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Abstract: Most dark matter models set the dark matter relic density by some interaction

with Standard Model particles. Such models generally assume the existence of Standard

Model particles early on, with the dark matter relic density a later consequence of those

interactions. Perhaps a more compelling assumption is that dark matter is not part of

the Standard Model sector and a population of dark matter too is generated at the end of

inflation. This democratic assumption about initial conditions does not necessarily provide

a natural value for the dark matter relic density, and furthermore superficially leads to too

much entropy in the dark sector relative to ordinary matter. We address the latter issue

by the late decay of heavy particles produced at early times, thereby associating the dark

matter relic density with the lifetime of a long-lived state. This paper investigates what it

would take for this scenario to be compatible with observations in what we call Flooded

Dark Matter (FDM) models and discusses several interesting consequences. One is that

dark matter can be very light and furthermore, light dark matter is in some sense the most

natural scenario in FDM as it is compatible with larger couplings of the decaying particle.

A related consequence is that the decay of the field with the smallest coupling and hence

the longest lifetime dominates the entropy and possibly the matter content of the Universe,

a principle we refer to as “Maximum Baroqueness”. We also demonstrate that the dark

sector should be colder than the ordinary sector, relaxing the most stringent free-streaming

constraints on light dark matter candidates. We will discuss the potential implications for

the core-cusp problem in a follow-up paper. The FDM framework will furthermore have

interesting baryogenesis implications. One possibility is that dark matter is like the baryon

asymmetry and both are simultaneously diluted by a late entropy dump. Alternatively,

FDM is compatible with an elegant non-thermal leptogenesis implementation in which

decays of a heavy right-handed neutrino lead to late time reheating of the Standard Model

degrees of freedom and provide suitable conditions for creation of a lepton asymmetry.
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1 Introduction

Most dark matter models set the dark matter relic density by some interaction with Stan-

dard Model particles. Such models generally assume the existence of Standard Model

particles early on — say immediately after inflation — with the dark matter density set

by those interactions later on. Perhaps a more compelling assumption is that dark matter

is not part of the Standard Model sector and a population of dark matter is generated at

the end of inflation too. In this paper we take an agnostic point of view about the initial

conditions of the Universe and dark matter’s interactions with the Standard Model and

assume that the inflaton decays democratically to the Standard Model and the dark sec-

tors (if more than one). We call the dark matter and Standard Model particles produced

directly through the inflaton decay the primordial matter, which includes a contribution

to the dark matter relic density. We then ask what is required to reconcile this more

compelling assumption with the currently observed Universe under the further assumption

that the comoving number density of dark matter remains constant (aside from a possible

independent entropy dump into the dark sector too), i.e. dark matter does not undergo

thermal freeze-out, decay, or freeze-in production. In a future publication, we will show

– 1 –



J
H
E
P
0
3
(
2
0
1
6
)
0
1
1

Ρ

Ρ
B-B

Γ

F
DM

tamF amDM
aG

Figure 1. Schematic plot of the time evolution of the energy densities, showing the dark matter

(DM), Standard Model photon bath γ, and heavy states Φ, for comparable initial densities R(0) ≡
ρDM

ρΦ
' 1. Also shown is the evolution of the net baryon number ρB−B ∼ mBnB , which for

definitiveness we assume here is generated at some point following Φ decays and mark by the

red dot.

that with different couplings between the visible and dark sectors, our framework can also

produce initial conditions compatible with these possibilities.

Given the above assumptions and initial conditions, without a large injection of en-

tropy into the Standard Model, dark matter would typically carry too much entropy. We

therefore assume the late decay of a heavy field Φ produced at early times adds entropy to

the Standard Model at late times, thereby associating the dark matter relic density with

the lifetime of a long-lived particle. By definition relativistic particles, including any light

primordial states, redshift as radiation, ρ ∝ a−4, while any heavy species Φ becomes non-

relativistic and evolves like matter, ρ ∝ a−3. As a result the contribution of the primordial

states to the total energy density will rapidly diminish. The entropy resulting from the late

decay can therefore flood the entropy of the universe, adequately diluting the primordial

dark matter contribution. Hence, we call this scenario Flooded Dark Matter (FDM).

For simplicity, and because it embodies much of the key physics, we will initially

consider only one such heavy state Φ. After the decay of Φ into Standard Model particles,

the subsequent evolution of dark matter and the Standard Model will behave in accordance

with standard cosmology. The relative evolution of the densities sets the abundance of

dark matter and photons, as in figure 1. Assuming very heavy Φ, the period for which

the energy densities undergo different evolution is determined by the lifetime of Φ. The

entropy injection due to Φ decays reheats the visible sector so that the Standard Model

dominates the entropy. This also explains why radiation contributions from other sectors

(“dark radiation”) should not influence cosmological observables, as these are diluted by

the entropy dump too. If there are several heavy states, the final species to decay typically

contributes the most energy and entropy, as energy injected in prior decays is also diluted

relative to the energy in the remaining nonrelativistic states. Other authors [1–5] have

considered the cosmological implications of entropy dumps by scalar fields primarily in the

context of moduli decay. In contrast our Φ is in general not a string modulus (or even a
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scalar), its lifetime is much shorter and it generally decays preferentially into a particular

sub-sector.1 In the spirit of democracy we will ultimately assume at least two species: one

that decays into dark matter ΦDM and ΦSM, which decays into Standard Model particles.

Our analysis shows how to make the inflaton democratic decay consistent with both

the relative entropy and energy of the dark and ordinary matter sectors. An interesting

consequence of this scenario is that FDM can be very light in this scenario and we will

explain how light dark matter appears naturally in our framework. We will show that the

dark sectors are typically colder than the visible sector, which relaxes the stringent free-

streaming constraints on light dark matter candidates. A consequence of this possibility is

that Fermi-blocking with light dark matter can conceivably solve the core-cusp problem;

we will address this in a dedicated paper [6]. With low dark matter mass, we find that

the entropy in the dark sector lies between that of baryons and photons, but is not tied

to either.

A natural question in this context is how to reconcile this with the baryon asymmetry.

Our framework introduces a few interesting possibilities:

1. A particle asymmetry comes either from inflaton decays or from dynamics in the early

Universe and is initially present (as in asymmetric dark matter models) in both the

visible and dark matter sector (see e.g. [7–15]). The asymmetry in this case would

be carried either by Φ or by the primordial states — the difference from asymmetric

dark matter simply being the later dilution. This might in some sense be the most

compelling scenario in our context because baryons and dark matter, which both

carry less entropy than photons, are treated on the same footing and diluted by the

late decay of Φ.

2. CP violating decays of Φ to the Standard Model generate an asymmetry in B or L,

similar to e.g. [16–25]. This option leads to more model-dependent parameters and

constraints but can have interesting implications. We will present a realization based

on a conventional see-saw neutrino model in which the heavy right-handed fermion

plays the role of Φ, and the electron right-handed neutrino, which is most weakly

coupled, is responsible for the Standard Model content.

3. The baryon asymmetry is generated by dynamics in the visible sector. This might

occur after reheating due to Φ decays (e.g. via electroweak baryogenesis [26]) or prior

to the decay of Φ in which case any asymmetry will be subsequently diluted. This

scenario is not tied to our framework and thus we do not discuss it further.

We emphasize our goal — unlike most dark matter models — is not to naturally

explain the amount of energy remaining in the dark sector, although it is interesting that

some models, like the neutrino model we present later, do work beautifully. We are simply

exploring what it would require for a democratically decaying inflaton past to match onto

the Universe we see today and furthermore explore several interesting consequences.

1Indeed, it is likely difficult to realise FDM with Φ identified as a string modulus since, even utilising

sequestering effects, it is challenging to avoid sizeable branching ratios to all sectors in the moduli decays [5].
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The paper is structured as follows: in section 2 we derive an expression for the dark

matter relic density in terms of the Φ decay rate. We subsequently examine the observa-

tional implications of FDM — specifically the bounds from free streaming and contributions

to the effective number of neutrino species. In section 3 we investigate the different imple-

mentations of baryogenesis as outlined above. In section 4 we construct an elegant realiza-

tion of this framework in which a heavy state Φ is identified with a right-handed neutrino.

We conclude in section 5. Some further relevant details are given in the appendices.

2 Flooded Dark Matter

In this section we give a description of the evolution of the Universe within the FDM

framework and derive the relevant constraints on the parameter space. We first do this for

a scenario with one heavy particle Φ in section 2.1, and later generalize to a two particle

scenario with ΦSM and ΦDM in section 2.2. We then investigate the constraints from dark

matter free-streaming and the effective number of neutrino species ∆Neff in section 2.3.

Finally, we collect all of the relevant constraints and relations in section 2.4.

2.1 Standard Model reheating from late decays

We first consider a scenario with only a primordial dark matter contribution and make the

simplest assumption of a single heavy scalar field that decays to the Standard Model, which

in this section we will call Φ ≡ ΦSM. The period for which the energy density of the dark

matter redshifts relative to the energy density of Φ is controlled by the Φ lifetime so we

first derive the Φ decay rate required to match the observed dark matter relic density. We

denote the scale factor at which Φ becomes nonrelativistic (T ' mΦ) by a = a0, and that

at which Φ decays as a = aΓ. The scale factor when dark matter becomes nonrelativistic

will be denoted as a = aNR. Moreover, we define the ratio of energy densities of dark

matter and Φ at different cosmological times as

R(i) ≡ R(ai) ≡
ρDM(ai)

ρΦ(ai)
. (2.1)

Assuming democratic inflaton decay R(0) ≡ R(a0) ' 1. However, we shall leave R(0)

as a free parameter as there are other motivated scenarios in which R(0) could deviate

from unity, be near vanishing, or be related to the fundamental model parameters.2 Also,

treating R(0) as a free parameter allows the possibility of different initial temperatures in

the various sectors.

We might also wish to keep track of other primordial populations such as the Standard

Model sector and any additional dark sectors. We mark the ratios of densities of these

primordial populations to the density of Φ similarly

R
(0)
SM ≡

ρSM(a0)

ρΦ(a0)
; R

(0)
DS ≡

ρDS(a0)

ρΦ(a0)
. (2.2)

2For instance, if only dark matter is reheated after inflation, freeze-in will subsequently generate a

population nFI
Φ of Φ states. As a result R(0) ∼ nFI

Φ /s and nFI
Φ will depend on the couplings involved in the

freeze-in portal operator (see e.g. [27–35]).
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The evolution of ρtot can be described in terms of the Hubble parameter as follows

H2(a) =
ρtot(a)

3M2
Pl

' gΦπ
2

90

m4
Φ

M2
Pl

[(a0

a

)3
+R(0)

(a0

a

)4
+R

(0)
SM

(a0

a

)4
+R

(0)
DS

(a0

a

)4
]
, (2.3)

where MPl is the reduced Planck mass. We denote by gi the number of relativistic degrees

of freedom in a given state or sector i, scaled by 7/8 for fermions.3 Similar to our definition

of R(i) we use a superscript to indicate the temperature at which a given quantity should

to be evaluated, specifically, the value of g at a given moment a = ai will be denoted g(i)

and we use g(∞) for its present-day value. Note that the first term in eq. (2.3) corresponds

to the energy density contribution from Φ, while the second term corresponds to the con-

tribution from the dark matter particle. The subsequent terms describe the contribution

of the primordial Standard Model and additional dark sector populations. The decays of Φ

become important when 3H(aΓ) = Γ (for a determination of the precise numerical factor

see appendix A).

We assume that prior to 3H = Γ the state Φ dominates the energy density of the

Universe and that at this point the dark matter is still relativistic. We show in appendix B

that the latter assumption is unnecessary, but assume this now for clarity of exposition.

Indeed, in the converse scenario, where the dark matter becomes nonrelativistic before Φ

decays, one obtains the same result up to O(1) numerical prefactors.

The energy density of Standard Model particles must exceed that of dark matter

particles once Φ has decayed. As a result Φ has to dominate the total energy density at

this point.4 We drop all other energy contributions and set 3H = Γ in eq. (2.3) to get the

scale factor at time of Φ decay (
a0

aΓ

)3

=
10

π2

Γ2M2
Pl

gΦm4
Φ

. (2.4)

Further, eq. (2.3) determines the ratio of energy densities at the time of the Φ decay

R(Γ) = R(0)

(
a0

aΓ

)
= R(0)

[
10

π2

Γ2M2
Pl

gΦm4
Φ

]1/3

. (2.5)

Assuming the evolution of the Universe is adiabatic after Φ decays, the ratio of entropy

densities does not change between aΓ and the present-day. Thus we can relate R(Γ) to the

ratio of entropy densities of the reheated Standard Model population and dark matter today

R(Γ) =

(
g

(Γ)
SM

g
(Γ)
DM

)1/3(
s

(Γ)
DM

s
(Γ)
SM

)4/3

=

(
g

(Γ)
SM

g
(Γ)
DM

)1/3(
s

(∞)
DM

s
(∞)
SM

)4/3

. (2.6)

Moreover the ratio of dark matter to Standard Model entropies can be expressed in terms

of observed quantities as follows

s
(∞)
DM

s
(∞)
SM

=
2π4

45ζ(3)
∆
nDM

nB
=

2π4

45ζ(3)
∆

ΩDM

ΩB

mB

mDM
, (2.7)

3We will neglect throughout the numerically small difference between the counting of fermionic degrees

of freedom in number density and energy density.
4In the special case in which the primordial Standard Model population already dominates the energy

density, we have no need for Φ and we therefore omit this case.
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where ∆ = nB/sSM = 0.88 × 10−10 and mB ≈ 0.938 GeV is the proton mass. Collecting

eqs. (2.5) and (2.6) we obtain an expression for the decay rate of Φ required to match the

observed relic density today

Γ =
π√
10

m2
Φ

MPl

(
s

(∞)
DM

s
(∞)
SM

)2(
g

(Γ)
SM

g
(Γ)
DM

)1/2(
g

(Γ)
SM(

R(0)
)3
)1/2

. (2.8)

Additionally, from inspection of eq. (2.6) and (2.7) we verify that R(Γ) � 1, as long

as mDM � 1 eV, thus supporting our decision to drop the energy term associated with

dark matter in eq. (2.3). Furthermore, R(Γ) � 1 implies that the energy density of the

dark matter is small compared to the Standard Model at this point. This is different from

thermal dark matter for which one might expect that the Standard Model and dark matter

might have been in thermal equilibrium until around T ∼ mDM, as a result the dark matter

in FDM models can be significantly colder than expected for thermal dark matter. The

ratio of the temperatures of the dark matter sector and Standard Model sector is simply

TDM

TSM

∣∣∣∣
∞

=

(
g

(Γ)
SM

g
(Γ)
DM

R(Γ)

)1/4(
g

(∞)
SM

g
(Γ)
SM

)1/3

=

(
g

(∞)
SM

g
(Γ)
DM

2π4

45ζ(3)
∆

ΩSM

ΩB

mB

mDM

)1/3

. (2.9)

In figure 2 we show TDM/TSM, as a function of the dark matter mass, which follows from

eq. (2.9). At decay ρΦ ' ρSM and thus the Standard Model reheat temperature can be

expressed

TRH ≡ T (Γ)
SM '

[
30

π2g
(Γ)
SM

ρSM(aΓ)

]1/4

'

[
10

π2g
(Γ)
SM

]1/4√
ΓMPl . (2.10)

Note that to satisfy the constraints from BBN it is required that TRH & 10 MeV [36, 37].

However, in many of the baryogenesis scenarios we consider in detail later in this paper we

shall rely on sphaleron processes and thus we enforce the stricter condition TRH & 100 GeV.

Finally, we wish to determine the visible sector temperature at which dark matter

becomes nonrelativistic. This occurs once the dark sector temperature drops to the dark

matter mass threshold TDM ' mDM, at this point the Standard Model temperature is

given by

TNR ' mDM
TSM

TDM

∣∣∣∣
NR

= mDM

(
g

(Γ)
SM

g
(Γ)
DM

s
(∞)
DM

s
(∞)
SM

)−1/3(
g

(NR)
SM

g
(Γ)
SM

)−1/3

= mDM

(
g

(NR)
SM

g
(Γ)
DM

2π4

45ζ(3)
∆

ΩDM

ΩB

mB

mDM

)−1/3

.

(2.11)

The weak dependence on the ratio of degrees of freedom can typically be neglected.

2.2 Dark matter from late decay

We have so far considered only one heavy field Φ that decays into Standard Model particles.

Now we consider the more general possibility that the inflaton decays into dark matter
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Figure 2. Ratio of dark to visible sector temperatures TDM/TSM as a function of mDM. The

right-hand y-axis shows the temperature of the Standard Model TNR when dark matter becomes

nonrelativistic.

particles, Standard Model particles, and at least two heavy fields ΦDM and ΦSM associated

with the dark matter and Standard Model sectors.5 We assume that the second field ΦDM

that decays primarily to dark matter, and that the field decaying to the Standard Model

is longer-lived. Hence the Standard Model entropy will dominate over that of the dark

matter, that redshifts before the second field decays. This matches continuously on to the

single decaying field model of the previous section, which can be considered a limiting case

when the decay to dark matter occurs before ΦDM becomes nonrelativistic.

When dark matter is produced by late decay, there is less time for dark matter to red-

shift relative to ordinary matter. For this reason, the allowed parameter space is reduced.

Here we assume that ΦSM and ΦDM are degenerate. This reduces the allowed parameter

space. We demonstrate this for the case when ΦSM and ΦDM are degenerate, and generalize

to the nondegenerate case in appendix C. So we consider mΦDM
= mΦSM

= mΦ, but with

ΓDM > ΓSM, where we denote ΓΦi ≡ Γi. We will restrict our attention to scenarios in

which both states decay at temperatures below the mΦ threshold. Assuming that at the

mass thresholds the Universe is matter dominated by Φ, this occurs for H ∼ m2
Φ/MPl. We

define a0 ≡ a(T = mΦ), and take the initial conditions

ρi(a0) = R
(0)
i m4

Φ , (2.12)

where R
(0)
i accounts for the initial ratios (for i = ΦDM,ΦSM, DM, SM) and we absorb the

gi factors into the definition of R
(0)
i here.

The energy densities are evolved to H ' ΓDM to obtain

ρi(aΓDM
) = R

(0)
i m4

Φ

(
a0

aΓDM

)3

, (i = ΦDM,ΦSM) . (2.13)

5Notably, in the context of supersymmetric models, the lowest dimension flat directions of the superpo-

tential are good candidates for ΦDM and ΦSM as they are more likely to decay into one sector or the other

if the two sectors involve distinct sets of gauge interactions.
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Because the dark matter redshifts like radiation between the time of the first decay to the

time of the second, and this era is matter dominated, it is easy to see that after the second

field has decayed

ρDM(aΓSM
)

ρSM(aΓSM
)

=
R

(0)
ΦDM

R
(0)
ΦSM

[
R

(0)
ΦDM

+R
(0)
ΦSM

R
(0)
ΦSM

(
ΓSM

ΓDM

)2
]1/3

, (2.14)

where we have accounted for the possibility of different initial densities stored in the two

fields, which enters both directly and in the energy stored in matter during the interval

between the two decays. Notice that this is the same form as eq. (2.5) above with the

substitution m2
Φ/MPl → ΓDM since the relative redshifting no longer starts right after Φ

becomes nonrelativistic, but after ΦDM decays. From eq. (2.7) & (2.14) we find that for a

given ΦDM decay rate, the required ΓSM to reproduce the observed dark matter relic density

ΓSM = ΓDM

(
g

(Γ)
SM

g
(Γ)
DM

)1/2(
s

(∞)
DM

s
(∞)
SM

)2
(R(0)

ΦSM

R
(0)
ΦDM

)3
R

(0)
ΦSM

R
(0)
ΦDM

+R
(0)
ΦSM

1/2

. (2.15)

This expression is the analog of eq. (2.8) in the one-field FDM framework.

The left panel of figure 3 shows regions in the ΓSM–ΓDM plane for which we recover

the correct relic density of dark matter. We have incorporated the constraints that ΦSM

is longer lived than ΦDM, that the Standard Model reheat temperature is above 100 GeV

and that ΦDM decays after the initial reheat of the Universe. This latter condition is

ensured be imposing that the decay rate of ΦDM should be larger than the Hubble rate at

inflationary reheating: ΓDM > HIRH. As we have seen above, the two-field framework is

equivalent to the one-field framework with mass m2
Φ = MPlΓDM. We show this equivalent

mass on the right-hand axis of each plot to facilitate the comparison. The right panel

shows the consequences of choosing mΦ = 1010 GeV. Once the common mass is chosen

we can determine the coupling κ, defined as ΓSM = κ2mΦ/8π which is shown on the dark

green x-axis below the plot. The dashed contours indicate mDM. Notice that the largest κ

require a small dark matter mass.

2.3 Additional constraints

We have seen in figure 3 that larger couplings responsible for the decay of ΦSM favor lighter

dark matter masses. However, light dark matter is constrained because it erases small-scale

density perturbations [38, 39]. For standard dark matter this bound is ∼ 1 keV. Since in

FDM models dark matter can be colder, the constraint is relaxed.

When dark matter is relativistic it erases the primordial density perturbations in the

matter spectrum, see e.g. [38–43]. Therefore the size of the smallest observed gravitationally

bound structures probe the horizon size at which dark matter became nonrelativistic.

In standard cosmology this horizon size can be related to the temperature and puts a

lower bound on the dark matter mass. The observation of dwarf galaxies implies density

perturbations on comoving scales of llimit ∼ 0.1 Mpc survive. Since density perturbation
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Figure 3. Left: the allowed parameter space in the ΓSM–ΓDM plane, as constrained by the relic

density of dark matter. The blue region indicates a reheat temperature below 100 GeV. The

purple indicates regions in which ΦDM decays earlier than the highest temperature the Universe

can achieve in reasonable models of reheating: ΓDM > HIRH. The red indicates regions in which

the ΦDM decays later than ΦSM, although logically possible, we will see these regions are typically

excluded. The dashed contours show the mass of dark matter mDM (GeV) that is necessary to

recover the observed relic energy density of dark matter. Finally, the vertical axis on the right

shows the values of mΦ in one field models that gives equivalent results to the choice of ΓDM in

two field framework. Right: this plot is the same plot as the left panel with a particular choice of

mΦ = 1010 GeV. The dark green x-axis shows the values of κ necessary to match ΓSM = κ2mΦ/8π.

Notice that larger κs correspond to small masses of dark matter. A perturbativity constraint κ > 1

is now marked in yellow.

of order lp are erased if lp � lF , there is a bound on the free streaming length lF and,

consequently, mDM. Adapting the treatment in [40], we start from the following expression

lF =
[
1 + z(TNR)

]
lH(TNR) , (2.16)

where [1 + z(TNR)] ' TNR/T0 is the redshift at which the dark matter becomes nonrela-

tivistic, in terms of T0 ≈ 2.7 K ≈ 2.3× 10−4 eV the present temperature. The horizon size

at that time is given by

lH(TNR) ≡ 1

H(TNR)
=

(
90

g
(NR)
SM π2

)1/2
MPl

T 2
NR

, (2.17)

which implies free streaming length of order

lF =

(
90

g
(NR)
SM π2

)1/2
MPl

T0

1

TNR
. (2.18)
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Now using that FDM becomes nonrelativistic at T = TNR derived in eq. (2.11), we obtain

lF =

(
90

g
(NR)
SM π2

)1/2
MPl

mDMT0

(
g

(NR)
SM

g
(Γ)
DM

s
(∞)
DM

s
(∞)
SM

)1/3

. (2.19)

Observe that the free streaming length for FDM is suppressed relative to the expectation

for thermal dark matter lthF as follows

lF

lthF
'
(
mDM

TNR

)
=

(
g

(NR)
SM

g
(Γ)
DM

s
(∞)
DM

s
(∞)
SM

)1/3

' 0.12×

(
g

(NR)
SM

g
(Γ)
DM

1 keV

mDM

)1/3

. (2.20)

Moreover, conservatively requiring that lF . llimit ∼ 0.1 Mpc (recall Mpc ≈ 1.6 ×
1038 GeV−1), this implies the following lower bound on the dark matter mass,

mDM & 200 eV, (2.21)

where we take g
(Γ)
DM = 4 and g

(NR)
SM ' 3.36 (thus assuming light dark matter for which these

bounds are relevant). This limit is around a factor of 5 weaker than for thermal dark

matter. Note also that we do not weaken the bound arbitrarily because of the additional

constraints required for the scenario to be self-consistent. Furthermore, lighter dark matter

is not as cold relative to ordinary matter as heavier dark matter would be.

Other experimental constraints on the free streaming length come from Lyman-α [41–

43] and 21cm line observations [44, 45] and these also place bounds on mDM. The suppres-

sion of the free streaming length relative to the thermal expectation, as given in eq. (2.20),

implies these constraints are similarly weakened in FDM compared to the bounds on ther-

mal dark matter. Most prominently the current limit from Lyman-α [41–43] implies a

lower limit on thermal dark matter of about 3 keV, thus strengthening the bound by

an O(1) factor. For FDM the constraint on the free streaming length can be similarly

strengthened by appealing to Lyman-α observations, resulting in the following lower bound

(taking g
(Γ)
DM = 4)

mDM & 300 eV . (2.22)

Notice that the dark matter cannot be arbitrarily cold and light because of the additional

constraints for self-consistency of the scenario. In fact the lighter the dark matter, the less

the difference in temperature from thermal dark matter.

Moreover, it is anticipated that future 21cm experiments [46, 47] could improve the

lower bound by an order of magnitude and thus probe this scenario up to keV scale dark

matter masses. Further complementary probes of light dark matter might the found via

analysis of gravitational lensing [48–50] or high-redshift gamma-ray bursts [51].

Light dark matter, as permitted by eq. (2.22), can potentially have observable cosmo-

logical consequences if it is relativistic at BBN or last scattering [36, 37]. This is typically

discussed in terms of additional contributions to Neff , the effective number of neutrino

species. Given the free-streaming constraints from above we know that dark matter can

be relativistic at BBN but not at last scattering, so we only consider constraints from the

former. The Standard Model predicts N
(SM)
eff = 3.046 [52]. The current 2σ value inferred
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from BBN observations (together with data from the CMB and deuterium fraction) is

N
(BBN)
eff ≈ 2.9 ± 0.4 [37, 53] and this bounds ∆N

(BBN)
eff ≡ N

(BBN)
eff − N (SM)

eff < 0.25. Devi-

ations to Neff due to new relativistic degrees of freedom with energy density ρrad can be

expressed as follows

∆Neff =
8

7

(
11

4

)4/3 ρrad

3ργ
. (2.23)

The ratio of the dark matter and Standard Model energy densities scale together if both

are radiation-like. Assuming dark matter is relativistic at BBN then R(Γ) ∼ RBBN '
ρDM
ργ

∣∣
BBN

(this neglects changes to the photon bath from Standard Model states going out

of equilibrium). Hence, this leads to a contribution to Neff proportional to R(Γ)

∆Neff =
8

7

(
11

4

)4/3 R(Γ)

3
∼ 0.05

(
4

g
(Γ)
DM

)1/3(
300 eV

mDM

)4/3

, (2.24)

where the final expressions follows from eq. (2.7). This potentially allows for an increase

in Neff around the percent level for very light dark matter.

In many models, light degrees of freedom are not a significant concern because the de-

coupling of heavier Standard Model degrees of freedom reheats Standard Model radiation

but not that of a dark sector. However, more generic dark sectors will have heavy decou-

pling degrees of freedom too, and furthermore there can be several dark sectors. FDM

addresses this issue since only the SM degrees of freedom are heated by the entropy dump

— over and above any temperature rise from decoupling. Therefore this dark radiation

contributes less to Neff .

2.4 Allowed parameter space

We have outlined a general alternative scenario in which dark matter is present throughout

the Universe’s evolution, possibly regenerated through decays, and the Standard Model

entropy is produced in a late decay. This scenario is not motivated by any particular

coincidence or measurement but by its being part of a very general and probably more

likely framework that has not yet been explored. Having looked at the evolution, we have

found which parameter space is most plausible and seen that either small couplings or light

dark matter (or both) are most promising. Note that successful FDM models must satisfy

the following general criteria:

A. A thermal bath of Φ is generated.

B. The Standard Model reheat temperature is well above BBN.

C. The relic density of dark matter matches the value observed today.

Condition A ensures that a thermal bath of Φ should be created after inflation, which

implies a limit on the mass mΦ ∼ ρ1/4
Φ (a0) . 1016 GeV. This is the anticipated upper bound

on the inflaton energy density at reheating in simple models of inflaton [54]. Furthermore,

precision measurements of primordial elements imply that the temperature of the visible
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Figure 4. Allowed parameter space for one-field framework in the mDM–mΦ plane, fixed by requir-

ing today’s relic energy density of dark matter. The blue regions indicate two reheat temperatures

for the visible sector. The red indicates region forbidden by the free streaming constraints from

section 2.3. Finally, purple indicates the region in which Φ would not be populated by the initial

inflaton decays. The dashed lines are contours of κ, defined by Γ = κ2mΦ/8π.

sector was in excess of several MeV, before subsequently cooling [36, 37]. Condition B

ensures that these measurements are not perturbed by requiring that TRH & 10 MeV,

the temperature of BBN, and this constrains the parameter space through eq. (2.10) which

gives the Standard Model reheat temperature as a function of Γ. With regards to condition

C, eq. (2.8) gives the form of Γ required to match the observed relic density in terms of

mΦ and mDM.

Additionally, as discussed in the introduction the further requirement that baryogenesis

occurs, is model dependent. For models in which an asymmetry is generated in leptons and

subsequently transferred to baryons via sphalerons [55–57], this requires that the Standard

Model is reheated above the electroweak phase transition TEWPT ∼ 100 GeV.

Figure 4 illustrates the available parameter space and the required Φ decay rate. We

present contours of the κ necessary to match the observed relic density as a function of mΦ

and mDM, for R(0) = 1. We overlay this with the constraints from BBN (TRH & 10 MeV),

free streaming (mDM & 300 eV see section 2.3), and reheating (mΦ . 1016 GeV). In

principal a similar constraint plot can be made for models with two heavy states ΦDM

and ΦSM.

3 Baryogenesis

So far we have focused on the energy and entropy densities stored in ordinary and dark

matter. But we have still to discuss baryogenesis and the ratio of baryon number to total

Standard Model entropy. The introduction enumerated several distinct mechanisms for
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generating the baryon asymmetry in FDM models. We examine the first possibility, with

a primordial baryon asymmetry, in this section and we will discuss the second option in

section 4.1.

Scenarios in which the asymmetry is generated prior to Φ decays are quite attractive

since the smallness of the baryon asymmetry might be explained as an O(1) asymmetry

which is diluted via the late time entropy dump due to Φ decays. This scenario has the

further interesting feature that it puts the baryons and the dark matter on similar footing,

because both baryons and dark matter carry similarly low entropy with respect to photons

(for dark matter masses above the current bounds). In calculating the late time asymmetry

∆(∞) it will be important to account for the relative increase in entropy in the Standard

Model sector due to decays of heavy species. For a single decaying heavy state Φ, prior to

Φ decays the entropy of the Standard Model sector and the dark matter sector are related

by their ratio of degrees of freedom. After Φ decays the ratio of entropies in the two sectors

stays fixed until today and is given by eq. (2.7). We can compare the entropy in each sector

before (s(−)) and after (s(+)) entropy injection. Let us assume that there are no additional

entropy dumps into the dark matter sector, thus s(−) = s(+), then it follows that

ξ ≡
s

(−)
SM

s
(+)
SM

=
s

(−)
SM

s
(−)
DM

s
(+)
DM

s
(+)
SM

=
g

(0)
SM

g
(0)
DM

2π4

45ζ(3)

∆
(∞)
B ΩDMmB

ΩBmDM
. (3.1)

As a result of entropy injection any initial asymmetry ∆(0) is diluted to a degree

∆(∞) = ξ∆(0) . (3.2)

Then combining eqs. (3.1) & (3.2) and using that for baryons ∆
(∞)
B ' 0.88 × 10−10, we

obtain a self-consistency condition

mDM '
2π4

45ζ(3)

g
(0)
SM

g
(0)
DM

∆
(0)
B

ΩDM

ΩB
mB ∼ 5 GeV

(
∆

(0)
B

10−2

)(
4

g
(Γ)
DM

)
. (3.3)

Conversely, given the dark matter mass, from this expression, the size of the baryon asym-

metry prior to dilution can be inferred. We note two interesting extreme cases, according

to whether the initial asymmetry takes its maximum or minimum allowed value.

If the initial asymmetry is maximal, of order ∆
(0)
B ∼ 10−2, a dark matter particle with

mass of order a few GeV is favored. This fits in very nicely with asymmetric dark matter [58]

where the dark matter relic density is also set by a matter-antimatter asymmetry and the

baryon and dark matter asymmetries are comparable: ∆
(0)
B ∼ ∆

(0)
SM . This scenario is much

like a conventional asymmetric dark matter model except that the asymmetry is assumed

to be produced early on, with a later entropy dump diluting both with respect to photons.

The second case of interest is when the primordial baryon asymmetry is ∆
(0)
B ∼ 10−9

and there is very little entropy injection to the Standard Model. Interestingly, this scenario

is compatible with ∼ 500 eV dark matter particle — at the low end of what is allowed

by free-streaming bounds and in a potentially interesting range for solving the core-cusp

problem in dwarf galaxies [6]. Of course, all intermediate mass values are consistent with

an appropriate initial asymmetry as determined in eq. (3.3).
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It is also of interest to consider the possibility of late ΦDM decays which sends en-

tropy into the dark sector, requiring a comparably lighter dark matter for a given initial

asymmetry

mDM ∼ 5 MeV

(
∆(0)

10−2

)(
4

g
(0)
DM

)(
1000

s
(+)
DM/s

(−)
DM

)
. (3.4)

This ratio of dark matter entropies can be expressed parametrically in terms of the model

parameters as follows

s
(+)
DM

s
(−)
DM

∼

(
ρ

1/4
DM(aΓDM

)√
ΓDMMPl

)3

. (3.5)

4 See-saw neutrino model

See-saw neutrino models can generate the correct masses and mixings for neutrinos, as

well as potentially account for the generation of lepton number. We will now show that in

such models, a heavy right-handed neutrino can play the role of Φ, and furthermore that

such models can naturally generate lepton (and hence baryon) number. The left-handed

neutrino masses are generated through the operators

Lν = yijHL̄iNj +MijNiNj . (4.1)

A satisfactory model can be achieved by assuming that all the Yukawa entries have compa-

rable magnitude, which readily explains the large mixing among neutrinos. If all entries are

comparable, y2v2/M essentially determines the neutrino masses. However, the constraint

required for the correct relic abundance depends on the quantity ΓN (mDM/mN )2 as can be

seen from eq. (2.8), and since ΓN ' y2mN , this quantity can be expressed m2
DM(y2/MN ).

As the factor in brackets is proportional to the neutrino masses, the value of mDM is fixed

and turns out to be about two orders of magnitude lower than allowed by the Lyman-α

bound in our scenario.

However, this analysis assumed that all Yukawa entries are roughly the same (which

we assumed only to explain large mixing angles), but this form of the matrix is not essen-

tial. The Yukawa matrix can have O(1) entries except for one generation which can have

suppressed couplings:

yij ∼
mτ

v
×

N1 N2 N3 1 1 ε ν1

1 1 ε ν2

1 1 ε ν3

(4.2)

Assuming this coupling structure the left-handed states are generically strongly mixed, as

required by observation.

We note that if we take the larger entries of the Yukawa matrix of order the τ Yukawa

coupling, we would have M ∼ 109 GeV. If we then take the Yukawas associated with the

third neutrino much smaller, of order 10−6 (of orderme/mτ ), we then see by comparing with

figure 4, that the rate ΓN3 is appropriate to match the dark matter relic density for light
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dark matter. This can also be see from inspection of eq. (2.7); using that ΓN3 ' 1
8πy

2
emN3 ,

and let us assume R(0) = 1 and gRH = 100, one finds

ΩDM

ΩB
'
(

45ζ(3)

2π4

)
yemDM

mB∆

√
MPl

8πM
∼ 5×

( mDM

300 eV

)(5× 109 GeV

M

)1/2

. (4.3)

Thus for yνi ∼ yli and an appropriate choice of M ∼ 109 GeV one predicts light dark matter

of order mDM ∼ 300 eV. Some variation in these values is permitted and can be absorbed

into O(1) changes to yνe relative to ye and the magnitude of mN3 . Note that this scenario

makes a prediction of light neutrino masses, since it makes the lightest neutrino nearly

massless and the masses of the other two are solely determined by the measured ∆m2
ij ’s.

This also predicts that the sum Σmν is as small as can be consistent with the current mass

measurements. Although it is possible to test this prediction in the normal hierarchy of

the neutrino masses, it would be much harder in the inverted hierarchy, see e.g. [59].

4.1 Leptogenesis with nonthermal right-handed neutrino production

We observe that the Lagrangian of eq. (4.1) violates L number, and in principle has all the

properties required to achieve leptogenesis via N decays [16]. Such an asymmetry in the

leptons could then subsequently be transferred to baryons via sphaleron processes [55–57],

provided that the visible sector is reheated above the electroweak phase transition, TRH �
100 GeV. We note that there can be more freedom in parameters in this model than in

the more conventional leptogenesis models, in which N is produced by thermal production

via precisely the same Yukawa couplings that lead to their decay, making for washout

of any lepton-generation when processes are in equilibrium. The picture at H ' ΓN3

bears a resemblance to previously studied models in which leptogenesis proceeds through

nonthermal right-handed neutrinos produced via inflation decay [17–19]. In the usual

thermal leptogenesis scenario, the net baryon asymmetry is suppressed by about 10−3εη

where the first factor is from the large number of Standard Model states that contribute to

the net entropy, ε is the net CP violation, and η is a factor representing washout and other

diluting effects, which in the thermal case is taken to be at most 10−1. The long lifetime

of N implies that at the time of decay right-handed neutrinos are far out of equilibrium

and η ≈ 1 [60, 61]. Moreover, since N was produced nonthermally the usual constraint on

η is evaded, and hence the lower bound on MN is similarly weakened.

Of course, violating the usual bound with smaller right-handed neutrino mass would

also require smaller Yukawa couplings to generate the known neutrino masses. But in

general, asymmetry generation is straightforward. If generated in the final neutrino decay

(the decay of the most weakly-coupled neutrino), the asymmetry generated is of order:

∆ ∼ nN
sSM

∣∣∣∣
ΓN3

× ε× ξ × ηSph , (4.4)

where as already mentioned, ε is the net lepton number generated per decay, ξ is the

dilution factor due to entropy generated by the decays of N and ηSph = 8/23 comes from

the sphaleron transfer efficiency [62]. The quantity ξ, the relative increase in entropy in
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the Standard Model sector due to decays of N , is given by eq. (3.1). Combining eqs. (3.1)

and (4.4) we can derive an analogous condition to eq. (3.3)

mDM '
2π4

45ζ(3)

g
(0)
SM

g
(0)
DM

nN
sSM

∣∣∣∣
ΓN3

ε ηSph
ΩDM

ΩB
mB . (4.5)

Since ε . 10−4, we can only achieve self consistent baryogenesis with mDM . 100 keV.

5 Concluding remarks

We have examined the cosmological implications of assuming dark matter arises in an

egalitarian fashion along with ordinary matter following inflation, and that there is not

necessarily any significant interaction between the different sectors. In particular, we have

examined what is necessary to generate the correct entropy and energy ratios for the

dark and visible sectors. Since ΩDM > ΩB, without later entropy injection one would

expect the dark matter to account for the majority of the entropy. This problem can be

addressed if a heavy state decays into the Standard Model, but leaves the dark matter

entropy intact. We do not guarantee that the dark matter energy density is naturally

explained, but we do introduce what might be a very generic cosmological scenario with

interesting consequences (light dark matter, natural compatibility with baryon asymmetry,

and a reasonable implementation in a compelling neutrino scenario) that is worth pursuing.

Given the assumption of democratic inflaton decay, something must reheat the Stan-

dard Model but not the dark sectors. In FDM the origin of this entropy is the decay of

a heavy particle and the present-day ratio of dark matter and baryon abundances is con-

trolled by the lifetimes of such heavy states. FDM models require that the latest decaying

heavy state decays into the Standard Model, but not into the dark sector. This might be

likely given the symmetries of the Standard Model if the heavy states are gauge invariant

composite operators, in which case we would expect the longest-lived states to be those of

lower dimensions, which most likely interact exclusively with only Standard Model or only

dark sectors.

In FDM models the present-day ratio of dark matter and baryon abundances is con-

trolled by the lifetimes of the heavy states Φ. Typically the final heavy species to decay

contributes the most energy and entropy, as earlier energy dumps are diluted relative to

the energy in the remaining nonrelativistic states. The last state to decay will typically be

the state that is most weakly coupled to its associated sector (i.e. the state with the longest

lifetime). A consequence is that small couplings play a big role in this type of scenario.

Indeed, small couplings appear baroque from a model building stance and thus we (play-

fully) refer to this intriguing selection mechanism as the Maximum Baroqueness Principle.

This reasoning implies that Standard Model sector is reheated preferentially because it has

hierarchically small couplings to the heavy states Φ. Indeed, it is not inconceivable that

selection based on maximum baroqueness might be connected with choosing a sector with

an electroweak scale hierarchically below the Higgs quadratic cutoff.

One interesting consequence of FDM is that dark matter can be substantially colder.

As a result, its free streaming length is suppressed relative to that expected for thermal
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dark matter, and thus the lower mass bounds are weakened. Of particular interest sub-

keV fermion dark matter is permitted in FDM potentially offering a minimal resolution

of the cusp-core problem due to the importance of Fermi pressure. We will return to this

point in a dedicated publication. It is also interesting to note that a light gravitino could

be a suitable very light dark matter candidate. A further advantage to this scenario is

that it would explain why we don’t observe the energy carried by putative light states in

dark sectors.

FDM models can also naturally explain why the present-day baryon density is more

akin to that of dark matter than to that of the photon bath, as both baryons and dark

matter typically contribute similar energy densities and negligible entropy (unless the dark

matter is very light). We have shown how FDM can fit in well with either an early baryon

asymmetry production or alternatively a later production such as in the neutrino model.

In the first scenario, according to the dark matter mass, the setting can overlap with that

of asymmetric dark matter scenarios.

Since the dark matter is decoupled from the Standard Model, the prospect of observ-

ing the state in direct detection or collider experiments is limited. However, cosmological

probes may provide a window: observing, for instance, small deviations to ∆Neff . Addi-

tionally, there may be further model dependent probes for a given implementation, such

as the prediction of the neutrino mass hierarchy which arises in the heavy right-handed

neutrino model of section 4. Further, in the fortuitous case that the dark matter is only

meta-stable with a lifetime of order the age of the Universe, then one could potentially

observe signals of dark matter decays, and a credible signature of decaying dark matter

with couplings inconsistent with a thermal relic would provide a strong motivation for the

dark matter scenario outlined here.

While we presented an explicit example of this general framework in section 4 motivated

by the neutrino see-saw mechanism, the required small coupling between Φ and matter

particles might arise in a number of alternative scenarios, such as:

• Other models with small technically natural couplings.

• Kinetic mixing between U(1) mediators [63].

• Non-renormalisable operators suppressed by high mass scales (possibly MPl).

• Non-perturbative effects e.g. [64, 65], with exponentially suppressed rates, Γ ∼ e−1/g2
,

similar to B + L violating decays of n→ p̄e+ν̄ due to electroweak instantons [66].

The construction of complete FDM models utilizing small couplings that arise in the man-

ners outlined above would be an interesting continuation of the work initiated here.

In summary, the origin of dark matter abundance can be significantly different than

we have probed so far, and can be completely decoupled from Standard Model interactions.

Given the genericness of the FDM idea, it is certainly worth deducing the consequences,

relating it to existing models, and seeing whether there are any further possibilities for

detection. We have shown this scenario is readily consistent, leading to several interesting

consequences. We will pursue the implications for the core-cusp problem and the impact

of subsequent freeze-in and freeze-out processes in future publications.
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A Efficiency of Standard Model reheating

In this work we assumed that Φ suddenly decays into the Standard Model at 3H(a∗) = Γ.

However, we know that the decays are gradual and the portion of population of Φ that

decays early has its energy contribution redshifted by the time 3H = Γ. This appendix

will investigate the correction that arises from the gradual decay of Φ. In order to quantify

this correction we will compare the energy densities of the Standard Model bath in both

“sudden decay” and “exact decay” scenarios at some later time, taken to be a = 10a∗. We

will confirm that the sudden decay approximation works well in our setting.

Sudden Decay. Assuming Φ dominates the energy density of the Universe, then

3M2
PlH

2 = mΦnΦ, and in the sudden decay scenario the total energy density at the de-

cay time is mΦnΦ = 3M2
PlΓ

2
Φ/ν

2. If the initial conditions are nΦ(a = 1) = m3
Φ, this

happens when

a∗ =

(
ν2m4

Φ

3M2
PlΓ

2

)1/3

, (A.1)

which fixes the energy density of the Standard Model bath as a function of a:

ρapprox
SM (a) =

3M2
PlΓ

2
Φ

ν2

(a∗
a

)4
= ν2/3

(
m16

Φ

3Γ2M2
pl

)1/3

a−4 . (A.2)

Exact Decay. To assess the process of energy transfer from Φ to the Standard Model in

the exact solution, we set up a system of differential equations that track the evolution of

the number density n of Φ’s and energy density of the Standard Model bath ρ

ṅ+ 3Hn = −Γn , ρ̇+ 4Hρ = ΓmΦn , (A.3)

where dotted variables indicate a derivative w.r.t. regular time and H2 = (mΦnΦ+ρ)/3M2
Pl.

It is convenient to rewrite the above in terms of derivatives with respect to a, which we

denote by primed variables. Note that in general ẋ = aHx′ and it follows that

aHn′ + 3Hn = −Γn , aHρ′ + 4Hρ = ΓmΦn . (A.4)

We take the same initial conditions as for the sudden decay scenario n0(a = 1) = m3
Φ and

ρ = 0, and we choose mΦ = 10−2Mpl and Γ = 10−6mΦ, then we plot the energy density in

the Standard Model sector as a function of a in figure 5.
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Figure 5. Plots show a comparison between the sudden decay approximation and the actual

solution for different ν. Observe ν = 1 overestimates the reheat energy density by ∼ 20%, ν = 3

as used in the text is a good approximation, giving only ∼ 2% discrepancy and ν = 3.4 gives an

excellent match.

Comparison. Taking the same values for mΦ and Γ for the sudden decay as used in the

exact decay case allows us to compare the efficiency of energy transfer to the Standard

Model sector. For ν = 1, we get Θ ≡ ρapprox/ρexact = 1.22, with ν = 3, we get Θ = 1.021,

finally, for ν = 3.4 one has Θ = 1.00. The quality of the approximation can be seen from

inspection of figure 5. Moreover, these results are robust and hold very close over a range

of mΦ and Γ. Whilst ν ≈ 3.4 is the best match, ν = 3 used in the main text provides a

very good approximation.

B Nonrelativistic dark matter prior to reheating

In this appendix we examine the case in which the dark matter becomes relativistic before

Φ decays and show that the decay rate required to match the observed relic is of a highly

similar form to the converse scenario studied in section 2.1. At the point of decay, by

definition, the dark matter mass density is given by

mDMnDM(aΓ) = ρDM(aΓ) = RΓρΦ(aΓ) . (B.1)

It will be useful to introduce the quantity mBnB−B̄, being the projected baryon mass

density duet the late time asymmetry. By evaluating this quantity after Φ decays as follows

mBnB−B̄(aΓ) = mB∆sSM = mB∆
4

3TRH
ρΦ(aΓ) . (B.2)

we can readily obtain a relation for the asymptotic ratio of mass densities at the present-day

ΩDM

ΩB
=
mDMnDM(aΓ)

mBnB−B̄(aΓ)
=

3RΓ

4mB∆

√
ΓMPl

(
10

π2g
(Γ)
SM

)1/4

, (B.3)

where we use the expression for TRH from eq. (2.10). We now require an expression for

RΓ in the case that the dark matter is nonrelativistic prior to Φ decays. The X and Φ

densities redshift relative to each other only until both species become nonrelativistic and

thus RNR = RΓ.
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At a = a0 the energy density of the dark matter sector is ρDM(a0) ' m4
Φ whereas at

the point that the dark matter becomes nonrelativistic ρDM(aNR) ' m4
DM. As a result:

a0

aNR
=

(
ρDM(aNR)

ρDM(a0)

)1/4

=
mDM

mΦ

(
1

R0

)1/4

, (B.4)

Since Φ is nonrelativistic its energy density of Φ at the point the dark matter becomes

nonrelativistic is just

ρΦ(aRN) = ρΦ(a0)

(
a0

aRN

)3

=
gΦπ

2

30
m3

DMmΦ

(
1

R0

)3/4

. (B.5)

Once the dark matter is nonrelativistic Φ and X redshift at the same rate until Φ decays,

hence

RΓ = RNR ≡
ρDM(aNR)

ρΦ(aNR)
=
gDM

gΦ

mDM

mΦ
(R0)3/4 . (B.6)

It follows from eq. (B.3) and (B.6) that the required decay rate is

Γ =
π√
10

m2
Φ

MPl

[
4

3
∆

ΩDM

ΩB

mB

mDM

]2( gΦ

gDM

)2

√√√√ g
(Γ)
SM(

R(0)
)3 . (B.7)

Note that the factor in square brackets is the same as the ratio of entropies given in

eq. (2.7). Thus up to numerical prefactors this result is the same as eq. (2.8), which was

derived under the converse assumption that the dark matter remained relativistic until

after H ∼ Γ.

C Multiple non-degenerate heavy states

Let us assume the ordering of parameters mΦSM
> mΦDM

and ΓDM > ΓSM. The mass

threshold of ΦSM is the earliest distinguished cosmological marker and thus we now define

a0 ≡ a(T = mΦDM
). At this point all states are relativistic and we take the initial conditions

ρi(a0) = R
(i)
0 m4

ΦSM
, the R

(i)
0 account for the initial ratios of i = ΦDM,ΦSM, DM, SM.

The energy densities are evolved to the ΦDM mass threshold marked by aΦDM

ρΦDM
(aΦDM

) = gΦSM
R

(ΦDM)
0 m4

ΦSM

(
a0

aΦDM

)4

,

ρΦSM
(aΦDM

) = gΦDM
R

(ΦSM)
0 m4

ΦSM

(
a0

aΦDM

)3

.

(C.1)

We neglect to track the dark matter and Standard Model as these will be subsequently

replenished via decays of Φi. The redshift factor is determined by the evolution of Hubble,

as in section 2.1. Evolution from the ΦSM mass threshold to the ΦDM mass threshold

assuming matter domination is governed by(
a0

aΦDM

)3

=
1

R
(ΦSM)
0

gΦDM

gΦSM

(
mΦDM

mΦSM

)4

. (C.2)

– 20 –



J
H
E
P
0
3
(
2
0
1
6
)
0
1
1

Thus the energy densities evolve to

ρΦSM
(aΦDM

) =

(
gΦDM

gΦSM

)4/3
R(ΦDM)

0

R
(ΦSM)
0

(
1

R
(ΦSM)
0

mΦDM

mΦSM

)1/3
m4

ΦDM
≡ r

(
gΦDM

gΦSM

)
m4

ΦDM

ρΦDM
(aΦDM

) =

(
gΦDM

gΦSM

)
m4

ΦDM
.

(C.3)

Now we evolve to H = ΓDM/3 marked by aΓDM
. Assuming that at H ' ΓDM the Universe

is matter dominated, the redshift factor is(
aΦDM

aΓDM

)3

=
3

1 + r

(
gΦSM

gΦDM

)(
Γ2

DMM
2
Pl

m4
ΦDM

)
. (C.4)

As both Φ states are redshifting as matter during this stage, the energy densities are

ρΦSM
(aΓDM

) = 3Γ2
DMM

2
Pl

(
1

1 + r

)
, ρΦDM

(aΓDM
) = rρΦSM

(aΓDM
) . (C.5)

Moreover we make the identification ρDM(aΓDM
) = ρΦDM

(aΓDM
). Finally we evolve to

H = ΓSM/3, assuming ΦSM decays once matter domination is restored following the decay

of ΦDM (
aΓDM

aΓSM

)3

= (1 + r)

(
ΓSM

ΓDM

)2

. (C.6)

Then the dark matter and Standard Model energy densities at 3H = ΓSM decay are given by

ρSM(aΓSM
) = ρΦDM

(aΓDM
)

(
aΓDM

aΓSM

)3

= 3Γ2
SMM

2
Pl

ρDM(aΓSM
) = ρΦSM

(aΓDM
)

(
aΓDM

aΓSM

)4

= 3Γ2
SMM

2
Pl r

(
(1 + r)

(
ΓSM

ΓDM

)2
)1/3

.

(C.7)

From the equations above one can derive an analogous expressions eq. (2.14) and subse-

quently the required ΓSM for a given set of parameters (ΓDM, mDM, mΦSM
, mΦDM

) in order

to match the observed relic density, similar to eq. (2.15).
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