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1 Introduction

Quantum entanglement offers different measures to capture some non-local properties in

quantum field theories (QFTs). There are various measures for quantum entanglement

including entanglement and Renyi entropies [1] which measure the amount of quantum

entanglement between various parts of the Hilbert space of the theory. Among these

measures, specifically entanglement entropy (EE) has recently gained a huge amount of

interest.

In this context, the most common way available in the literature for studying quantum

entanglement is based on a one-to-one correspondence between localized degrees of freedom

of local quantum field theories and plane waves as a particular complete basis spanning their

total Hilbert space. Based on such a map the Hilbert space is decomposed as H = HA⊗HB,

where A and B correspond to spatial subregions such that M = A ∪B is a constant time

slice of the manifold which the QFT is defined on. Such a decomposition is reliable up to

the spatial resolution introduced by the UV cut-off of the theory. The spatial subregions A

and B are defined via a co-dimension-two surface ∂A. Following such a decomposition and
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tracing out either part A or B leads to a measure for the quantum entanglement between

localized degrees of freedom in spatial regions A and B. We denote this type of EE as

“spatial entanglement entropy” (SEE). Some well known features of entanglement entropy

such as the celebrated area-law divergence [2, 3] is peculiar to SEE.

SEE is not the only type of EE one can define between various degrees of freedom

of a single field. There are other types of EE corresponding to different Hilbert space

decompositions. For example one can decompose a given Hilbert space into states with

specific energies and consider the EE referring to given scale of energy Λ. This type of

EE is known as “momentum space entanglement entropy” which measures the EE between

degrees of freedom of a single field below and above a given energy scale Λ in the momentum

space (see e.g. [4]).1

If more than one field lives in a field theory, one may ask about probable entanglement

between degrees of freedom corresponding to different fields. In contrast to various EE

measures defined between different degrees of freedom of a single field, the entanglement

between degrees of freedom of different fields is caused via possible interactions between

them.2 Using the terminology of reference [6], we denote this type of EE as “field space

entanglement entropy” (FSEE).

It is worth to note that Ryu-Takayanagi proposal [9–12] for holographic entanglement

entropy is by construction a proposal to compute SEE in a field theory which supports

classical Einstein theory as a gravity dual. A natural question which may arise is about

the possibility of a holographic realization for other types of EE e.g. FSEE. We are not

going to answer this question in this paper and we will only give some comments about it

in the section 5. Recently some arguments about this interesting question has appeared

in the literature specifically in [13] and [6] (see also [14] for some related holographic

improvements).

In this paper we try to further investigate the notion of FSEE from a field theoretic

point of view. To do so we consider various field theories which are interacting with each

other. The interaction between these field theories is responsible for generating entan-

glement between them. In order to study the entanglement between these theories we

integrate out a generic number of them which leads to a reduced density matrix. Next we

follow the standard procedure to study entanglement and Renyi entropies.

For simplicity we focus on scalar field theories with Gaussian interactions between

them. Since such models are Gaussian, they are analytically tractable to a satisfactory

extent, and thus we consider them as a simple laboratory to study some general properties

of FSEE. Explicitly we work out the generic reduced density matrix of such models and

study entanglement and also all Renyi entropies analytically. A similar construction have

been previously studied in [13] and in the context of condensed matter physics in [15–18].

1There are also two other types of entanglement discussed in the literature: the first one which is called

“entanglement in theory space” is defined via gauging (un-gauging) two theories with global symmetries

in [5]. We would like to thank Mukund Rangamani for bringing our attention to this reference. The other

one which is called “global symmetry entanglement” is defined via partitioning the symmetry group in [6].
2We are aware of some studies which can be considered as quantum mechanical counterparts of such

an analysis, including reference [7] where entanglement between non-interacting qubits is studied and also

reference [8] where a particle partitioning is considered for studying entanglement entropy.
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The authors of reference [13] have considered two free scalar field theories denoted

by φ and ψ which interact homogeneously in a d-dimensional space-time via two types of

interactions: kinetic mixing (marginal) and massive interactions. They have decomposed

the total Hilbert space of the theory as H = Hφ ⊗ Hψ and integrated out the states in

Hψ and worked out the entanglement and Renyi entropies between φ and ψ in the ground

state which is no more a direct product due to the interaction between them.

In this paper we generalize the procedure of reference [13] in the sense that we consider

N free field theories defined on a common d-dimensional flat space-time which interact with

each other. The action is thus given by

S =

∫
dxd [L1 (φ1) + L2 (φ2) + · · ·+ LN (φN ) + Lint. (φi)] , (1.1)

where Li (φi) with i = 1, 2, · · · , N denote the Lagrangian density of free field theories and

Lint. (φi) denotes all possible interactions between them. We are interested in entanglement

and Renyi entropies between these field theories which is generated via the interaction term

Lint. (φi). The total Hilbert space of this model can be decomposed as

Htot. = H1 ⊗H2 ⊗ · · · ⊗ HN ,

whereHi’s denote the Hilbert space of each field theory defined by Li (φi). We are interested

in the entanglement between generic m number of these field theories with the rest (N−m)

of them. To do so we consider the following more compact notation for the decomposition

of the total Hilbert space as

Htot. = H(m) ⊗H(N−m) (1.2)

where H(m) is defined as H(m) = H1 ⊗H2 ⊗ · · · ⊗ Hm and H(N−m) similarly denotes the

Hilbert space of the rest (N−m) field theories. In such a way we define the reduced density

matrix ρ(m) by tracing out the H(N−m) part of the Hilbert space

ρ(m) = TrH(N−m)
[ρtot.] ,

which leads to the following definition of entanglement and Renyi entropies

Sent.(m) = −Tr
[
ρ(m) log ρ(m)

]
, S(n)(m) =

1

1− n
log Tr

[
ρn(m)

]
. (1.3)

The rest of this paper is organized as follows: in section 2 we introduce two different

models called “infinite-range” and “nearest-neighbour” models which are different in the

range of their interactions. In section 3 we report the results of calculating the reduced

density matrix of generic number of fields and compute entanglement and Renyi entropies of

these two models. In section 4 we investigate different features of these models probing them

by entanglement measures including entanglement inequalities and n-partite information.

In the discussion section we will give some comments about the holographic dual of such

a construction and also a field theoretic counterpart for black-hole evaporation process.

In appendix A we explain some details related to the calculation of the reduced density

matrix of our models.
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2 Kinetic mixing Gaussian models

In this paper we are interested in Gaussian models as the simplest examples of interacting

field theories which are analytically tractable. The most general wave functional for such

models is given by [19]

Ψ[φi] = N exp

{
− 1

2

∫
dxd−1dyd−1

N∑
i,j=1

φi(x)Gij(x, y)φj(y)

}
, (2.1)

where N is a normalization constant and Gij(x, y)’s are complex valued functions which

are symmetric on i, j indices and also on the variables x and y. The corresponding (total)

density matrix is constructed as ρtot.[φ
′
i, φi] = Ψ∗[φ′i]Ψ[φi]. One can define a generic reduced

density matrix by integrating out (without loss of generality) the first m number of the

fields on the whole space-time as

ρ(m)[φ
′
m+1, φm+1, · · · , φ′N , φN ] =

∫
Dφ1 · · · DφN−mΨ∗[φ′i]Ψ[φi], (2.2)

where (φ′1, · · · , φ′m) is identified with (φ1, · · · , φm) in the integrand.

Since we are interested in analytically tractable simple models, in what follows we have

chosen the same value of coupling constant between our mutually interacting field theories

which means all off-diagonal non-vanishing elements of Gij take the same value. We are

mainly interested in two models that we define in the following subsections. In the first

model, any φi interacts with all other fields φj with (i 6= j). This model is called infinite-

range model.3 In our second model any field φi interacts only with its nearest neighbours

which are φi±1. We consider this model with a periodic boundary condition in the field

space and call it the nearest-neighbour model. See figure 1 for a geometric realization of

these models in the field space.

Since we are interested in Gaussian models, in both of our models we consider kinetic

mixing terms as the interaction between the free scalar fields, thus we are always dealing

with marginal couplings. Note that both of these models in the special case where the total

number of fields is two (N = 2) reduce to the massless interaction model in [13].

2.1 Infinite-range model

The infinite-range model is defined by the following action

S =
1

2

∫
ddx

 N∑
i=1

(∂µφi)
2 + λ

N∑
i<j≤N

∂µφi∂
µφj

 , (2.3)

3This terminology is borrowed from the literature of statistical physics where e.g. an Ising model which

all sites interact with each other are called infinite-range interacting Ising model. Here “range” refers to

the field space rather than the real space. We thank Ali Naji for introducing us with this terminology. We

also thank Julien Vidal for bringing our attention to related references [20–23], where aspects of a closely

related model, knows as the Lipkin-Meshkov-Glick (LMG) model, has been studied previously.
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Figure 1. Schematic plots of infinite-range model (right) and nearest-neighbour model (left) in the

field space. The blue lines connecting different fields represents the existence of an interaction term

between the corresponding fields. The infinite-range model clearly has much more interactions than

the nearest-neighbour model.

where all φi’s are interacting mutually with the same coupling constant λ. The wave

functional of this model is given by eq. (2.1) where

G(x, y) =
W (x, y)

2


2 λ λ · · · λ
λ 2 λ · · · λ
λ λ 2 · · · λ
...

...
...

. . .
...

λ λ λ · · · 2

 , (2.4)

and W (x, y) = V −1
∑

k |k|eik(x−y). We have briefly explained some details of this model in

appendix A.

One can easily show that this model can be diagonalized with the following eigenvalues

Aα = 1− λ

2
, α = 1, 2, · · · , N − 1 , AN = 1 + (N − 1)

λ

2
, (2.5)

and after the corresponding orthogonal transformation one can rewrite this model in terms

of new (primed) degrees of freedom

S =
1

2

∫
ddx

N∑
i=1

Ai
(
∂µφ

′
i

)2
. (2.6)

It is an easily task to check that the positivity of the Hamiltonian restricts the value of λ

to the following window

− 2

N − 1
< λ < 2, (2.7)

which we will consider in what follows as the range where this model is well-defined. This

model is shown schematically in the field space in the right part of figure 1.
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2.2 Nearest-neighbour model

The nearest-neighbour model is defined with the following action

S =
1

2

∫
ddx

 N∑
i=1

(∂µφi)
2 + λ

∑
〈i,j〉

∂µφi∂
µφj

 , (2.8)

where 〈i, j〉 means that the summation runs over two neighbours of each φi which are

φi±1. Because of symmetry considerations we impose a periodic boundary condition (in

the field space) such that the nearest neighbours of φ1 are φ2 and φN . It is obvious that

the number of interactions in this model is much less than the infinite-range model. The

wave functional of this model is also given by eq. (2.1) where

G(x, y) =
W (x, y)

2



2 λ 0 · · · 0 λ

λ 2 λ · · · 0 0

0 λ 2 · · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 2 λ

λ 0 0 · · · λ 2


, (2.9)

and again W (x, y) = V −1
∑

k |k|eik(x−y) (see appendix A).

One can easily show that the nearest-neighbour model can also be diagonalized and

expressed in terms of new (primed) free fields just as eq. (2.6). The eigenvalues of G for

the case of N = 2 is

A1,2 = 1∓ λ

2
, (2.10)

and for the case of N(> 2) is

A1,N = 1∓ λ, A2,3 = 1∓ λ cos
2π

N
, . . . , AN−2,N−1 = 1∓ λ cos

(N − 2)π

N
N : even

A1 = 1 + λ, A2,3 = 1− λ cos
π

N
, . . . , AN−1,N = 1− λ cos

(N − 2)π

N
N : odd.

(2.11)

After performing the orthogonal transformation which leads to eq. (2.6), one can compute

the Hamiltonian of this model and show that the positivity of the Hamiltonian restricts

the value of λ to the following windows
−2 < λ < 2 N : 2

−1 < λ < 1 N : even

−1 < λ <
(
cos π

N

)−1
N : odd.

(2.12)

In what follows we consider the above range for the coupling constant λ where this model

is well-defined. The schematic plot of the nearest-neighbour model is given in the left part

of figure 1.
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3 Entanglement and Renyi entropies

In this section we report the results of computing the reduced density matrix and hence

entanglement and Renyi entropies in our models using replica trick. Here we skip the

details of the messy calculations leading to Tr[ρn(m)], and we just present the final results.

The interested reader may find some details about the essential steps of the computations

in appendix A.

3.1 Infinite-range model

Considering the infinite-range model one can show that using the definition of the reduced

density matrix ρ(m) given in eq. (2.2), together with the standard method of replication

one can calculate Tr[ρn(m)] which leads to (see appendix A for details)

Tr
[
ρn(m)

]
= N

∏
i

n∏
r=1

[
1 + f(m,N) cos

(
2πr

n

)]
= N

∏
i

(1− ξni )2

(1 + ξ2i )n
, (3.1)

where

f(m,N) =
4(N −m)Y (m)

4(N −m)Y (m) + (N −m)λ+ 2− λ
, Y (m) = −1

4

(
λ

2

)2

· 2m

2 + (m− 1)λ
,

(3.2)

and ξi is

f(m,N) =
2ξi

1 + ξ2i
. (3.3)

Note that the normalization constant N plays no role in entanglement and Renyi entropies

thus we will ignore it in what follows. Also note that in what follows we drop the index i

of ξi which regards to the discretized real space since all ξi’s have the same value denoted

by ξ.

Since the m traced out fields together with the rest (N − m) fields build up the

whole system (the total density matrix corresponds to a pure state), one would expect the

above expression to be invariant under m→ (N −m) which is manifest in the expression

of f(m,N).

Now we are equipped with everything needed to apply the definitions given in eq. (1.3)

for entanglement and Renyi entropies. One can read the entropies as

S(n) ≡
∑
i

s(n)(ξ) = s(n)(ξ)
∑
~k 6=0

1, S ≡
∑
i

s(ξ) = s(ξ)
∑
~k 6=0

1,

s(n)(ξ) =
n ln(1− ξ)− ln(1− ξn)

1− n
, s(ξ) =

[
− ln(1− ξ)− ξ

1− ξ
ln ξ

]
, (3.4)

where the infinite sum is UV divergent. In order to regularize these expressions we use

a smooth momentum cut-off, i.e., e−ε|k|. If we consider the (d − 1)-dimensional spatial

manifold to be a (d− 1)-torus with size L, the infinite sum simplifies to

∑
~k 6=0

1 ∼

∑
k 6=0

e−ε|k|

d−1

= cd,d−1

(
L

ε

)d−1
+ cd,d−2

(
L

ε

)d−2
+ · · ·+ cd,0, (3.5)

– 7 –
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Figure 2. Entanglement entropy of the infinite-range model as a function of coupling λ.

where ci’s are constants that only depends on d. All the terms of the resultant entanglement

entropy are divergent and depend on the UV cut-off ε except the last one which is a universal

term. To investigate the physical features of this model4 in the following sections we will

consider this universal term which is proportional to cd,0. Also note that according to

eq. (3.4) the whole λ-dependence of entropies in this model is carried by s(n)(λ) and s(λ).

See figure 2 where the universal part of entanglement entropy of this model is plotted for

different values of m and N .

Since in this paper we are dealing with entanglement in the field space, in what fol-

lows by entanglement and Renyi entropies we mean the “density” of these quantities which

is defined as the entanglement and Renyi entropies in units of the infinite volume factor

eq. (3.5). This is obviously also true for the case of other entanglement measures which

we define in the following including mutual and tripartite information. Thus here we have

constructed the entanglement measures to be finite by definition. This is different from

what happens in the case of spatial entanglement entropy. In that case some entanglement

measures e.g. mutual information is defined by the whole expression of entanglement en-

tropy which includes an area divergence but the divergent terms cancel out as long as the

entangling regions do not have an intersection.5

3.2 Nearest-neighbour model

Next we consider the nearest-neighbour model which again by using the definition of the

reduced density matrix given in eq. (2.2) together with the standard method of replication

we calculate Tr
[
ρn(m)

]
for m neighbour fields out of N ones which leads to the following

results

Tr [ρn(m,N)] = N
∏
i

n∏
r=1

[
1 +

2Y−(m)g−(N −m− 1)

2Y−(m)g−(N −m− 1)− g−(N −m+ 1)
cos

(
2πr

n

)]

×
n∏
s=1

[
1 +

2Y+(m)g+(N −m− 1)

2Y+(m)g+(N −m− 1) + g+(N −m+ 1)
cos

(
2πs

n

)]
,

(3.6)

4This argument is also valid for the nearest-neighbour model.
5Although in the case of spatial entanglement entropy it is well known that tripartite information and

in general n-partite information with n > 2 are UV finite quantities even when the entangling regions

share boundaries, this seems not to be generally correct as there is a counter example with corner shape

entangling regions which have a single point as a common boundary [24].

– 8 –
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where

g±(N) =

N
2∏

s=1

[
1− λ cos

(
d±(N) + 2s

N
π

)]
, d±(N) = sin2

(
2N + 1∓ 1

4
π

)
− 1,

Y (m) = −1

4

(
−λ

2

)m+1

· 1

Z(m+ 1)
, Yd(m) = −1

4

(
−λ

2

)2

· Z(m)

Z(m+ 1)
, (3.7)

Y±(m) = Y (m)± Yd(m), Z(m) =
m−1∏
r=1

[
1− λ cos

( r
m
π
)]
.

We define g+(0) ≡ 1
2 for consistency with the infinite-range model in the case of N = 2.6

Again N is irrelevant to the calculation of entanglement and Renyi entropies. The result

eq. (3.6) is valid for 1 ≤ m < N−1. For the case of m = N−1 one should use the following

expression

Tr [ρn(m = N − 1, N)] = N
n∏
r=1

[
1 +

2Ỹd(m)

2Ỹd(m) + 1
cos

(
2πr

n

)]
, Ỹd(m) = −λ

2

16

g+(N − 2)

g+(N)

(3.8)

which of course is equal to the result of m = 1 from eq. (3.6) as expected. It is not hard

to show that one can sum up the results of eq. (3.6) and eq. (3.8) in a single formula as

Tr [ρn(m,N)] = (Tr [ρn(m,N)] Tr [ρn(N −m,N)])
1
2 (3.9)

which is valid for 1 ≤ m < N . The advantage of using this more compact formula is

two-fold: it is no longer a piecewise formula and also the m→ N −m symmetry becomes

manifest in this form. Mathematically there is no difference between using eq. (3.6) together

with eq. (3.8), or eq. (3.9). In what follows we will continue with the first choice.

The expressions for the entanglement and Renyi entropies are similar to the infinite-

range model given in eq. (3.4), and we just have to replace s(n)(ξ) and s(ξ) with s(n)(ξ+) +

s(n)(ξ−) and s(ξ+) + s(ξ−) respectively where ξ± are solutions of

2ξ±
1 + ξ2±

=
2Y±(m)g±(N −m− 1)

2Y±(m)g±(N −m− 1)± g±(N −m+ 1)
. (3.10)

For the case of m = N − 1 we consider s(n)(ξ̃) and s(ξ̃) where ξ̃ is defined as ξ̃ = 2Ỹd(m)

2Ỹd(m)+1
.

Finally note that as we have mentioned before, the structure of the regularization is inde-

pendent of the interaction terms, thus in this model it exactly obeys the same structure of

the previous model given in eq. (3.5).

4 Aspects of field space entanglement

In this section we investigate some important features of these models based on the entan-

glement measures computed in the previous section. First we discuss about some features

6Note that the infinite-range and nearest-neighbour models are the same for the case of N = 2 and N = 3.

– 9 –
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Figure 3. Entanglement entropy for nearest-neighbour model as a function of coupling λ.

Figure 4. Renyi entropies for the infinite-range model (left) and nearest neighbour model (right).

of entanglement and Renyi entropies of these two models. Next we study some physical

constraints on entanglement measures which are known as entanglement inequalities. We

also study n-partite information for certain values of n, and entanglement negativity as

two other entanglement probes in our models. This analysis may be helpful to gain a more

physical intuition about the structure of entanglement in these models and perhaps more

generally some generic physical features of field space entanglement.

4.1 Infinite-range versus nearest-neighbour model

In this subsection we are going to compare the infinite-range and the nearest-neighbour

models using some graphical analysis. Previously in figure 2 and figure 3 we have plotted

the entanglement entropy of these two models as a function of the coupling constant λ. Note

that the Hamiltonian positivity condition for these models which was given in eq. (2.7) and

eq. (2.12), results in a N -dependence for the valid range of coupling λ. This has caused

some asymmetries in the entanglement and Renyi entropies under λ → −λ. Also note

that in the case of λ = 0, since the vacuum state of the these models reduces to a direct

product state, there is no entanglement between the specified degrees of freedom in these

models. Figure 4 shows the Renyi entropy for these models as a function of coupling λ for

various Renyi indices n. These plots clearly show that S
(n)
I,II is a decreasing function of n as

expected.

In figure 5 we have demonstrated the m-dependence of the EE in these two models for

three different values of λ. Considering the coupling constant λ, the domain of validity of

– 10 –
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Figure 5. Entanglement entropy of infinite-range (blue) and nearest-neighbour (orange) models

for different values of coupling. From left to right: λ = 0.8, λ = 0.99 = λ∗, λ = 0.999 and we have

set N = 100.

the infinite-range model is wider than the nearest-neighbour model (compare eq. (2.7) and

eq. (2.12)). As the value of λ starts increasing from λ = 0, for N > 3 which the distinction

between these two models makes sense, the nearest-neighbour model reaches its maximum

value of coupling constant, which we call λIImax, before the infinite-range one (λIImax < λImax).

Since as λ→ λI,IImax the maximum value of the corresponding EE diverges, the value of the

EE for the nearest-neighbour model starts to grow much faster than the infinite-range one

as λ → λIImax. Therefore there always exists a λ∗(< λIImax < λImax) where the value of the

EE of the nearest-neighbour model touches the value of that of the infinite-range one and

gets larger values for λ > λ∗.

It is also interesting to study Renyi entropy as a function of Renyi index n. This is

done in figure 6 where we have plotted the Renyi entropy (normalized by entanglement

entropy) in our models for various parameter values as a function of n. In this figure the

dashed black curve corresponds to the value of entanglement entropy which coincides at

n = 1 with Renyi entropy at arbitrary coupling λ. There exists two other interesting limits

of Renyi entropy corresponding to n → 0 and n → ∞. In the n → 0 limit, one can easily

check that Renyi entropy by definition, eq. (1.3), reduces to the Hartley entropy

S(0) = lim
n→0

S(n) = logD, (4.1)

where D is the dimension of the image of the reduced density matrix. Since in our models

D is infinite, as it can be seen in figure 6, the Hartley entropy is divergent in this case. On

the other hand in n→∞ limit one finds the min-entropy

S(∞) = lim
n→∞

S(n) = − log λmax, (4.2)

where λmax is the largest eigenvalue of the reduced density matrix. In this case according

to figure 6 the Renyi entropy saturates to a constant value which depends on the value of

the coupling λ, as expected. Also note that in all cases the Renyi entropy is a decreasing

function of the Renyi index n.

4.2 Entanglement inequalities

In a general quantum-mechanical system or quantum field theory, entanglement entropy

(and other measures of quantum entanglement) are proved to satisfy various inequalities.
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Figure 6. Renyi entropy of infinite-range (left) and nearest-neighbour (right) models as a function

of Renyi index n for N = 8 and m = 4. The dashed black curve corresponds to the value of

entanglement entropy.

As a first example of such inequalities, we consider those dealing with Renyi entropy which

was defined in eq. (1.3). Renyi entropies must satisfy a variety of different inequalities such

as [25]

∂

∂n
S(n) ≤ 0,

∂

∂n

(
(n− 1)S(n)

)
≥ 0,

∂

∂n

(
n− 1

n
S(n)

)
≥ 0,

∂2

∂n2

(
(n− 1)S(n)

)
≤ 0. (4.3)

As we mentioned before, the first inequality which shows Renyi entropy is a decreasing

function of Renyi index n is satisfied in our models (see figure 6). It is a straight forward

exercise to show that the other three inequalities are also satisfied in both of our models.

In what follows in this subsection we consider other important inequalities which is

expected to be satisfied generally, based on the classification given in [26]:

1) SA ≥ 0 (positivity of EE)

This is a trivial property which we have checked it for different points in the parameter

space of our models in the previous section (see figure 2 and figure 3).

2) SA + SB ≥ SA∪B (Subadditivity)

This property can be rephrased in terms of the positivity of mutual information (MI)

which is defined as7

I(A,B) = SA + SB − SA∪B. (4.4)

MI is a quantity which measures the amount of shared information between A and

B. While dealing with SEE, where A and B correspond to spatial subregions, MI

is a UV finite measure of entanglement in contrast to EE. Clearly the subadditivity

property implies the positivity of MI, i.e., I(A,B) ≥ 0. Using the definition of Renyi

entropy, one can also define mutual Renyi information (MRI) from the corresponding

Renyi entropies as

I(n)(A,B) = S
(n)
A + S

(n)
B − S(n)

A∪B. (4.5)

While dealing with SEE, it is known that MRI does not have a definite sign. It might

be interesting to verify this property in the case of FSEE.

7Note that the definition of MI does not restrict subsystems A and B to be complements.
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Figure 7. Mutual Renyi information of infinite-range model. Left : MRI as a function of coupling

λ for N = 4,m1 = 1,m2 = 2 and different value for Renyi index. Right : MRI as a function of m

for λ = 0.9 and N = 50,m1 = m,m2 = 50−m with the same value of Renyi index.

Since we are dealing with FSEE, the Hilbert space decomposition we chose

implied I(m1,m2) = Sm1 +Sm2−Sm1+m2 , where Smi is the FSEE for the case which

we have integrated out (N −mi) fields (similarly for MRI). We have plotted MI and

MRI for both the infinite-range and the nearest-neighbour models in figure 7 and

figure 8 where we have considered the λ and m-dependence of these quantities. In

both of these figures, the blue curve corresponds to the case of MI, and other curves

correspond to higher Renyi indices, i.e. MRI. MI is shown to be always positive in

our models. It is worth to note that we could not find any region in the parameter

space of the infinite-range model where the MRI admits negative values. The typical

behavior of this quantity is similar to what is shown in figure 7 for specific values

of the parameters. In the nearest-neighbour model the MRI have both positive and

negative values as shown in figure 8. Note that while we deal with m1 and m2 which

are complements, we expect the MRI to be symmetric with respect to half of the

whole number of fields denoted by N (see the right plots in figure 7 and figure 8).

3) SA ≤ SA∪B + SB (Araki-Lieb inequality)

This property which is also called the triangle inequality implies the positivity of the

intrinsic entropy which is defined as

J(B,A) = SA∪B + SB − SA , J(B,A) ≥ 0. (4.6)

Some specific examples of this inequality in our models are depicted in figure 9.

4) SA∪B∪C + SB ≤ SA∪B + SB∪C , SA + SC ≤ SA∪B + SB∪C (Strong subadditivity)

Both of these inequalities are called strong subadditivity (SSA) and must hold in

any quantum system. These inequalities physically mean that mutual information

and intrinsic entropy must increases under inclusion. These inequalities hold in our

models as we have plotted explicit examples of them in both of our models in figure 10.

5) SA + SB + SC + SA∪B∪C ≤ SA∪B + SA∪C + SB∪C (Monogamy of mutual informa-

tion (MMI))

In spite of previously mentioned inequalities, which are general properties of entan-

glement measures in any quantum system, MMI does not necessarily hold in any
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Figure 8. Mutual Renyi information of nearest-neighbour model. Left : MRI as a function of

coupling λ for N = 4,m1 = 1,m2 = 2 and different value for Renyi index. Right : MRI as a

function of m for λ = 0.9 and N = 50,m1 = m,m2 = 50−m with the same value of Renyi index.

Figure 9. Intrinsic entropy of infinite-range and nearest-neighbour models as a function of coupling

λ for N = 6,m1 = 1 and different values of m2.

Figure 10. SSA inequalities in infinite-range model (left) and nearest-neighbour model (right) as

a function of coupling λ for N = 8,m1 = 1,m2 = 2,m3 = 3.

quantum system and thus it is not considered as feature of entanglement entropy.

Again this inequality can be rephrased as the negativity of tripartite information, i.e.

I [3](A,B,C) ≤ 0, which is defined as

I [3](A,B,C) = SA + SB + SC − SA∪B − SA∪C − SB∪C + SA∪B∪C (4.7)

= I(A,B) + I(A,C)− I(A,B ∪ C).

Generally in quantum mechanics or even in QFTs, depending on how the Hilbert
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Figure 11. Tripartite information for infinite-range and nearest-neighbour models as a function of

coupling λ for N = 10,m1 = 1,m2 = 3 and different values of m3. Note that I [3] is always positive

and in the latter case saturates to zero.

space is partitioned, I [3] can be positive, negative or zero. In figure 11 we have

plotted I [3] for both of our models corresponding to different partitioning of the field

space. As is shown in figure 11, this inequality does not hold in both of our models and

more interestingly the tripartite information is always non-negative in these models.

It is also interesting to note that in the case of m1 + m2 + m3 = N the tripartite

information becomes zero. According to second equality of (4.7) this is a reminiscent

of models which exhibit extensive mutual information property [27].

4.3 n-partite information

In the context of quantum information theory, partitioning the system into n-parts, a new

quantity known as n-partite information8 is defined as [28]

I [n](A{i}) =

n∑
i=1

SAi −
n∑
i<j

SAi∪Aj +

n∑
i<j<k

SAi∪Aj∪Ak
− · · · · · ·+ (−1)nSA1∪A2∪···∪An . (4.8)

It is obvious that according to the above formula the definition of 1-partite and 2-partite

information reduce to EE and MI respectively. Also note that the n-partite information

for n > 1 is a UV finite quantity. Actually a finite measure for quantum entanglement

between subsystems of a larger system is not unique (e.g. another choice known as multi-

partite information is defined in [30]). The reason why we use the above definition for

n-partite information eq. (4.8) for such a quantity is due to its property which reduces to

the definition of tripartite information eq. (4.7) in the case of n = 3 (while e.g. multi-partite

information does not have this property [30]).

As we have mentioned before, MI is always non-negative, i.e., I [2] ≥ 0, due to the

subadditivity property of EE. Although the sign of tripartite information is not fixed gen-

erally, but as we have shown in the previous subsection it is always non-negative in both

of our models. It is worth to note that in the case of CFTs which support a gravitational

dual, the sign of tripartite information is fixed to be always negative. This general property

8This n has nothing to do with the index of Renyi entropy.
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Figure 12. 4-partite information for model I and II as a function of coupling λ for N = 10,m1 =

m2 = m3 = 1 and different values of m4.

Figure 13. 5-partite information for model I and II as a function of coupling λ for N = 10,m1 =

m2 = m3 = m4 = 1 and different values of m5. Note that I [5] is always positive and in the latter

case saturates to zero.

restricts the holographic mutual information to be monogamous [28].9 As an extension of

this property, it is also shown in reference [31] that in a specific limit in the case of SEE,

the holographic n-partite information has a definite sign: it is positive (negative) for even

(odd) n.

It would be interesting to investigate the sign of higher n-partite information in our

models. In figure 12 and figure 13 we present the 4-patite and 5-partite information as

a function of the coupling λ which is surprisingly always positive. Also focusing on 5-

partite information together with 3-partite information (see figure 11), one may conjecture

that n-partite information is always vanishing for the case of odd n’s with complement

partitioning of the system i.e.
∑

imi = N .

4.4 Entanglement negativity

Entanglement negativity and its counterpart logarithmic negativity are useful measures

of quantum entanglement even for mixed states [33]. It is known that the von-Neumann

entropy for a mixed state, e.g. a thermal state, dominated by the classical correlations is not

a useful measure for quantum entanglement. MI also measures the total correlations (both

quantum and classical) between two subsystems which just offers an upper bound [32].

9It is also shown in reference [29] that the null energy condition is a necessary condition for the monogamy

of holographic mutual information.
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Figure 14. Logarithmic negativity for infinite-range and nearest-neighbour models as a function

of coupling λ for N = 10 and different values of m.

It has been shown that negativity is an entanglement monotone (does not increase under

any LOCC operations) and hence a proper measure for quantum entanglement [34]. To

give a more concrete but nevertheless simple definition of this quantity one may consider a

tripartite system in a pure state with a complement partitioning, i.e., M = A1∪A2∪A3. In

this case the reduced density matrix corresponding to union of two subsystems is described

by a mixed state ρ ≡ ρA1∪A2 . Entanglement negativity and logarithmic negativity are

defined as

N (ρ) ≡ ‖ρ
T2‖ − 1

2
, E(ρ) = log ‖ρT2‖, (4.9)

where ‖ρT2‖ denotes the trace norm of the partial transpose of ρ. With the above definition

the logarithmic negativity measures how much the eigenvalues of ‖ρT2‖ are negative.

Although computing these quantities in general is not an easy task, the authors of [37]

have introduced a replica approach to obtain the logarithmic negativity in the ground state

of 2d CFTs. They also show that for a pure state and bipartite system where H = H1⊗H2,

this quantity is given by Renyi entropy with n = 1/2, i.e.,

E(ρ2) = 2 log Tr ρ
1/2
2 . (4.10)

We focus on this definition in order to study the logarithmic negativity in our models. We

postpone further investigations based on computing eq. (14) for future works. In figure 14

we have plotted logarithmic negativity as a function of coupling λ for different partitions

of the Hilbert space.

5 Conclusions and discussions

In this paper we have considered a less studied type of entanglement which is known

as field space entanglement. This type of entanglement corresponds to a Hilbert space

decomposition in the field space of a quantum field theory. As a simple laboratory to

study field space entanglement, we have considered a theory with a generic N number of

free scalar fields, we added kinetic mixing terms (in terms of two specific models) which

generates entanglement between these scalar fields. We traced out a generic m number of
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these fields and worked out the entanglement and Renyi entropies between m and (N −m)

number of these scalar fields. The result of these entropies is UV-divergent which scales with

the (spatial) volume of the theory as expected. Similar to the case of spatial entanglement

entropy, there is a universal term, i.e. a UV cut-off independent term which we argue to

carry some information about the theory. Beside the entanglement and Renyi entropies,

we also constructed other well known entanglement measures such as mutual information,

intrinsic entropy and n-partite information to further investigate features of field space

entanglement. We have shown that this type of entanglement in our models satisfy most of

the known general features of entanglement measures including Renyi entropy inequalities,

strong subadditivity and Araki-Lieb inequality. We have also studied the monogamy of

mutual information which has a definite sign (positive) for tripartite, 4-partite, and 5-

partite information in our models.

There are several directions which one can follow to further investigate our models and

the notion of field space entanglement using this laboratory. We leave further investiga-

tions of these models, including the recently proposed entanglement inequalities (see [35]),

to future works and in the following of this section we discuss a few words about the holo-

graphic picture of field space entanglement entropy and also offer a different viewpoint to

this family of field theories which we have considered.

Holographic picture of FSEE. In order to gain some information about the possible

gravity picture of such an analysis, as the first step we consider some well known features

of field theories which support holographic duals: the monogamy condition for holographic

mutual information and its implication on the dual field theory. As we mentioned in the

previous section the tripartite information in both of our models is always positive and the

monogamy constraint does not hold. Actually this behavior is in contrast to the holographic

result which shows that the holographic mutual information is always monogamous [28].

So in this sense it seems that our models do not have a well defined holographic description.

It is important to mention that it is not clear that whether this constraint must hold for

any type of EE or it is just a feature of SEE. In the following for a while we forget about

this comment on the relation between monogamy of mutual information and the existence

of a holographic dual.

The authors of reference [13] have proposed a naive holographic picture for the en-

tanglement entropy between two CFTs which might be related to our models in the case

of N = 2. In this proposal the factorization of the Hilbert space in the field space was

related to partitioning the compact part of the AdS5×S5 geometry by introducing a ∂A

surface which partitions the S5 sphere into two parts and wraps the boundary of AdS5.

The minimal surface anchoring the corresponding boundary on a certain UV cut-off surface

was proposed to give the entanglement entropy between two interacting subsectors of the

whole CFT4 (which is dual to the AdS5×S5 geometry). Although there are some sub-

stantive comments about the relation between this holographic picture and FSEE (see [6]

and also [14]), the holographic dual of our models in this picture is straightforward. One

may partition the S5 sphere to N parts and the corresponding entanglement entropy is

proportional to the volume of different portions. For example if we consider the mutual
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information between two set of fields, the S5 sphere is divided into three parts and different

terms contributing in the expression of mutual information are proportional to the volume

of the corresponding part of the sphere.

There is another geometrical picture introduced in reference [14] which offers a geomet-

rical interpretation for the entanglement between two SU(m) and SU(N −m) CFTs again

as subsectors of the dual CFT4. This picture is based on the interpretation of minimal

surfaces in the more general supergravity Coulomb branch geometry rather than AdS5×S5

as entanglement entropies. Here the level sets of the scale factor multiplying the Minkowski

part of the solution is interpreted as the UV cut-off of the CFTs living on separated stacks

of D3-branes. There are two family of level sets: disconnected level sets which are con-

sisted of two separated surfaces surrounding each brane stack, and connected ones which

are single surfaces surrounding both brane stacks. Correspondingly there are two family of

minimal surfaces, those which start and end on the connected level sets and those which

start and end on the disconnected level sets. Those surfaces which start and end on the

connected level sets are interpreted as a measure for the entanglement between two CFTs

living on the brane stacks which is generated by means of the stretched modes between

these stacks. The minimal surfaces starting and ending on a part of the disconnected level

set around, say stack 1, are interpreted as a measure for the entanglement between a part

of CFT1 and CFT2 living on the other stack together with the entanglement between two

parts of CFT1. For more details see reference [14].

One can naively generalize this picture to be appropriate for interpreting mutual in-

formation between any two of three SU(m1) and SU(m2) and SU(N − m1 − m2) CFTs

by considering three stacks of D3-branes. In this case the number of connected and dis-

connected level sets increase. There are four types of disconnected level sets: a single

one composed of three parts and those which are composed of two parts, one surrounding

two stacks and the other surrounding a single stack. Although this configuration for three

stacks is too complicated to calculate, there are several minimal surfaces which could be

interpreted as a direct generalization of what was discussed in the previous paragraph. One

can in principle even generalize this picture for arbitrary N and interpret the corresponding

minimal surfaces as in the case of N = 2 as a possible holographic picture of our models.

On the other hand it is recently argued in reference [6] that it is not possible to give

a precise geometrical realization for FSEE in a holographic dual and all which is discussed

in the above two scenarios is rather related to entanglement in the space of the global

symmetry of the CFTs which is in no way essential to define FSEE. Although the author

has offered some arguments to give an effective realization to such a case in terms of IR

CFTs as dual field theories for internal throats in the Coulomb branch supergravity solution

of separated D3-branes, the geometrical interpretation for FSEE seems to still be an open

problem.

Now lets forget about different scenarios as candidates for the holographic picture of

FSEE. One may focus on the N -dependence of the entanglement entropy in the infinite-

range model to give a concrete expectation for a possible reliable holographic dual.10 To

10We thank Shahin Sheikh-Jabbari because of his valuable comment about the N -dependence of field

space entanglement entropy which was insightful for us to clarify the structure of our analysis.
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avoid unnecessary complications, we consider the entanglement entropy in the leading order

of λ

S(m) =
λ2

32
m(N −m)

[
1− log

λ2m(N −m)

32

]
+O

(
λ3
)
, (5.1)

which for the special case of m = N
2 gives

S(m) =
λ2N2

128

[
1− log

λ2N2

128

]
+O

(
λ3
)
, (5.2)

which is expected to be explained by any holographic dual. One can work out the corre-

sponding expressions for the nearest-neighbour model.

Beside this check, the large N behavior of these models seems to have interesting

features in the field space. In this limit the infinite-range model seems to behave as a non-

local theory in the field space while the nearest-neighbor model resembles a local theory.11

It would be interesting to investigate this property more precisely and study its implications

specifically on entanglement and Renyi entropies.

A model for black-hole radiation. A field theory which consists of a number of inter-

acting fields could be a field theoretic counterpart of Page’s model for black-hole evapora-

tion process [36].12 A first and simple clue for this argument is the symmetric behaviour of

the entanglement entropy around m = N
2 (see figure 5 were we have plotted this behavior

for both of our models) and one may compare it with the entanglement (or information)

evolution during the black-hole evaporation.

In reference [36] the author has considered two subsystems with Hilbert space dimen-

sions m and n respectively such that the total Hilbert space with dimension m × n is in

a pure state. He has shown that the entanglement entropy between these two subsystems

is symmetric as a function of the thermodynamical entropy which is defined by logm.

Another important result of such a consideration is that the deviation of the entangle-

ment entropy from its maximum value (the thermodynamical entropy), which is defined as

“information”, remains almost zero until the entanglement entropy reaches its maximum

value.

We demonstrate the entanglement entropy (see figure 5) and “information” (see fig-

ure 15) as a function of m. The information is defines as I = m − S. Our argument for

considering such a definition for information in this case is as follows: In our model where

the total Hilbert space includes N fields, the subsystems (I) and (II) have m and (N −m)

fields respectively and the thermodynamical entropy is an extensive quantity. To see this

consider the Hilbert space for the first subsystem which is H(I) = H1⊗H2⊗· · ·⊗Hm, so if

we denote the dimension of the Hilbert space for a single field by D, then the dimension of

H(I) becomes Dm. So in our case the themodynamical entropy becomes logDm = m logD

and we expect that in the definition of information one must replace logm with m.

Note that in figure 15 which we have plotted the information I, it is non-zero even in

the early stages of evolution (m ∼ 1), in contrast with what was previously found in [36].

11We thank Shahin Sheikh-Jabbri for drawing our attention to this interesting point.
12We thank Mohsen Alishahiha for bringing our attention to this point.
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Figure 15. The “information” for the infinte-range model for N = 100 and λ = 0.9.
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A Calculation of reduced density matrix

In this section we explain some details of the calculation of our master formula, which

is the trace of the reduced density matrix of both of our models reported in eq. (3.1)

and eq. (3.6). Here we explain the logical steps with general formulas as the key points

leading to these results. The remaining part, although is some how messy, it is of course

straightforward if one follows the procedure discussed in this section. The starting point

is the wave functional for Gaussian models introduced in eq. (2.1). We explain the general

formalism while explaining the infinite-range model in subsection A.1, and turn to the

nearest-neighbour model in subsection A.2.

A.1 Infinite-range model

As we have mentioned in section 2, the total density matrix of these models is generally

defined as

ρtot.[φ
′
1, φ1, φ

′
2, φ2, · · · , φ′N , φN ] = Ψ∗[φ′1, φ

′
2, · · · , φ′N ]Ψ[φ1, φ2, · · · , φN ], (A.1)

where Ψ[{φ}] is the Gaussian wave functional introduced in eq. (2.1). In order to define

the reduced density matrix for the simplest case, i.e. m = 1, we identify φ1 and φ′1 and
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integrate over it on the whole space

ρ(N−1)[φ
′
2, φ2, φ

′
3, φ3, · · · , φ′N , φN ] =

∫
Dφ1 Ψ∗[φ1, φ

′
2, · · · , φ′N ]Ψ[φ1, φ2, · · · , φN ]. (A.2)

Implementing the explicit form of the Gaussian wave functional given in eq. (2.1) and

performing the integral, up to an irrelevant normalization constant the result is

ρ(N−1)[φ
′
2,φ2,···,φ′N ,φN ] = exp

−1

2

N∑
i,j=2

∫
dxd−1dyd−1

[
φi(x)

(
Gij−

G1iG1j

G̃11

)
φj(y)

+φ′i(x)

(
G∗ij−

G∗1iG
∗
1j

G̃11

)
φ′j(y)−φi(x)G1iG

∗
1jφ
′
j(y)−φ′i(x)G∗1iG1jφj(y)

],
(A.3)

where we have dropped the x and y dependence of Gij ’s in the above expression for sim-

plicity and we do so in what follows. Note that in the above formula •̃ ≡ 2Re [•]. It is not

a hard task to integrate out more than one field, say m number of fields which leads to the

reduced density matrix

ρ(N−m)[φ
′
m+1, φm+1, · · · , φ′N , φN ] =

∫
Dφ1 · · · Dφm Ψ∗[φ1, φ

′
2, · · · , φ′N ]Ψ[φ1, φ2, · · · , φN ].

(A.4)

A similar procedure which leads to eq. (A.3) can be performed to arrive at (via induction)

ρ(N−m)[φ
′
m+1, φm+1, · · · , φ′N , φN ] =

exp

{
− 1

2

N∑
i,j=m+1

∫
dxd−1dyd−1

×
[
φi(x)X

(m)
ij φj(y) + φ′i(x)X

(m)
ij

∗
φ′j(y) + φi(x)Y

(m)
ij φ′j(y) + φ′i(x)Y

(m)
ij

∗
φj(y)

]}
,

(A.5)

where

X
(m)
ij = X

(m−1)
ij −

Z
(m)
i Z

(m)
j

X̃
(m−1)
mm

, Y
(m)
ij = Y

(m−1)
ij −

Z
(m)
i Z

(m)
j

∗

X̃
(m−1)
mm

, Z
(m)
i = X

(m−1)
i,m−1 +Y

(m−1)
i,m−1 .

(A.6)

One can work out the generic reduced density matrix using the above recursion relations

with initial values X
(0)
ij = Gij and Y

(0)
ij = 0. Considering the infinite-range model, using

eq. (A.5) together with eq. (2.4), one can find the most general form of the reduced density

matrix in terms of m, N and λ which is the coupling constant between the scalar fields.
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t

4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1 4 3 2 1

Figure 16. Replica method for N = 4 and n = 3 for m = 1 (left) and m = 2 (right). The spatial

directions of the field theory are perpendicular to the plane and the vertical lines correspond to the

time direction. The numbers under each vertical line corresponds to i-th field φi.

For future use we rewrite the reduced density matrix as

ρ(N−m)[φ
′
m+1,φm+1,···,φ′N ,φN ] =

exp


−1

2

∫
dxd−1dyd−1×

(
φ′m+1(x) φm+1(x) ··· φ′N (x) φN (x)

)
·M(m,N)·


φ′m+1(y)

φm+1(y)
...

φ′N (y)

φN (y)




,

(A.7)

where

M(m,N) =



X
(m)∗

m+1,m+1 Y
(m)∗

m+1,m+1 X
(m)∗

m+1,m+2 Y
(m)∗

m+1,m+2 · · · X
(m)∗

m+1,N Y
(m)∗

m+1,N

Y
(m)
m+1,m+1 X

(m)
m+1,m+1 Y

(m)
m+1,m+2 X

(m)
m+1,m+2 · · · Y

(m)
m+1,N X

(m)
m+1,N

X
(m)∗

m+2,m+1 Y
(m)∗

m+2,m+1 X
(m)∗

m+2,m+2 Y
(m)∗

m+2,m+2 · · · X
(m)∗

m+2,N Y
(m)∗

m+2,N

Y
(m)
m+2,m+1 X

(m)
m+2,m+1 Y

(m)
m+2,m+2 X

(m)
m+2,m+2 · · · Y

(m)
m+2,N X

(m)
m+2,N

...
...

...
...

. . .
...

...

X
(m)∗

N,m+1 Y
(m)∗

N,m+1 X
(m)∗

N,m+2 Y
(m)∗

N,m+2 · · · X
(m)∗

N,N Y
(m)∗

N,N

Y
(m)
N,m+1 X

(m)
N,m+1 Y

(m)
N,m+2 X

(m)
N,m+2 · · · Y

(m)
N,N X

(m)
N,N



. (A.8)

After the construction of the reduced density matrix, one can use the standard replica

method [19, 38–40] to construct the its n-th power in order to work out its trace. This step

is basically the same for both of our models which is pictorially explained in figure 16 for

m = 1 and m = 2 and N = 4. The replica method here is exactly the same as the well-

known procedure for 2d CFTs within the context of spatial entanglement (e.g. see [40]).

The only difference is that here we cut along the whole spatial coordinates at τ = 0 of

those fields which we are not integrating out (see figure 16).

What remains to do is to start from eq. (A.5) and find the trace of the reduced density

matrix for general Renyi index n for generic m and N . It is not a hard task, although

– 23 –



J
H
E
P
0
3
(
2
0
1
6
)
0
1
5

messy, to see that using replica method one can find

Tr
[
ρn(N−m)

]
=

∫
Dφ(1)

m+1···Dφ
(N)
m+1Dφ

(1)
m+2···Dφ

(N)
m+2······Dφ

(1)
N ···Dφ

(N)
N

×exp



−1

2

∫
dxd−1dyd−1

(
φ
(1)
m+1(x) ··· φ(N)

m+1(x) ······ φ(1)
N (x) ··· φ(N)

N (x)
)
·M·



φ
(1)
m+1(y)

...

φ
(N)
m+1(y)

...

...

φ
(1)
N (y)

...

φ
(N)
N (y)





,

(A.9)

where the matrix M is a n(N −m)× n(N −m) square matrix and is defined in terms of

Mm,m′ blocks as

M =


Mm+1,m+1 Mm+1,m+2 · · · Mm+1,N

Mm+2,m+1 Mm+2,m+2 · · · Mm+2,N
...

...
. . .

...

MN,m+1 MN,m+2 · · · MN,N

 , (A.10)

and the blocks Mm,m′ are n× n square matrices given by

Mm,m′ =



X̃m,m′ Ym,m′ 0 · · · Ym′,m
Ym′,m X̃m,m′ Ym,m′ · · · 0

0 Ym′,m X̃m,m′ · · · 0
...

...
...

. . .
...

0 0 0 X̃m,m′ Ym,m′

Ym,m′ 0 0 Ym′,m X̃m,m′


. (A.11)

If we calculate the determinate ofM we are done. This would be a much simpler task if

we consider the explicit values of Gij ’s for the infinite-range model. To do so the key point

is the existence of an orthogonal transformation which results in a diagonal model (free

scalar fields) as was explained in section 2.1 and specifically in eq. (2.6). In the diagonal

basis the ground state wave functional up to a normalization constant becomes

Ψ[φ′1, · · · , φ′N ] = exp

{
−1

2

∫
dxd−1dyd−1W (x, y)

[
N∑
i=1

Aiφ
′
i(x)φ′i(y)

]}
, (A.12)

where Ai’s are given in eq. (2.5) and W (x, y) is given by

W (x, y) =
1

V

∑
k

|k|eik(x−y), (A.13)
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where V is the (d − 1)-dimensional volume which the field theory is defined on. Since we

have applied an orthogonal transformation between {φ1, · · · , φN} and {φ′1, · · · , φ′N} basis,

the physical state is unaffected, i.e.

Ψ[φ′1, · · · , φ′N ] = Ψ[φ1, · · · , φN ],

and we can rewrite the ground state in terms of {φ1, · · · , φN} basis as

Ψ[φ1, · · · , φN ] = exp

−1

2

∫
dxd−1dyd−1W (x, y)

 N∑
i,j=1

Gijφi(x)φj(y)

 , (A.14)

where Gij ’s for this model are given by

G =
1

2


2 λ λ · · · λ
λ 2 λ · · · λ
λ λ 2 · · · λ
...

...
...

. . .
...

λ λ λ · · · 2

 . (A.15)

Using these explicit expressions and working out the trace of the reduced density matrix

first for m = 1 and generic N , by induction one can easily find that

Tr
[
ρn(1)

]
= N

∏
i

n∏
r=1

[
1 +

(N − 1)λ2

(N − 1)λ2 − 4λ(N − 1) + 4(λ− 2)
cos

(
2πr

n

)]
. (A.16)

Now we are done with the m = 1 case. Generalizing to m > 1 is not a hard task because of

a simple structure in the reduced density matrix. Since the structure of the reduced density

matrix only depends on (N −m) rather than m and N itself, we are almost done since we

already have calculated m = 1 for generic N . Again by induction one can generalize the

above result for general m which is

Tr
[
ρn(m)

]
= N

∏
i

n∏
r=1

[
1 +

4(N −m)Y (m)

4(N −m)Y (m) + (N −m)λ+ 2− λ
cos

(
2πr

n

)]
, (A.17)

where Y (m) (not to be confused with the Y elements of matrix M) is defined as

Y (m) = −1

4

(
λ

2

)2

· 2m

2 + (m− 1)λ
. (A.18)

A.2 Nearest-neighbour model

The logical steps for this model is the same as that we have discussed in the previous

subsection. We may start from eq. (A.4) for this model. In comparison with the infinite-

range model, this model has much fewer symmetries which makes it harder to push this

calculation as general as we did for the infinite-range model. Since we are interested in the

case where the strength of interactions between interacting fields is equal, we will restrict

our analysis for equal off diagonal values of Gij which we denote by Gij ≡ G for i 6= j, and
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also Gii ≡ Gd. For such a case one can perform m number of Gaussian integrals to arrive

at the general reduced density matrix in the form of eq. (A.5) with

M(m,N) =



G∗d −X∗m
2 |Xm|2 G∗ 0 · · · Y ∗m

2 |Ym|2

|Xm|2 Gd −X2
m 0 G · · · |Ym|2 Y 2

m

G∗ 0 G∗d 0 · · · 0 0

0 0 0 Gd · · · 0 0
...

...
...

...
. . .

...
...

Y ∗m
2 |Ym|2 0 0 · · · G∗d −X∗m

2 |Xm|2

|Ym|2 Y 2
m 0 0 · · · |Xm|2 Gd −X2

m


. (A.19)

where

Xm = G

[
1

4Zm

] 1
2

, Ym = G

[
G̃m−1

(−2)m
∏m
i=1 Zi

] 1
2

, Zm = Z1 −
G̃2

4Zm−1
, (A.20)

and Z1 = G̃d. Note that the above general form is correct for m > 1, for the case of m = 1

there is an extra factor of 2 in the denominator of all components represented in terms of

Ym. The reader should note that these Ym and Zm functions are not to be confused with

the functions with Y (m), Yd(m) and Z(m) which appear in the final result as functions of

the coupling which is given in eq. (3.6) and eq. (3.7).
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Now we can work out the counterpart of eq. (A.9) in this model. Here the form of M
is more complicated and is given as follows

M =



MX MG 0 0 · · · MY

MG MGd MG 0 · · · 0

0 MG MGd MG · · · 0
...

...
...

...
. . .

...

0 0 · · · MG MGd MG

MY 0 · · · 0 MG MX


, (A.21)

where again the blocks Mi are n× n square matrices given by

MX =



G̃d − X̃2
m |Xm|2 0 · · · |Xm|2

|Xm|2 G̃d − X̃2
m |Xm|2 · · · 0

0 |Xm|2 G̃d − X̃2
m · · · 0

...
...

...
. . .

...

0 0 |Xm|2 G̃d − X̃2
m |Xm|2

|Xm|2 0 0 |Xm|2 G̃d − X̃2
m



MY =



Ỹ 2
m |Ym|2 0 · · · |Ym|2

|Ym|2 Ỹ 2
m |Ym|2 · · · 0

0 |Ym|2 Ỹ 2
m · · · 0

...
...

...
. . .

...

0 0 |Ym|2 Ỹ 2
m |Ym|2

|Ym|2 0 0 |Ym|2 Ỹ 2
m



(A.22)

and MG = diag{G, · · · , G} and MGd = diag{Gd, · · · , Gd}.
Now we are equipped with Tr

[
ρn(N−m)

]
for the nearest-neighbour model and what

remains is to plug in the corresponding Gij which was given in eq. (2.9) and work out

the determinant of M given in eq. (A.21). This step is of course more messy than the

case of infinite-range model because of a technical subtlety. Here in contrast with the

infinite-range model, when we increase m and N , the degree of the polynomials appearing

in the expression of det[M] also increases. The key point to bring these expressions back

into control is to factor them in terms of their roots, which generally take the form of

λ−1 = cos [w(m,N)π] with different w(m,N) functions. Following such a process will

lead to eq. (3.6). Note that the functions X and Y used here has nothing to do with the

functions given in the final result eq. (3.6).
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