
J
H
E
P
0
3
(
2
0
1
5
)
1
6
8

Published for SISSA by Springer

Received: January 22, 2015

Accepted: March 2, 2015

Published: March 31, 2015

On the asymptotic states and the quantum S matrix

of the η-deformed AdS5 × S5 superstring

Oluf Tang Engelunda and Radu Roibanb,c

aDepartment of Physics and Astronomy, Uppsala University,

Box 516, SE-751 08 Uppsala, Sweden
bDepartment of Physics, The Pennsylvania State University,

University Park, PA 16802, U.S.A.
cKavli Institute for Theoretical Physics, University of California,

Santa Barbara, CA 93106-4030, U.S.A.

E-mail: oluf.engelund@physics.uu.se, radu@phys.psu.edu

Abstract: We investigate the worldsheet S matrix of string theory in η-deformed

AdS5 × S5. By computing the six-point tree-level S matrix we explicitly show that there is

no particle production at this level, as required by the classical integrability of the theory.

At one and two loops we show that integrability requires that the classical two-particle

states be redefined in a non-local and η-dependent way. This is a significant departure

from the undeformed theory which is probably related to the quantum group symmetry of

the worldsheet theory. We use generalized unitarity to carry out the loop calculations and

identify a set of integrals that allow us to give a two-loop Feynman integral representation

of the logarithmic terms of the two-loop S matrix. We finally also discuss aspects of the

calculation of the two-loop rational terms.

Keywords: Scattering Amplitudes, Integrable Field Theories, Sigma Models, AdS-CFT

Correspondence

ArXiv ePrint: 1412.5256

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP03(2015)168

mailto:oluf.engelund@physics.uu.se
mailto:radu@phys.psu.edu
http://arxiv.org/abs/1412.5256
http://dx.doi.org/10.1007/JHEP03(2015)168


J
H
E
P
0
3
(
2
0
1
5
)
1
6
8

Contents

1 Introduction 1

2 The deformed action and bosonic Lagrangian 3

2.1 The bosonic Lagrangian and the four-point S matrix 4

2.2 Six-point S matrix and absence of particle production 6

3 The one-loop S matrix 7

3.1 Comments on unitarity vs. Feynman rules 8

3.2 One-loop logarithmic terms and the need for new asymptotic states 9

3.3 One-loop symmetries and new asymptotic two-particle states 11

4 The two-loop S matrix and consistency of the asymptotic states 12

4.1 A set of tensor integrals 13

4.2 Comments on rational terms 16

5 Discussion 20

A Tree-level S-matrix coefficients 22

B Dispersion relation, propagator and Jacobian 22

C The difference of s- and u-channel one-loop integral coefficients 23

D One-loop S-matrix coefficients 24

E One- and two-loop integrals 25

1 Introduction

Integrability of the string sigma model is a key feature that makes possible the deter-

mination of the string spectrum on non-trivial curved backgrounds [1]. It is therefore

important to identify and analyze such sigma models which correspond to physically-

interesting string theories. Examples are integrable deformations of string sigma models on

AdSn×Sn×M10−2n which, in the undeformed case, play an important role in the AdS/CFT

correspondence.

Orbifolding or sequences of T-duality (or worldsheet duality) and shift transformations

(see e.g. [2–7]) of an integrable two-dimensional sigma model provide a straightforward way

of constructing closely related integrable models. Generalizing previously-known construc-

tions of integrable deformations of group or coset models [8–13], a classically-integrable
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deformation of the AdS5×S5 Green-Schwarz sigma model was proposed in [14]. The de-

formation completely breaks target space supersymmetry and reduces the AdS5 and S5

isometries to their Cartan subgroups, U(1)3⊗U(1)3. Remarkably however, the original

symmetry is not completely lost but rather it is q-deformed to PSUq(2, 2|4) [15].
The bosonic Lagrangian was constructed explicitly and it was quantized in uniform

light-cone gauge in ref. [16] (see [17] for lower-dimensional models and [18] for a discus-

sion of the corresponding supergravity backgrounds); the bosonic tree-level S matrix was

also constructed and shown to reproduce the small momentum (classical) limit of the

PSUq(2|2)2-symmetric S matrix of [19–21], suggesting that the gauge-fixed theory has in-

deed this symmetry. Integrability of the theory implies then that, if this symmetry is

preserved at the quantum level, the S matrix should factorize as [22]

S = SPSUq(2|2) ⊗ SPSUq(2|2) , (1.1)

where each factor is invariant under a different PSUq(2|2) factor and may be written as

SPSUq(2|2) = eiθ̂12ŜPSUq(2|2) ≡ 1+
i

g
T = eiθ̂12

(

1+
i

g
T̂
)

(1.2)

= 1+
1

g
iT (0)+

1

g2
i

(

T̂ (1)+
1

2
θ̂
(1)
12 1

)

+
1

g3
i

(

T̂ (2)+
i

2
θ̂
(1)
12 T (0)+

1

2
θ̂
(2)
12 1

)

+O
(

1

g4

)

.

Here ŜPSUq(2|2) is the part of the S matrix determined by the symmetries normalized such

that the dressing phase is unity at tree level.

The small amount of manifest symmetry in this theory suggests that, by studying it,

we may expose features that did not appear in the undeformed theory. For example, it

is interesting to wonder whether integrability survives at higher orders and how is the

PSUq(2|2)2 realized at the quantum level on the Lagrangian fields. The perturbative

worldsheet S matrix is perhaps the most basic quantity which may help address these

questions. We will compute it at tree-level beyond leading nontrivial S-matrix elements,

as well as at one- and two-loop order. In doing so we shall also identify an integral basis

which, in conjunction with generalized unitarity, yields a Feynman integral representation

for all the logarithmic terms in the two-loop S matrix. The construction of this basis may

be iterated to all loop orders.

An important property of higher-point S matrices in integrable theories is the absence

of particle production or, alternatively, their factorization of the (tree-level) higher-point

S matrix into sequences of 2 → 2 processes [22]. This feature has important simplifying

consequences on the unitarity-based construction of the S matrices of such theories [23–25].

As we shall review in section 3.1, it implies the cancellation of massive tadpole integral

contributions to the 1PI part of the S matrix and thus suggests that, if present, UV

divergences are confined to the renormalization of two-point functions.

It was pointed out in [26] that, for an S matrix to have desirable properties, one should

in principle allow for transformations of the multi-particle scattering basis, which from the

point of view of the constituent one-particle states appears mutually non-local. These

transformations may significantly modify the symmetry properties of the S matrix without
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changing the actual physical content. As we shall see, such a bilocal transformation (in

momentum space) is necessary in the η-deformed theory to put the loop-level S matrix

in the form (1.2) suggested by the integrability and classical symmetries of the theory.

One may, alternatively, interpret the required transformation as acting on single-particle

states at the expense of changing their dimension and spin, both of which become formally

complex. The necessity for this redefinition is a significant departure from the undeformed

theory1 and appears to be closely related to the presence of an NS-NS B field and the

corresponding bosonic Wess-Zumino term. However, the presence of such a field does

not necessarily require such redefinition as shown by loop calculations in AdS3×S3×T4

supported by mixed flux [27, 28]. It therefore seems likely that it is required for the naive

tree-level asymptotic states to become a representation of PSUq(2|2).
In general, to carry out loop calculations it is necessary to know the interaction terms

containing worldsheet fermions. As we shall see however, part of our conclusions can be

reached based only on the structure of the S matrix and with minimal detailed information

on the fermion-dependent part of the Lagrangian or of the corresponding S-matrix elements.

When we derive explicit expressions of loop-level S matrix we shall use for the currently-

unknown tree-level S matrix the relevant terms in the small momentum expansion of the

PSUq(2|2) S matrix of [19–21].

The paper is organized as follows. In section 2 we review the deformed Lagrangian and

its bosonic part, the structure of the four-particle S matrix and discuss the factorization of

the six-particle S matrix. In section 3 we construct the one-loop S matrix in terms of the

tree-level S-matrix coefficients and identify the redefinition of the two-particle states that

cast it in the form suggested by the classical symmetries and integrability. In section 4 we

describe a new basis of two-loop integrals, give an integral representation of the logarithmic

terms of the two-loop S matrix and provide a discussion of the rational terms. In section 5

we summarize our results and discuss how to construct an integral representation for the

worldsheet S matrix at arbitrary loop order. We relegate to appendices explicit expressions

for the tree-level S-matrix coefficients, one-loop integral coefficients and one-loop S-matrix

coefficients and explicit expressions for one- and two-loop integrals.

2 The deformed action and bosonic Lagrangian

The one-parameter η-deformation of the AdS5×S5 supercoset Lagrangian constructed

in [14] is naturally expressed in terms of the left-invariant one-forms of the undeformed

symmetry group:

L = cη π
ij STr

[

Ji dη ◦
1

1− ηRg ◦ dη
Jj

]

πij ≡
√
−hhij − ǫij , (2.1)

Ji = g−1∂ig dη ≡ P1 + 2c−1
η P2 − P3 , cη ≡ 1− η2 . (2.2)

1In the undeformed theory a redefinition of creation/annihilation operators is necessary to relate the

worldsheet and spin chain S matrices, see [26].
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Here g∈PSU(2, 2|4) and Pk are projectors onto subspaces with eigenvalue ik of the action

of the Z4 automorphism of PSU(2, 2|4).2 The operator Rg acts on the superalgebra as

Rg(M) = g−1R
(

gMg−1
)

g , (2.3)

where the operator R multiplies the generators corresponding to the positive roots by −i,
those corresponding to the negative roots by +i and annihilates the Cartan generators.

There are three choices of R operator leading to inequivalent bosonic actions (the corre-

sponding metrics appear to have different singularity structures) [15].

The Lagrangian (2.2) has several remarkable properties. On the one hand it preserves

the classical integrability of the undeformed theory. On the other, it exhibits a q-deformed

symmetry [15], which suggests that the theory is more symmetric than manifest from the

Lagrangian. The parameter q is related to the deformation parameter η as

q = e−ν/g ν =
2η

1 + η2
. (2.4)

This relation was initially inferred in [16] by comparing the tree-level S matrix of the

deformed model with the PSUq(2|2)2-invariant S matrix of [19–21]. Up to the normalization

of the worldsheet action (and hence of g), the same expression was found in [15] where the

symmetries of the classical action have been analyzed.

2.1 The bosonic Lagrangian and the four-point S matrix

Using the choice of R operator put forth in [14] and a judicious parameterization of the

coset, the bosonic Lagrangian was constructed in [16]. Unlike the undeformed theory, the

geometric background is supplemented by a nontrivial NSNS B-field. The Lagrangian is:

L = LG
a
+ LG

s
+ LWZ

a
+ LWZ

s
(2.5)

with3

LG
a
= −g

2

(

1 + κ
2
)

1
2 γαβ

(

−∂αt∂βt
(

1 + ρ2
)

1− κ2ρ2
+

∂αρ∂βρ

(1 + ρ2) (1− κ2ρ2)
+

∂αζ∂βζρ
2

1 + κ2ρ4 sin2 ζ

+
∂αψ1∂βψ1ρ

2 cos2 ζ

1 + κ2ρ4 sin2 ζ
+ ∂αψ2∂βψ2ρ

2 sin2 ζ

)

, (2.6)

LG
s
= −g

2

(

1 + κ
2
)

1
2 γαβ

(

∂αφ∂βφ
(

1− r2
)

1 + κ2r2
+

∂αr∂βr

(1− r2) (1 + κ2r2)
+

∂αξ∂βξr
2

1 + κ2r4 sin2 ξ

+
∂αφ1∂βφ1r

2 cos2 ξ

1 + κ2r4 sin2 ξ
+ ∂αφ2∂βφ2r

2 sin2 ξ

)

, (2.7)

and the Wess-Zumino terms LWZ
a

and LWZ
s

given by

LWZ
a

=
g

2
κ
(

1 + κ
2
)

1
2 ǫαβ

ρ4 sin 2ζ

1 + κ2ρ4 sin2 ζ
∂αψ1∂βζ , (2.8)

LWZ
s

= −g
2
κ
(

1 + κ
2
)

1
2 ǫαβ

r4 sin 2ξ

1 + κ2r4 sin2 ξ
∂αφ1∂βξ . (2.9)

2We use the normalization in which the (super)trace of squares of the bosonic Cartan generators equals 2.
3The relation between κ and η is η = κ

−1
[√

1 + κ2 − 1
]

.
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The light-cone gauge-fixing of this Lagrangian was discussed at length in [16] and we

will not reproduce it here. For the purpose of the construction of the S matrix it is useful

to pass to complex coordinates, which manifest the SU(2)4 in the κ→ 0 limit. Restricting

to the S5 fields the transformation is

r =
|y|

1 + 1
4y

2
, cos2 ξ =

y21 + y22
y2

, sin2 ξ =
y23 + y24
y2

(2.10)

Y 11̇ =
1

2
(y1+iy2) , Y 22̇ =

1

2
(y1−iy2) , Y 12̇ =

1

2
(y3−iy4) , Y 21̇ = −1

2
(y3+iy4) .

The Lagrangian to quadratic and quartic orders (Y 2 = 4
(

Y 11̇Y 22̇−Y 21̇Y 12̇
)

, etc.) is then4

LS = L2,S + L4,S + LWZ
4,S + . . . (2.11)

L2,S =
1

2
g
(

−∂0Y αβ̇∂0Yαβ̇ +
(

1 + κ
2
)

∂1Y
αβ̇∂1Yαβ̇ +

(

1 + κ
2
)

Y αβ̇Yαβ̇

)

(2.12)

L4,S = −1

2
g
(

1 + κ
2
)

Y 2(∂1Y )2 +
1

2
gκ2Y 2(∂0Y )2 (2.13)

LWZ
4,S = 2igκ

√

1 + κ2 Y 12̇Y 21̇ǫαβ
(

∂αY
11̇
)(

∂βY
22̇
)

. (2.14)

Remarkably, the bosonic tree-level four-point S matrix given by this Lagrangian repro-

duces [16] the small momentum limit of the exact PSUq(2|2)2-invariant S matrix of [19–21].

In sections 3 and 4 we shall need the general form of the two-particle S matrix. Based on

the manifest and expected symmetries the general form of the T -matrix elements in (1.2) is:

T cd
ab = Aδcaδ

d
b + δdaδ

c
b

(

B +WB ǫab − VBǫabǫ
cd
)

,

T γδ
αβ = D δγαδ

δ
β + δδαδ

γ
β

(

E +WE ǫαβ − VEǫαβǫ
γδ
)

,

T γδ
ab = ǫabǫ

γδ
(

C +QCǫab −QCǫ
γδ +RCǫabǫ

γδ
)

,

T cd
αβ = ǫαβǫ

cd
(

F +QF ǫαβ −QF ǫ
cd +RF ǫαβǫ

cd
)

,

T cδ
aβ = Gδcaδ

δ
β , T γd

αb = Lδγαδ
d
b ,

T γd
aβ = H δdaδ

γ
β , T cδ

αb = K δδαδ
c
b .

(2.15)

The tree-level values of the coefficients of the bosonic structures, A,B,D,E,G,L,W , have

been constructed directly from the Lagrangian in [16]. At this order

W
(0)
B =W

(0)
E =W (0) = iν ; (2.16)

their common value W (0) corresponds to the contribution of the Wess-Zumino term and

it does not depend on the particle momenta. In appendix A we collect the tree-level ex-

pressions of all coefficients in (2.15) extracted from [19–21] by taking the small momentum

expansion.

4These expressions are obtained by Legendre-transforming the Hamiltonian of [16]. Alternative expres-

sions may be obtained by expanding the Nambu-Goto action.
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2.2 Six-point S matrix and absence of particle production

One of the consequences of integrability is the absence of particle production or, alter-

natively, the factorization of the n → n S matrix into a sequence of 2 → 2 scattering

events [22]; all possible factorizations are equivalent as a consequence of the Yang-Baxter

equation obeyed by the four-particle S matrix. Here we discuss the absence of 2 → 4

tree-level scattering processes for the η-deformed worldsheet theory and the corresponding

factorization of the 3 → 3 tree-level amplitude. This calculation verifies the classical inte-

grability of the gauge-fixed theory and, moreover, is an integral part of the unitarity-based

approach to the construction of the S matrix in integrable quantum field theories.

For the purpose of illustration we will focus here on the fields parametrizing S5. It is

straightforward, albeit tedious, to expand the parity-even part of the gauge-fixed deformed

Lagrangian to this order. It is however simplest to check the factorization of the parity-

odd part of the (bosonic) S matrix. Indeed, these matrix elements depend only of the

parity-odd six-field terms in the expansion of the Lagrangian (and lower order terms as

well) which are substantially simpler. In the notation of [16], they are given by:

LWZ
s = 48igκ

(

1−κ
2
)

√

1+κ2
(

Y 12̇Y 21̇−2Y 11̇Y 22̇
)

Y 12̇Y 21̇ǫαβ
(

∂αY
11̇
)(

∂βY
22̇
)

+O
(

X8
)

.

(2.17)

The propagator coming from the quadratic Lagrangian is of the form

± i∆ =
±i

ω2
q − αq2 −m2

. (2.18)

for some choice of α and m. The Feynman rules from the quartic Lagrangian (2.13)–

(2.14) are

Y 11̇

Y 11̇

Y 22̇

Y 22̇
pa pd

pb pc

=
i

g

(

c1(pa + pb)
2 + c2(ωa + ωb)

2 + 2c3 (2.19)

+ c4
[

(pa + pc)
2 + (pa + pd)

2
]

+ c5
[

(ωa + ωc)
2 + (ωa + ωd)

2
] )

Y 22̇

Y 11̇

Y 12̇

Y 21̇
pa pd

pb pc

=
i

g

(

c1(papb + pcpd) + c2(ωaωb + ωcωd)− c3 (2.20)

− c4(pa + pb)
2 − c5(ωa + ωb)

2

+ β12(ωapb − ωbpa) + β34(ωcpd − ωdpc)

+ β13(ωapc − ωcpa)
)

for some choices of the constant coefficients ci and βij which may be easily found by

inspecting eqs. (2.13)–(2.14).

We will consider explicitly the 2 → 4 process with incoming fields Y 12̇ and Y 21̇ with

momenta p1 and p2, respectively; for the outgoing fields we will take two Y 11̇s (with
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p1

p2

pa

pb

pc

pd

p1

p2

pa

pb

pc

pd

p1

p2

pa

pb

pc

pd

(a) (b) (c)

Figure 1. Graph topologies contributing to the 2 → 4 tree-level S-matrix element. One should

include all possible assignments of outgoing momenta.

momenta p3 and p4) and two Y 22̇s (with momenta p5 and p6). The relevant Feynman

graph topologies are shown in figure 1. The graph of type figure 1(a) appears four times,

where the outgoing leg with momentum pa can be assigned to any one of the outgoing

fields. The graph of type figure 1(b) appears in principle six times, with the outgoing

legs with momenta (pa, pb) being assigned to all possible pairs of momenta; due to our

choice of flavor of outgoing fields however, two of such assignments ((pa, pb) = (p3, p4) and

(pa, pb) = (p5, p6)) vanish identically.

Straightforward algebra shows that upon using the identity

∆−1 = (ωa + ωb + ωc)
2 − α(pa + pb + pc)

2 −m2, (2.21)

(ωbpc − ωcpb)∆ =
1

4α

(

ωa − ωb

pa + pb
− ωa − ωc

pa + pc

)

(2.22)

and combining the eight contributions all propagators cancel out and we find a local expres-

sion. For all choices of ci and βij coefficients in (2.20) it can be put into a form reminiscent

of the contribution of a six-point vertex:

iT (0)
2→4

∣

∣

∣

(a),(b)

parity-odd
=

i

4g2

(c1
α
−c2

)

[

2(6β34+β13)
(

ω1p2−ω2p1
)

+(6β12+β13)
(

(ω3+ω4)(p5+p6)

− (ω5 + ω6)(p3 + p4)
)

+ 8β13
(

ω1(p3 + p4)− (ω3 + ω4)p1
)

]

. (2.23)

It is not difficult to check that such a six-point vertex Feynman rule arises from the second

term in the parity-odd six-field Wess-Zumino term in eq. (2.17). We have also checked that

the same is true for all parity-even and parity-odd six-point tree-level S-matrix elements.

3 The one-loop S matrix

A direct calculation of the one-loop S matrix is interesting for several reasons. On the

one hand it would probe the integrability of the theory beyond classical level and it would

determine to this order the dressing phase of the S matrix (in the small momentum ex-

pansion). On the other it would explore the realization of symmetries at the quantum

level and the extent to which the classical asymptotic states form a representation of the

symmetry group assumed in the construction of the exact S matrix [19–21]. Should the
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two realizations be different, an explicit expression of the S matrix in terms of classical

asymptotic states would allow us to determine the (nonlocal) redefinition that relates them

to the true one-loop (and perhaps all-loop) states. We will denote henceforth this S matrix

(and the corresponding T matrix) with the index “b”.

In the following we will use unitarity-based methods [29–31] discussed in the context

of two-dimensional integrable theories in [23–25] to find the one-loop and the logarithmic

terms of the two-loop S matrix. This construction will assume that the asymptotic states

are the classical ones, with two-particle states realized as the tensor product of single-

particle states.

An important ingredient in the construction of the S matrix through such methods

are the tree-level S-matrix elements with fermionic external states, which are currently

unknown from worldsheet methods. As we shall see, to draw conclusions on the properties

of asymptotic states only the general form of the tree-level S matrix and general properties

of the tree-level coefficients (which may be justified by e.g. assuming integrability) are

necessary. To find the actual expression of the loop-level S matrix we shall extract the

tree-level fermionic S-matrix elements from the exact S matrix.

3.1 Comments on unitarity vs. Feynman rules

The construction of scattering matrices in two-dimensional integrable models from unitarity

cuts was discussed in detail in [23, 24]. While in [24] only the terms with logarithmic

momentum dependence were discussed, ref. [23] gave a prescription the calculation of the

complete one-loop S matrix; it is interesting to discuss its relation to the Feynman diagram

calculation in [32] or the analogous calculation in the η-deformed theory.

As discussed in [32] in the context of undeformed AdSn×Sn theories, the off-shell one-

loop two-point function vanishes on shell. Moreover, the one-loop four-point function is also

divergent and the on-shell divergence is proportional to the tree-level S matrix. The cor-

responding renormalization factors necessary to remove all divergences are related to each

other and can be simultaneously eliminated by a field redefinition. One may understand the

relation between renormalization factors as a consequence of the (spontaneously broken)

scale invariance of the theory. Due to integrability, the unitarity-based calculation [23, 24]

is insensitive to the second type of divergence, which would correct the four-point inter-

actions. Indeed, integrability in the form of the factorization of the six-particle amplitude

implies that a one-particle cut of the one-loop four-point amplitude, which would identify

the divergent tadpole integral, contains a further cut propagator and that it is in fact

a two-particle cut and thus it predicts the absence of an infinite renormalization of the

four-point vertex. This is consistent with the fact that the one-particle cut of the on-shell

two-point function computed from the four-point S matrix vanishes as well. Thus, on the

one hand, Feynman graph calculations exhibit divergences removable by field redefinitions

while unitarity-based calculations are insensitive to any such divergences.

Before embarking in the unitarity-based construction of the one-loop S matrix for the

η-deformed theory, it is useful to check whether a similar consistent setup exists in this

case as well. This is indeed the case. In the previous section we illustrated the fact that the

six-point tree-level S matrix factorizes and thus the one-particle irreducible contributions

– 8 –
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(a) (b) (c)

p1

p2

p2

p1p2

p1 p1

p2

p1

p2

p1

p2

Figure 2. The integrals appearing in the one-loop four-point amplitudes. Tensor integrals can be

reduced to them as well as to tadpole integrals, which are momentum-independent.

(a) (b) (c)

p1

p2

p1

p2

p2

p1

p1

p2

p1 p1

p2 p2

Figure 3. Two-particle cuts of the one-loop four-point amplitudes

to the one-loop four-point S matrix are free of tadpole integrals. One can also check using

the tree-level four-point S matrix (2.15) with coefficients given in appendix A that the one-

particle cut of the on-shell one-loop two-point function vanishes as well. Assuming that the

worldsheet theory has indeed spontaneously-broken scale invariance (as it should to be a

good worldsheet theory expanded around a nontrivial vacuum state) and by analogy with

the undeformed case, we may therefore expect that unitarity-based calculation as described

in [23, 24] will capture the complete one-loop S matrix.

3.2 One-loop logarithmic terms and the need for new asymptotic states

To understand whether corrections to asymptotic states are necessary, let us first construct

the logarithmic terms of the one-loop S matrix under the standard assumption that the

loop-level asymptotic states are the same as the tree-level ones and contrast the results

with the consequences of integrability (1.2).

To this end we use the unitarity-based method described in two-dimensional context

in [23–25]. The one-loop S matrix with tree-level asymptotic states (denoted by the lower

index b) is given by

iT (1)
b =

1

2
CsIs+

1

2
CuIu+

1

2
CtIt =

i

2π
ln

(

p2−
p1−

)(

Cu

J
− Cs

J

)

−Cs

2J
+
i
(

1− ν2
)3/2

8π
Ct , (3.1)

where the integrals are shown in figure 2. We used their values for the propagators following

from the action (2.12), and the t-channel integral was defined through Wick rotation to

Euclidean space. The integral coefficients Cs, Cu and Ct are determined by unitarity cuts
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shown in figure 3, with a suitable interpretation5 of the singular t-channel cut:

(Cs)
CD
AB = (i)2J

∑

E,F ′

(

iT (0)
)CD

EF

(

iT (0)
)EF

AB
(3.2)

(Cu)
CD
AB = (i)2J

∑

E,F ′

(−)([B]+[F ])([D]+[F ])
(

iT (0)
)CF

EB

(

iT (0)
)ED

AF
(3.3)

(Ct)
CD
AB = (i)2

∑

E,F

(−)[E]([E]+[A]) lim
p2→p1

(

J
(

iT (0)
)EC

AF

)

(

iT (0)
)FD

EB

= (i)2
∑

E,F

(−)[F ]([B]+[F ])
(

iT (0)
)CE

AF
lim

p1→p2

(

J
(

iT (0)
)DF

EB

)

. (3.4)

Since the unitarity cuts fix completely the loop momentum, it is convenient to express

the one-loop amplitude in terms of (the tree-level part of the) the coefficients A, . . . ,W

parameterizing the S matrix, cf. eq. (2.15). The Grassmann parity of states introduces

relative signs between various contributions; to keep track of them it is convenient to

introduce the parameter ǫAB with A = 1, . . . , 4 ≡ {a, α} defined as

ǫAB =















ǫab A,B = 1, 2

ǫαβ A,B = 3, 4

0 A = 1, 2 , B = 3, 4

. (3.5)

The components of the difference between the s- and u-channel integral coefficients,

Cu

J
− Cs

J
, (3.6)

expressed in terms of generic tree-level S-matrix coefficients in eq. (2.15) are collected in

appendix C. These expressions contain a variety of terms whose structure is different from

that expected of the tensor part of the S matrix on the basis of integrability and factorized

symmetry. Assuming that the symmetry generators receive 1/g corrections, the only terms

that may become consistent with symmetries are those proportional to the tree-level S

matrix. Not all such terms survive however due to the identities

A(0) +D(0) = G(0) + L(0) , B(0) + E(0) = 0 , (3.7)

which may be found using the expressions for the bosonic tree-level S-matrix elements

found in [16]. The terms that are not proportional to the tree-level S matrix must cancel;

this requires that the following relation must hold:
(

B(0)
)2

+ C(0)F (0) −H(0)K(0) −
(

W (0)
)

2 = 0 . (3.8)

Showing that this holds requires knowledge of fermionic S-matrix elements. We extracted

them from the exact S matrix of [19–21]. Even though they have not yet been found

through direct worldsheet calculations, the fact that the sigma model is classically inte-

grable [14] and has PSUq(2|2)2 quantum group symmetry [15] suggests that they should

be the correct ones.
5To extract the coefficient of the t-channel one notices that on the one hand the formal cut of the t-

channel integral is divergent due to the squared propagator and on the other the cut evaluated as a product

of tree-level amplitudes is also divergent due to the momentum conserving delta function. The prescription

of [23] is to identify the coefficients of these divergences in the limit in which the cut momentum equals one

of the external momenta.
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Using these identities, eqs. (C.1)–(C.8) can be compactly written as:

Cs

J
− Cu

J
=
(

H(0)K(0) + C(0)F (0)
)

1+ iW (0)

(

4
∑

E=1

(

ǫAE − ǫCE
)

)

(

iT (0)
)

. (3.9)

Thus, it follows that the logarithmic terms of the one-loop S matrix with tree-level asymp-

totic states are given by

iT (1)
b

∣

∣

∣

ln terms
=

1

2π
W (0)

(

4
∑

E=1

(

ǫAE − ǫCE
)

)

ln

(

p2−
p1−

)

(

iT (0)
)

− i

2π

(

H(0)K(0) + C(0)F (0)
)

ln

(

p2−
p1−

)

1 . (3.10)

We note that the first line of this expression is inconsistent with the expansion (1.2) of

the S matrix suggested by quantum integrability and the expected PSUq(2|2)2 symmetry.

Indeed, eq. (1.2) implies that at one-loop level the only logarithmic momentum dependence

appears in the S matrix phase — and thus the only logarithms multiply the unit operator

— while the tensor part is free of logarithms.

3.3 One-loop symmetries and new asymptotic two-particle states

The fact that the offending term in eq. (3.10) is proportional to the tree-level S matrix

suggests that it should be possible to eliminate it by a redefinition of the asymptotic states.

At tree level these states are tensor product of single-particle states however this does not

need to be the case at loop level. We will consider two redefinitions: (a) one makes

the spin and dimension of the single-particle states complex while preserving the tensor-

product structure of the two-particle state and the other (b) does not act independently on

the single-particle states but breaks the tensor product of the two-particle states. While

distinct, the two redefinitions have the same effect on the S matrix and put it in a form

consistent with the consequences of integrability and expected symmetries.

To identify the desired transformation we notice that for all choices of external states

the following identity holds:

4
∑

E=1

(

ǫAE − ǫCE
)

= −
4
∑

E=1

(

ǫBE − ǫDE
)

. (3.11)

For diagonal elements, A = C and B = D, both the left-hand and the right-hand side are

trivially zero, while they are non-vanishing for off-diagonal S-matrix elements. Using this

identity, the two possible redefinitions are:

(a)
|A, p〉 7→ p

+W (0)

2πg

∑4
E=1 ǫAE

− |A, p〉 ,

〈C, p| 7→ p
−W (0)

2πg

∑4
E=1 ǫ

CE

− 〈C, p| ;
(3.12)

(b)
|A, p1〉 ⊗ |B, p2〉 7→ e

+W (0)

4πg
ln
(

p1−
p2−

)

∑4
E=1(ǫAE−ǫBE)|A, p1〉 ⊗ |B, p2〉 ,

〈C, p1| ⊗ 〈D, p2| 7→ e
−W (0)

4πg
ln
(

p1−
p2−

)

∑4
E=1(ǫCE−ǫDE)〈C, p1| ⊗ 〈D, p2| .

(3.13)
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Since the tree-level coefficientW (0) is purely imaginary,W (0)∗ = −W (0), cf. eq. (2.16), both

redefinitions preserve the unitarity properties of the original S matrix as the in and out

states remain hermitian conjugates of each other. We also notice that the redefinition (b)

is not sensitive to the order of the states in the original tensor product. Of course, at one

loop only the first term in the expansion of the exponential factors is relevant; we however

keep the full exponential form to exhibit manifest unitarity of the state transformation.

In terms of the new asymptotic states and upon using eq. (3.11) the one-loop S matrix

becomes

iT (1) =
i

2π
ln

(

p2−
p1−

)

(

Cu

J
− Cs

J
+ iW (0)

4
∑

E=1

(

ǫAE−ǫCE
) (

iT (0)
)

)

− Cs

2J
+
i
(

1−ν2
)3/2

8π
Ct ;

(3.14)

by construction the logarithmic terms proportional to
(

iT (0)
)

cancel in the parenthesis

and we are left with an expression consistent with integrability and expected symmetries.

In the limit of vanishing deformation parameter, ν → 0, the bare and redefined states

become identical, as required by the fact that no state redefinition is necessary in the

undeformed theory.

Following [23], the t-channel integral coefficient Ct can be found by removing the

vanishing Jacobian factor from the tree-level S matrix, eq. (3.4), and is given by:

Ct =
4

1− ν2

(

ω2
1 − 1

) (

ω2
2 − 1

)

ω2p1 − p2ω1
1 . (3.15)

In the limit of zero deformation this coefficient gives rise to the rational part of the one-loop

dressing phase whereas Cs gives the one-loop terms in the expansion of the coefficients

A, . . . ,K in the definition (2.15) of the S matrix.6 For non-vanishing η-parameter we

have checked that this continues to be the case by comparing the entries of Cs with the

perturbative expansion of the exact S-matrix coefficients [19–21]. We collect the expressions

of the one-loop S-matrix coefficients in appendix D.

4 The two-loop S matrix and consistency of the asymptotic states

In [24] the double-logarithms of the two-loop S matrix were computed from double two-

particle cuts and expressed in terms of two-loop scalar integrals. Additional single-

logarithms were then found from single two-particle cuts, making use of the rational part

of the one-loop S matrix determined by symmetries.7 The result was, however, expressed

only in terms of one-loop integrals. Here we identify a particular set of two-loop scalar and

tensor integrals which allows us to write a uniform two-loop integral representation of all

two-loop logarithmic terms.

6In theories with cubic interaction terms there may exist nontrivial corrections to the two-point function

of fields which change its residue at the physical pole. This leads to further terms in the one-loop S matrix,

see [25]. The η-deformed AdS5×S5 Lagrangian has only quartic (and higher-point) vertices and thus such

corrections appear only at two loops.
7The part proportional to the identity operator cancelled out.
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(a) (b) (c)

(d) (e) (f)

p1

p2

p1

p2 p1

p2

p1

p2

p2

p1 p2

p1
p2

p1 p2

p1 p2

p1 p2

p1

p2

p1

p2

p1

l1l2 l2

l2
l2

l1

l1

l1

Figure 4. The integrals appearing in the two-loop four-point amplitudes.

4.1 A set of tensor integrals

The topologies of the contributing integrals are the same as in [24] and are shown in

figure 4. Let us parametrize the integrals in figures 4(b), (c), (e) and (f) as shown in the

figure. We first consider the cut in the s = (p1+p2)
2 channel, which receives contributions

from graphs with topologies (a), (b) and (c). If one interprets them as scalar integrals,

then the two-particle cut condition for the graph (a) has two solutions both of which are

proportional to the s-channel one-loop integral. The two particle cut conditions of graphs

(b) and (c) also have two solutions; however, one of them is proportional to the t-channel

one-loop integral while the other is proportional to the u-channel one; the corresponding

solutions may be parameterized as

l1 + l2 = 0 and l1 + l2 = p2 − p1 . (4.1)

Instead of using them however, we shall define integrals whose single two-particle cuts re-

ceive contributions from a single one-loop integral. This can be easily done by making use

of the solution (4.1) to the cut condition and inserting appropriate momentum-dependent

numerator factors. Denoting by Da,b,c,d,e,f the denominator of the products of scalar prop-

agators corresponding to the graphs in figure 4, they are

Ia=

∫

d2l1d
2l2

(2π)4
1

Da
Id=

∫

d2l1d
2l2

(2π)4
1

Dd
(4.2)

Ib=

∫

d2l1d
2l2

(2π)4
nb
Db

Ic=

∫

d2l1d
2l2

(2π)4
nc
Dc

Ie=

∫

d2l1d
2l2

(2π)4
ne
De

If =

∫

d2l1d
2l2

(2π)4
nf
Df

(4.3)

Ig=

∫

d2l1d
2l2

(2π)4
ng
Db

Ih=

∫

d2l1d
2l2

(2π)4
nh
Dc

Ik=

∫

d2l1d
2l2

(2π)4
nk
De

Il=

∫

d2l1d
2l2

(2π)4
nl
Df

, (4.4)

where

nb = nc =
l1 + l2
p2 − p1

, ne = nf =
l1 + l2
p2 + p1

, (4.5)

ng = nh = 1− l1 + l2
p2 − p1

, nk = nl = 1− l1 + l2
p2 + p1

. (4.6)
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The s-channel two-particle cut of the integrals Ib and Ic receives contributions only from

u-channel one-loop sub-integrals, the u-channel two-particle cut of the integrals Ie and If
receives contributions only from s-channel one-loop sub-integrals while the two-particle

cuts of the remaining integrals receive contributions only from the t-channel one-loop

sub-integrals.

In terms of the ten scalar and tensor integrals Ia, . . . , Il, the ansatz for the logarithmic

terms of the two-loop S matrix is

iT (2)
b =

1

4
CaIa +

1

4
CdId +

1

2
CbIb +

1

2
CcIc +

1

2
CeIe +

1

2
CfIf

+
1

2
CgIg +

1

2
ChIh +

1

2
CkIk +

1

2
ClIl + extra rational terms ; (4.7)

using the explicit expressions for the integrals listed in appendix E it is not difficult to see

that iT (2)
b may be written as

iT (2)
b =

1

8π2J2
ln2
(

p2−
p1−

)

(−2Ca + Cb + Cc − 2Cd + Ce + Cf ) (4.8)

+
i

2π
ln

(

p2−
p1−

)

[

1

2J2
(2Ca − Cb − Cc)−

i
(

1− ν2
)3/2

16πJ
(Cg + Ch − Ck − Cl)

]

+
1

4J2
Ca +

(

1− ν2
)

ω1ω2 − p1p2 − 1

16J2
(Cb + Cc − Ce − Cf )

− 1

4J

(

i
(

1− ν2
)3/2

4π

)

(Cg + Ch)

+ extra rational terms .

The ten coefficients Ca, . . . , Cl are determined by single two-particle cuts in terms of tree-

level amplitudes and one-loop integral coefficients Cs, Cu and Ct. Each solution to the

cut condition determines exactly one coefficient. The first six coefficients have the same

expression as the coefficients with the same name in ref. [24],

(Ca)
CD
AB = (i)2J

∑

G,H

(

iT (0)
)CD

GH
(Cs)

GH
AB = (i)2Js

∑

G,H

(Cs)
CD
GH

(

iT (0)
)GH

AB

(Cb)
CD
AB = (i)2J

∑

G,H

(

iT (0)
)CD

GH
(Cu)

GH
AB

(Cc)
CD
AB = (i)2J

∑

G,H

(Cu)
CD
GH

(

iT (0)
)GH

AB

(Cd)
CD
AB = (i)2J

∑

G,H

(−)([B]+[H])([D]+[H])
(

iT (0)
)CH

GB
(Cu)

GD
AH

= (i)2J
∑

G,H

(−)([B]+[H])([D]+[H])(Cu)
CH
GB

(

iT (0)
)

GD
AH

(Ce)
CD
AB = (i)2J

∑

G,H

(−)([B]+[H])([D]+[H])
(

iT (0)
)

CH
GB (Cs)

GD
AH

(Cf )
CD
AB = (i)2J

∑

G,H

(−)([B]+[H])([D]+[H])(Cs)
CH
GB

(

iT (0)
)

GD
AH , (4.9)
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while Cg, Ch, Ck and Cl are given by

Cg = (i)2J
∑

G,H

(

iT (0)
)CD

GH
(Ct)

GH
AB , Ch = (i)2J

∑

G,H

(Ct)
CD
GH

(

iT (0)
)GH

AB
, (4.10)

Ck = (i)2J
∑

G,H

(−)([B]+[H])([D]+[H])
(

iT (0)
)CH

GB
(Ct)

GD
AH

Cl = (i)2J
∑

G,H

(−)([B]+[H])([D]+[H])(Ct)
CH
GB

(

iT (0)
)

GD
AH .

Since the coefficient of the one-loop logarithms depends only on the differences (Cs−Cu)

(cf. eq. (3.1)), the coefficient of the two-loop double-logarithm should have a similar prop-

erty. As discussed in the previous section, this difference has two parts; one proportional

to the identity operator and one proportional to the tree-level S matrix. It is not difficult

to check that the part proportional to the identity operator cancels out in the two-loop S

matrix; the remaining bilinear in tree-level S-matrix elements can again be organized in

terms of the difference (Cs − Cu). Upon using the identity

(

4
∑

E=1

(

ǫAE − ǫCE
)

)

1 =0 (4.11)

the coefficient of the double-logarithm becomes proportional to the tree-level S matrix, and

may be suggestively organized as

(

iT (2)
b

)CD

AB
=

1

2!

(

W (0)

2π

)2( 4
∑

E=1

(

ǫAE−ǫCE
)

)2

ln2
(

p2−
p1−

)

(

iT (0)
)

+ single log + rational .

(4.12)

To find the coefficient of the simple logarithms we first recall [24] that, on general

grounds related to the consistency of single and double two-particle cuts of two-loop S-

matrix elements, the contribution of terms proportional to the identity operator in the

one-loop S matrix vanishes. Using eq. (4.11) we find that, up to rational terms, the two-

loop S matrix is given by

iT (2)
b = − 1

2!

(

W (0)

2π

)2( 4
∑

E=1

(

ǫAE − ǫCE
)

)2

ln2
(

p2−
p1−

)

(

iT (0)
)

+
W (0)

2π

(

4
∑

E=1

(

ǫAE − ǫCE
)

)

ln

(

p2−
p1−

)

(

iT (1)
b

)

(4.13)

− i

2π

(

H(0)K(0) + C(0)F (0)
)

(

iT (0)
)

ln

(

p2−
p1−

)

+ rational .

As in the case of the one-loop S matrix, this expression is not immediately consistent

with the implications of symmetries and integrability (1.2). Using however the one-loop

corrected asymptotic states, all offending terms cancel out and we find

iT (2) = − i

2π

(

H(0)K(0) + C(0)F (0)
)

ln

(

p2−
p1−

)

(

iT (0)
)

+ rational. (4.14)
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(a) (b) (c)

p2

p1 p1

p2

l2

l1

p2

p1 p1

p2

l1

l2
p2

p1 p1

p2

l2

l1

Figure 5. Two-loop integrals which should provide the missing two-loop rational terms in four-

point amplitudes.

This is indeed the expected structure of the two-loop S matrix. Thus, the exponentiation

of the one-loop redefinition of the asymptotic states (3.12), (3.13) does not receive further

two-loop corrections. It is natural to conjecture that the same holds at higher loops as

well; it would, of course, be interesting to verify whether this is indeed the case.

4.2 Comments on rational terms

The combination of two-loop integrals (4.7) giving the correct single and double-logarithms

also contains some rational terms originating from the rational terms in the expressions of

the two-loop integrals (E.4). By construction however, these terms do not account for all

the possible two-particle cuts of the two-loop S matrix, in particular the cuts in which there

is no net momentum flow across it, which are analogous to the one-loop t-channel cut; the

potentially missing relevant integral topologies are shown in figure 5. As in that case, one

can convince oneself that all integrals based on these graphs are momentum independent

(and thus their cuts are to be understood in a formal sense) and consequently they can

contribute only rational terms to the two-loop S matrix. A further source of rational terms

are the quantum corrections to the off-shell two-point function and additional integrals

that have only t-channel two-particle cuts.

The first corrections to the two-point function of fields arise from Feynman graphs of

topology8,9 shown in figure 6 and change the residue of the propagator at the physical

pole; this must be accounted for in the definition of the S matrix. Since the first correction

to the dispersion relation arises at two-loop order, the additional terms in the two-loop S

matrix are necessarily proportional to the tree-level S matrix.

In the following we will not determine all rational terms; rather, we will point out

specific features which appear to suggest how they can be found through generalized uni-

tarity. We begin by pointing out an interesting property of the calculation of the two-loop

S matrix [33] in the near-flat space limit [34] of AdS5×S5. In this limit all integrals with

8In principle there are also graphs containing tadpoles, but they should cancel out and the final contri-

bution arises effectively only from the topology in figure 6.
9The fact that the first correction appears at two-loop level follows from the absence of cubic vertices in

the gauge-fixed Lagrangian. In theories where such cubic vertices are present the first correction appears

already at one loop, see e.g. [25].
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p
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Figure 6. Sunset diagrams are responsible for corrections to the two-point function and affect the

two-loop S matrix

the topology in figure 5(a) have vanishing coefficients, while the integrals with the topology

in figures 5(b) and 5(c) exactly cancel the quantum corrections to the external states. We

will attempt to show that a similar pattern may be realized in general; we will also see that

for this to happen it is necessary that the integral representation of the two-loop S matrix

contains integrals that do not have two-particle cuts.

Since, as mentioned earlier, the two-loop corrections to the two-point function con-

tribute to the two-loop S matrix terms proportional to the tree-level S matrix, to check the

fate of these terms we shall focus on the integral coefficients corresponding to the topologies

shown in figure 5 which are also proportional to the tree-level S matrix. There are six com-

binations of tree-level S-matrix elements and one-loop integral coefficients which can appear

in two-particle cuts (and thus determine these integrals’ coefficients) and have this property:

(Xa)
CD
AB = (i)2

∑

E,F

(−)[E]([E]+[A]) lim
p2→p1

(

J(Cu)
EC
AF

) (

iT (0)
)

FD
EB

(Xb)
CD
AB = (i)2

∑

E,F

(−)[F ]([B]+[F ])
(

iT (0)
)CE

AF
lim

p1→p2

(

J(Ct)
DF
EB

)

(4.15)

(Xc)
CD
AB = (i)2

∑

E,F

(−)[E]([E]+[A]) lim
p2→p1

(

J(Ct)
EC
AF

) (

iT (0)
)

FD
EB

(Xd)
CD
AB = (i)2

∑

E,F

(−)[F ]([B]+[F ])
(

iT (0)
)CE

AF
lim

p1→p2

(

J(Cu)
DF
EB

)

(Xe)
CD
AB = (i)2

∑

E,F

(−)[F ]([B]+[F ])
(

iT (0)
)CE

AF
lim

p1→p2

(

J(Cs)
DF
EB

)

(Xf )
CD
AB = (i)2

∑

E,F

(−)[E]([E]+[A]) lim
p2→p1

(

J(Cs)
EC
AF

) (

iT (0)
)

FD
EB .

It is not difficult to identify these combinations as contributions to two-particle cuts from

a single solution to the cut condition. The other solutions contribute terms proportional to

the identity matrix and, while important for the complete S matrix (in particular for the

determination of the complete two-loop dressing phase) will ignored in the following. The

numerator factors which can be used to dress the graphs in figure 5 and select the desired

solution to the two-particle cut condition such that the resulting integrals have Xa,...,f as
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coefficients are:

nRa =

(

1− l2−
p2−

)(

1 +
l2−
p2−

)

nRb =

(

1− l1− + l2−
p1− + p2−

)(

1 +
l1− + l2−
p1− − p2−

)(

1− l1− + l2−
2p2−

)

nRc =

(

1− l1− + l2−
p1− + p2−

)(

1− l1− + l2−
p1− − p2−

)(

1− l1− + l2−
2p1−

)

(4.16)

nRd =

(

1− l1−
p1−

)(

1 +
l1−
p1−

)

nRe =

(

1− l1− + l2−
p1− + p2−

)(

1 +
l1− + l2−
p1− − p2−

)

l1− + l2−
2p2−

nRf =

(

1− l1− + l2−
p1− + p2−

)(

1− l1− + l2−
p1− − p2−

)

l1− + l2−
2p1−

.

Then, denoting as before by DR
a,b,c the denominators of scalar propagators associated to

the graphs in figure 5, the integrals whose coefficients are given by eqs. (4.15) are:10

Ra =

∫

d2l1d
2l2

(2π)4
nRa
DR

a

Rb =

∫

d2l1d
2l2

(2π)4
nRb
DR

b

Rc =

∫

d2l1d
2l2

(2π)4
nRc
DR

c

(4.17)

Rd =

∫

d2l1d
2l2

(2π)4
nRd
DR

a

Re =

∫

d2l1d
2l2

(2π)4
nRe
DR

b

Rf =

∫

d2l1d
2l2

(2π)4
nRf
DR

c

.

We choose to use light-like directions in the numerator factors only for convenience, the

resulting integrals having been already computed in [33]; a different choice would lead

to different values for the integrals. It is not surprising that different numerator factors

are possible: indeed, by expressing all loop momenta in terms of external momenta in

two dimensions, cuts cannot determine unambiguously the tensor structure of an integral.

Interestingly, the coefficientsXa,...,f are such that when the component of the loop momenta

used to construct the numerator is changed, the extra terms in the two-loop S matrix are

proportional to the scalar sunset integral, see figure 6.

To compute the corrections to external states the off-shell two-point function is nec-

essary, because the residue of the corrected propagator contains the derivative of the two-

point function with respect to the worldsheet energy. We shall assume that this derivative

is entirely given by the derivative of the integral. With this assumption we shall construct

the two-point function by sewing two legs of the one-loop S matrix. There are four possible

index contractions:

(Xg)
C
A=

∑

E

(−)[E]([C]+[E]) lim
p2→p1

(

J(Cs)
EC
AE

)

, (Xh)
C
A =

∑

E

(−)[E]([C]+[E]) lim
p2→p1

(

J(Cu)
EC
AE

)

,

(Xk)
D
B =

∑

E

(−)[F ]([B]+[F ]) lim
p1→p2

(

J(Cs)
DF
FB

)

, (Xl)
D
B =

∑

E

(−)[F ]([B]+[F ]) lim
p1→p2

(

J(Cu)
DF
FB

)

,

(4.18)

10The reader may notice that the systematic for generalizing the one-loop cuts to two-loop cuts seems

to have been flipped around for the t-channel. This is indeed the case as a careful analysis along the lines

of [23] will show.
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which are the direct two-loop generalizations of the one-loop contractions

∑

E

(−)[E]([C]+[E]) lim
p2→p1

(

J
(

iT (0)
)EC

AE

)

,
∑

E

(−)[F ]([B]+[F ]) lim
p1→p2

(

J
(

iT (0)
)DF

FB

)

, (4.19)

which indicate the absence of external line tadpoles in the one-loop S matrix.

The contractions Xg,...,l are coefficients of integrals with the topology given in figure 6

whose one-particle cuts localize on a single solution of the cut condition. Denoting by Dg

and Dh the denominators of the product of scalar propagators corresponding to the graph

figure 6 with external momentum p1 and p2, respectively, the numerator factors nRg,h,k,l
that lead to the desired localization are

nRg =
1

2

(

1− l

p1

)

, nRh =
1

2

(

1+
l

p1

)

, nRk =
1

2

(

1− l

p2

)

, nRl =
1

2

(

1+
l

p2

)

, (4.20)

and lead to the integrals

Rg,h =

∫

d2l1d
2l2

(2π)4
nRg,h
DR

g

, Rk,l =

∫

d2l1d
2l2

(2π)4
nRk,l

DR
k

. (4.21)

It turns out that the result also depends on the scalar sunset integral; we shall denote this

integral by

R0 =

∫

d2l1d
2l2

(2π)4
1

DR
g

. (4.22)

Putting all this together the several contributions, we get that the additional rational

terms proportional to the tree-level S matrix not already present in (4.8) can be written as

δ(iTb)∝T (0)
=

1

4
XaRa +

1

2
XbRb +

1

2
XcRc +

1

4
XdRd +

1

2
XeRe +

1

2
XfRf (4.23)

+

(

1

6
XgR

′
g +

1

6
XhR

′
h +

1

6
XkR

′
k +

1

6
XlR

′
l

)

(

iT (0)
)

(4.24)

where the primes indicate derivative with respect to the time-like component of the external

momentum.

It is straightforward to calculate all the integral coefficients. We find that Xa = 0 = Xd

impliying that, similarly with the near-flat space calculation [33], the two-point function

depends only on integrals of wineglass topology. As some of the non-zero coefficients are

equal the results can be written in terms of integrals simpler than the integrals in the basis,

the useful combinations are collected in appendix E. The result can be written as:

δ(iTb)∝T (0)
=
(

iT (0)
)

f(p1, p2)R0 . (4.25)

We have not explicitly written out the function f(p1, p2) because it can be changed by

changing the momentum components used in the numerators in (4.16). We notice that the

remaining term is proportional to the integral R0 which is associated with topologies of

the type shown in figure 7. Even though R0 is constant, this is not a vacuous statement:

while we have not determined the f(p1, p2) the fact that the S matrix can in principle be

computed using Feynman rules implies that this function should not contain factors of π.

– 19 –



J
H
E
P
0
3
(
2
0
1
5
)
1
6
8

Figure 7. The graph with no two-particle cuts that is expected to appear in the two-loop S matrix

to restore the factorization of the three-particle cut required by tree-level integrablity.

One may remove such a contribution by adding to the ansatz (4.23) further terms based

on the integral in figure 7. Adding such terms may also be used to repair e.g. a potential

lack of factorization of the three-particle cuts of the ansatz in (4.7).

In addition to the potential cancellation described above, which mirrors the pattens of

the undeformed near-flat space calculation, it is useful to also note the different dependence

on the Jacobian factor J of the integrals in figures 5 and 6 and figure 4. The fact that the

former integrals depend on a single external momentum implies that, unlike the latter inte-

grals, their expression cannot contain any factors of J . This suggests that integrals having

two-particle t-channel cuts contribute to parts of the two-loop S matrix that are distinct

from those that receive contributions from integrals having s- and u-channel cuts.11 In turn

this observation implies that the rational part of the one-loop dressing phase (contributing

to the two-loop S matrix multiplied by the tree-level S matrix, cf. eq. (1.2)) should be

present in the terms written explicitly in equation (4.8). This is in fact the case: the last

line of that equation is

− i
(

1−ν2
)3/2

16πJ
(Cg + Ch) =

i

2π

√

1−ν2
(

ω2
1−1

) (

ω2
2−1

)

ω2p1−p2ω1

(

iT (0)
)

=
i
(

1−ν2
)3/2

8π
Ct

(

iT (0)
)

,

(4.26)

which indeed reproduces the contribution of the rational part of the one-loop dressing

phase to the two-loop S matrix, cf. eq. (1.2) and the discussion in section 3.3, eqs. (3.14)

and (3.15).

5 Discussion

In this paper we discussed in detail string theory in η-deformed AdS5×S5 and we have

seen that, for the perturbative worldsheet S matrix to be consistent with integrability and

the expected PSUq(2|2)2 of the gauge-fixed theory the naive tree-level two-particle asymp-

totic states (and more generally all multi-particle asymptotic states) must be redefined

non-locally. We have checked that the exponentiation of the redefinition required by the

one-loop S matrix renders consistent the two-loop S matrix as well suggesting that this

exponentiation may be exact to all loop orders. It would of course be interesting to check

whether this is indeed the case.

The necessity for such a redefinition, which does not parallel the undeformed theory, is

related to the presence of the deformation and in particular to the fact that the worldsheet

11This statement ignores potential J factors that may exist in the integral coefficients.
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theory contains a nontrivial bosonic Wess-Zumino term. Since the worldsheet symmetry

generators have a nontrivial expansion around the BMN vacuum, it is possible that the

redefinition we identified is necessary for the two-particle state to be a representation of

the PSU(2|2)q symmetry of the gauge-fixed theory at the quantum level. It would be

interesting to explore the properties that a nontrivial NS-NS background should have for

such a redefinition to be necessary.

We have also identified a set of two-loop scalar and tensor integrals that capture all the

logarithmic terms in the two-loop S matrix. By evaluating the integrals we have observed

that the same expression also captures correctly some rational terms, in particular the

rational terms corresponding to the contribution of the one-loop dressing phase to the

two-loop S matrix. Other such terms however are not; attempting to understand them

we pointed out that a certain cancellation pattern between external line corrections and

t-channel integrals can occur provided that one allows for the presence of integrals that

have only three-particle cuts. It goes without saying that a complete understanding of the

rational terms of the two- and higher-loop S matrix remains an important open problem.

Ideally, one would expect that, to any loop order, it should be possible to write an

integral representation for the S matrix of the form

iT (L) =
∑

j

1

S
(L)
j

C
(L)
j I

(L)
j , (5.1)

where I
(L)
j are integrals with only four-point vertices, C

(L)
j are cuts written entirely in terms

of the four-point tree-level S matrix and S
(L)
j are symmetry factors of the corresponding

integrals. There is a certain amount of freedom in choosing the integrals I
(L)
j and not all

choices need to be consistent with integrability, in particular the fact that cuts isolating tree-

level higher-point amplitudes are factorized. Thus, apart from the integrals listed above,

tree-level integrability may require inclusion of integrals with higher-point vertices as well.

With the appropriate definition of propagators, the integrals identified here can be used

to construct the massive S matrix in all AdSn×Sn×M10−2n spaces and, presumably, in all

two-dimensional integrable theories. For n < 5 however an important issue that awaits

a satisfactory resolution is the contribution of massless modes. It has been suggested

in [25] and verified explicitly in [32] through Feynman graph calculation that they do not

contribute to the S matrix at one-loop level. It would be interesting to understand the

reason behind this feature and whether their decoupling continues at higher loops as well.
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A Tree-level S-matrix coefficients

In this appendix we collect the tree-level expressions of the coefficients of the various tensor

structures parametrizing the S matrix, see eq. (2.15):

A(0)(p1, p2) =
1− 2a

4
(ω2p1 − p2ω1) +

1

4

(p1 − p2)
2 + ν2(ω1 − ω2)

2

ω2p1 − p2ω1
,

B(0)(p1, p2) = −E(0)(p1, p2) =
p1p2 + ν2ω1ω2

ω2p1 − p2ω1
,

C(0)(p1, p2) = F (0)(p1, p2) =
1

2

√

(p1 − iν)(p1 + iνω1)(p2 − iν)(p2 + iνω2)

ω2p1 − p2ω1

(1 + ω1)(p2 + iν)− (1 + ω2)(p1 + iν)
√

(1− ν2) (1 + ω1)(1 + ω2)
,

D(0)(p1, p2) =
1− 2a

4
(ω2p1 − p2ω1)−

1

4

(p1 − p2)
2 + ν2(ω1 − ω2)

2

ω2p1 − p2ω1
,

G(0)(p1, p2) = −L(0)(p2, p1) =
1− 2a

4
(ω2p1 − p2ω1)−

1

4

ω2
1 − ω2

2

ω2p1 − p2ω1
, (A.1)

H(0)(p1, p2) = K(0)(p1, p2) =
1

2

√

(p1 − iν)(p1 + iνω1)(p2 − iν)(p2 + iνω2)

ω2p1 − p2ω1
(

1− ν2
)

(1 + ω1)(1 + ω2)− (p1 + iν)(p2 + iν)

(1− ν2)
√

(1 + ω1)(1 + ω2)
,

W
(0)
B (p1, p2) =W

(0)
E (p1, p2) = iν ,

V
(0)
B (p1, p2) = V

(0)
E (p1, p2) = 0 ,

Q
(0)
C (p1, p2) = Q

(0)
F (p1, p2) = 0 ,

R
(0)
C (p1, p2) = R

(0)
F (p1, p2) = 0 .

B Dispersion relation, propagator and Jacobian

The deformation changes the dispersion relation which in turn affects our calculations in

numerous different ways. In this appendix we include some of the affected quantities as well

as some useful identities. The dispersion relation to leading order in the large g expansion is:

ω =

√

1 + p2

1− ν2
. (B.1)

From this it is not hard to show that

(p+ iν)(p− iν) =
(

1− ν2
) (

ω2 − 1
)

, (B.2)

(p+ iνω)(p− iνω) =
(

ω2 − 1
)

, (B.3)

which are helpful for rewriting some of the off-diagonal S-matrix elements.

One of the quantities that appears often in generalized unitarity calculations comes

from the normalization of wave-functions and from the Jacobian that arises when solv-

ing the energy-momentum conserving delta function in terms of constraints on space-like

momenta. This quantity is modified by the deformation as follows:

1

4ω1ω2
δ2(~p1+~p2−~p3−~p4) =

1− ν2

4(ω2p1−ω1p2)
[δ(p1−p3)δ(p2−p4)+δ(p1−p4)δ(p2−p3)] . (B.4)
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We shall denote the overall factor on the right-hand side by J :

J =
4(ω2p1 − ω1p2)

1− ν2
. (B.5)

The ν-dependence of the dispersion relation (B.1) implies that the propagators are

changed into:

∆(ω, q) =
1

ω2 − q2/ (1− ν2)− 1/ (1− ν2)
, (B.6)

and consequently the integrals also need to be modified compared to the ν = 0 case. The

simplest way to see how the deformation affects them is to rescale the space-like momenta

and thus obtain a two-dimensional Lorentz invariant propagator with mass

m =
1√

1− ν2
. (B.7)

All integrals have therefore the same form as in the un-deformed theory up to rescaling of

the space-like momentum. For convenience we define

p− = ω − p√
1− ν2

. (B.8)

C The difference of s- and u-channel one-loop integral coefficients

In this appendix we collect the differences of the matrix elements of the Cs and Cu one-loop

integral coefficients.

(Cs)
cd
ab

J
− (Cu)

cd
ab

J
=δcaδ

d
b

(

(

B(0)
)2
+2C(0)F (0)−

(

W (0)
)2
)

−δdaδcb
(

2C(0)F (0)+2
(

B(0)
)2

(C.1)

−2H(0)K(0) − 2
(

W (0)
)2

+
(

W (0)
)2
ǫab
(

ǫab + ǫdc
)

+B(0)W (0)
(

ǫab + ǫdc
)

)

,

(Cs)
γδ
αβ

J
−
(Cu)

γδ
αβ

J
= δγαδ

δ
β

(

(

E(0)
)

2 + 2C(0)F (0)−
(

W (0)
)2
)

−δδαδγβ
(

2C(0)F (0)+2
(

E(0)
)2

(C.2)

−2H(0)K(0)−2
(

W (0)
)2
+
(

W (0)
)2
ǫαβ
(

ǫαβ+ǫ
δγ
)

+E(0)W (0)
(

ǫαβ+ǫ
δγ
)

)

,

(Cs)
cδ
aβ

J
−
(Cu)

cδ
aβ

J
=δcaδ

δ
β

(

H(0)K(0) + C(0)F (0)
)

, (C.3)

(Cs)
γd
αb

J
− (Cu)

γd
αb

J
=δγαδ

d
b

(

H(0)K(0) + C(0)F (0)
)

, (C.4)

(Cs)
γd
aβ

J
−
(Cu)

γd
aβ

J
=δdaδ

γ
βH

(0)
(

G(0) + L(0) −A(0) −D(0) − 2B(0) − 2E(0)

−W (0)(ǫa1 + ǫa2 + ǫ3β + ǫ4β)
)

, (C.5)

(Cs)
cδ
αb

J
− (Cu)

cδ
αb

J
=δδαδ

c
bK

(0)
(

G(0) + L(0) −A(0) −D(0) − 2B(0) − 2E(0)

−W (0)(ǫα3 + ǫα4 + ǫ1b + ǫ2b)
)

, (C.6)

(Cs)
γδ
ab

J
− (Cu)

γδ
ab

J
=ǫabǫ

γδC(0)
(

A(0)+D(0)−B(0)−E(0)−G(0)−L(0)−W (0)
(

ǫab+ǫ
δγ
)

)

(C.7)

(Cs)
γδ
ab

J
− (Cu)

γδ
ab

J
=ǫabǫ

γδF (0)
(

A(0)+D(0)−B(0)−E(0)−G(0)−L(0)−W (0)
(

ǫab+ǫ
δγ
)

)

. (C.8)
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D One-loop S-matrix coefficients

In this appendix we collect the one-loop expressions of the coefficients parametrizing the S

matrix, see eq. (2.15), in terms of their tree-level values.

iA(1) =
−i
2π

(

H(0)K(0) + C(0)F (0)
)

ln

(

p2−
p1−

)

+
i
√
1− ν2

2π

(

ω2
1 − 1

) (

ω2
2 − 1

)

ω2p1 − p2ω1

− 1

2

[

(

A(0)
)2

+H(0)K(0) + C(0)F (0)
]

, (D.1)

iB(1) = −
[

A(0)B(0) − C(0)F (0) +
1

2

(

W (0)
)2
]

, (D.2)

iW
(1)
B = −A(0)W

(0)
B , (D.3)

iV
(1)
B =

1

2

(

W
(0)
B

)2
, (D.4)

iD(1) =
−i
2π

(

H(0)K(0) + C(0)F (0)
)

ln

(

p2−
p1−

)

+
i
√
1− ν2

2π

(

ω2
1 − 1

) (

ω2
2 − 1

)

ω2p1 − p2ω1

− 1

2

[

(

D(0)
)2

+H(0)K(0) + C(0)F (0)
]

, (D.5)

iE(1) = −
[

D(0)E(0) − C(0)F (0) +
1

2

(

W (0)
)2
]

, (D.6)

iW
(1)
E = −D(0)W

(0)
E , (D.7)

iV
(1)
E =

1

2

(

W
(0)
E

)2
, (D.8)

iG(1) =
−i
2π

(

H(0)K(0) + C(0)F (0)
)

ln

(

p2−
p1−

)

+
i
√
1− ν2

2π

(

ω2
1 − 1

) (

ω2
2 − 1

)

ω2p1 − p2ω1

− 1

2

[

(

G(0)
)2

+H(0)K(0)
]

, (D.9)

iL(1) =
−i
2π

(

H(0)K(0) + C(0)F (0)
)

ln

(

p2−
p1−

)

+
i
√
1− ν2

2π

(

ω2
1 − 1

) (

ω2
2 − 1

)

ω2p1 − p2ω1

− 1

2

[

(

L(0)
)2

+H(0)K(0)
]

, (D.10)

iC(1) = −1

2
C(0)

[

A(0) +D(0) −B(0) − E(0)
]

, (D.11)

iQ
(1)
C = −1

4
C(0)

[

W
(0)
B +W

(0)
E

]

, (D.12)

iR
(1)
C = 0 , (D.13)

iF (1) = −1

2
F (0)

[

A(0) +D(0) −B(0) − E(0)
]

, (D.14)

iQ
(1)
F = −1

4
F (0)

[

W
(0)
B +W

(0)
E

]

, (D.15)

iR
(1)
F = 0 , (D.16)

iH(1) = −1

2
H(0)

[

G(0) + L(0)
]

, (D.17)

iK(1) = −1

2
K(0)

[

G(0) + L(0)
]

. (D.18)
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E One- and two-loop integrals

In terms of the p− momentum defined in appendix B, p− = ω − p√
1−ν2

, the s-, u- and

t-channel one-loop integrals are given by

Is =
1

J

(

− i

π
ln

(

p2−
p1−

)

− 1

)

, (E.1)

Iu =
1

J

(

+
i

π
ln

(

p2−
p1−

)

+ 0

)

, (E.2)

It =
i
(

1− ν2
)3/2

4π
. (E.3)

The ten two-loop scalar tensor integrals may be evaluated in terms of the explicit

two-loop integrals of [33] and are given by:

Ia =

(

1

J

(

− i

π
ln

(

p2−
p1−

)

− 1

))2

,

Id =

(

1

J

(

+
i

π
ln

(

p2−
p1−

)

+ 0

))2

,

Ib = −1

4

(

1

J2

(

− i

π
ln

(

p2−
p1−

)

− 1

)2

−
(

1− ν2
)3

32
(

(1− ν2)ω1ω2 − p1p2 − 1
)

)

,

Ic = −1

4

(

1

J2

(

− i

π
ln

(

p2−
p1−

)

− 1

)2

−
(

1− ν2
)3

32
(

(1− ν2)ω1ω2 − p1p2 − 1
)

)

,

Ie = −1

4

(

1

J2

(

+
i

π
ln

(

p2−
p1−

)

+ 0

)2

+

(

1− ν2
)3

32
(

(1− ν2)ω1ω2 − p1p2 + 1
)

)

, (E.4)

If = −1

4

(

1

J2

(

+
i

π
ln

(

p2−
p1−

)

+ 0

)2

+

(

1− ν2
)3

32
(

(1− ν2)ω1ω2 − p1p2 + 1
)

)

,

Ig =
1

2

(

i
(

1− ν2
)3/2

4π

)

1

J

(

− i

π
ln

(

p2−
p1−

)

− 1

)

,

Ih =
1

2

(

i
(

1− ν2
)3/2

4π

)

1

J

(

− i

π
ln

(

p2−
p1−

)

− 1

)

,

Ik =
1

2

(

i
(

1− ν2
)3/2

4π

)

1

J

(

+
i

π
ln

(

p2−
p1−

)

+ 0

)

,

Il =
1

2

(

i
(

1− ν2
)3/2

4π

)

1

J

(

+
i

π
ln

(

p2−
p1−

)

+ 0

)

.
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For the calculations used in subsection 4.2 we will furthermore need the following

integrals:

Ra =

(

i
(

1− ν2
)

4π

)2

,

Rb +Re =

(

1− ν2

8

)2(
1

12
− 1

π2

)

+
1

3

(

1− ν2

8

)2 p22−
p21− − p22−

,

Rc +Rf =

(

1− ν2

8

)2(
1

12
− 1

π2

)

+
1

3

(

1− ν2

8

)2 p21−
p21− − p22−

,

Rd =

(

i
(

1− ν2
)

4π

)2

, (E.5)

R′
g +R′

h = 3

(

1− ν2

8

)2(
1

π2
− 1

12

)

,

R′
k +R′

l = 3

(

1− ν2

8

)2(
1

π2
− 1

12

)

,

R0 =
1− ν2

64
.
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