
J
H
E
P
0
3
(
2
0
1
6
)
0
3
1

Published for SISSA by Springer

Received: January 19, 2016

Accepted: February 13, 2016

Published: March 7, 2016

Bootstrapping correlation functions in N = 4 SYM

Dmitry Chicherin,a Reza Doobary,b Burkhard Eden,c Paul Heslop,b

Gregory P. Korchemskyd and Emery Sokatcheva,e,f

aLAPTH,1 Université de Savoie, CNRS,
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1 Introduction

In this paper we continue the study of correlation functions in maximally supersymmetric

N = 4 Yang-Mills theory (N = 4 SYM). More precisely, we shall focus on the correla-

tion functions of local gauge-invariant operators which are members of the stress-tensor

supermultiplet

Gn = 〈T (1)T (2) . . . T (n)〉 . (1.1)

The stress-tensor supermultiplet plays a special role in N = 4 SYM since it comprises all

conserved currents including the stress-energy tensor as well as the Lagrangian of theory.

These operators appear as coefficients in the expansion of the supercurrent T in powers of

the Grassmann variables.

In virtue of N = 4 superconformal symmetry, the two- and three-point correlation

functions (1.1) are protected from quantum corrections and their expressions coincide with

those in the free theory. Starting from four points, the correlation functions (1.1) are not

protected and depend on the coupling constant. The conjectured integrability of planar

– 1 –



J
H
E
P
0
3
(
2
0
1
6
)
0
3
1

N = 4 SYM theory opens the possibility of finding the exact form of this dependence,

in the planar limit at least. The four-point correlation function G4 has been the subject

of much attention over the years. N = 4 superconformal symmetry fixes G4 up to a

single function of the conformal cross-ratios. At present, G4 is known in planar N = 4

SYM theory at weak coupling up to seven loops in terms of scalar conformal integrals [1, 2]

whereas the integrated expressions have been worked out up to three loops [3–7]. At strong

coupling, G4 has been computed within the AdS/CFT correspondence in the supergravity

approximation [8, 9].

Computing the correlation functions (1.1) beyond four points proves to be an extremely

nontrivial task. The conventional approach based on Feynman diagrams in configuration

space is not suitable for Gn. Indeed, the contributions of the individual diagrams to

Gn are, in general, gauge dependent and as a consequence, they do not respect conformal

symmetry. The symmetry is only restored in the sum of all diagrams as a result of nontrivial

cancellations of gauge dependent terms. Another difficulty comes from the fact that the

general expression for Gn satisfying the N = 4 superconformal Ward identities is given by

a linear combination of nontrivial n-point superconformal invariants accompanied by some

functions of conformal cross-ratios. The number of invariants as well as their complexity

grow rapidly with n.

This calls for developing a more efficient method for computing the correlation func-

tion (1.1), free of the difficulties mentioned above. The first step in this direction has been

undertaken in [10]. As was shown there, Gn can be computed in the chiral sector (for all

anti-chiral Grassmann variables set to zero) after reformulating N = 4 SYM in twistor

space. This method yields the chiral part of the correlation function Gn in the Born ap-

proximation as a sum of Feynman diagrams on twistor space that involve only propagators

and no integration vertices. The contribution of each individual diagram has a compact

and concise form but it depends of the gauge fixing parameter (reference twistor). Most

importantly, it is N = 4 superconformally covariant modulo a compensating transforma-

tion of the reference twistor. The dependence on the latter disappears in the sum of all

diagrams yielding the N = 4 symmetry of Gn.
1

The question remains however whether there exists a representation for the correla-

tion function Gn that has manifest N = 4 superconformal symmetry and is free of any

auxiliary variables such as the reference twistor. In this paper, we argue that such a repre-

sentation exists and demonstrate this by presenting an explicit construction of the six-point

correlation function G6 in the chiral sector at Born level.

The paper is organised as follows. In section 2 we present an ansatz for the correlation

function (1.1) that obeys all available symmetry constraints. This ansatz involves just a

few arbitrary constants. In section 3 we construct the explicit expression for the six-point

correlation function in the Born approximation. The remaining freedom in the ansatz is

fixed by requiring the known asymptotic behavior in the light-like limit. In section 4, we

demonstrate that the same approach can be applied to finding a representation for the six-

1The situation here is similar to that of the scattering amplitudes in planar N = 4 SYM computed via

twistor space [11].
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point NMHV amplitude without unphysical spurious poles. Section 5 contains concluding

remarks. The appendix presents a technique for extracting various components of the

correlation function (1.1) and includes some checks against the available data [10, 12, 13].

2 Symmetries of the correlation functions

Let us recall the properties of the stress-tensor supermultiplet. Its lowest component is the

half-BPS scalar operator O20′(x, y) = tr
[

ΦIΦJ
]

Y IY J built from six real scalars ΦI (with

I = 1, . . . , 6). Here Y I is a six-dimensional complex null vector that can be parametrised

as Y I = (1, yaa′ , y
2) in terms of four complex variables yaa′ (with a, a′ = 1, 2) and y2 =

det ‖yaa′‖. The operator O20′(x, y) is annihilated by half of the Poincaré supercharges, so

that the stress-tensor multiplet satisfies a half-BPS shortening condition. Equivalently, the

supercurrent T depends on half of the Grassmann variables,

ραa = θαAu+a
A = θαa + θαa

′

yaa′ ,

ρ̄α̇a′ = θ̄α̇A ūA−a′ = θ̄α̇a′ + yaa′ θ̄
α̇
a , (2.1)

where the harmonic variables u+a
A and ūA−a′ (with the composite SU(4) index A = (a, a′))

parametrise the coset SU(4)/(SU(2)× SU(2)×U(1)) (or rather its complexification). The

signs ± in the indices +a and −a′ refer to the U(1) charge of the harmonics. In what follows

we shall set all ρ̄α̇a′ = 0 and consider only the chiral sector of the correlation function (1.1).

In the chiral sector the supercurrent T = T (x, y, ρ) depends on the four Grassmann

variables ραa (with α, a = 1, 2) as well as on the bosonic coordinates xα̇α and yaa′ . The

advantage of introducing y-variables is that the R-symmetry acts on them in the same

way as the (complexified) conformal group acts on the x’s. The supercurrent T (x, y, ρ)

transforms covariantly under the N = 4 superconformal algebra and has conformal weight

2 and R-symmetry weight (−2).

2.1 Properties of the correlation functions

Let us examine the restrictions imposed by N = 4 superconformal symmetry on the cor-

relation function (1.1). It depends on the Grassmann variables ραai (with i = 1, . . . , n). In

virtue of R-symmetry, it should be invariant under the center Z4 of SU(4), ραai → e2πk/4ραai
with integer k. As a consequence, the (chiral) expansion of Gn runs in powers of ρ’s multi-

ple of four. The lowest component of Gn is ρ-independent, whereas the highest component

contains the product of all Grassmann variables, ρ41 . . . ρ
4
n (with ρ4i =

∏

a,α ρ
αa
i ). An ad-

ditional condition on the ρ-dependence comes from the invariance of Gn under the chiral

supersymmetry Q and antichiral conformal supersymmetry S̄,

ρi
αa → ρ̂i

αa = ρi
αa +

(

ǫαA + xi
αα̇ξ̄Aα̇

)

ui
+a
A . (2.2)

We can use the sixteen parameters of these transformations, ǫαA and ξ̄Aα̇ , to gauge away the

same number of Grassmann ρ-variables. Then, the dependence on these variables can be

restored by performing a finite superconformal transformation (2.2). In this way, choosing

the gauge ραan−3 = ραan−2 = ραan−1 = ραan = 0 we find that the top component of Gn takes the
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form ρ41 . . . ρ
4
n−4. For generic values of ρi the chiral part of the correlation function takes

the following general form for n ≥ 4

Gn = Gn;0 +Gn;1 + · · ·+Gn;n−4 , (2.3)

where Gn;p is a homogenous polynomial in ρ1, . . . , ρn of degree 4p invariant under (2.2).

The remaining components vanish due to N = 4 superconformal symmetry, Gn;p = 0 for

n− 3 ≤ p ≤ n.

Let us summarise the known properties of the components Gn;p.

The expansion (2.3) is similar to that of the on-shell scattering superamplitudes in

N = 4 SYM. This is the reason why, by analogy with the scattering amplitude, we shall

refer to Gn;p as the NpMHV component of the correlation function. By construction, the

MHV component Gn;0 coincides with the correlation function of the lowest component of

the stress-tensor multiplet,

Gn;0 = 〈O20′(x1, y1) . . . O20′(xn, yn)〉 . (2.4)

The NpMHV component Gn;p depends on n points in the chiral analytic superspace with

coordinates (xi, yi, ρi). The Bose symmetry of the correlation function (1.1) implies that

it is invariant under the exchange of any pair of points. In addition, Gn;p should have the

correct conformal and R-symmetry transformation properties and be invariant under the

half the N = 4 superconformal transformations (2.2)

QαAGn;p = S̄A
α̇ Gn;p = 0 . (2.5)

The general solution to these relations is given by a linear combination of (nilpotent)

Grassmann invariants of degree 4p with arbitrary coefficients. We can employ the above

mentioned gauge to count the total number of such invariants denoted by Nn,p. Namely,

for ραan−3 = ραan−2 = ραan−1 = ραan = 0, it is equal to the dimension of the linear space spanned

by the homogenous polynomials of degree 4p depending on the Grassmann variables ραai
with i = 1, . . . , n− 4. In particular, for the bottom and top components of (2.3), there is a

single invariant, 1 and ρ41 . . . ρ
4
n−4, respectively, leading to Nn,0 = Nn,n−4 = 1. At the same

time, it is easy to see that Nn,p > 1 for 1 ≤ p ≤ n− 5.

At weak coupling in N = 4 SYM, Gn;p admits an expansion in powers of the coupling

constant

Gn;p =
∑

ℓ≥0

g2(ℓ+p)G(ℓ)
n;p , (2.6)

with 0 ≤ p ≤ n − 4. The expansion starts at order O(g2p) and the lowest term G
(0)
n;p

defines the Born approximation. The expansion coefficients G
(ℓ)
n;p satisfy the recurrence

relations [1, 2, 6]

G(ℓ)
n;p =

∫

d4xn+1 d
4ρn+1G

(ℓ−1)
n+1;p+1 , (2.7)
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which follows from the Lagrangian insertion method [14, 15]. Here the integral over the

Grassmann variables on the right-hand side projects the supercurrent at point (n + 1)

onto its top component which is the (on-shell chiral) Lagrangian of N = 4 SYM theory,

LN=4(x) =
∫

d4ρ T (x, y, ρ).

Applying (2.7) we can obtain the O(g2ℓ) correction to the n-point NpMHV correlation

function by integrating the O(g2ℓ−2) correction to the (n+1)-point Np+1MHV correlation

function. Relation (2.7) can be iterated allowing us to obtain G
(ℓ)
n;p at any loop level ℓ as

a multiple superspace integral of the Born-level correlation function G
(0)
n;p+ℓ. In this way,

the Born-level correlation functions define the all-loop integrands for Gn. For example,

in the special case of p = n − 4, the relation (2.7), combined with the uniqueness of the

top nilpotent invariant Nn,n−4 = 1, has been used in [1, 2, 6] to compute the four-point

correlation function G4 up to seven loops.

In planar N = 4 SYM, the correlation functions Gn are related to the on-shell scat-

tering amplitudes An through the conjectured duality relation [16–21]

lim
Gn

G
(0)
n;0

=

(

An

AMHV
n

)2

, (2.8)

where AMHV
n is the tree-level MHV amplitude and G

(0)
n;0 is the connected part of (2.4) in the

Born approximation. Here the limiting procedure on the left-hand side amounts to putting

the operators at the vertices of a light-like n-gon, x2i i+1 = 0 (with xi i+1 = xi − xi+1 and

xi+n ≡ xi) and imposing a condition on Grassmann variables, (θi − θi+1)
αA(xi,i+1)αα̇ = 0.

The exact identification between the coordinates of Gn in the analytic superspace and the

supermomenta of An can be found in [19–21]. The duality (2.8) can be used to learn

about amplitudes from the knowledge of correlation functions [1, 2]. In particular, the

predictions for the four-dimensional part of the amplitude integrands elaborated from (2.8)

using available results for the correlation functions exactly agree with the results of the

recursive all-loops procedure of [22].

2.2 Chiral N = 4 superconformal invariants

As was explained in the previous subsection, the general expression for the correlation

function Gn;p is given by a linear combination of chiral N = 4 superconformal invariants

In;p accompanied by ρ-independent coefficient functions fn;p

Gn;p =
∑

i

In;p,i(x, y, ρ) fn;p,i(x, y) , (2.9)

where In;p,i are functions of the n points in analytic superspace invariant under (2.2) and

satisfying (2.5). Here the non-negative integer 0 ≤ p ≤ n−4 defines the Grassmann degree

of the invariant and the index i = 1, . . . , Nn,p labels the different solutions to (2.5).

Taking into account that the generators Q and S̄ form an abelian algebra, {QαA, S̄
B
α̇ } =

0, we can write down the general solution to (2.5) as

In;p = Q8S̄8Jn,p+4(x, y, ρ) , (2.10)
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where the right-hand side involves the product of all generators, Q8 =
∏

α,AQαA and

similarly for S̄8. Since the generators Q and S̄ are nilpotent, (QαA)
2 = 0 and (S̄A

α̇ )
2 = 0,

the ansatz (2.10) satisfies (2.5) for an arbitrary function Jn,p+4(x, y, ρ). Using a Grassmann

integral representation for Q8S̄8 we can rewrite (2.10) as

In;p =

∫

d8ǫ d8ξ̄ eǫ·Q+ξ̄·S̄Jn,p+4(x, y, ρ)

=

∫

d16ΞJn;p+4(x, y, ρ̂) , (2.11)

where ρ̂i = eǫ·Q+ξ̄·S̄ρi is given by (2.2) and Ξ = (ǫ, ξ̄) denotes the 16 odd parameters. By def-

inition, In;p is a homogenous polynomial in ρ of degree 4p. Then, it follows from (2.11) that

Jn;p+4(x, y, ρ) should have the same property but its degree of homogeneity equals 4(p+4).

Let us examine (2.11) for different Grassmann degrees 0 ≤ p ≤ n− 4.

2.2.1 Top invariant

We start with p = n − 4 corresponding to the top invariant In;n−4. According to (2.11),

In;n−4 is related to the function Jn;n(x, y, ρ). Since Jn;n(x, y, ρ) depends on n points and

has Grassmann degree 4n, it should necessarily involve the product of all ρ variables

Jn;n = ρ41 . . . ρ
4
n . (2.12)

Obviously, this Grassmann structure can be multiplied by an arbitrary function of x and y.

In the expression for the correlation function (2.9) it can be absorbed into the coefficient

function fn;n−4(x, y)

Gn;n−4 = fn(x, y)

∫

d16Ξ ρ̂41 . . . ρ̂
4
n , (2.13)

with ρ̂i given by (2.2) and fn ≡ fn;n−4. The fact that the expression on the right-hand side

contains a single term is in agreement with the uniqueness of the N = 4 superconformal

invariant for p = n− 4, Nn,n−4 = 1.

Let us verify the conformal and R-symmetry properties of (2.13). These transfor-

mations can be realised as combinations of translations and inversions of the x- and y-

coordinates. In particular, under inversion I[xi] = x−1
i and I[yi] = y−1

i the correlation

function should acquire the weight
∏

i(x
2
i )

2(y2i )
−2, which corresponds to conformal weight

2 and R-charge (−2) at each point. The corresponding transformations of the analytic

superspace coordinates are

I[ρi
αa] = ρi

αa(x−1
i )α̇α(y

−1
i )a

′

a , I[ui
+a
A ] = ui

+a
A (y−1

i )a
′

a . (2.14)

Applying inversion to (2.13), we find that the Ξ-integral produces the weight
∏

i(x
2
i y

2
i )

−2.

Then, in order to reproduce the correct transformation properties of the correlation func-

tion, the coefficient function has to satisfy

I[fn(x, y)] =
∏

i

(x2i )
4 fn(x, y) . (2.15)
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It follows from this relation that fn(x, y) is y-independent since otherwise it would depend

on the cross-ratios y2ijy
2
kl/(y

2
iky

2
jl) yielding singularities of the correlation function for y2ik →

0. This contradicts the polynomial nature of the finite-dimensional representations of

SU(4). Then, the crossing symmetry of the correlation function implies that fn(x) is

invariant under permutations of the n points, xi ↔ xj .

The coefficient function depends on the coupling constant. Substitution of (2.13)

into (2.7) yields a recurrence relations that allows us to obtain an integral representation

for fn(x) to any loop order in terms of Born level coefficient functions f
(0)
k (x) for k > n

f (ℓ)
n (x) =

∫

d4x5 . . . d
4x5+ℓ f

(0)
n+ℓ(x) . (2.16)

The Born level coefficient functions f
(0)
k (x) are totally symmetric rational functions of

x1, . . . , xn satisfying (2.15) and having only simple poles in the limit x2ij → 0.2 As was

demonstrated in [1, 2, 6], these properties alone fix the coefficient functions f
(0)
n (x) up to

an overall normalization constant, e.g. for n = 5, 6 we have

f
(0)
5 =

1
∏

1≤i<j≤5 x
2
ij

,

f
(0)
6 =

x212x
2
34x

2
56

48
∏

1≤i<j≤6 x
2
ij

+ S6 permutations . (2.17)

The explicit expressions for f
(0)
n (x) in planar N = 4 SYM up to n = 11 can be found

in [1, 2, 6].

2.2.2 Next-to-top invariants

Now we consider the correlation function (2.9) for p = n − 5. It involves next-to-top

invariants In;n−5 which are related through (2.11) to the homogenous polynomials Jn;n−1

of Grassmann degree 4(n − 1). Compared with the analogous polynomial of maximal

degree (2.12), we have to remove four factors of ρ

Jn;n−5 ∼
∂

∂ραai

∂

∂ρβbj

∂

∂ργck

∂

∂ρδdl
Jn;n−4 . (2.18)

Note that in the previous case the factor of ρ4i in (2.12) carries R-symmetry weight (−2)

at each point. In order to preserve the R-symmetry properties of Jn;n−5 we need to

compensate each of the four ρ’s removed in (2.18) with a harmonic variable ui
+a
A .

In this way, we arrive at

Gn;n−5 =
∑

Iijkl;αβγδ × fαβγδ
ijkl (x) , (2.19)

where fαβγδ
ijkl ≡ fn;n−5 are coefficient functions and the invariants Iijkl;αβγδ ≡ In;n−5 are

given by

Iijkl;αβγδ =ǫABCDui
a
Auj

b
Buk

c
Cul

d
D

∫

d16Ξ
∂

∂ρ̂αai

∂

∂ρ̂βbj

∂

∂ρ̂γck

∂

∂ρ̂δdl

(

ρ̂41 . . . ρ̂
4
n

)

. (2.20)

2The latter property follows from the operator product expansion of the supercurrents.
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The sum in (2.19) runs over all subsets i, j, k, l of four points (not necessarily different) out

of the total n points. We verify using (2.14) that Iijkl;αβγδ has R-symmetry weight (−2) at

each point. As in the previous case, this leads to independence of the coefficient function

fαβγδ
ijkl of the y-variables.

As follows from the definition (2.19), Iijkl;αβγδ is invariant under the simultaneous

interchange of positions and spinor indices

Iijkl;αβγδ = Ijikl;βαγδ = Ikjil;γαβδ etc. (2.21)

This relation implies further symmetries in the cases where the positions coincide. For

example, for i = j we find that Iiikl;αβγδ is symmetric in the corresponding spinor indices

α and β

Iiikl;αβγδ = Iiikl;βαγδ . (2.22)

Moreover, for i = j = k the invariant (2.20) vanishes due to the antisymmetry of the

u-dependent factor

Iiiil;αβγδ = 0 . (2.23)

This relation allows us to exclude the terms with three coincident position indices from

the sum in (2.19). In addition, taking into account the symmetry of the correlation func-

tion (2.19) under the exchange of any pair of points, (xi, yi, ρi) → (xσ(i), yσ(i), ρσ(i)), and

making use of (2.21), we find that the coefficient function has to satisfy

fijkl(x1 . . . xn) = fσiσjσkσl
(xσ1

. . . xσn) (2.24)

for any permutation σ of the n indices.

The invariants (2.20) are not independent and satisfy nontrivial superconformal Ward

identities
n
∑

i=1

Xα
iMIijkl;αβγδ = 0 (for all j, k, l,M, β, γ, δ) , (2.25)

where the notation was introduced for

Xα
iM = (δαλ , x

α
i,λ̇
) , (2.26)

with M = (λ, λ̇) being a composite index and α, λ, λ̇ = 1, 2. To prove these identities we

rewrite (2.2) as ρ̂i
αa = ρi

αa +Xi
α
M ΞMA ui

+a
A , so that

∂

∂ΞMA
=

n
∑

i=1

Xα
iMui

+a
A

∂

∂ρ̂αai
. (2.27)

Then, we use the definition (2.20) to get

n
∑

i=1

Xα
iMIijkl;αβγδ =

∫

d16Ξ

n
∑

i=1

Xα
iMui

+a
A

∂

∂ρ̂αai

(

ǫABCDuj
b
B uk

c
C ul

d
D

×
∂

∂ρ̂βbj

∂

∂ρ̂γck

∂

∂ρ̂δdl

n
∏

m=1

ρ̂4m

)

=

∫

d16Ξ
∂

∂Ξ
(· · ·) = 0 . (2.28)
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To obtain the correlation function (2.19) we have to specify the coefficient functions

fαβγδ
ijkl (x). The main difference compared with the previous case is that these functions

carry Lorentz indices and, as a consequence, their conformal properties become more com-

plicated. Nevertheless, as we demonstrate in the next section for n = 6, the coefficient

functions in (2.19) are uniquely determined by the symmetry properties supplemented

with the additional conditions coming from the OPE.

It is straightforward to extend the above analysis to the correlation functions (2.9) with

p < n− 5. To obtain the invariants In;p, we can use (2.11) and define Jn;p+4 recursively in

p along the same lines as (2.18). However, it is a nontrivial task to find a basis of linearly

independent invariants and, then, to determine the corresponding coefficient functions fn;p.

In the next section we show how this procedure can be carried out for n = 6.

3 The six-point correlation function

According to (2.3), the six-point correlation function contains three components. The

lowest, MHV component G6;0 coincides with the correlation function of half-BPS scalar

operators (2.4) and it is given in the Born approximation by the product of free scalar

propagators symmetrised with respect to the permutation of the n points. The connected

part of G6;0 takes the following form

G
(0)
6;0 =

y212
x212

. . .
y261
x261

+ S6 permutations (3.1)

where y2ij = 1
2(yij)

a
a′(yij)

b
b′ǫabǫ

a′b′ and yij = yi − yj . The highest, N2MHV component

G6;2 has Grassmann degree 8 and is given by (2.13) for n = 6 with f6(x) in the Born

approximation defined in (2.17).

Let us consider the remaining NMHV component G6;1. Applying (2.19) and taking

into account (2.23) we find in the Born approximation

G
(0)
6;1 = I5566;αβγδ f

αβγδ
5566 (x) + I4566;αβγδ f

αβγδ
4566 (x) + I3456;αβγδ f

αβγδ
3456 (x) + S6 perm., (3.2)

with the I-invariants given by (2.20). We recall that the coefficient functions f5566, f4566
and f3456 depend only on x’s and have conformal transformation properties to be specified

below. Furthermore, they are allowed to have only simple poles, 1/x2ij , in the limit x2ij → 0.

To make this property manifest, we use the following representation for the coefficient

functions

fαβγδ
ijkl (x) =

pαβγδijkl (x)
∏

1≤i<j≤6 x
2
ij

, (3.3)

with pijkl(x) being polynomials in x.

In summary, we have that

G
(0)
6;1 =

I5566;αβγδ p
αβγδ
5566 (x) + I4566;αβγδ p

αβγδ
4566 (x) + I3456;αβγδ p

αβγδ
3456 (x)

∏

1≤i<j≤6 x
2
ij

+ S6 perm. (3.4)
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Let us now analyse the most general form of the polynomials pαβγδijkl (x). Note that due to

the sum over S6 permutations as well as the symmetries (2.21) of the I-invariants, there are

many equivalent expressions for the p’s. It is enough for us to consider just one element

of the equivalence class and, in particular, we do not insist that the p’s have the same

symmetry properties as the I’s.

We show below that the procedure outlined in the previous section leaves only ten

independent numerical coefficients in the expression on the right-hand side of (3.4). More-

over, the number of independent coefficients reduces to four after we take into account the

supersymmetry Ward identities (2.25).

3.1 Coefficient functions

We recall that the correlation function G6;1 has conformal weight 2 at each point. Since

the denominator 1/
∏

x2ij has weight 5 at each point, the three terms in the numerator

of (3.4) should have weight (−3) at points 1, . . . , 6.

As follows from the definition (2.20), the invariant I5566 has conformal weight (−2)

at points 1, 2, 3, 4 and tensor weight (−1) at points 5 and 6. Therefore pαβγδ5566 must have

weight (−1) at points 1, 2, 3, 4 and tensor weight (−2) at points 5, 6. Furthermore, as

follows from (2.22), Iαβγδ
5566 is symmetric under the interchange of the Lorentz indices αβ

and separately of γδ. Analysing the possible polynomials satisfying these conditions, we

arrive at

pαβγδ5566 (x) = a1(x51x̃16)
αγ(x52x̃26)

βδx235x
2
46 + a2(x51x̃16)

αγ(x52x̃26)
βδx234x

2
56 , (3.5)

with a1 and a2 being arbitrary. These are the only two independent conformal polynomials

with nonvanishing contribution to (3.4). Indeed, one can show that all other possibilities

either reduce to (3.5) or vanish after summing over point permutations on the right-hand

side of (3.4).3

Similar arguments for the second term in the numerator of (3.4) leave the following

five possibilities for pαβγδ4566 (x)

pαβγδ4566 (x) = b1(x45x̃56)
αγ(x53x̃36)

βδx212x
2
46 + b2(x43x̃36)

αγ(x52x̃26)
βδx216x

2
45

+ b3(x43x̃36)
αγ(x52x̃26)

βδx215x
2
46 + b4(x45x̃56)

αγ(x53x̃36)
βδx216x

2
24

+ b5(x45x̃56)
αγ(x54x̃46)

βδx216x
2
23 . (3.6)

This is acted upon by an S3 × S2 symmetry, where the S3 permutes points 1, 2, 3, and the

S2 factor exchanges 4, 5 whilst simultaneously interchanging the indices α, β.

3By construction, I5566 is invariant under an S4({1, 2, 3, 4})×S2({5, 6}) part of the entire S6 symmetry.

The orbit of S6/(S4×S2) contains all the 15 point permutations of I5566 while the isotropy group transforms

p5566. For example one could imagine replacing x1 and x2 in (3.5) with different points. But they cannot

be replaced by x5 or x6 since this will vanish and replacing by x3 or x4 is equivalent by the S4 permutation

symmetry between points 1,2,3,4. We could also imagine having longer chains of x’s e.g. (x51x̃12x23x̃36)
αγ .

But the permutation symmetry means that points 1, 2 appear symmetrised (these points cannot appear

anywhere else in p due to the conformal weight) and, due to the identity x51x̃12x23 +x52x̃21x13 = −x2

12x53,

this reduces to previous cases.
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Finally for the third term in the numerator of (3.4) we have just three possibilities

for pαβγδ3456 (x)

pαβγδ3456 (x) = c1(x36x̃65)
αγ(x45x̃56)

βδx214x
2
23 + c2(x32x̃25)

αγ(x41x̃16)
βδx236x

2
45

+ c3(x36x̃65)
αγ(x42x̃26)

βδx215x
2
34 . (3.7)

One might consider the following additional terms

(x32x̃25)
αγ(x41x̃16)

βδx235x
2
46 ,

(x36x̃65)
αγ(x42x̃26)

βδx214x
2
35 ,

(x36x̃65)
αγ(x45x̃56)

βδx212x
2
34 , (3.8)

but they do not contribute to (3.4). For the first two terms this is due to the antisymmetry

of (x3j x̃j5)
αγ under the exchange of points 3 and 5, (x3j x̃j5)

αγ = −(x5j x̃j3)
γα, whereas for

the last term it requires a bit more work to see this analytically.

In summary then, simple symmetry considerations together with the understanding of

the pole structure have allowed us to reduce the freedom in the six-point NMHV corre-

lation function G
(0)
6;1 to just ten arbitrary coefficients, a1, a2, b1, b2, b3, b4, b5, c1, c2, c3. The

expression for the correlation function is then obtained by plugging (3.5), (3.6) and (3.7)

into (3.4) leading to

G
(0)
6;1 =

1
∏

1≤i<j≤6 x
2
ij





3
∑

i=1

aiAi +
5

∑

j=1

bjBj +
3

∑

k=1

ckCk



 , (3.9)

where we introduced a notation for the S6 symmetric (super)conformal polynomials, e.g.

A1 = (x51x̃16)
αγ(x52x̃26)

βδx235x
2
46I5566;αβγδ + S6 permutations ,

A2 = (x51x̃16)
αγ(x52x̃26)

βδx234x
2
56I5566;αβγδ + S6 permutations ,

B2 = (x43x̃36)
αγ(x52x̃26)

βδx216x
2
45I4566;αβγδ + S6 permutations , (3.10)

and likewise for the remaining A, B and C.

3.2 Identities

The supersymmetry Ward identity (2.25) leads to nontrivial relations between the various

terms in (3.9). Multiplying both sides of (2.25) by the appropriate tensor structurres

and summing over the S6 permutations yields the following three independent identities

involving only A- and B-type terms
(

6
∑

i=1

Ii566;αβγδ(xi1x̃16)
αγ(x52x̃26)

βδx234x
2
56

)

+ S6 perm. = B1 + 2B3 +A2 = 0

(

6
∑

i=1

Ii566;αβγδ(xi1x̃16)
αγ(x52x̃26)

βδx235x
2
46

)

+ S6 perm. = B4 +B2 +B3 +A1 = 0

(

6
∑

i=1

Ii566;αβγδ(xi1x̃16)
αγ(x52x̃26)

βδx234x
2
56

)

+ S6 perm. = B5 + 2B4 +B1 = 0 . (3.11)
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For example, to obtain the first relation in (3.11), we multiply (2.25) by

X̄Mα̇
1 (x̃16)α̇

γ(x52x̃26)
βδx234x

2
56 , (3.12)

with X̄Mβ̇ = (−xαβ̇ , δα̇
β̇), and then sum over S6 permutations. Consider the six terms

separately in the sum over i in the first line in (3.11). For i = 1 the expression vanishes

(due to the x11 = 0), for i = 2 we get

I2566;αβγδ(x21x̃16)
αγ(x52x̃26)

βδx234x
2
56 ,

which on swapping the points 2 → 5 → 4 → 2 and 1 ↔ 3 gives

I5466;αβγδ(x53x̃36)
αγ(x45x̃56)

βδx212x
2
46 = I4566;αβγδ(x45x̃56)

αγ(x53x̃36)
βδx212x

2
46 .

This term is equal to B1 after summing all permutations. Continuing in this way, and

comparing with the A’s and B’s defined above we obtain the right-hand side of (3.11).

Identities of the form
∑

i Ii456 which involve B and C are a little less straighforward

to see. However we have obtained analytically and verified using a computer the following

identities

B4 − C1 + C3 = 0 ,

B2 −B3 − C2 + C3 = 0 ,

B1 − 2C3 = 0 . (3.13)

Combining together (3.11) and (3.13), we conclude that there are six identities between A,

B and C, so that (3.9) contains, in fact, only 10− 6 = 4 independent unfixed coefficients.

Choosing A1, A2, B2 and B3 as a basis we finally obtain

G
(0)
6;1 =

a′1A1 + a′2A2 + b′2B2 + b′3B3
∏

1≤i<j≤6 x
2
ij

, (3.14)

with a′1, a
′
2, b

′
2 and b′3 being arbitrary coefficients.

3.3 Light-like limit

To fix the coefficients in (3.14) we shall exploit the known asymptotic behavior of the

six-point NMHV correlation function G6;1 in the limit where operators become light-like

separated [23]4

lim
x2

12
→0

x212 T (1)T (2) = y212
∑

O

PO(x12, ρ12, y12)O(2) , (3.15)

where the sum runs over twist-two operators O with the coefficient functions PO being poly-

nomial in x12, ρ12 and y12. Inserting (3.15) intoGn;k we deduce that limx2

12
,y2

12
→0(x

2
12Gn;k)=

4We discard here the contribution of the identity operator since it corresponds to a disconnected piece

of the correlation function.
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0 which we can use as a further constraint on the correlation function. Imposing this con-

straint on the result with four unfixed coefficients (3.14)

lim
x2

12
,y2

12
→0

(

a′1A1 + a′2A2 + b′2B2 + b′3B3

)

= 0 , (3.16)

which can be easily implemented on a computer,5 gives a′1 = −2a′2, b
′
2 = −8a′2, b

′
3 = 0.

Thus we obtain the correlation function up to a single unfixed overall constant

G
(0)
6;1 = a′2

A2 − 2A1 − 8B2
∏

1≤i<j≤6 x
2
ij

. (3.17)

Finally the overall constant can be fixed for example by using the amplitude/correlator

duality [19–21] which states that in the pentagon light-like limit

lim
x2

12
,x2

23
,x2

34
,x2

45
,x2

51
→ 0

x212x
2
23x

2
34x

2
45x

2
51 ×G6;1

∣

∣

ρ4
6

= y212y
2
23y

2
34y

2
45y

2
51 × 2M

(1)
5 (x) , (3.18)

where M
(1)
5 (x) should match the known expression for the one-loop five-point MHV am-

plitude [22] in N = 4 SYM with the SU(N) gauge group. We indeed find a precise match

if we set the overall constant

a′2 = −
N

480
. (3.19)

We finally arrive at the following result for the six-point NMHV correlation function

G
(0)
6;1 = −

N

480

A2 − 2A1 − 8B2
∏

1≤i<j≤6 x
2
ij

, (3.20)

with A1, A2 and B2 given by (3.10). In distinction with the results on the same class of

correlation functions obtained in [10] using the twistor space approach, the new expression

(3.20) is free from auxiliary gauge fixing parameters (like a reference twistor), does not

have spurious singularities and is manifestly N = 4 superconformally invariant. Relation

(3.20) is the main result of this paper.

Thus we demonstrated in this section that the six-point correlation function of the

stress-tensor supermultiplet is fixed by its symmetry properties combined with the known

structure of the OPE. Finally we compared the explicit expressions for various components

of (3.20) with those computed using both standard Feynman diagrams as well as twistor

space methods. All components agree perfectly with those found in [10, 12, 13].

4 Comparison with the six-point NMHV amplitude

We can use the duality relation (2.8) for n = 6 to obtain from (3.20) the tree-level expression

for the six-point NMHV superamplitude

lim
G

(0)
6;1

G
(0)
6;0

= 2
ANMHV

6

AMHV
6

≡ 2RNMHV
6 , (4.1)

5For example, see the attachedMathematica notebook where this limit is performed on the ρ46 component.
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where the six-point light-like limit is specified in appendix A.3 and the notation is intro-

duced for the ratio of the tree-level superamplitudes RNMHV
6 . Here, the expression on the

left-hand side involves the correlation function G
(0)
6;0 defined in (3.1). In the light-like limit

it can be replaced by its leading asymptotic behavior given by the first term on the right-

hand side of (3.1). The factor of 2 on the right-hand side comes from expanding the square

in (2.8).

Notice that in the six-point light-like limit,

[1, . . . , n] ≡ {x212, . . . , x
2
n−1,n, x

2
n1 → 0} , (4.2)

for n = 6, the cyclic S6-symmetry of the correlation function is broken down to the six-

point dihedral symmetry (i.e. cyclicity, i → i + 1, and point reversal symmetry, i →

7 − i) which is a symmetry of the amplitude. The N = 4 superconformal symmetry

of the correlation function leads through the duality relation (4.1) to the dual N = 4

superconformal symmetry of the scattering amplitudes [24]. As a consequence, the ratio

function RNMHV
6 can be written down in a manifestly invariant way as a sum over the dual

superconformal invariants

RNMHV
6 =

∑

1≤i<j≤6

R∗ii+1jj+1 . (4.3)

These invariants admit a simple representation if rewritten in the momentum supertwistor

space (ziM , χA
i ) [11, 24]

Rijklm =
δ4
(

〈ijkl〉χm + cyclic
)

〈ijkl〉〈jklm〉〈klmi〉〈lmij〉〈mijk〉
, (4.4)

where 〈ijkl〉 = ǫMNKLziMzjNzkKzlL and the argument of the Grassmann delta-function is

invariant under cyclic shift of the five indices. Rijklm vanishes if any two indices coincide.

The invariant R∗ii+1jj+1 in (4.3) depends on four points and the reference supertwistor

(z∗M , χA
∗ ) denoted by an asterisk. Replacing in (4.1) the correlation function and the ratio

function by their explicit expressions, eqs. (3.20) and (4.3), respectively, we verified the

duality relation (4.1).

Although the R-invariants make the dual superconformal invariance manifest, they

obscure the known analyticity properties of the scattering amplitudes. Namely, each in-

dividual term in (4.3) depends on the reference twistor and, in addition, has non-physical

spurious poles. The dependence on the reference twistor and the spurious poles disappear

in the sum (4.3), although this is far from obvious. In other words, there is a conflict

between the manifest dual superconformal symmetry of the invariants and their analytic

properties.

It is thus instructive to give up the full N = 4 dual superconformal symmetry and

seek another representation of the ratio function (4.3) that has no spurious poles but is

invariant under half of N = 4 dual superconformal symmetry, in a direct analogy to our

construction of the correlation function in the previous section.

– 14 –



J
H
E
P
0
3
(
2
0
1
6
)
0
3
1

We first note that the chiral half of the N = 4 dual superconformal symmetry acts

linearly on the odd components of the momentum supertwistors (ziM , χA
i )

χA
i → χ̂A

i = χA
i + ziM ΞMA , (4.5)

with the same 16 odd parameters Ξ = (ǫ, ξ̄) of Q- and S̄-transformations as before. In

close analogy with (2.10) and (2.11), we can rewrite (4.4) in a form that is manifestly Q-

and S̄-invariant

Rijklm = Q8S̄8

[

χ4
iχ

4
jχ

4
kχ

4
l χ

4
m

〈ijkl〉〈jklm〉〈klmi〉〈lmij〉〈mijk〉

]

=

∫

d16Ξ χ̂4
i χ̂

4
j χ̂

4
kχ̂

4
l χ̂

4
m

〈ijkl〉〈jklm〉〈klmi〉〈lmij〉〈mijk〉
. (4.6)

It is clear that this expression has a very special form. At six points we can define the

most general form of the invariant (compare with the invariants (2.20) for the correlation

function)

Iijkl = ǫABCD

∫

d16Ξ
∂

∂χ̂A
i

∂

∂χ̂B
j

∂

∂χ̂C
k

∂

∂χ̂D
l

(χ̂1)
4(χ̂2)

4(χ̂3)
4(χ̂4)

4(χ̂5)
4(χ̂6)

4 . (4.7)

With this definition the six-point R-invariant (4.4) takes the following form

Rijklm =
Ipppp

〈ijkl〉〈jklm〉〈klmi〉〈lmij〉〈mijk〉
(4.8)

with (i, j, k, l,m, p) being a permutation of the six points. Choosing the reference super-

twistor in (4.3) to be (z∗M , χA
∗ ) = (z6M , χA

6 ), we obtain from (4.3) [24]

RNMHV
6 =

I1111
〈2345〉〈3456〉〈4562〉〈5623〉〈6234〉

+
I3333

〈4561〉〈5612〉〈6124〉〈1245〉〈2456〉

+
I5555

〈6123〉〈1234〉〈2346〉〈3461〉〈4612〉
. (4.9)

Notice that RNMHV
6 only contains invariants Iiiii with four repeated indices rather than the

general invariant Iijkl. The reason is that only in this case the special invariants Rijklm

are also invariant under the other half of dual superconformal symmetry, namely Q̄ and

S. On the other hand, RNMHV
6 should only have physical poles of the form 1/〈i i+1 j j+1〉

whereas the three terms in (4.9) have non-physical poles, e.g. 1/〈4562〉 and 1/〈6234〉 which

cancel however in the sum (4.9).

Let us try to represent the six-point NMHV ratio function in the form

RNMHV
6 =

∑6
i,j,k,l=1 cijklIijkl

〈1234〉〈2345〉〈3456〉〈4561〉〈5612〉〈6123〉〈1245〉〈2356〉〈3461〉
, (4.10)

where we have explicitly written the product of all allowed physical poles in the denom-

inator, and put an arbitrary linear combination of all invariants in the numerator. The
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coefficients cijkl must be polynomial functions of the bosonic twistor variables z1, . . . , zn
only. Furthermore dual conformal invariance fixes these polynomials to be a product of

four twistor four-brackets 〈i1i2i3i4〉 with fixed homogeneity in the z-variables. Namely, cijkl
should have homogeneity 2 at each point with an additional power at the points i, j, k, l

cijkl(λ1z1, . . . , λ6z6) = (λ1 . . . λ6)
2λiλjλkλl cijkl(z1, . . . , z6) . (4.11)

These properties preclude the possibility of having coefficients with three or more repeated

indices, ciiii = ciiij = 0 since they would necessarily include twistor four-brackets with

coinciding indices and, hence, vanish by antisymmetry, 〈i1i2i3i4〉 = −〈i2i1i3i4〉. For other

cases we have to list all possibilities. On top of this we impose dihedral symmetry ofRNMHV
6 .

In addition, we have to take into account the superconformal Ward identities for the

invariant (4.7) (just as we did for the correlator (2.25) and (3.13)). In the present case

we have

6
∑

i=1

ziMIijkl = 0 . (4.12)

Going through the calculation, we obtain from (4.10) an expression for RNMHV
6 that involves

14 arbitrary coefficients (this should be compared with the equivalent situation for the

correlation function (3.14) which depends on four parameters only). To fix these coefficients

we require that (4.10) should match (4.9). This yields the representation (4.10) for the

ratio function which has physical poles only, manifest (chiral) N = dual superconformal

symmetry and the dihedral symmetry.

We can of course obtain many different representations of RNMHV
6 , depending on the

choice of basis of independent invariants satisfying (4.12). As an additional condition, we

can look for a solution in which the coefficients cijkl are given by the product of four twistor

brackets of the form 〈i i+1 j j+1〉, thus cancelling the same number of twistor brackets in

the denominator of (4.10). The resulting expression for RNMHV
6 is then given by a sum

of terms each containing the product of five physical poles. Even with this restriction

there are a number of different forms for the amplitude. The simplest form with these

properties is

RNMHV
6 =

1

2

I1366
〈1234〉〈1245〉〈1256〉〈2345〉〈3456〉

+ dihedral123456 (4.13)

where ‘dihedral’ denote 8 other terms with permuted indices needed to ensure the invariance

of RNMHV
6 under the cyclic shift of indices and six point reversal.

The last relation should be compared with a similar expression for n-point NMHV am-

plitude found in [25] using a different approach. Both expressions are cyclically symmetric

and are given by the sum of terms each involving five physical poles only. The difference

is however that (4.13) has manifest chiral N = 4 superconformal symmetry.6

6We thank Jaroslav Trnka for a discussion of these issues.
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5 Conclusions

In this paper, we have studied the chiral sector of the correlation functions of stress-tensor

supermultiplets in N = 4 SYM in the analytic superspace formulation [26–28]. As a

corrolary of the R-symmetry, the expansion of the correlation functions goes in powers

of the chiral Grassmann variables multiple of 4, like the scattering superamplitudes in

the theory. This similarity is explained by the relation between the two quantities in the

light-like limit [16–21].

We demonstrated that the n-point correlation function is given by a linear combination

of chiral N = 4 superconformal invariants accompanied by coefficient functions depending

only on the bosonic coordinates. We presented an explicit construction of the chiral N = 4

superconformal invariants and showed that the form of the coefficient functions is heavily

restricted by conformal symmetry, the internal R-symmetry, point permutation invariance

and the absence of higher and non-physical poles.

We discussed in detail the six-point NMHV correlation function in the Born approx-

imation. In this case, we encounter three different types of N = 4 invariants and the

aforementioned symmetry requirements constrain the corresponding coefficient functions

up to a total of ten constant coefficients. In addition, the six-point invariants satisfy

nontrivial superconformal Ward identities leading to further redundancy. Solving these

identities we were able to eliminate six constants, leaving only four unfixed parameters.

To determine these parameters, we examined the asymptotic behavior of the correlation

function in the limit where any two operators become light-like separated. In this limit,

the dependence of the correlation function on the isotopic SU(4) coordinates should factor

out into a universal factor. We argued that the requirement for the general ansatz for the

six-point correlation function to have this factorization property fixes unambiguously all

the parameters in the Born approximation up to an overall normalization.

We verified that, in agreement with the conjectured correlation function/scattering

amplitude duality, the obtained result for the correlation function correctly reproduces

the known expressions for the five-point one-loop MHV and six-point tree-level NMHV

amplitudes. Finally, we have shown that the same approach can be applied to obtain a

representation for the scattering amplitudes that is free from any auxiliary parameters and

does not involve spurious poles.

There are several directions for further development of our approach. It would be

interesting to extend the above analysis to correlation functions at higher loops and more

points. Although the complexity steeply increases with the number of loops/points, we

expect that, similarly to what happens for the scattering amplitudes in planar N = 4 SYM,

the final expressions for the correlation functions should exhibit remarkable simplicity. We

recall that we restricted our consideration to the chiral sector. To restore the dependence

of the correlation functions on the antichiral Grassmann variables, we have to revisit the

construction of n-point superconformal invariants. For n = 4 this problem has been solved

in [29, 30] whereas for n ≥ 5 it still awaits solution.
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A The computational setup: extracting components

In this appendix we describe some technical details of the calculation of the six-point

NMHV correlation function.

A.1 Expansion of superconformal invariants

To compute various components of the six-point NMHV correlation function (3.20) we need

to expand the invariants (2.20) in powers of ρ’s. As we show below this amounts to taking

the determinant of a 16× 16 matrix and can be easily implemented on a computer.

Introducing a compact notation for ραiai
i ≡ ρIi with the composite index Ii = (i, αi, ai)

we obtain form (2.20) for n = 6 points

Ii5i6i7i8;α5α6α7α8
=

∑

I1,I2,I3,I4

ρI1ρI2ρI3ρI4 ǫ
ABCDui1

+a1
A ui2

+a2
B ui3

+a3
C ui4

+a4
D

×

∫

d16Ξ
∂

∂ρ̂I1
. . .

∂

∂ρ̂I8

[

6
∏

m=1

ρ̂4m

]

, (A.1)

with ρ̂αai = ραai + XiM
α ΞMA ui

+a
A . Now consider the Grassmann integral in the second

line of the last equation. Since it does not depend on ρ’s, we may safely replace ρ̂αai →

XiM
α ΞMA ui

a
A after taking 8 derivatives with respect to ρ̂’s. The resulting Ξ-integral

reduces to the determinant of a certain matrix built from X’s and u’s.

It is convenient to introduce the auxiliary 24× 16 matrix

ZI
M = XiM

αui
a
A (A.2)

so that XiM
α ΞMA ui

a
A = ZI

M ΞM, with the composite indices I = (i, α, a) and M =

(M,A) taking 6× 2× 2 and 4× 4 values, respectively. Then we have

∫

d16Ξ
∂

∂ρ̂I1
. . .

∂

∂ρ̂I8

[

6
∏

m=1

(ρ̂m)4

]

=
[

Z
]

I1I2I3I4I5I6I7I8
, (A.3)

where by [Z]I1I2I3I4I5I6I7I8 we denote the maximal 16 × 16 minor obtained by taking

the determinant of the matrix obtained from the 24 × 16 matrix Z by removing the

rows I1, I2, . . . I8.
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Applying (A.1) and (A.3) we can expand the polynomials (3.10) in powers of the

Grassmann variables, e.g.

A1 =
∑

I1,I2,I3,I4

ρI1ρI2ρI3ρI4

{

[Z](5αa)(5βb)(5γc)(5δd)I1I2I3I4 ǫ
ABCDu5

a
A u5

b
B u6

c
C u6

d
D

× (x51x̃16)
αγ(x52x̃26)

βδx235x
2
46 + S6 permutations

}

, (A.4)

where the permutations act only on the particle numbers 1, 2, 3, 4, 5, 6 (and do not act on

I1, . . . , I4). It is straightforward enough to implement this relation on Mathematica. For

illustration we attach a notebook to the arXiv submission of the article.

We can further simplify the calculation by making use of conformal symmetry. We

recall that the polynomials (3.10) have conformal weight (−3) at each point. Then, the

conformal symmetry allows us to fix four out of six space-time coordinates xα̇αi . For

example, we can put x−1
1 → 0, x2 diagonal 2× 2 matrix, x3 → I2, x4 → 0 while x5, x6 are

left as arbitrary 2 × 2 matrices. Similar choices can be also made for the yi variables. In

this gauge, the calculation of the determinant in (A.3) is simplified significantly. It is then

straightforward to reconstruct the fully covariant answer.

A.2 The five-point light-like limit

We can fix the coefficients in (3.14) by examining the asymptotic behaviour of the six-point

correlator in the light-like limit (3.18).

In order to define the five-point light-like limit (4.2), it is convenient to make use of

the variables Xα
iM introduced in (2.26). Then, it is easy to see that

x2ij ∼ ǫαβǫγδǫ
MNKLXα

i,MXβ
i,NXγ

j,KXδ
j,L . (A.5)

This relation is invariant under ocal SL(2) transformations Xα
iM → gαβ (xi)X

β
iM . Using this

property, we can realise the five-point light-like limit by assigning the following values of

Xα
iM for α = 1, 2

Xα
i,M = (ziM , zi−1M ) , Xα

6,M = (z7M , z6M ) , (1 ≤ i ≤ 5) (A.6)

with z0,M = z5,M . Indeed, we find from (A.5) that for 1 ≤ i, j ≤ 5

x2ij ∼ ǫMNKLziMzi−1NzjKzj−1L ≡ 〈i, i− 1, j, j − 1〉 , (A.7)

leading to x2i,i+1 → 0 with x2i6 6= 0, in agreement with (4.2).

We expect from (3.18) that the O(ρ46) component of the correlation function (3.14)

should factorise in the kinematics (A.6) into the product of y212 . . . y
2
51 and an x-dependent

function. Since ρ46 carries the required R-charge at point 6, its coefficient can only depend

on y1, . . . , y5. The latter dependence is constrained by the R-symmetry that acts on the y’s

very much the same as the conformal group on the x’s. Examining all possible polynomials

in y2ij that transform covariantly under R-symmetry with weight (−2) at points 1, . . . , 5,

we find that

y212y
2
23y

2
34y

2
45y

2
51 , (y212)

2y234y
2
45y

2
53 (A.8)
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and their eleven and nine S5 permutations, respectively, are the only structures that can

occur. Following (3.18) we have to impose the absence of all but the first of these.

As mentioned above, we can simplify the calculation by choosing an appropriate gauge

for the x- and y-variables. The conformal symmetry can be used to put ziN = δiN for

1 ≤ i ≤ 4 in (A.6) while z5, z6, z7 remain general. For the y-variables we use R-symmetry

to choose

y1 → ∞ I2 , y2 =

(

y 0

0 ȳ

)

, y3 = I2 , y4 = 0 , (A.9)

while y5 remains general; y6 drops out because ρ46 saturates the R-charge at point 6.

Going through the calculation, we obtain the following expression for a particular O(ρ46)

component of the correlation function (3.14) in the light-like limit (3.18)

lim
[1,...,5]

x2
12x

2
23x

2
34x

2
45x

2
51×G6;1

∣

∣

ρ4

6

=
y214y

2
15(y

2
23)

2y245
〈1267〉〈2367〉〈3467〉〈4567〉〈5167〉

×
{

8(a′1+2a′2−b′3)[〈1345〉〈2345〉〈1267〉+〈1245〉〈1345〉〈2367〉]

+2(−2a′1−4a′2+3b′3)[〈1235〉〈1245〉〈3467〉+〈1234〉〈2345〉〈1567〉]

+2(−8a′1+2b′2+3b′3)〈1345〉
(

〈5127〉〈2346〉−〈5126〉〈2347〉
)

+2(6a′1−4a′2−2b′2−b′3)〈1234〉〈1235〉〈4567〉
}

+... (A.10)

where 〈ijkl〉 = ǫNMKLziMzjNzkKzlL and ellipses denote terms with other y-structures.

According to (3.14), the coefficient in front of y214y
2
15(y

2
23)

2y245 should vanish. Putting the

right-hand side of (A.10) to zero yields

a′1 = −2 a′2 , b′2 = −8 a′2 , b′3 = 0 . (A.11)

We verified that this choice eliminates in fact all unwanted y-structures leading to

lim
[1,...,5]

x212x
2
23x

2
34x

2
45x

2
51 ×G6;1

∣

∣

ρ4
6

=

− 960 a′2 y
2
12y

2
23y

2
34y

2
45y

2
51

×
〈1234〉〈2345〉〈1567〉+ 〈1235〉〈1245〉〈3467〉+ 〈1345〉

(

〈5127〉〈2346〉 − 〈5126〉〈2347〉
)

〈1267〉〈2367〉〈3467〉〈4567〉〈5167〉
.

(A.12)

Although this is not manifest, this relation is invariant under the cyclic shifts of points

1 . . . 5. We verified that (A.12) agrees with the known result for the four-dimensional

integrand of the one-loop five-point MHV amplitude [22] with the normalization constant

a′2 given by the following expression for an SU(N) gauge group

a′2 = −
N

480
. (A.13)
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A.3 The six-point light-like limit

As another test of (3.20) we can examine the asymptotic behavior of G
(0)
6;1 in the six-point

light-like limit, eq. (4.2) for n = 6. According to (2.8), we expect to recover in this limit

the known expression for the six-particle tree-level NMHV amplitude [11, 24].

The analysis goes along the same lines as in the five-point light-like limit. The analogue

of formula (A.6) is

Xα
iM = (ziM , zi−1M ) , 1 ≤ i ≤ 6 , z0 = z6 . (A.14)

The six-point scattering amplitude ANMHV
6 depends on momentum twistors zi,M and their

supersymmetric counter-parts χA
i . The latter are related to the Grassmann variables θαAi

entering (2.1) in the same fashion as (A.14)

θαAi = (χA
i , χA

i−1) , 1 ≤ i ≤ 6 , χ0 = χ6 , (A.15)

or equivalently ραai = (χA
i ui

+a
A , χA

i−1 ui
+a
A ). Going through the calculation we found that

lim
[1,...,6]

x212x
2
23x

2
34x

2
45x

2
56x

2
61 ×G

(0)
6;1 ∼ y212y

2
23y

2
34y

2
45y

2
56y

2
61A

NMHV
6 , (A.16)

in agreement with (2.8). The details can be found in a Mathematica notebook included

with the arXiv submission of this article.
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