im τ . Since the data set is limited, points at higher values

of Im τ will be more rare when the sample of vacua is generated at random, and therefore

will appear as long lived connected components (uncorrelated with any structure at Betti

number one).

All of these conclusions could easily be drawn just by looking directly at the plot of

flux vacua on the upper half plane, see for example [36, figure 6]. We have discussed this

dataset in detail as an example of how these features would show up from the perspective

of the barcodes. Now we turn to higher dimensional point clouds for which a simple plot

is not available.

4.3 A Calabi-Yau hypersurface example

Now we turn to a more sophisticated example, studied in [38–40], where the moduli space

Mc parametrizing complex structure deformations is one dimensional. We will consider

the Calabi-Yau X8(14, 4), defined as the hypersurface

4∑
i=1

x8
i + 4x2

0 − 8ψ x0 x1 x2 x3 x4 = 0 (4.17)

in the weighted projective space P4(14, 4) (where the notation wm denotes the m times

repetition of the weight w). The relevant Hodge numbers of X8(14, 4) are h1,1(X8(14, 4)) =

1 and h2,1(X8(14, 4)) = 149. The defining equation (4.17) is invariant under the acton of the

discrete group Γ = Z2
8 × Z. The variable ψ parametrizes complex structure deformations
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of the mirror X̃, which according to the Greene-Plesser orbifold construction [37] is a

crepant resolution of X/Γ. The complex structure moduli space of X̃ can be identified

with P1\{0, 1,∞}, where the three special points correspond to a Landau-Ginzburg point,

a conifold point and the large complex structure point respectively.

In general complex structure moduli of X8(14, 4) are not invariant under Γ. If we

restrict our attention to the periods which are invariant under the Γ action, the corre-

sponding Picard-Fuchs equations simplify greatly. One is left with a reduced period vector

Π̃ = (G1,G2, z1, z2) which as a first approximation is not a function of the remaining moduli:

those can only appear as higher order monomials which are invariant under the Γ action.

This period vector coincides with the period vector of X̃ [38].

We are interested in an orientifold of this model which breaks supersymmetry down to

N = 1. The orientifold in question acts as x0 −→ −x0 and ψ −→ −ψ, as well as worldsheet

parity reversal. We turn on flux vectors h and f taking values in H3(X8(14, 4),Z) and

compatible with the Γ action, along the 3-cycles associated with the period vector Π̃. The

tadpole cancellation condition (4.12) is now

ND3 +Nflux = 972 . (4.18)

Complex structure moduli which transform non-trivially under Γ can appear in the su-

perpotential only at higher order as Γ-invariant monomials and will be stabilized at zero,

the fixed point of Γ [38]. They will be neglected in the following. To summarize the

only relevant moduli for the model at hand are the complex structure modulus ψ and the

axion-dilaton τ .

To be more concrete, we will also consider a particular region of the moduli space,

nearby the conifold point ψcon = 1. It will be useful to introduce an auxiliary variable

x = 1 − ψ which measures the distance from the conifold locus. In this region the period

vector can be explicitly computed as a function of x and we shall use the result of [39, 40].

Explicitly the solutions of equations (4.9) and (4.10) have the form

τ =
f1a0 + f2b0 + f3c0

h1a0 + h2b0 + h3c0

+ · · · , (4.19)

log x = − 2π i

d1(f2 − τ h2)

4∑
i=1

(fi − τ hi) Ai , (4.20)

in terms of a set of known constants, which the reader can find in [39, section 5]. We define

a point cloud X where each point represents a vacuum, a solution given by (4.19) and (4.20)

and parametrized by vectors of the form x = (Rex, Imx,Re τ, Im τ). Note that contrary

to the previous case, we cannot plot the whole point cloud X, but only its projection onto

special planes. The persistent homology of X provides a new way to look at the full set of

physical values of the moduli without any projection. Before analyzing the barcodes, we

have however to deal with the SL(2,Z) symmetry acting on the axion-dilaton and on the

flux vectors. Its action is

τ −→ a τ + b

c τ + d
,

(
F3

H3

)
−→

(
a b

c d

)(
F3

H3

)
,

(
a b

c d

)
∈ SL(2,C) . (4.21)
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Figure 5. Barcodes for the distribution of flux vacua on X8(14, 4). The point cloud X parametrizes

14585 vacua with vectors of the form x = (Rex, Imx,Re τ, Im τ). In the persistent homology

computation we use the lazy witness complex LW(X, L, ε) with a landmark set L consisting of 200

points selected using the min-max algorithm. The computation runs over 1099256 simplices.

To deal with this redundancy we proceed as follows. First we compute (4.19) for a randomly

generated set of fluxes f = (f1, f2, f3, f4) and h = (h1, h2, h3, h4) using mathematica.

Then we map each value of τ to its fundamental domain (and transform the flux vectors

accordingly). To do so we use a standard algorithm, by iterating the transformations

τ −→ τ − Round(Re τ) and τ −→ − 1
τ until we reach the fundamental domain.4 Then we

use the value of τ in the fundamental domain and the value of the transformed fluxes to

compute log x from (4.20). To fix the conifold monodromy we only consider points such

that arg x ∈ [−π, π), and because of the validity range of the approximated periods, we

only keep points with x < 1.

We have computed the homology of the point cloud using the lazy witness complex

LW(X, L, ε) and the barcodes are shown in figure 5. The only non trivial barcode is for

Betti number zero, higher persistent homology groups showing scant or no structure. In

this case the dataset does not present any appreciable “voids”. This is due to the tendency

of flux vacua to cluster around the conifold singularity. Indeed this clustering shows up in

figure 5 as the fact that generic bars are very short-lived. Figure 5 also shows three bars

which are rather long-lived, with respect to the others (a fourth bar corresponds to the

overall connected component at large ε). Isn’t this a contradiction with the clustering of

vacua? The answer is no, and the reason is that we must also be careful in understanding

the features of the approximation scheme we are using for our computation. Indeed in the

lazy witness scheme we have chosen the landmark selector with the min-max algorithm,

which selects points spread apart as much as possible. Therefore points which are outside

4In practice, to reduce the computation time we put a cutoff to the number of iterations, and simply

discard the point if it has not reached the fundamental domain by the time the cutoff is reached.
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Figure 6. Barcodes for the distribution of flux vacua on X8(14, 4). The point cloud X is constructed

as in figure 5. Also in this case the persistent homology computation is done using the lazy witness

complex LW(X, L, ε), but this time the landmark set L consists of 200 points randomly selected. The

computation requires 852691 simplices.

the clustering region will be privileged with respect to points inside, and this is the reason

we see these extra bars. These bars correspond to points outside the clustering region, and

since this is relatively empty the bars are longer than the average.

To clarify this point further, let us repeat the persistent homology computation, this

time using a random selector to choose the landmark set L. Since the selector is random,

from the clustering hypothesis we expect that almost all the landmark points will be in the

clustering region, and therefore the barcodes’ plot will show almost no structure. Indeed

this is what we see in figure 6; in particular we note the different range of the proximity

parameter ε respect to figure 5.

This example shows which kind of information we can get from the persistent homology

of a point cloud of vacua, but also how different approximation schemes have to be handled

with care.

5 A first look at heterotic models

Finally we conclude with a rather preliminary glance at a collection of phenomenologically

interesting heterotic vacua. We will consider compactifications of the E8 × E8 heterotic

string over a Calabi-Yau X. The heterotic string has very appealing features in the con-

struction of phenomenological models of physics beyond the standard model [41].

Let us quickly review E8 × E8 heterotic N = 1 vacua. The data required for the

compactification on X are two holomorphic vector bundles V and Ṽ (or more generically

coherent sheaves) with structure group a subgroup of E8 and a number of NS5 branes

wrapping a holomorphic curve C in X. The bundle V is then used to construct a standard
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model-like effective action while Ṽ corresponds to the hidden sector. The low energy ef-

fective action is N = 1 supergravity coupled to a number of gauge and matter multiplets.

Consistency with the low energy Bianchi identity requires a cohomological condition relat-

ing V, Ṽ, C and X. Typically one considers Ṽ to be trivial and the number of NS5 branes

to be an adjustable parameter so that the only non-trivial condition involves the visible

bundle V and X. Solving this condition determines a viable structure group H for V. The

low energy gut theory is then based on a group G, the commutant of H in E8.

The simplest choice is the standard embedding, which identifies H with the SU(3)

holonomy group of X giving an E6 gut. More general non-standard embeddings are

possible as long as V obeys a stability condition. To every holomorphic bundle or sheaf

V we associate its slope as the ratio between its degree and its rank µ(V) = degV
rankV . Then

a bundle V is µ-stable if for any sub-bundle J ⊂ V with 0 < rankJ < rankV we have

µ(J ) < µ(V). A poly-stable bundle is a direct sum of stable bundles, all of them with the

same µ. A poly-stable holomorphic bundle V corresponds to a solution of the Donaldson-

Uhlenbeck-Yau equations and therefore preserves supersymmetry.

The compactifications that we will consider rely on the choice of a poly-stable vector

bundle V on X. The choice of this bundle breaks the E8 gauge symmetry of the visible

sector down to a gut group G, for example SU(5) or SO(10), the commutant of the

structure group H of V in E8. A similar setup holds for the E8 hidden sector. By turning

on appropriate Wilson lines it is possible to further break G to the standard model group

plus a number of U(1) factors. To have non-trivial Wilson lines X has to be non-simply

connected, which is in general not the case for Calabi-Yaus constructed from complete

intersections in weighted projective spaces. One can easily remedy this problem by

considering a discrete group Γ freely acting on X and then working equivariantly with

respect to Γ. In practice this is accomplished by working with the Calabi-Yau X̂ = X/Γ,

for which π1(X̂) = Γ. Each element γ ∈ Γ corresponds to a 1-cycle. Wilson line operators

Wγ can be defined along these cycles in terms of a flat rank one bundle on X̂. The choice

of a bundle V equivariant with respect to the Γ-action descends to a bundle V̂ on X̂. The

physical spectrum and the relevant low energy quantities can then be computed from the

data of X and V. Physically the Wilson line operators break the gut group G to the

subgroup commuting with all the Wilson lines. The low energy effective field theory on X̂

is based on said group and can be chosen to be a phenomenologically realistic model.

In an impressive series of works [19–21], a large class of realistic models were con-

structed along these lines, containing the standard model gauge group, the matter content

of the MSSM and no exotics. With an extensive use of computational algebraic geometry

many low energy properties of such models were derived explicitly and are available in the

database [42].

If we choose V to have a rank five special unitary structure group, so that the first Chern

class c1(V) vanishes, the gut group will be SU(5), up to abelian factors. The latter are typ-

ically Green-Schwarz anomalous and decouple at high energies. The requirement of low en-

ergy supersymmetry implies that V has to be a µ-polystable bundle, a direct sum of µ-stable
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bundles all with the same µ-stability parameter. A clever choice is a sum of line bundles

V =
5⊕

a=1

La , (5.1)

with µ(La) = 0 for all a. It is quite remarkable that such a simple choice still allows for

physically realistic models, and indeed a scan over such possibilities (and other closely

related) done in [19–21] revealed a large class of viable models.

We want to have a preliminary look at this database from the perspective of persistent

homology. In particular we will only consider varieties X which are CICYs with V of the

form (5.1), despite other possibilities being allowed. We want to construct a point cloud X

out of this dataset, and we will do so in the simplest possible way, by collecting vectors of

the form x =
(
h1,1(X), h2,1(X), c2(L1), . . . , c2(L5)

)
. This simple choice certainly does not

do proper justice to the database built in [19–21] which contain extensive geometrical and

physical information on the models. In particular such a parametrization is very coarse

since a point in X represents many physically distinct models. Such a problem can be

resolved by adding more and more parameters in the construction of the point cloud X,

but we will leave such a detailed analysis for the future.

On the other hand such a point cloud X is embedded in R7: it cannot be plotted

in any simple way and there is no readily available tool to gauge the properties of this

distribution of vacua. We propose that persistent homology provides such a tool. We

have considered around a hundred of models with distinct values of x ∈ X and computed

the N-persistence modules given by the homology of the filtered Vietoris-Rips complex

VRε(X). We show the barcodes in figure 7. The barcodes show plenty of structure, even

in degree four, if very short-lived.

Figure 7 is a concrete, qualitative example of one of the main ideas of this note: that

distributions of physically interesting vacua show a certain degree of topological complexity.

In the distribution at hand we see the appearance of many n-cycles. This could imply

for example that there exists subtle correlations between the vacua, in the form of some

algebraic equations which describes the n-cycle. Of course to establish this decisively and

quantitatively one has to go beyond the topological analysis presented here.

On the other hand the topological analysis is very efficient in comparing different

distributions of vacua. As we have explained our working assumption is that distributions

of physically realistic models are not random but have topological features. In the light of

this idea, one could start comparing different distributions of vacua and look for the ones

which exhibit more structure. Distribution with higher complexity are, in a certain sense,

singled out.

Let us try to explore this possibility more in detail and compare directly two distribu-

tions of vacua by fixing certain parameters. Out of the database of [42] we can form more

refined point clouds with more information. For example an information readily available

is the number n5 of vector-like pairs 5 and 5̄ at the gut level, or the number of physical

Higgs doublets nH in the low energy spectrum. We take these two parameters as inputs

together with X to create an augmented point cloud Y. Each point y ∈ Y contains the same
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Figure 7. Barcodes for the distribution of heterotic vacua. The datum of a vacuum consists in

the two Hodge numbers h1,1(X) , h2,1(X) of the Calabi-Yau and the second Chern classes c2(Li) of

five line bundles, such that V =
⊕5

a=1 La specifies the gut spectrum. The point cloud X consists

of 107 points in R7. The homological computation is done using the Vietoris-Rips complex VRε(X)

and runs over 1786924 simplices.

geometrical information as above plus this extra information on the spectrum and has the

form y =
(
h1,1(X), h2,1(X), c2(L1), . . . , c2(L5), n5, nH

)
. However this time, instead of just

studying the topological features of Y, we select two subsets of data Y1 and Y3 as follows.

All the points in both subsets have a single Higgs doublet nH = 1, but they differ in n5 = 1

and n5 = 3 respectively.5 In other words the datasets of Y1 and Y3 contain geometrical

parameters of a Calabi-Yau and an holomorphic bundle which give rise to different spectra

with fixed characteristics. We want to compare their distributions from the perspective of

their persistent homology. Again we study the filtered Vietoris-Rips complexes VRε(Y1)

and VRε(Y3) and collect the information about their N-persistence modules in the barcodes

shown in figures 8 and 9.

Although comparisons have to be made carefully since the two datasets have different

number of entries, one feature is immediately clear: among the database of [42] for models

with a single Higgs doublet, the distribution of vacua with n5 = 1 is topologically much

more complex than that of n5 = 3 vacua. The latter indeed shows clear regularities in

the barcodes. This is clear by comparing figures 8 and 9, but is also from the number of

simplices generated during the persistent homology computation, which is greater for Y1

by a factor of 50.

5These precise values have been chosen just for convenience.
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Figure 8. Barcodes for the point cloud Y1 consisting of 65 points in R9 which parametrize an

heterotic compactification as in figure 7, with two additional parameters, the number of Higgs

doublets nH = 1 and of vector-like pairs n5 = 1. The computation of the persistent modules

Hi(VRε(Y1);Z2) involves 574095 simplices.

Figure 9. Barcodes for the point cloud Y3 consisting of 34 points in R9 as in figure 8, the only

difference being the value of vector pairs which is now fixed at n5 = 3. The persistent homology

computations runs over 10325 simplices.
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If we assume that topologically rich structures correspond to physically interesting

features, one would conclude that compactifications with n5 = 1 would be preferred over

compactifications with n5 = 3. Again, this lends (modest) support to the idea that string

vacua can be characterized by the topological properties of their distributions. In particular

it opens up the possibility that vacua with realistic features can be singled out by the

complexity of their persistent homology. In other words we are led to propose a qualitative

vacuum selection principle based on the topological features of the distributions of vacua:

topologically complex distributions of vacua are preferred over topologically simple ones.

We believe this idea is worth further investigations.

6 Conclusions

In this paper we have explored the possibility that distributions of string vacua can be

characterized by certain topological properties. A readily available tool to capture the

topological features of a distribution of points is topological data analysis. In this frame-

work persistent homology extracts topological invariants at every length scale. To a col-

lection of vacua we associate persistence modules in various degree; the latter in turn are

completely characterized by their barcodes. Barcodes are a graphical representation of the

lifespan of the persistent homology classes of the distribution of vacua, as the length scale

at which we look at the distribution is varied. They correspond to homological signatures

which characterize the point cloud by the appearance of patterns within the dataset. In

this framework patters are emergent with the length scale.

To exemplify these ideas we have studied three classes of vacua. In section 3 we have

studied vacua with N = 2 supersymmetry, arising from compactifications of the type II

string on a Calabi-Yau, or from Landau-Ginzburg models. By appropriately labeling fam-

ilies of such vacua we have constructed the corresponding point clouds and computed their

persistent homologies. We have looked for topological structures in the distribution of

certain Calabi-Yau manifolds, or superconformal fixed points. Both of these are interest-

ing mathematical problems on their own, regardless of the physical applications. During

the process we have learned how to use topological data analysis to reproduce the known

features of such distributions. We have also established that certain distributions of vacua,

such as Calabi-Yau with small Hodge numbers, have non-trivial topological features. Note

that, regardless of the interpretation as string vacua, the study of Landau-Ginzburg distri-

butions could also be seen as a very preliminary attempt at the study of the topology of

the space of two dimensional superconformal field theories. It would be very interesting to

understand if persistent homology could be an useful tool for this direction of investigation.

In section 4 we have applied our formalism to certain classes of flux vacua in type

II B/F-theory compactifications. The models we have discussed are typically presented as

examples of the statistical approach to the landscape of flux vacua, where one is interested

in counting the number of vacua with certain properties. In this framework persistent

homology has the advantage of allowing a simple visualization of the basic properties of a

distribution of vacua, even when such a distribution has high dimension. We have discussed

how the features of such distributions can be extracted from their barcodes in two simple
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cases. We have given concrete examples of how the techniques of topological data analysis

can be used to determine properties of the distributions of flux vacua, not just by counting

their numbers but also by using the invariants of persistent topology.

In this note we have obtained distributions of flux vacua by solving directly the equa-

tions for supersymmetric vacua. Of course another possibility would be to use directly a

continuum approximation to the index density of vacua as in [13, 14, 18, 36]. One can

easily construct a point cloud by discretizing an index density such as (4.14) and study its

properties using statistical topology. Indeed we expect that this should be a rich area of

investigation.

Finally in section 5 we have considered quasi-realistic compactifications of the heterotic

string. We have considered a class of vacua labeled by a Calabi-Yau and the topological

data of a certain holomorphic bundle. A striking aspect of such a class of vacua is that it

exhibits non-trivial topological features, in the form of higher dimensional, if short-lived,

n-cycles. The presence of such features suggests that distributions of phenomenologically

viable vacua might be characterized by a high degree of topological complexity, as seen

from their persistent homology modules. In other words it leads to the possibility that

physically interesting features are associated with topologically interesting structures at the

level of persistent homology. This possibility can be made rather concrete by comparing

the persistent topological features of different classes of vacua. We have given a specific

example by comparing two different set of vacua which differ in the number of 5− 5̄ pairs

in the gut spectrum. The class of vacua with n5 = 1 is topologically much richer and

therefore from our perspective should be preferred.

Let us summarize the main ideas we have encountered in this note. First of all we

have shown how techniques of topological data analysis can be applied to the problem of

characterizing distributions of string vacua. Persistent homology can be used to extract

qualitative information from the set of string vacua. The usefulness of such information

depends on the questions one is asking. Certain features of string vacua can be understood

from the more persistent homology classes in the barcodes; others cannot. Hopefully such

techniques could be efficiently applied in conjunction with the usual tools from statistics

and algebraic geometry typically used in studying distributions of vacua. We also hope

to call the attention of the computational topology community to the extremely rich and

diversified problem posed by the landscape of string vacua.

A particular interesting point in this respect is that, also due to the approximation

schemes available, studying the persistent topology of a distribution of vacua is considerably

easier than studying its geometrical properties. In other words to sample the relevant

features one typically needs only a smaller number of vacua and the whole process is

computationally less involved. On the other hand the usual ideas used in the study of

persistent homology need to be partly revisited to be applied in this context: we have seen

an example of very short-lived bars which reveal physically interesting features only when

regarded in correlation with barcodes in other degrees. To which extent topological data

analysis is physically relevant is at the moment not clear; certainly more work and ideas are

needed to understand how much information and how many new insights can we gain from

it. One could hope to learn something by analyzing much bigger datasets, or by studying

systematically families of M- or F-theory compactifications.
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On a more speculative level the results of this note have led us to the idea that sets of

vacua with a higher degree of topological complexity are singled out with respect to topolog-

ically simpler ones. It is tempting to suggest that the presence of topologically interesting

features within a distribution of vacua is associated with physically interesting features. As

we have already remarked, the presence of higher dimensional cycles can imply subtle corre-

lations between the vacua distributed along the cycle, although a more refined case by case

analysis is needed to establish this concretely. These correlations can assume the form of a

set of equations which force the vacua to lie over a certain n-cycle. If they exist, such corre-

lations would distinguish a family of vacua from others. Even if at this stage we have no gen-

eral understanding of the physical significance of such correlations (except when they arise

from a superpotential, where in principle it should be possible to derive them analytically),

persistent homology provides a computational framework to visualize them. This leads us

to the possibility of formulating a qualitative topological vacuum selection principle: that

topologically complex distributions of vacua are physically preferred over topologically sim-

ple ones. Here the concept of topological complexity is concretely provided by persistent

homology. Clearly much more work is required to turn this into a quantitative statement.
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