
J
H
E
P
0
3
(
2
0
1
5
)
1
6
9

Published for SISSA by Springer

Received: December 24, 2014

Accepted: February 20, 2015

Published: March 31, 2015

Model independent determination of the CKM phase

γ using input from D0-D̄0 mixing

Samuel Harnew and Jonas Rademacker

H H Wills Physics Laboratory, University of Bristol,

Bristol, U.K.

E-mail: Sam.Harnew@bristol.ac.uk, Jonas.Rademacker@bristol.ac.uk

Abstract: We present a new, amplitude model-independent method to measure the

CP violation parameter γ in B− → DK− and related decays. Information on charm

interference parameters, usually obtained from charm threshold data, is obtained from

charm mixing. By splitting the phase space of the D meson decay into several bins,

enough information can be gained to measure γ without input from the charm threshold.

We demonstrate the feasibility of this approach with a simulation study of B− → DK−

with D → K+π−π+π−. We compare the performance of our novel approach to that of

a previously proposed binned analysis which uses charm interference parameters obtained

from threshold data. While both methods provide useful constraints, the combination of

the two by far outperforms either of them applied on their own. Such an analysis would

provide a highly competitive measurement of γ. Our simulation studies indicate, subject

to assumptions about data yields and the amplitude structure of D0 → K+π−π+π−, a

statistical uncertainty on γ of ∼ 12◦ with existing data and ∼ 4◦ for the LHCb-upgrade.

Keywords: CKM angle gamma, CP violation, Charm physics, B physics, Hadron-Hadron

Scattering

ArXiv ePrint: 1412.7254

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP03(2015)169

mailto:Sam.Harnew@bristol.ac.uk
mailto:Jonas.Rademacker@bristol.ac.uk
http://arxiv.org/abs/1412.7254
http://dx.doi.org/10.1007/JHEP03(2015)169


J
H
E
P
0
3
(
2
0
1
5
)
1
6
9

Contents

1 Introduction 1

2 Formalism 2

2.1 Phase-space integrated amplitudes and interference parameter 2

2.2 D mixing, time-dependent decay rates 3

2.3 B∓ → DK∓, γ, and Zf 4

2.4 Parameter counting using ratios 5

2.5 Parameter counting using rates 6

2.6 Multiple solutions 6

3 Amplitude models and binning 7

3.1 Amplitude model 7

3.2 Model-informed binning 7

4 Simulation studies 9

4.1 Simulated data samples 9

4.2 Fit method and parametrisation 10

4.3 Algorithms 10

4.4 Confidence regions in γ, δB, rB and x±, y± 11

4.4.1 Using the wrong model 11

4.5 Studies with other models 12

4.6 Additional input from the charm threshold 13

4.6.1 Phase-space integrated analysis with input from the charm threshold 14

4.6.2 Global constraints from the charm threshold, with a binned

B∓ → DK∓ and D mixing analysis 15

4.6.3 Binned constraints from the charm threshold 15

4.7 1-D scans and quantified uncertainties 16

4.8 Summary of results 16

5 Conclusion 19

1 Introduction

The measurement of γ from B− → DK−, D → f [1–6] (where f represents a multibody

final state accessible to both D0 and D0) depends on the correct description of the inter-

ference between the D0 → f and D0 → f decay amplitudes.1 This can be obtained from

an amplitude model of the D decay. However, this model dependence can lead to signif-

icant systematic uncertainties. Alternative model-independent methods use experimental

1Charged conjugate modes are implied throughout unless stated otherwise. The symbol D is used to

represent any superposition of D0 and D0.
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input [7, 8] to remove this source of systematic uncertainty. This input can be summarised

in the complex interference parameter Zf = RfDe
−iδfD , where RfD and δfD are the coher-

ence factor and average strong phase-difference introduced in [7]. Zf can be measured

exploiting quantum-correlated DD pairs available at experiments operating at the charm

threshold, like CLEO-c or BES III [7–14].

We found previously that input from charm mixing, when combined with constraints

from threshold data, can substantially reduce the uncertainty on Zf [15]. In this letter

we present a new method for an amplitude model-independent measurement of γ based

on charm input from mixing that, by dividing the D decay’s phase space into multiple

bins, extracts sufficient information to perform a model independent measurement of γ

without input from charm threshold results. We verify the feasibility of this method using

simulated data. We also study the performance of a binned analysis with charm input from

the charm threshold, rather than mixing, as proposed in [7]. While both methods provide

interesting constraints on γ and related parameters, we find that a combined approach

far outperforms each method individually. Applied to B− → DK−, D → K−π+π−π+,

a substantially better precision on γ and related parameters can be achieved than with

previously considered methods for this decay mode, potentially making this one of the

most precise individual measurements.

This letter is organised as follows: based on the formalism described in [15] we show in

section 2 that, when the D decay’s phase space is divided into multiple bins, it is possible

to extract γ from a simultaneous analysis of B∓ → DK∓ and D-mixing without input

from charm threshold data. In section 3.2 we discuss how to divide the five-dimensional

phase space of D → K−π+π−π+ into bins in a way that optimises the sensitivity to γ. In

section 4 we present the results of a simulation study for the decay mode B− → DK−,

D → K−π+π−π+, using sample sizes corresponding to our estimates of plausible current

and future LHCb event yields. We estimate the precision on γ and related parameters

for various data taking scenarios and approaches, with and without input from the charm

threshold. The key results of the simulation study are summarised in section 4.8 (table 2).

In section 5, we conclude.

2 Formalism

2.1 Phase-space integrated amplitudes and interference parameter

The measurement of γ from B− → DK− [1–8] and the method for extracting Zf from

mixing introduced in [15] both exploit the interference of D0 and D0 decay amplitudes

to the same final state fp, 〈fp|Ĥ|D0〉 and 〈fp|Ĥ|D0〉. The subscript p = (p1, . . . , pn)

identifies a point in n dimensional phase space, with n = 3Nf − 7 for a final state f with

a particle content of Nf pseudoscalars. Ĥ is the interaction Hamiltonian relevant for the

decay. It is useful to define the magnitude of the ratio of these amplitudes, rp, and their

phase difference δp, at phase-space point p, through

rpe
iδp =

〈fp|Ĥ|D0〉
〈fp|Ĥ|D0〉

. (2.1)

– 2 –
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The decay rates integrated over regions or bins of phase space, which we label with Ω, can

be expressed in terms of the real, positive quantities

AΩ ≡

√√√√∫
Ω

|〈fp|Ĥ|D0〉|2
∣∣∣ ∂nφ
∂(p1...pn)

∣∣∣dnp, BΩ ≡

√√√√∫
Ω

|〈fp|Ĥ|D0〉|2
∣∣∣ ∂nφ
∂(p1...pn)

∣∣∣dnp, (2.2)

and the complex parameter

ZfΩ ≡
1

AΩBΩ

∫
Ω

〈fp|Ĥ|D0〉〈fp|Ĥ|D0〉∗
∣∣∣ ∂nφ
∂(p1...pn)

∣∣∣dnp. (2.3)

In these expressions, | ∂nφ
∂(p1...pn) | represents the density of states at phase space point p. The

complex interference parameters ZfΩ has a magnitude between 0 and 1. It encodes the

relevant interference effects in phase-space region Ω. As the integrand in the definition of

ZfΩ is proportional to eiδp , |ZfΩ| is maximal if δp is constant over the integration region, while

highly fluctuating δp tends to result in small |ZfΩ|. The complex interference parameter

ZfΩ can also be expressed in terms of the coherence factor RfΩ and average strong phase

difference δfΩ introduced in [7], or in terms of the cΩ and sΩ parameters introduced in [8]:

ZfΩ = RfΩe
−iδfΩ = cΩ + i sΩ. (2.4)

Equation (2.4) implies a normalisation of cΩ and sΩ that differs from that in the original

paper [8], but corresponds to the one used in most subsequent publications [10, 11, 16–18].

2.2 D mixing, time-dependent decay rates

For simplicity, we assume CP conservation in the neutral D system, which has been shown

to be a valid assumption to a frustrating degree of accuracy [19, 20]. The general case is

described for example in [15]. We use the following convention for the definition of the CP

even and odd D eigenstates, D+ and D−:

|D±〉 = |D0〉 ± |D0〉 (2.5)

which have masses M± and widths Γ±. We also define the mean lifetime ΓD and the usual

dimensionless mixing parameters x and y:

ΓD ≡
1

2
(Γ− + Γ+) , x ≡ M− −M+

Γ
, y ≡ Γ− − Γ+

2Γ
. (2.6)

The mixing parameters x and y are both small, approximately half a percent [19–26]. The

above definitions imply CP |D0〉 = +|D0〉. An alternative choice would be CP |D0〉 =

−|D0〉, resulting in a phase-shift of ZfΩ, defined in eq. (2.3), by π [15].

Although the method presented here is in principle applicable to any D decay to a final

state accessible to both D0 and D0, we will restrict ourselves from here on to the case where

〈fp|Ĥ|D0〉 is doubly Cabibbo suppressed (DCS) and 〈fp|Ĥ|D0〉 is Cabibbo favoured (CF),

as is the case for f = K+π−π+π−. Such decays have the advantage that for the suppressed,

“wrong sign” (WS) decay, the mixing-induced amplitude A(D0 → D0 → f ) and the direct

– 3 –
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amplitude A(D0 → f ) are of comparable magnitude, leading to large interference effects,

and high sensitivity to Zf . On the other hand, the “right sign” (RS) decay D0 → f̄ is

completely dominated by the CF amplitude, with negligible interference effects, and thus

provides an excellent normalisation mode. For this case

rD ,Ω ≡
ADCSΩ

BCFΩ

� 1. (2.7)

where AΩ, BΩ are defined in eq. (2.2); the superscripts are added for clarity. The time

dependent rates for a D meson that was a D0 or a D0 at time t0 = 0, to decay to a final

state f within the phase-space volume Ω at proper time t are given, up to third order in

the small parameters x, y and rD ,Ω , by

Γ(D0(t)→ f )Ω '
[
A2

Ω +AΩBΩ

(
yReZfΩ + xImZfΩ

)
ΓDt+ B2

Ω

x2 + y2

4
(ΓDt)

2

]
e−ΓDt,

(2.8)

for the WS rate, and

Γ(D0(t)→ f )Ω ' B2
Ωe
−ΓDt (2.9)

for the RS rate, with corresponding expressions for the CP conjugate modes. Many detector

effects cancel in the ratio of WS to RS decays, given by

Γ(D0(t)→ f )Ω

Γ(D0(t)→ f )Ω

= r2
D ,Ω + rD ,Ω

(
yReZfΩ + xImZfΩ

)
(ΓDt) +

x2 + y2

4
(ΓDt)

2. (2.10)

2.3 B∓ → DK∓, γ, and Zf

The decay B− → DK−, and related decays, provide a particularly clean way of measuring

the CKM phase γ. The details of the analysis depend considerably on the final state f of the

subsequent D decay, which must be accessible to both D0 and D0 [1–6]. The sensitivity to

γ arises from the interference of the decay amplitudes with the intermediary states D0K−

and D0K−, which we express as:

F+ ≡ 〈D0K +|Ĥ|B+〉, S+ ≡ 〈D0K +|Ĥ|B+〉,
F− ≡ 〈D0K−|Ĥ|B−〉, S− ≡ 〈D0K−|Ĥ|B−〉. (2.11)

where F denotes colour and CKM favoured amplitudes, while S denotes colour and CKM

suppressed amplitudes. The ratios of the suppressed to favoured amplitudes are given by

rBe
i(δB−γ) =

S−
F−

rBe
i(δB+γ) =

S+

F+
(2.12)

where rB is the magnitude of those ratios, while δB and ∓γ are their strong and weak

phase differences respectively.

Because rB is small (∼ 0.1 [27, 28]), the interference effects and thus the sensitivity

to γ in B− → DK−,D → f , are enhanced if a final state is chosen such that D0 → f is

doubly Cabibbo suppressed, while D0 → f is Cabibbo favoured [3], at the cost of an overall
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low decay rate. The time and phase space integrated decay rate for these suppressed B∓

decays is given by

Γ
(
B− → DK−,D → f

)
Ω
'F2A2

Ω + S2B2
Ω + FSAΩBΩ

∣∣∣ZfΩ∣∣∣ cos(δB − δfΩ − γ) (2.13)

Γ
(
B+ → DK +,D → f̄

)
Ω̄
'F2A2

Ω + S2B2
Ω + FSAΩBΩ

∣∣∣ZfΩ∣∣∣ cos(δB − δfΩ + γ) (2.14)

The corresponding favoured decay B− → DK−,D → f is completely dominated by the

favoured decay amplitude with negligible interference effects and negligible sensitivity to

γ, and has a much larger branching fraction. It therefore provides an ideal normalisation

or control mode. Its time and phase-space integrated rate is given by:

Γ(B− → DK−,D → f̄)Ω̄ ' Γ(B+ → DK +,D → f)Ω ' F2B2
Ω (2.15)

The ratios of the favoured and suppressed rates are given by

Γ (B− → DK−,D → f)Ω

Γ
(
B− → DK−,D → f̄

)
Ω̄

= r2
D ,Ω + r2

B + rD ,ΩrB

∣∣∣ZfΩ∣∣∣ cos(δB − δfΩ − γ) (2.16)

Γ
(
B+ → DK +,D → f̄

)
Ω̄

Γ (B+ → DK +,D → f)Ω

= r2
D ,Ω + r2

B + rD ,ΩrB

∣∣∣ZfΩ∣∣∣ cos(δB − δfΩ + γ). (2.17)

These can also be expressed in terms of the Cartesian coordinates

x± ≡ Re
(
rBe

i(δB±γ)
)

y± ≡ Im
(
rBe

i(δB±γ)
)

(2.18)

using the relations

rB

∣∣∣ZfΩ∣∣∣ cos(δB − δfΩ ± γ) = x±ReZfΩ + y±ImZfΩ and r2
B = x2

± + y2
±. (2.19)

Effects due to D0-D0 mixing have been ignored in the expressions for the B∓ → DK∓,

D → f (f̄ ) decay rates, which is justified given the expected statistical precision. These

effects can be included if required [29].

2.4 Parameter counting using ratios

Taking ΓD, x, and y from external inputs, eqs. (2.10), (2.16), (2.17) depend on three

unknown parameters for each pair of CP -conjugate phase space bins (Ω, Ω̄): rD ,Ω , ReZfΩ
and ImZfΩ; and three that are the same in all bins: γ, δB and rB. The time-dependent fit

to the tagged charm decay rates (eq. (2.10)) provides two constraints on these parameters

for each bin (the constant and the coefficient of the linear term). The B∓ → DK∓ decay

rate ratios (eqs. (2.16), (2.17)) provide another two constraints. For N bin pairs, there

are therefore 4N constraints and 3N + 3 unknown parameters. To extract all unknown

parameters from the data therefore requires 4N ≥ 3N + 3⇔ N ≥ 3. If instead we wish to

measure x±, y±, we need N ≥ 4.

– 5 –
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Figure 1. The combined constraints on ZfΩ = RfΩe
−iδfΩ from charm mixing (red line with slope -y/x)

and B∓ → DK∓ (green solid circle) lead to two possible solutions, whose sum (short black arrow)

is always perpendicular to the charm constraint. (In the figure, the subscript Ω and superscript

f are omitted for clarity.) The grey broken circular line indicates the boundary of the physically

allowed region.

2.5 Parameter counting using rates

Taking again ΓD, x, and y from external inputs, eqs. (2.8), (2.9), (2.13), (2.14), (2.15)

depend on four unknown parameters for each pair of CP -conjugate phase space bins: A2
Ω,

B2
Ω, ReZfΩ, and ImZfΩ; and four that are the same in all bins: γ, δB, rB = S/F , F2.

Equations (2.8)-(2.9) provide three constraints for each bin, and eqs. (2.13)-(2.15) another

three. Hence, to extract all of these parameters, we require 6N ≥ 4N + 4⇔ N ≥ 2. A fit

to extract x±, y± requires N ≥ 3.

2.6 Multiple solutions

As described in [15], the charm mixing input constrains each ZfΩ = RfΩe
−iδfΩ to a line of

slope −y/x in the ReZfΩ− ImZfΩ plane. The input from the B∓ → DK∓ adds information

on the magnitude of ZfΩ, leaving two possible solutions for each ZfΩ, which have the same

magnitude but different phases: −δfΩ 1 and −δfΩ 2, as illustrated in figure 1. These solutions

are symmetric with respect to a line of symmetry that is perpendicular to the constraint

from charm mixing. Their sum is always along this line of symmetry and has the phase

α = −1
2(δfΩ 1+δfΩ 2). Because α depends only on the charm mixing parameters (with tanα =

x/y) it is the same for all phase-space bins. It is easy to show that, as a consequence of

this relationship, the system of equations remains invariant under the following operation:({
δfΩ

}
, δB, γ

)
→
({
−2α− δfΩ

}
,−2α− δB,−γ

)
. (2.20)

There is also the more obvious invariance under the simultaneous shift by π of δB and γ:({
δfΩ

}
, δB, γ

)
→
({
δfΩ

}
, δB + π, γ + π

)
, (2.21)

– 6 –
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leading to an overall four-fold ambiguity in γ and δB. In section 4.6 we show how external

input from the charm threshold [9, 14] can be used to reduce this to a 2-fold ambiguity.

3 Amplitude models and binning

3.1 Amplitude model

Up to this point, the discussion has not been specific to any particular final state of the

D decay. For the remainder of this letter, we will require a specific amplitude model to

test the binning method (section 3.2) and perform simulation studies (section 4). We will

concentrate on the case where the D meson decays to K±π∓π±π∓. Our amplitude model

for the CF D0 → K +π−π+π− decay is based on that found by the MARK III experi-

ment [30]. There is currently no model available for the DCS decay D0 → K +π−π+π−.

Any experiment in a position to use the method described here would have sufficient DCS

decays to obtain such a model. For the purpose of this study, we have created a series of

plausible DCS models by randomly varying the magnitudes and phases of the amplitude

components of MARK III’s CF model. Amongst these we select a representative sample

of 100 DCS models that give, together with the MARK III model for the CF decay, global

complex coherence parameters ZK3π distributed approximately according to the CLEO-c

measurement [14]. Most studies are based on our default model, which we chose based on

its ZK3π value of 0.26 + i0.24 = 0.36ei(42π/180), which matches the central value measured

in [14].

3.2 Model-informed binning

The model-independent method for measuring γ described in section 2 relies on dividing

the D0 → f phase space, which is five dimensional for D → K−π+π−π+, into several bins.

In principle, any binning will work, for example the rectangular five dimensional binning

used in [31]. However, to optimise the sensitivity of our approach, we follow the ideas for

a model-informed binning described in [16, 32]. Because ZfΩ is a factor in all γ sensitive

terms, the sensitivity to γ increases with larger values of |ZfΩ| in each bin. A strategy that

ensures large |ZfΩ| is to split phase space into bins of similar phase difference δp. We use

an amplitude model to assign a value of δp to each event. The optimised binning is then

achieved by splitting the one-dimensional δp distribution into continuous intervals, each of

which constitutes one bin (which could in principle be discontinuous in 5-dimensional phase

space). We choose the size of the intervals such that there is a similar number of suppressed

B∓ → DK∓ events in each bin. A wrong model would result in a sub-optimal binning,

resulting in smaller, but still model-independently measured, |ZfΩ| in each bin. While

this would reduce the sensitivity, which would be evident from the statistical uncertainty

estimated from the fit, it would not introduce a model-dependent bias. Figure 2 shows

the binned ZK3π
Ω obtained from the default model, on the left hand side for a binning

based on a perfect model and on the right for a binning based on an imperfect model. The

perfect model is identical to the one used for the event generation. The imperfect model

is obtained from the perfect one by multiplying each amplitude component’s magnitude

by a random factor between 0.8 and 1.2 (corresponding to a fit fraction variation of 0.64 –

– 7 –
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1
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Figure 2. The plot shows simulated events (small dots), complex coherence parameters ZK3π
Ω

(colour-filled circles) for each bin, and the global coherence parameters ZK3π (white-filled circle),

represented in the ReZK3π-ImZK3π plane, with bin assignments based on a perfect and an imper-

fect amplitude model, as described in the text.

1.44), and by adding to each component a random phase between −0.3 and +0.3 radians.

Figure 2 shows simulated events represented in the ReZK3π–ImZK3π plane. The events

are generated according to the phase space density of states. The position of the small dots

represents the true value of 1
AΩBΩ

〈fp|Ĥ|D0〉〈fp|Ĥ|D0〉∗, while the colour-coding represents

the bin they have been assigned to. For the left hand plot, this assignment is done with

the perfect model, for the right hand plot with an imperfect model. The circular “pie

chart” represents the bins in δp based on the model used for the binning. The ZK3π
Ω

values extracted are the average over the true values of 1
AΩBΩ

〈fp|Ĥ|D0〉〈fp|Ĥ|D0〉∗ for

the events in the bin they have been assigned to (which includes events beyond the plot

boundaries). The model-independent method proposed above does of course not require

the knowledge of 1
AΩBΩ

〈fp|Ĥ|D0〉〈fp|Ĥ|D0〉∗ to measure ZK3π
Ω , this information is only

used for this illustration. The ZK3π
Ω values are shown as colour-filled circles. The global

complex coherence parameter ZK3π is shown as a white-filled circle. While the imperfect

model leads to smaller |ZK3π
Ω |, they are still on average larger than the global |ZK3π|.

To quantify this observation, we repeated the study with the full set of 100 repre-

sentative models and different numbers of bins. The results are summarised in figure 3

which shows the average |ZK3π
Ω | as a function of the number of bins for the case where the

binning is based on a perfect model, and for the case where the model used for binning is

randomised as described above. The study shows that even a rather “bad” model provides

typical binned coherence factors that are substantially larger than the global coherence

factor.

– 8 –
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Number of Bins
1 2 3 4 5 6 7 8 10 12 16 32

|>π
K

3

Ω
<

|Z
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Perfect Model

Randomised Model

Figure 3. The average coherence factor with different number of bins in strong phase difference,

for the set of 100 representative models, with perfect binning (blue, on top) and imperfect binning

described in the text (red, lower). The error bars represent the standard deviation of the mean

ZK3π
Ω of each model, i.e. they represent the “between model scatter”. The shaded areas represent

the average of the standard deviation of ZK3π
Ω within the models (i.e. the “within model scatter”).

B± → D(K3π)K± D∗± →
suppressed favoured D(K3π)π±

LHCb run I (3 fb−1 @ 7− 8 TeV) 120 10k 8M

LHCb run II (8 fb−1 @ 13 TeV) 800 60k 50M

LHCb upgrade (50 fb−1 @ 13 TeV) 9000 700k 600M

Table 1. Event yields assumed in the simulation studies, based on reported event yields for 1 fb−1

at LHCb [31, 33]. The event yields are inclusive, for example, LHCb run II yields includes those

from LHCb run I. The fraction of WS events in D∗± → D(K3π)π± depends on the input variables;

typically it is 0.38%.

4 Simulation studies

In order to demonstrate the validity of our method, and to evaluate its sensitivity, we

perform fits to simulated data.

4.1 Simulated data samples

The data are generated according to the CF amplitude model based on the MARK III

analysis of D0 → K−π+π−π+ [30] . For the DCS amplitude describing D0 → K +π−π+π−

we choose from the large number of models we generated (see section 3.2) the one that,

when combined with the CF model, reproduces best the measured value of ZK3π [14] as

our default model. We also consider other DCS models to evaluate the stability of our

results.

We study three scenarios with different event yields, based on plausible extrapolations

of the yields reported for 1 fb−1 at LHCb [31, 33]: “LHCb run I”, where we extrapolate

event yields to LHCb’s already recorded 3 fb−1; “LHCb run II”, plausible event yields at

the end of the next LHC data taking period with approximately twice the collision energy;

– 9 –
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and “LHCb upgrade”, estimated event yields for the LHCb upgrade. We take into account

the increase in the heavy flavour cross section at higher collision energies, and the expected

improvement in trigger efficiency at the LHCb upgrade [34]. The sample sizes we use in

our simulation studies, are given in table 1. These extrapolations have of course large

uncertainties.

We take into account the time-dependent detection efficiency that is typical for hadronic

heavy flavour decays at LHCb, where the trigger is based on detecting displaced vertices,

disfavouring small decay times. We use the same efficiency function as in [15]. We ignore

all other detector effects and backgrounds, given the clean data samples at LHCb even

for the suppressed B± → D(K3π)K± modes [33], this is a reasonable simplification for

the purpose of these feasibility studies. Simulated data are generated with the following

parameter values: γ = 69.7o δB = 112.0o, rB = 0.0919, and r2
D = 1

300 .

4.2 Fit method and parametrisation

Our default approach is to perform a simultaneous χ2 fit to the decay rates

eqs. (2.8), (2.9), (2.13), (2.13) and (2.15) in terms of the fit parameters rD ,Ω , ReZfΩ, ImZfΩ,

BΩ, F , γ, δB and rB. As a cross check, we also performed binned likelihood fits and found

that they lead to equivalent results, but take longer to converge.

As long as all phase space bins are well populated, we find that the fit results are not

crucially dependent on the number of bins. In our default scenario we divide phase space

into 4 bins for Run I, 6 bins for Run II and 8 bins for the upgrade.

We allow the charm mixing parameters x and y to vary in the fit, but constrain their

value with a two-dimensional Gaussian constraint to their world-average using, for the

LHCb Run I scenario [35]:

x = 0.526± 0.161% y = 0.668± 0.088% ρxy = 0.188, (4.1)

where ρxy is the correlation coefficient between x and y. We expect substantial improve-

ments on this measurement from LHCb, its upgrade, and BELLE-II in the future. Lacking

detailed forecasts, for the purpose of this study, we assume that the uncertainties on x and

y scale with the inverse square-root of LHCb event yields of the relevant data taking sce-

nario, while the correlation coefficient remains constant. We fix the well-measured average

D lifetime to τD = 1/ΓD = 410.1 fs [36].

While the default approach is to fit the decay rates, in an experimental measurement

it may be favourable to fit the decay rate ratios eqs. (2.10), (2.16) and (2.17). In this case

we loose sensitivity to the parameters BΩ and F . Using both fit methods on the same

simulated dataset, we find that both approaches give the same results on the parameters

they share. In section 4.6 we will demonstrate how fitting the rates, as opposed to the

ratios, allows us to add additional constraints to the fit.

4.3 Algorithms

In order to cope with the various local χ2 minima that are present in addition to the

four global minima, we use a two-stage fitting process. The first step is a fit with the
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GENEVA [37] package which is specifically designed to deal with multiple minima. We

use GENEVA’s parameter estimates as input to MINUIT [38] and perform a second fit to

refine the parameter estimate. To further reduce the risk of converging on false minima,

we repeat this process 75 times with many randomly chosen starting values for all fit

parameters. Finally, we choose the fit result that gives the smallest χ2 as our central value.

In order to avoid unphysical values of ZfΩ, which also can lead to further secondary minima,

we add for each volume Ω a term that increases the χ2 if ZfΩ leaves the physical region:

χ2
constr Zf

Ω
=


(

(|ZfΩ| − 1)/0.5
)2

if |ZfΩ| > 1

0 else

 (4.2)

4.4 Confidence regions in γ, δB, rB and x±, y±

We construct confidence regions in the parameters of interest based on the χ2 difference,

∆χ2, of the fit where the relevant parameters are fixed to the values to be probed, relative

to the χ2 of the best fit result when all parameters float. With σ ≡
√

∆χ2, the probability

or confidence level, CL, that the true value of the fit parameter is amongst those with a

smaller χ2 is approximately

CL = 1− p =
1√
2π

+σ∫
−σ

e−
1
2
y2
dy (4.3)

justifying the interpretation of σ in terms of Gaussian confidence levels. Equation (4.3)

also defines the p-value, used in section 4.7. We tested the applicability of eq. (4.3) to our

fit in extensive simulation studies. We observe good coverage for the default amplitude

model and the vast majority of other amplitude models, for all three data taking scenarios.

Amongst the large number of amplitude models we consider, there are however some where

we find significant deviations from exact coverage (mostly over-coverage), suggesting that

these studies ought to be repeated once an amplitude model has been obtained from data.

Figure 4 shows 2-dimensional scans in terms of 1, 2, 3σ confidence regions for γ vs δ,

γ vs rB, and y± vs x± for each of the three data taking scenarios. The results show that

the precision on x−, y− (or δ− γ) is much better than that on x+, y+ (or δ+ γ). We found

this behaviour in many of the D amplitude models we studied (see figure 6), and that it

appears to depend predominantly on the values for δB, and γ.

4.4.1 Using the wrong model

To study the impact of an imperfect binning, we repeated the sensitivity study using the

imperfect binning discussed in section 3.2, and applied it to our default Run II scenario.

Comparing the results, shown in figure 5, to those in figure 4 shows that the imperfect

binning results in a visible reduction in sensitivity especially at the 3σ level, but it does

not lead to a catastrophic deterioration of the fit, which retains a similar precision at the

1σ level.
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Figure 4. Confidence-level scans for γ, δ and rB in the first two columns, and x±, y± in the third

column, for simulated events according to the different scenarios given in table 1. The 2−D plots

show
√

∆χ2 = 1, 2, 3 contours. The yellow star indicates the input value and the black stars the

(multiple) χ2 minima. When secondary local minima are present, as in figures 5 and 9, we indicate

their positions with black crosses. The plots in the last column show contours for x+, y+ (with

minima in the second and fourth quadrant) and x−, y− (with two minima in the first quadrant).

4.5 Studies with other models

To study the dependence of our results on the particular amplitude model for the DCS

D0 → K +π−π+π− decay, we repeated the studies with a variety of amplitude models. CL

scans in the γ-δB plane for three examples, for the LHCb run II data taking scenario, are

shown in figure 6. The first column shows an artificial “ideal” model, set up to have bins

with evenly distributed δfΩ, and |ZfΩ| = 1, BΩ = 1, AΩ = rDf for all Ω; this also implies

|Zf | = 0. The second and third column show models taken from the set of randomly

generated models; one where |ZK3π| is smaller than CLEO-c’s central value, and another
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Figure 5. CL scans for simulated data generated with the default model, but binned based on the

randomised model described in section 3.2 (same format as in figure 4).
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Figure 6. CL scans for three alternative models, for the LHCb run II data taking scenario. The

top row shows the ZK3π
Ω values and the central value of ZK3π for the each model. The second row

show the CL scans in the γ − δB plane, for the LHCb run II scenario.

where it is larger. The results illustrate a general tendency we observe, which is that the

precision improves for models with a fairly even spread of δp, while clustering of δp, a

feature typical for models with large |ZK3π|, leads to reduced sensitivity.

4.6 Additional input from the charm threshold

We consider two ways of incorporating additional information from the charm threshold.

One is to incorporate constraints on the global coherence factor Zf . Such constraints are

already available for D → K−π+π−π+ and a few other decay modes, based on CLEO-c
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BES III + D mixing, phase-space integrated analysis
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Figure 7. Constraints on rB , δB , γ, x−, y− obtained using the phase-space integrated approach

proposed in [7], with additional constraints from mixing [15]. In contrast to all other results shown

in this letter, neither D mixing nor B∓ → DK∓ data are separated into multiple phase space bins.

The study uses global constraints on ZK3π extrapolated to BES III statistics [14], and the LHCb

run II data scenario.

data [9, 13, 14], and could significantly improve with input from BES III, who have collected

3.5 times as much integrated luminosity at the charm threshold. These constraints can be

added either to a phase-space integrated analysis of D mixing and B∓ → DK∓ as proposed

in [15] or to the binned analysis introduced here. Alternatively, charm threshold data can be

analysed in the same phase space bins as B∓ → DK∓ and charm mixing. This, as we will

show below, will add additional information that substantially improves the measurement.

Below we discuss each method in turn.

4.6.1 Phase-space integrated analysis with input from the charm threshold

In contrast to all other results presented in this letter, for this analysis, neither the charm

mixing data, nor the B∓ → DK∓ data are divided into multiple phase space bins. We

incorporate constraints on ZK3π obtained from charm threshold data following [7], and

perform fits to simulated data with and without input from a phase-space integrated D

mixing analysis as proposed in [15]. Figure 7 shows confidence regions obtained for such

a phase-space integrated analysis based on the LHCb run II scenario, with input from the

charm threshold extrapolated to BES III statistics [14], including input from charm mixing.

While with this method, there is insufficient information to obtain point-estimates, 68%

confidence regions can still be interpreted in terms of uncertainties on γ, δB and rB, as

described in section 4.7. Averaging over 10 simulated experiments, we find σ(γ) = 56◦

(64◦), σ(δB) = 53◦ (66◦) and σ(rB) = 0.92 · 10−2 (4.1 · 10−2) with (without) input from D

mixing. While the constraints on γ and δB are rather weak, the precision on rB is excellent.

As [14] have shown, input from such an analysis would play an important role in a global

fit to measure γ.
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Figure 8. Constraints on x± and y±, obtained by combining simulated B∓ → DK∓ data (LHCb

Run II statistics) with different constraints from charm. Left: future (BES III) charm threshold

constraints on ZK3π (only the effect on x−, y− is shown, results for x+, y+ are similar). Centre: D

mixing constraints. Right: Both. (Same format as in figure 4.)

4.6.2 Global constraints from the charm threshold, with a binned

B∓ → DK∓ and D mixing analysis

Performing the fit on the absolute decay rates (see sections 2.5 and 4.2) rather than the

fractions, it is possible to incorporate constraints on the total coherence factor Zf from

the charm threshold while still performing the binned analysis of B∓ → DK∓ and charm

mixing data as described above, using the relation∑
all Ωi

AΩiBΩiZ
f
Ωi

= ABZf . (4.4)

In the above expressions, A,B,Zf are the equivalent quantities to AΩ,BΩ,ZfΩ for a volume

that encompasses the entire phase space. Figure 8 illustrates the significant benefit of such

additional constraints, numerical results can be found in table 2. The predicted BES III

uncertainties on ZK3π are taken from [14].

4.6.3 Binned constraints from the charm threshold

In this section we compare the performance of a binned analysis relying on charm threshold

data for the charm interference parameter, as proposed in [7], with the novel method pro-

posed in this letter, and with a combined approach using binned threshold and charm mix-

ing data. We analyse the charm threshold data in the same phase-space bins as B∓ → DK∓

and charm mixing. This provides a constraint from threshold data on each individual ZK3π
Ω ,

rather than only their weighted sum as in section 4.6.2. To estimate the uncertainties on

ZK3π
Ω from such an analysis, we take the results on ZK3π from [14], and assume that un-

certainties scale with the inverse square-root of the number of signal events used for the

measurement. Given the fairly large uncertainty on ZK3π from CLEO-c data, we assume

that these data can be divided into at most three bins while still providing meaningful

constraints on ZK3π
Ω in each bin. With BES III statistics, we expect it will be possible to
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Figure 9. Constraints on x± and y±, obtained by combining simulated B∓ → DK∓ data (LHCb

Run II statistics) with different constraints from charm. Two plots on the left: future (BES III)

charm threshold constraints on binned ZK3π
Ω . Right: that, combined with D mixing. (Same format

as in figure 4.)

match the binnings defined in section 4.2, with up to eight bins. Figure 9 illustrates in the

x± − y± plane the dramatic effect that the combination of mixing constraints and binned

ZK3π
Ω constraints from a future analysis of BES III threshold data could have. Not only

are the uncertainties on x±, y± much reduced compared to either constraint being applied

individually (see table 2 for numerical results), but the BES III input also removes the

previously existing ambiguities in x± and y±. Figure 10, described below, confirms this

observation for 1-dimensional parameters scans of x± and γ.

4.7 1-D scans and quantified uncertainties

We perform one-dimensional p-value (see eq. (4.3)) scans of the parameters of interest. To

translate a scan into a numerical result for the uncertainty σ on a given parameter, we

choose the peak associated to the fit result nearest the input value with which the data

were generated, and take half its width at 1 − p = 68%. We ignore multiple solutions,

unless two solutions merge at the 68% CL level, in which case we take the width of the

merged double-peak to calculate σ. This is illustrated for a few examples in figure 10.

4.8 Summary of results

Table 2 summarises our estimates of the uncertainties on the parameters describing CP

violation in B∓ → DK∓, measured in B∓ → DK∓, D → Kπππ for different charm inputs

and data taking scenarios. These estimates are obtained from p-value scans as described

above, averaged over 50 simulated experiments, generated using the default amplitude

model.

The results indicate that an interesting precision on these parameters (especially x−
and y−) can be achieved solely based on a combined analysis of B∓ → DK∓, D → Kπππ

and charm mixing data in several bins of the D decay’s phase space. Such a result would

not provide a competitive measurement of γ by itself, but would be expected to make a

valuable contribution to a combined fit, such as the ones described in [9, 14, 27].
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L
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C
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sc
en

ar
io

D
0

m
ix

?

ch
ar

m
th

re
sh

ol
d
?

σ(γ) σ(δB) σ(rB) σ(x+) σ(y+) σ(x−) σ(y−)

[◦] [◦] ×102 ×102 ×102 ×102 ×102

run I

n
on

e

26 47 1.6 8.7 9.1 8.8 8.2

run II Y 22 29 1.4 7.6 6.9 4.5 4.0

upgr 15 14 0.17 4.7 5.2 0.56 0.98

run I

C
L

E
O

gl
ob

al

20 29 0.82 6.4 5.7 6.6 5.9

run II Y 15 19 0.62 5.4 3.9 2.5 2.7

upgr 11 10 0.16 3.8 2.8 0.44 0.50

run I

B
E

S
II

I
gl

ob
al

19 25 0.78 6.4 5.5 6.5 5.8

run II Y 14 18 0.57 5.4 3.9 2.4 2.7

upgr 9.0 8.2 0.15 3.7 2.7 0.43 0.48

run I

C
L

E
O

b
in

n
ed

46 35 3.2 6.9 6.5 8.6 10

run II N 50 34 3.3 6.9 6.7 8.9 11

upgr 52 35 3.3 7.6 6.7 8.9 11

run I

B
E

S
II

I
b
in

n
ed

40 24 2.6 4.1 5.0 5.7 6.2

run II N 34 17 2.5 3.6 4.1 5.0 5.1

upgr 39 14 2.9 3.9 4.1 4.3 5.6

run I

C
L

E
O

b
in

n
ed

16 18 0.78 2.1 3.5 2.6 3.1

run II Y 12 13 0.53 1.7 3.1 1.7 2.0

upgr 7.8 7.2 0.15 1.1 2.6 0.40 0.46

run I

B
E

S
II

I
b
in

n
ed

12 14 0.68 1.6 2.6 2.0 2.5

run II Y 8.6 9.6 0.47 0.90 2.1 1.5 1.5

upgr 4.1 3.9 0.14 0.53 1.3 0.35 0.38

Table 2. Uncertainties on key parameters, obtained based on the default amplitude model in

different configurations, averaged over 50 simulated experiments. All results are for the binned

approach applied to B∓ → DK∓ and, where used, charm mixing data. The first column refers to

the scenarios defined in table 1. The second column defines whether charm mixing input was used

(Y), or not (N). The third column describes additional input from the charm threshold. “CLEO

global” refers to the phase-space integrated input from [14]. “BES III global” is the same, but

uses the uncertainties predicted in [14] for a data sample 3.5 times as large as that collected by

CLEO-c. “CLEO binned” and “BES III binned” extrapolate to a potential binned analysis of the

charm threshold data described in section 4.6.3.
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Figure 10. The p-value (see eq. (4.3)) versus γ, x+, and x− for different charm inputs for

estimated LHCb run II statistics. The arrow indicates the input value with which the experiment

was simulated. The numbers inside the scans represent the best fit value ±1σ, as described in

the text.

However, using both charm input from mixing and from threshold data transforms this

into a precision measurement of γ. While precise predictions are impossible until we have

a better understanding of the D0 → K +π−π+π− amplitude structure, the above results

suggests that, with the approach proposed here applied to LHCb run 1 data, this channel

can reach a similar precision as the combined analysis of B∓ → DK∓ with D → KSπ
+π−

and D → KS K +K− on LHCb run 1 data [39], currently the most precise individual mea-

surement of γ in tree-level decays. Conversely, the inclusion of information from charm

mixing leads to a vastly improved precision compared to that achievable based on charm
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input from threshold data alone, by about an order of magnitude for the upgrade scenario,

emphasising the crucial role of the information from charm mixing.

Finally, our results indicate that the input from BES III has the potential to sub-

stantially improve the precision on γ over that achievable with CLEO-c’s dataset alone,

especially if a binned analysis were to be performed. Further improvements would be ex-

pected from combining CLEO-c and BES III input, which, in this study, we only considered

separately.

5 Conclusion

We have presented a new method for the amplitude model-independent measurement of

the CP violation parameter γ from B∓ → DK∓ decays, based on a combined analysis of

B∓ → DK∓ and charm mixing. When analysed in several bins of the D decay’s phase

space, γ can be measured without additional input from the charm threshold. We have

evaluated the performance of the method in a simulation study for the case where the D de-

cays to K±π∓π±π∓, using sample sizes representing existing and plausible future datasets.

The precision ultimately achievable depends on the D0 → K +π−π+π− amplitude structure

realised in nature, that we do not know. Our results suggest that the new method we in-

troduced would, even without input from the charm threshold, provide valuable input to a

global γ combination, although the precision would be insufficient to provide a competitive

γ measurement in its own right.

We compare the performance of our novel method to that of a binned analysis with

charm input from the threshold, as proposed in [7]. For the run I scenario, with BES III

statistics, both methods perform similarly well. Assuming no additional data from the

threshold, the mixing-based method introduced here performs significantly better for the

LHCb-upgrade scenario, benefiting from the vast number of D events expected.

For all data taking scenarios we studied, combining the two methods results in a far

superior performance than either can achieve individually. This is already the case when

threshold data enter in the form of a phase-space integrated constraint on Zf , but by far the

best results are obtained if D mixing, B∓ → DK∓ and charm threshold data are analysed

in the same phase space bins. Such a combined approach transforms this into a highly

competitive precision measurement of γ, on par with the best existing constraints from

individual channels. Its precision keeps improving with charm mixing and B∓ → DK∓

event yields projected into the foreseeable future, even if no new data from the charm

threshold become available.

Once a D0 → K +π−π+π− amplitude model is available to inform the binning, the

techniques we introduced here can be used to significantly improve the precision on γ and

related parameters that can be obtained from B∓ → DK∓, D → K±π∓π±π∓. Such a

measurement would benefit greatly from an update of the ZK3π = RK3π
D e−δ

K3π
D measure-

ment [9, 14] with BES III’s larger dataset, and, even more so, a binned ZK3π
Ω analysis.

With all of the above ingredients in place, the methods introduced in this letter, applied

to B∓ → DK∓, D → K±π∓π±π∓, could lead to one of the most precise individual γ mea-

surements.

Its potential for other decay channels is yet to be evaluated.
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