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1 Introduction

It has been noted recently that the simplest λφ4 theory in D = 4 is not incorporated in the

framework of the gradient flow in the sense that the flow drives the fields to configurations

corresponding to minima of the action [1–3]. This is in sharp contrast to the case of pure

Yang-Mills field theory [4, 5] with a slight modification in the case of QCD [6]. See also

a recent review [7] and earlier related works [8, 9]. In the general context of smearing

in field theory, one should include the stout-smearing [8] as well as the gradient flow in

a narrow sense which drives the fields to minima of the action [4, 5]. For example, the

smeared operator product expansion [3] and the analysis of energy-momentum tensor [2]

both of which are based on the simple Gaussian smearing in λφ4 theory, in addition to

the smearing of fermions in QCD [6], are counted as interesting applications of the idea

of smearing. In the present paper, however, we use the term “gradient flow” in a rather

narrow sense which drives the fields to minima of the action.

If one attempts at the gradient flow in λφ4 theory by incorporating interactions in

the flow time evolution, as is done in pure Yang-Mills theory, the wave-function, mass

and coupling constant renormalization factors need to satisfy certain relations if one asks

the gradient flow equation to be consistently defined in terms of bare quantities. But the

actual λφ4 theory in D = 4 does not satisfy these conditions. This formulation of λφ4

theory would thus remove the renormalization property of the gradient flow that proves

useful; renormalized correlation functions would no longer be guaranteed to remain finite

at non-zero flow time. It has been widely believed that this difference stems from the

internal symmetries of pure Yang-Mills theory that has no analogue in scalar λφ4 theory in

D = 4; in pure Yang-Mills theory, it is gauge invariance, manifested through appropriate

BRST symmetries, that ensures no new counterterms generated by the gradient flow [1].
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We want to show in the present paper that the gradient flow of scalar λφ4 theory in D = 4

can also be consistently defined if suitably formulated.

A way to avoid the complications in λφ4 theory in D = 4 mentioned above may be to

write the gradient flow equation in terms of renormalized quantities.1 Even in this case,

it has been recognized that divergences which cannot be cancelled by any counter term

appear in the flow equation in D = 4 [10]. To be explicit, one may start with the simplest

flow equation in the Euclidean metric gµν = (1, 1, 1, 1),

Φ̇(t, x) = �Φ(t, x)−m2Φ(t, x)− λΦ3(t, x) (1.1)

with Φ̇ = d
dt
Φ for t ≥ 0 and renormalized mass m2 and coupling constant λ, and the initial

condition

Φ(0, x) = φ(x) (1.2)

where φ(x) stands for the renormalized field. When one expands

Φ(t, x) = ϕ0(t, x) + λϕ1(t, x) + λ2ϕ2(t, x) + . . . , (1.3)

one has

ϕ̇0(t, x) + (−�+m2)ϕ0(t, x) = 0,

ϕ̇1(t, x) + (−�+m2)ϕ1(t, x) = −ϕ0(t, x)
3,

. . . (1.4)

with

ϕ0(0, x) = φ(x), ϕ1(0, x) = 0. (1.5)

Thus we have

ϕ0(t, x) = e−(−�+m2)tφ(x),

=

∫

d4yK(t, x− y)φ(y) (1.6)

with

K(t, x− y) = 〈x|e−(−�+m2)t|y〉

=

∫

d4k

(2π)4
e−k2t+ik(x−y)−m2t

=
1

16π2

1

t2
exp

[

−(x− y)2

4t
−m2t

]

. (1.7)

We also have

ϕ1(t, x) = −
∫ t

0
ds

∫

d4yK(t− s, x− y) (1.8)

×
[
∫

d4z1d
4z2d

4z3K(s, y − z1)K(s, y − z2)K(s, y − z3)φ(z1)φ(z2)φ(z3)

]

.

1Renormalized flow equation has been considered by S. Aoki, E. Itou, and also H. Suzuki (private

communication).
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When one contracts two fields φ(z1) and φ(z2), for example, to 〈φ(z1)φ(z2)〉 to examine

an (open) tadpole-type diagram in ϕ1(t, x), namely, a loop diagram of φ(x) detached from

the main part of the Green’s functions in λφ4 theory, one obtains the factor

f(t) =

∫

d4k

(2π)4
1− e−2(k2+m2)t

2(k2 +m2)

1

k2 +m2
, (1.9)

which diverges even for t > 0 [10]. This divergence is not cancelled by any counter term,

and this shows the failure of the renormalized gradient flow equation (1.1) to define the

finite probe variable. (See also eq. (2.22) below.)

2 A proposal

We here propose a way to make the renormalized gradient flow equation for the simplest

λφ4 theory in D = 4 consistent.

We start with the Euclidean field theory
∫

Dφ0 exp

{
∫

d4xL
}

(2.1)

with

L = −1

2
∂µφ0(x)∂µφ0(x)−

1

2
m2

0φ
2
0(x)−

1

4
λ0φ

4
0(x)

= −1

2
∂µφ(x)∂µφ(x)−

1

2
m2φ2(x)− 1

4
λφ4(x) + Lcounter, (2.2)

where m2, λ and φ all stand for the finite renormalized quantities, and Lcounter contains

all the counter terms that render all the Green’s functions 〈T ⋆φ(x1)φ(x2)φ(x3) . . .〉 which
are defined by

〈T ⋆φ(x1)φ(x2)φ(x3) . . .〉 =
∫

Dφ (φ(x1)φ(x2)φ(x3) . . .) exp

{
∫

d4xL
}

(2.3)

finite. The Euclidean metric convention is gµν = (1, 1, 1, 1). The operator equation of

motion is then

〈−�φ(x) +m2φ(x) + λφ3(x)− δLcounter

δφ(x)
〉 = 0. (2.4)

The flow equation we propose is defined by

Φ̇(t, x) = −(−�+m2)2Φ(t, x)− λ(−�+m2)Φ3(t, x) (2.5)

with t ≥ 0 and

Φ(0, x) = φ(x). (2.6)

This prescription is allowed since the gradient flow does not modify the basic dynamics

of the starting field theory, and it does not alter the possible asymptotic equation (−�+

m2)Φ(t, x)+λΦ3(t, x) = 0 arising from Φ̇(t, x) = 0 for t → ∞ in Euclidean theory. It should

be noted that the “time” t in (2.5) has mass dimensions [t] = [M ]−4 in contrast to the

“time” t in (1.1) which has [t] = [M ]−2, although we use the same notation for simplicity.

– 3 –



J
H
E
P
0
3
(
2
0
1
6
)
0
2
1

It is suggestive to write our proposed flow equation in the form

Φ̇(t, x) = −D̂x

[

(D̂x + λΦ2(t, x))Φ(t, x)
]

(2.7)

with

D̂x = −�+m2, (2.8)

in comparison with Yang-Mills theory.

We then expand

Φ(t, x) = ϕ0(t, x) + λϕ1(t, x) + λ2ϕ2(t, x) + . . . , (2.9)

and we have

ϕ̇0(t, x) + (−�+m2)2ϕ0(t, x) = 0,

ϕ̇1(t, x) + (−�+m2)2ϕ1(t, x) = −(−�+m2)ϕ0(t, x)
3,

ϕ̇2(t, x) + (−�+m2)2ϕ2(t, x) = −(−�+m2)3ϕ1(t, x)ϕ0(t, x)
2,

ϕ̇3(t, x) + (−�+m2)2ϕ3(t, x) = −(−�+m2)

×
[

3ϕ2(t, x)ϕ0(t, x)
2 + 3ϕ0(t, x)ϕ1(t, x)

2
]

,

. . . , (2.10)

with the initial conditions,

ϕ0(0, x) = φ(x), ϕ1(0, x) = 0, ϕ2(0, x) = 0, . . . . (2.11)

Thus we have

ϕ0(t, x) = e−(−�+m2)2tφ(x),

=

∫

d4yK(t, x− y)φ(y) (2.12)

with

K(t, x− y) = 〈x|e−(−�+m2)2t|y〉

=

∫

d4k

(2π)4
e−(k2+m2)2t+ik(x−y) (2.13)

whose explicit form is not obtained but it defines smearing with respect x and y and

K(0, x− y) = δ(x− y). (2.14)

We thus have

ϕ1(t, x) = −
∫ t

0
ds

∫

d4yK(t− s, x− y)(−�+m2)yϕ0(s, y)
3

= −(−�+m2)x

∫ t

0
ds

∫

d4yK(t− s, x− y)ϕ0(s, y)
3

ϕ2(t, x) = −
∫ t

0
ds

∫

d4yK(t− s, x− y)(−�+m2)y
[

3ϕ1(s, y)ϕ0(s, y)
2
]

= −(−�+m2)x

∫ t

0
ds

∫

d4yK(t− s, x− y)
[

3ϕ1(s, y)ϕ0(s, y)
2
]

. . . (2.15)
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after partial integrations. It is significant that a factor (−� + m2)x is taken outside the

main body of the expression, and the main body with the kernel K(t− s, x−y) is specified

by the higher derivative operator; this is the basic mechanism how the present scheme

works as is shown later.

To be explicit, we have, for example,

ϕ1(t, x) = −(−�+m2)x

∫ t

0
ds

∫

d4yK(t− s, x− y) (2.16)

×
∫

d4z1d
4z2d

4z3K(s, y − z1)K(s, y − z2)K(s, y − z3)φ(z1)φ(z2)φ(z3).

When this operator is inserted into the ordinary Green’s functions, one obtains the cor-

relation functions such as 〈T ⋆φ(z1)φ(z2)φ(z3)φ(y1)φ(y2) . . .〉. In this paper we deal with

perturbative expansions, and thus the field variable φ(x) may be regarded to be defined in

the interaction picture. We often discard the symbol T ⋆ in the present Euclidean theory.

To define the ordinary Green’s functions for λφ4 theory in perturbation theory, we implic-

itly assume the dimensional regularization [11–14] or a more conventional regularization

which reproduces the results of dimensional regularization [15].

2.1 Some sample calculations

To confirm that our proposal is working in lower order processes, we perform some sample

calculations. We start with contracting two fields φ(z1) and φ(z2), for example,

〈φ(z1)φ(z2)〉, (2.17)

to estimate corrections to ϕ1(t, x) arising from an (open) tadpole-type diagram in pertur-

bation theory. The expression (2.16) for ϕ1(t, x) is written as

∫

[dp][−(p2 +m2)eipx]

∫

[dp1][dp2][dp3]

[

e−(d(p1)+d(p2)+d(p3))t − e−d(p)t

d(p)− d(p1)− d(p2)− d(p3)

]

× (2π)4δ(p− p1 − p2 − p3)φ(p1)φ(p2)φ(p3) (2.18)

where we defined

d(p) ≡ [p2 +m2]2, [dp] ≡ d4p

(2π)4
. (2.19)

By noting the free propagator

〈φ(p1)φ(p2)〉 =
∫

[dk](2π)4δ(p1 + p2)(2π)
4δ(p1 − k)

1

k2 +m2
(2.20)

we have for (2.18)

∫

[dp][dk][−(p2 +m2)eipxφ(p)]

[

e−(d(k)+d(k)+d(p))t − e−d(p)t

−d(k)− d(k)

]

1

k2 +m2

= −(−�+m2)ϕ0(t, x)f(t) (2.21)
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where

f(t) =

∫

[dk]
1− e−2d(k)t

2d(k)

1

k2 +m2
(2.22)

which is finite and satisfies

f(0) = 0,

f(∞) =
1

2

∫

[dk]
1

(k2 +m2)3
. (2.23)

This f(t) may be compared to the result in (1.9). After the one-loop correction we de-

scribed, we have

ϕ1(t, x) = −3(−�+m2)ϕ0(t, x)f(t) (2.24)

by taking into account 3 ways to contract.

It is interesting to examine what happens if one uses this corrected result in ϕ2(t, x).

We then have

ϕ2(t, x) = 9(−�+m2)x

∫ t

0
ds

∫

d4yK(t− s, x− y)

× [(−�y +m2)ϕ0(s, y)f(s)]ϕ0(s, y)
2 (2.25)

and we examine
∫ t

0
ds

∫

d4yK(t− s, x− y)[(−�y +m2)ϕ0(s, y)f(s)]ϕ0(s, y)
2. (2.26)

The contraction of the last factor ϕ0(s, y)
2, namely, 〈ϕ0(s, y)

2〉, gives a result similar to

the above, and the convergence is in fact improved by the factor f(s) that suppresses the

contribution near s = 0, which causes the possible divergence, since f(0) = 0. The crucial

factor in this analysis is, using the explicit formula for f(s) in (2.22),

g(t) ≡
∫

[dk′]

∫ t

0
ds

e−2d(k′)s

(k′)2 +m2

∫

[dk]
1− e−2d(k)s

2d(k)

1

k2 +m2
. (2.27)

The evaluation of g(t) is given in (A.4) in appendix where it is shown to be convergent and

g(0) = 0. We thus have

ϕ2(t, x) = 9[(−�+m2)2ϕ0(t, x)]g(t). (2.28)

When one studies the contraction of [(−�y +m2)ϕ0(s, y)]ϕ0(s, y) in (2.26), one examines

h(t) ≡
∫ t

0
ds

∫

[dk]e−2d(k)sf(s) (2.29)

which is confirmed to be well-convergent. See (A.7) in appendix. The convergence property

is about the same as f(t) in (2.22), and h(0) = 0. The quantity in (2.25) for this contraction

is given by

ϕ2(t, x) = 18(−�+m2)ϕ0(t, x)h(t) (2.30)

by taking into account two possible ways of contraction.

– 6 –
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The present analysis thus implies that our proposed flow equation is working to two-

loop orders. The term (2.28) is accumulating the factor (−� + m2) and thus could give

rise to some new features. We want to confirm that

ϕ3(t, x) ∼ (−�+m2)

∫ t

0
ds

∫

d4yK(t− s, x− y)ϕ2(s, y)ϕ
2
0(s, y) (2.31)

∼ (−�+m2)

∫ t

0
ds

∫

d4yK(t− s, x− y)(−�+m2)2ϕ0(s, y)g(s)ϕ
2
0(s, y)

is convergent. We thus examine the contribution arising from 〈(−�+m2)2ϕ0(s, y)g(s)

× ϕ0(s, y)〉,
J(t) =

∫ t

0
ds

∫

[dq](q2 +m2)e−2d(q)sg(s) (2.32)

which is a 3-loop effect and convergent with J(0)=0. See (A.10) in appendix. We thus have

ϕ3(t, x) ∼ (−�+m2)ϕ0(t, x)J(t). (2.33)

Our analysis suggests that the probe variable Φ(t, x) is well defined in the present

scheme to all orders in perturbation theory. The most divergent terms arise from the

tadpole-type contraction of 〈φ(x)φ(y)〉 in the probe variable, which contain loops of φ(x)

detached from the proper part of Green’s functions in the original λφ4 theory. Since we

are working in perturbation theory, the higher order corrections in the original theory

modify the behavior of those 〈φ(x)φ(y)〉 by some logarithmic factors up to any finite order

in perturbation theory. Those logarithmic corrections to the propagator do not alter our

analyses performed so far.

We also need to analyze the correlation functions of the probe variable, for example,

〈Φ(t, x)Φ(t, y)〉. (2.34)

In the lowest tree level, the correlation function is well defined for t > 0 as is shown by

〈ϕ0(t, x)ϕ0(t, x)〉 in (A.2) in appendix and
∫

∞

0 dt〈Φ(t, x)Φ(t, x)〉 is finite. In the one-loop

order, we have two (tadpole-type) finite corrections to the probe variable Φ(t, x) itself as

discussed in (2.21) as a one-loop correction to ϕ1(t, x), and we also have a conventional

tadpole diagram for the dynamical variable φ(x) bridging the two probe variables, whose

divergence is removed by the mass counter term. The correlation (2.34) is well-defined to

one-loop order even at x = y for t > 0.

In the next two-loop order (by recalling the expansion (2.9)), we have, for example,

〈ϕ1(t, x)ϕ0(t, y)〉 = [−(−�+m2)x]

∫ t

0
ds

∫

d4zK(t− s, x− z)

×
∫

d4z1d
4z2d

4z3K(s, z − z1)K(s, z − z2)K(s, z − z3)

×
∫

d4z4K(t, y − z4)〈φ(z1)φ(z2)φ(z3)φ(z4)
λ

4

∫

d4wφ4(w)〉, (2.35)

which is confirmed to be finite. A calculation which is closely related to this contribution

is performed later in (3.20).
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3 D+1 dimensional theory

We here present a formal proof of the finiteness of our scheme to all orders in perturbation

theory following theD+1 dimensional formulation in the case of pure Yang-Mills theory [5].

The starting action is

S =

∫

d4xLD(x) +

∫

∞

0
dt

∫

d4xLD+1(t, x) (3.1)

where

LD(x) = −1

2
∂µφ(x)∂µφ(x)−

1

2
m2φ2(x)− 1

4
λφ4(x) + Lcounter,

LD+1(t, x) = L(t, x)[∂tΦ(t, x) + D̂(D̂Φ(t, x) + λΦ3(t, x))] (3.2)

with D̂ ≡ −�+m2 and the constraint

Φ(0, x) = φ(x), (3.3)

but no constraint on L(0, x). The free propagators are written as

〈Φ(t, x)L(s, y)〉 = θ(t− s)K(t− s, x− y),

〈Φ(t, x)D̂yL(s, y)〉 = θ(t− s)D̂xK(t− s, x− y),

〈L(t, x)φ(y)〉 = 0,

〈L(t, x)L(s, y)〉 = 0,

〈Φ(t, x)φ(y)〉 =
∫

d4x′K(t, x− x′)〈T ⋆φ(x′)φ(y)〉, (3.4)

〈Φ(t, x)Φ(s, y)〉 =
∫

d4x′K(t, x− x′)

∫

d4y′K(s, y − y′)〈T ⋆φ(x′)φ(y′)〉,

in addition to the 4-dimensional 〈T ⋆φ(x)φ(y)〉 with

K(t, x− y) =

∫

d4k

(2π)4
e−(k2+m2)2t+ik(x−y), (3.5)

and the interaction terms are,
∫

∞

0
dt

∫

d4xLint(t, x) =

∫

∞

0
dt

∫

d4xλD̂L(t, x)Φ3(t, x),

∫

d4xLint(x) =

∫

d4x

[

−λ

4
φ4(x) + Lc(x)

]

. (3.6)

With the convention of no closed loops of the bulk propagator due to the factor θ(t − s)

that includes [5]

〈Φ(t, x)L(t, x)〉 = 0 (3.7)

and also 〈Φ(t, x)D̂xL(t, x)〉 = 0, which are valid in dimensional regularization, for example,

and the propagator

〈T ⋆Φ(t, x)Φ(s, y)〉 =
∫

d4x′K(t, x− x′)

∫

d4y′K(s, y − y′)〈T ⋆φ(x′)φ(y′)〉

=

∫

[dk]e−d(k)(t+s)+ik(x−y) 1

k2 +m2
(3.8)

– 8 –
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which is finite even at x = y for any t + s > 0, the bulk field theory defined for t > 0 is

confirmed to be finite as in the case of pure Yang-Mills theory [5]. Recall that

d(k) = (k2 +m2)2. (3.9)

The conventional 4-dimensional λφ4 theory is also rendered finite by the ordinary renor-

malization procedure.

We thus analyze the possible divergence located near the boundary t = 0. Near t = 0

we have for (3.8)

〈Φ(t, x)Φ(t, x)〉 ≃ δ(t)

∫

[dk]
1

2d(k)

1

k2 +m2
(3.10)

in the sense of distribution with a finite numerical factor (see also ref. [5]). The estimate

of (3.10) is based on the use of a smooth test function f(t), and we have

∫

∞

0
dtf(t)

∫

[dk]e−2d(k)t 1

k2 +m2

=

∫

[dk]

∫

∞

0
dτf

(

τ

2d(k)

)

e−τ 1

2d(k)

1

k2 +m2

= f(0)

∫

[dk]
1

2d(k)

1

k2 +m2
+ more convergent terms, (3.11)

by expanding f( τ
2d(k)) around the origin. We thus set

∫

[dk]e−2d(k)t 1

k2 +m2
→ δ(t)

∫

[dk]
1

2d(k)

1

k2 +m2
, (3.12)

and this estimate of the leading term (3.10) is consistent with 〈Φ(0, x)Φ(0, x)〉 = ∞ and
∫

∞

0 dt〈Φ(t, x)Φ(t, x)〉 =
∫

[dk] 1
2d(k)

1
k2+m2 in (3.8).

Thus the one-loop correction to the bulk vertex

3λ

∫

∞

0
dtD̂L(t, x)〈Φ(t, x)Φ(t, x)〉Φ(t, x)

= 3λD̂L(0, x)Φ(0, x)

∫

[dk]
1

2d(k)

1

k2 +m2
(3.13)

is finite, which is consistent with our analysis in 4-dimensional formulation in section 2

where a more explicit evaluation is possible. This term is logarithmically divergent for the

conventional choice d(k) = k2 +m2 and it would require a local counter term,

D̂L(0, y)Φ(0, y) (3.14)

at the boundary; to be precise, a local counter term for d(k) = k2 + m2 would be

L(0, y)Φ(0, y).
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We next analyze

3λ2

∫

∞

0
dt

∫

∞

0
ds

∫

d4xD̂L(t, x)〈Φ3(t, x)D̂yL(s, y)Φ
2(s, y)〉Φ(s, y)

= 3!3λ2

∫

∞

0
dt

∫

∞

0
ds

∫

d4xD̂L(t, x)Φ(s, y)

× 〈Φ(t, x)D̂yL(s, y)〉〈Φ(t, x)Φ(s, y)〉〈Φ(t, x)Φ(s, y)〉

= 3!3λ2

∫

∞

0
dt

∫

∞

0
ds

∫

[dp](2π)4δ(p− q1 − q2 − q3)e
−ipyD̂L(t, p)Φ(s, y)

×
∫

[dq1]θ(t− s)e−d(q1)(t−s)(q21 +m2)

∫

[dq2]e
−d(q2)(t+s) 1

q22 +m2

×
∫

[dq3]e
−d(q3)(t+s) 1

q23 +m2

= 3!3λ2

∫

∞

0
dt

∫

∞

0
ds

∫

[dp]e−ipyD̂L(t, p)Φ(s, y)

∫

[dq1]θ(t− s)e−d(q1)(t−s)

× (q21 +m2)

∫

[dq2]e
−(d(q2)+d(p−q1−q2))(t+s) 1

q22 +m2

1

(p− q1 − q2)2 +m2
. (3.15)

To analyze singular terms in this expression, we replace

θ(t− s)e−d(q1)(t−s) → δ(t− s)
1

d(q1)
,

e−(d(q2)+d(p−q1−q2))(t+s) → δ(t+ s)
1

d(q2) + d(p− q1 − q2)
(3.16)

in the sense of distribution. Eq. (3.15) thus becomes

3!3

2
λ2

∫

[dp]e−ipyD̂L(0, p)Φ(0, y) (3.17)

×
∫

[dq1][dq2]
(q21 +m2)

d(q1)

1

d(q2) + d(p− q1 − q2)

1

q22 +m2

1

(p− q1 − q2)2 +m2

which is convergent and does not require any local counter term. If one uses the conven-

tional d(q) = q2+m2, this integral is logarithmically divergent and it would require a local

counter term in (3.14).

One can confirm that the one-loop term

32λ2

∫

∞

0
dt

∫

∞

0
ds

∫

d4xD̂L(t, x)Φ(t, x)〈Φ2(t, x)D̂yL(s, y)Φ(s, y)〉Φ2(s, y) (3.18)

is finite even for the conventional choice d(q) = q2 +m2 without D̂.

To analyze the absence of an extra wave function renormalization of φ(x), we next

examine the two-loop diagrams

λ2

∫

∞

0
dtD̂L(t, x)〈Φ3(t, x)φ3(y)〉φ(y) (3.19)

which are confirmed to be finite; the tadpole of Φ(t, x) is finite as was shown above and the

divergence in the tadpole of φ(x) is cancelled by the local mass counter term in Lcounter.
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We thus analyze a diagram, which is analogous to the two loop self-energy correction in

λφ4 theory,

∫

dtd4xD̂L(t, x)〈Φ3(t, x)φ3(y)〉φ(y)

= 3!

∫

dtd4x[dp][dp1][dp2][dp3] exp{−i(p1 + p2 + p3)(x− y) + ipx}D̂L(t, p)φ(y)

× exp{− (d(p1) + d(p2) + d(p3)) t}
1

(p21 +m2)(p22 +m2)(p23 +m2)

= 3!

∫

dt[dp][dp1][dp2]e
−ipyD̂L(t, p)φ(y) exp{− (d(p1) + d(p2) + d(p− p1 − p2)) t}

× 1

(p21 +m2)(p22 +m2)((p− p1 − p2)2 +m2)

= 3!

∫

dt[dp]e−ipyD̂L(t, p)φ(y)

{
∫

[dp1][dp2]
δ(t)

d(p1) + d(p2) + d(p− p1 − p2)

× 1

(p21 +m2)(p22 +m2)((p− p1 − p2)2 +m2)
+ finite terms

}

. (3.20)

In this last expression, the integral over [dp1][dp2] would be logarithmically divergent if one

chooses the conventional d(p) = p2 +m2, which would in turn require a local counter term

of the form (3.14). But in our case with d(p) = (p2 +m2)2, the integral is convergent and

we do not need any local counter term.

It is important that we have always the combination D̂L(t, x) for the variable L(t, x)

with D̂ = −�+m2 due to our Feynman rules. See also (2.15). The possible new counter

term with the smallest dimension at the boundary, which was absent in the starting theory,

is written as

λlzl

∫

d4xD̂L(0, x)φ(x) for l ≥ 1, (3.21)

with a suitable constant zl; we note the relation D̂L(0, x)Φ(0, x) = D̂L(0, x)φ(x). But the

dimension of the operator D̂L(0, x)φ(x) is 6 since the dimension of L(0, x) is 3, and thus the

operator is irrelevant in the context of 4-dimensional theory and no divergent coefficients

as in (3.13), (3.17) and (3.20).2

We have no extra possible local counter terms with dimensions less than or equal to

4; the dimension 4 local counter terms Φ4(0, x), Φ3(0, x)φ(x), Φ2(0, x)φ2(x), Φ(0, x)φ3(x),

Φ(0, x)�Φ(0, x) and Φ(0, x)�φ(x) and the dimension 2 local counter terms Φ2(0, x) and

Φ(0, x)φ(x) are not generated by the vanishing closed loops of directed bulk propagators

〈Φ(t, x)L(s, y)〉 combined with 〈L(t, x)L(s, y)〉 = 0 and 〈φ(x)L(s, y)〉 = 0, and the counter

term such as Φ3(0, x) = φ3 is excluded by reflection symmetry φ → −φ, Φ → −Φ, and

L → −L in the starting action S. The theory is thus finite without any extra counter term

other than Lcounter required for the original λφ4 theory in D = 4.

2It is interesting that the possible BRST invariant local counter term in [5] is

(

DµLµ(0, x)− {d, d̄}(0, x)
)

∂νA
R
ν (x)− d̄(0, x)∂νDνc

R(x)

which also has dimension 6 and irrelevant.
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This mechanism to avoid the extra wave function renormalization is different from the

case of pure Yang-Mills theory where the wave function renormalization factor for the ex-

ternal legs of 4-dimensional gauge field Aµ(x) is cancelled by the quantum corrections to the

bulk probe variable Bµ(t, x) [5]. In our case both probe variable Φ(t, x) and dynamical vari-

able φ(x) are renormalized variables, and to be consistent with this assumption, no extra

divergence is induced in the interaction of the probe and 4-dimensional dynamical variables.

4 Composite operators

The simplest composite operator in λφ4 theory is [3]

T ⋆φ(x)φ(y). (4.1)

A way to analyze this composite operator in the gradient flow scheme is to examine

Φ(t, x)Φ(t, x)

= [ϕ0(t, x) + λϕ1(t, x) + . . .][ϕ0(t, x) + λϕ1(t, x) + . . .]

= ϕ0(t, x)ϕ0(t, x) + λϕ0(t, x)ϕ1(t, x) + λϕ1(t, x)ϕ0(t, x) + . . .

=

∫

d4yd4zK(t, x− y)K(t, x− z)φ(y)φ(z)

− 2λ

∫

d4zK(t, x− z)(−�+m2)x

∫

d4y

∫ t

0
dsK(t− s, x− y)

×
∫

d4z1d
4z2d

4z3K(s, y − z1)K(s, y − z2)K(s, y − z3)φ(z)φ(z1)φ(z2)φ(z3)

+ . . . . (4.2)

In this case, we obtain the expression to the linear order in λ

〈Φ(t, x)Φ(t, x)〉 ≃ 1

32π2

[
√

π

2

1√
t
+m2 ln(tm4)

]

+
λ

8

m2

(16π2)2
ln(m4t)

(

ln
m2

4πµ2
+ γE − 1

)

− 3λ

2

1

(16π2)2

[
√

π

2

1√
t
+

m2

2
ln(tm4)

]

(4.3)

for t → 0 but t 6= 0. Here µ stands for the renormalization point of the mass term in the

dimensional regularization. This expression may be compared with 〈E〉 in [4].

For any finite t, 0 < t < ∞, the above operator Φ(t, x)Φ(t, x) is finite. This implies

that a singular factor Z(t)

Φ(t, x)Φ(t, x) → Z(t)φ(x)φ(x), (4.4)

appears for small t → 0. In comparison, in the case of the operator m2
0φ

2
0(x) in λφ4 theory

with dimensional regularization, we have m2
0 = Zmm2/Zφ and φ0(z) =

√

Zφφ(z), and the

finite dimension 2 operator is written as m2
0φ

2
0(x) = m2Zmφ2(x).
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To see the appearance of the singular factor Z(t), we examine a specific order λ cor-

rection in the perturbative expansion of 〈Φ(t, x)Φ(t, x)φ(w1)φ(w2)〉,

− λ

4

∫

d4w〈Φ(t, x)Φ(t, x)φ(w)4φ(w1)φ(w2)〉

= −3λ

∫

d4w〈Φ(t, x)φ(w)〉〈Φ(t, x)φ(w)〉〈φ2(w)φ(w1)φ(w2)〉. (4.5)

We thus evaluate
∫

d4x〈Φ(t, x)φ(w)〉〈Φ(t, x)φ(w)〉

=

∫

d4k

(2π)4
e−(k2+m2)2t 1

k2 +m2
e−(k2+m2)2t 1

k2 +m2

=

∫

∞

0

xdx

16π2
e−2(x+m2)2t 1

(x+m2)2

=

∫

∞

m2

(y −m2)dy

8π2

∫

∞

t

dte−2y2t

≃ 1

8π2

[
∫

∞

m2

ydy

∫

∞

t

dte−2y2t −
∫

∞

m2

m2dy

∫

∞

0
dte−2y2t

]

=
1

8π2

[
∫

∞

m2

ydy

∫

∞

t

dte−2y2t −
∫

∞

m2

m2

2y2
dy

]

=
1

8π2

[
∫

∞

t

1

4t
e−2m4tdt− 1

2

]

=
1

32π2

[

− ln(m4t) + const.
]

. (4.6)

Thus
∫

d4x〈Φ(t, x)Φ(t, x)φ(w1)φ(w2)〉 (4.7)

=

{

1 +
3λ

32π2
[ln(m4t) + const.]

}
∫

d4x〈φ2(x)φ(w1)φ(w2)〉,

for t → 0. The second term in (4.2) gives a contribution included in the constant term. In

the operator language,

Φ(t, x)Φ(t, x) ∼ 〈Φ(x, t)Φ(x, t)〉+
{

1 +
3λ

32π2
[ln(m4t) + const.]

}

[φ2](x) + . . . (4.8)

for t → 0 but t 6= 0 with [φ2](x) = φ2(x)− 〈φ2(0)〉. Here we used the result in (4.3) in the

first term.

We note that the formal energy-momentum tensor constructed from the quantity such

as ∂µΦ(t, x)∂νΦ(t, x),

Tµν(t, x) = −∂µΦ(t, x)∂νΦ(t, x) (4.9)

+ gµν

[

1

2
∂µΦ(t, x)∂µΦ(t, x) +

1

2
m2Φ2(t, x) +

1

4
λΦ4(t, x)

]

,

which is expected to be finite for t > 0, does not generate translation of Φ(t, x) for t > 0 in

general, since the canonical commutator is not defined for the variable Φ(t, x). Symmetry

properties such as the derivation of Ward-Takahashi identities are less transparent in terms

of the flowed variable Φ(t, x) for t > 0.
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We expect that Tµν(t, x) in (4.9), which is based on renormalized variables and finite,

is reduced for t → 0 to

Tµν(t, x) → −Zφ(t)∂µφ(x)∂νφ(x) + gµν

[

1

2
Zφ(t)∂µφ(x)∂µφ(x)

+
1

2
Zm(t)m2φ2(x) +

1

4
Zλ(t)λφ

4(x)

]

, (4.10)

in analogy with (4.4) with factors Zφ(t), Zm(t), Zλ(t) which are finite for t > 0 but

divergent for the limit t → 0. This expectation is based on the fact that the original finite

energy-momentum tensor is written as

Tµν(x) = −∂µφ0(x)∂νφ0(x)

+ gµν

[

1

2
∂µφ0(x)∂µφ0(x) +

1

2
m2

0φ
2
0(x) +

1

4
λ0φ

4
0(x)

]

,

= −Zφ∂µφ(x)∂νφ(x) (4.11)

+ gµν

[

1

2
Zφ∂µφ(x)∂µφ(x) +

1

2
Zmm2φ2(x) +

1

4
Zλλφ

4(x)

]

,

and we expect that 1/
√
t plays a role similar to the cut-off Λ2 for t → 0. The finiteness of

(the connected components of) the original energy-momentum tensor is inferred from the

Ward-Takahashi identity which is based on the conservation condition ∂µTµν(x) = 0,

∂µ
x 〈T ⋆Tµν(x)φ0(x1)φ0(x2)φ0(x3) . . . φ0(xn)〉

=

n
∑

k=1

δ(x− xk)〈T ⋆φ0(x1)φ0(x2)∂
xk
ν φ0(xk) . . . φ0(xn)〉 (4.12)

and φ0(xk) =
√

Zφφ(xk) in the dimensional regularization which eliminates quadratic

divergences. When one divides both sides by (
√

Zφ)
n, the right-hand side of (4.12) becomes

finite and thus the left-hand side is also finite; we here forgo a necessary refinement of

this argument.

A numerical analysis of the energy-momentum tensor for λφ4 theory at D = 3 in the

framework of the free Gaussian flow has been performed in [2]. Recent extensive analyses

of the energy-momentum tensor for Yang-Mills theory in the gradient flow scheme are

found in [16–20].

5 Conclusion

The present analysis shows that the basic idea of the gradient flow in a narrow sense is

consistently applied to the simple but important λφ4 theory in D = 4 and thus not limited

to pure Yang-Mills theory. A crucial property, which is missing in the present λφ4 theory

compared to pure Yang-Mills theory, is the local gauge invariance in the Yang-Mills gradient

flow. This absence of gauge invariance in λφ4 theory allowed us to introduce a regularization

analogous to the higher derivative regularization into the gradient flow equation; the most

singular diagrams with closed bulk propagators are absent in the present example, and this

helps the higher derivative regularization work.
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A Some details of sample calculations

We here summarize some details of sample calculations in section 2.

We start with (2.26)

∫ t

0
ds

∫

d4yK(t− s, x− y)[(−�y +m2)ϕ0(s, y)f(s)]ϕ0(s, y)
2. (A.1)

The contraction of 〈ϕ0(s, y)
2〉 gives

〈ϕ0(s, y)ϕ0(s, y)〉 =
∫

d4z1d
4z2K(s, y − z1)]K(s, y − z2)〈φ(z1)φ(z2)〉

=

∫

[dk]

∫

d4z1d
4z2

∫

[dp1][dp2]e
−d(p1)s+ip1(y−z1)e−d(p2)s+ip2(y−z2)

× eik(z1−z2)

k2 +m2

=

∫

[dk]
e−2d(k)s

k2 +m2
. (A.2)

We thus have
∫ t

0
ds

∫

d4y

∫

[dp]e−d(p)(t−s)+ip(x−y)

[

(q2 +m2)

∫

d4z

∫

[dq]e−d(q)s+iq(y−z)φ(z)f(s)

]

×
∫

[dk]
e−2d(k)s

k2 +m2

=

∫ t

0
ds

∫

[dp]e−d(p)(t−s)+ipx[(p2 +m2)e−d(p)sφ(p)f(s)]

∫

[dk]
e−2d(k)s

k2 +m2

= (−�+m2)ϕ1(t, x)

∫ t

0
dsf(s)

∫

[dk]
e−2d(k)s

k2 +m2
. (A.3)

The crucial factor is, using the explicit formula for f(s) in (2.22),

g(t) ≡
∫

[dk′]

∫ t

0
ds

e−2d(k′)s

(k′)2 +m2

∫

[dk]
1− e−2d(k)s

2d(k)

1

k2 +m2

=

∫

[dk′][dk]

[

1− e−2d(k′)t

2d(k′)
− 1− e−2(d(k′)+d(k))t

2(d(k′) + d(k))

]

1

2d(k)(k2 +m2)((k′)2 +m2)

=

∫

[dk′][dk]

[

−e−2d(k′)t

2d(k′)
+

e−2(d(k′)+d(k))t

2(d(k′) + d(k))

]

1

2d(k)(k2 +m2)((k′) +m2)

+
1

4

∫

[dk′][dk]

[

1

d(k′)(d(k′) + d(k))

]

1

(k2 +m2)((k′)2 +m2)
(A.4)

which is obviously convergent and g(0) = 0. This result is used in (2.28).
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When one studies the contraction of [(−�y + m2)ϕ0(s, y)]ϕ0(s, y) in (2.26), one

examines

〈[(−�y +m2)ϕ0(s, y)]ϕ0(s, y)〉

=

∫

d4z1d
4z2[(−�y +m2)K(s, y − z1)]K(s, y − z2)〈φ(z1)φ(z2)〉

=

∫

[dk]

∫

d4z1d
4z2

∫

[dp1][dp2](p
2
1 +m2)e−d(p1)s+ip1(y−z1)e−d(p2)s+ip2(y−z2)

× eik(z1−z2)

k2 +m2

=

∫

[dk]e−2d(k)s. (A.5)

The expression (2.26) thus becomes

∫ t

0
ds

∫

d4yK(t− s, x− y)[(−�y +m2)ϕ0(s, y)f(s)]ϕ0(s, y)
2

=

∫ t

0
ds

∫

d4y[dp]e−d(p)(t−s)+ip(x−y)

∫

[dk]e−2d(k)sf(s)ϕ0(s, y)

=

∫ t

0
ds

∫

d4y[dp]e−d(p)(t−s)+ip(x−y)

∫

[dk]e−2d(k)sf(s)

∫

d4z

∫

[dq]e−d(q)s+iq(y−z)φ(z)

=

∫ t

0
ds[dp]e−d(p)(t−s)+ipx

∫

[dk]e−2d(k)sf(s)e−d(p)sφ(p)

= ϕ0(t, x)

∫ t

0
ds

∫

[dk]e−2d(k)sf(s). (A.6)

We thus examine

h(t) ≡
∫ t

0
ds

∫

[dk]e−2d(k)sf(s)

=

∫

[dk′]

∫ t

0
dse−2d(k′)s

∫

[dk]
1− e−2d(k)s

2d(k)

1

k2 +m2

=

∫

[dk′][dk]

[

1− e−2d(k′)t

2d(k′)
− 1− e−2(d(k′)+d(k))t

2(d(k′) + d(k))

]

1

2d(k)(k2 +m2)

=
1

4

∫

[dk′][dk]

[

−e−2d(k′)t

d(k′)
+

e−2(d(k′)+d(k))t

(d(k′) + d(k))

]

1

d(k)(k2 +m2)

+
1

4

∫

[dk′][dk]

[

1

d(k′)(d(k′) + d(k))

]

1

(k2 +m2)
. (A.7)

By recalling that d(k) = (k2 +m2)2, one can confirm that the last term in (A.7) is well-

convergent. The convergence property is about the same as f(t) in (2.22), and h(0) = 0.

This result is used in (2.30).
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We finally want to confirm that the term in (2.31)

ϕ3(t, x) ∼ (−�+m2)

∫ t

0
ds

∫

d4yK(t− s, x− y)ϕ2(s, y)ϕ
2
0(s, y) (A.8)

∼ (−�+m2)

∫ t

0
ds

∫

d4yK(t− s, x− y)(−�+m2)2ϕ0(s, y)g(s)ϕ
2
0(s, y)

is convergent by contracting the terms

〈(−�+m2)2ϕ0(s, y)ϕ0(s, y)〉 =
∫

[dq](q2 +m2)e−2d(q)s. (A.9)

We thus examine

ϕ3(t, x) ∼ (−�+m2)

∫ t

0
ds

∫

[dp]eipxe−d(p)(t−s)e−d(p)sφ(p)

∫

[dq](q2 +m2)e−2d(q)sg(s)

∼ (−�+m2)Φ0(t, x)

∫ t

0
ds

∫

[dq](q2 +m2)e−2d(q)sg(s)

and thus the combination

J(t) =

∫ t

0
ds

∫

[dq](q2 +m2)e−2d(q)sg(s)

=

∫ t

0
ds

∫

[dq](q2 +m2)e−2d(q)s

∫

[dk′][dk]

[

1− e−2d(k′)s

2d(k′)
− 1− e−2(d(k′)+d(k))s

2(d(k′) + d(k))

]

× 1

2d(k)(k2 +m2)((k′)2 +m2)

=
1

8

∫

[dq][dk′][dk]

{[

1− e−2d(q)t

d(q)d(k′)
− 1− e−2(d(q)+d(k′))t

d(k′)(d(q) + d(k′))

]

−
[

1− e−2d(q)t

d(q)(d(k) + d(k′))
− 1− e−2(d(q)+d(k)+d(k′))t

(d(q) + d(k) + d(k′))(d(k) + d(k′))

]}

× (q2 +m2)

d(k)(k2 +m2)((k′)2 +m2)
(A.10)

and the possible divergent terms are
∫

[dq][dk′][dk]

{[

1

d(q)d(k′)
− 1

d(k′)(d(q) + d(k′))

]

−
[

1

d(q)(d(k) + d(k′))
− 1

(d(q) + d(k) + d(k′))(d(k) + d(k′))

]}

× (q2 +m2)

d(k)(k2 +m2)((k′)2 +m2)

=

∫

[dq][dk′][dk]
1

(d(q) + d(k′))(d(q) + d(k) + d(k′))

× 1

(q2 +m2)(k2 +m2)((k′)2 +m2)

(A.11)

which is a 3-loop effect and convergent, and one obtains J(0) = 0. This result is used

in (2.33).
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