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1 Introduction

It is interesting and important to study the dynamics of instabilities in string theory.

While this general question is too broad in its scope, the question of tachyonic instabilities

in configurations of D-branes in string theory [1] is more specific and tractable [2–8]. In par-

ticular, using light-cone coordinates and putting the open strings in a dilaton background,

which is linear along a null direction, the authors of ref. [3] studied the homogeneous1

decay process in the effective field theory of the tachyon and extended this to a complete

set of equations of motion of the open string field theory. If we consider inhomogeneous

decay in this framework in which the tachyon field depends on the (light-cone) time and

one other (spatial) coordinate along the brane, the equation of motion of the tachyon turns

out to resemble a reaction-diffusion type equation that was pioneered in refs. [9–11] and

appeared ubiquitously since. There are some additional elements, however. Specifically,

the non-linear reaction term of what we call the Fisher equation for the tachyon on a de-

caying brane, eq. (2.1), involves a time delay and spatial averaging with a Gaussian kernel,

hence it is non-local [8]. Even though non-locality in reaction-diffusion systems has been

considered in the literature, in Mathematical Biology for instance (see [12–14] for example),

the combination of delay and (the specific form of) non-local interactions that are inherent

in open string field theory is quite characteristic. It also makes the resulting equations

more interesting and difficult to analyze.

As is the case for these type of equations, the Fisher equation for the tachyon also

admits a travelling front solution. This front, which can be found using a singular pertur-

bation analysis [15–17], separates the brane from the (closed string) vacuum, while moving

with a constant speed that is attained asymptotically. We have also extended the traveling

1Following standard terminology, by homogeneous decay we mean the dynamical evolution of the tachyon

dependent on (light-cone) time only.
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front to a solution of the equations of motion of open string field theory to the first non-

trivial order [18]. In terms of the boundary conformal field theory on the worldsheet of

the string, which provides the background for the open string field theory, this corresponds

to a deformation by a marginal operator which remains marginal when the first stringy

corrections are included. The disc one-point functions of the closed string tachyon and

graviton vertex operators, in the presence of this marginal deformation, were also studied

in ref. [18].

It is worth noting that the inhomogeneous decay described by the travelling front is

closer to a natural decay process. One would expect tachyon condensation to start, perhaps

due to a fluctuation, in a small region of space. This nucleus, just like the condensation of

a droplet in a supercooled gas, would grow in size. In one dimension this would give rise to

two fronts travelling in opposite directions. In higher dimensions, the Laplacian ∇2 would

appear in place of ∂2x in eq. (2.1) and the resulting equation is not quite a Fisher-type

equation. However, for spherically symmetric decay, ∇2
d = ∂2

∂r2
+ d−1

r
∂
∂r is approximated

by ∂2

∂r2
for large r, leading to a Fisher-type equation in the asymptotic limit.

In this paper, we shall consider the stability of the traveling front. This analysis will be

in the context of the effective field theory of the tachyon. We shall study the behaviour of

small fluctuations around the front solution using linearized perturbation theory and argue

that it is stable. We do, however, find a potential instability around the stable vacuum,

reminiscent of the oscillations in ref. [2]. This does not destabilize the front solution,

obtained using a singular perturbation method starting with the solution corresponding to

the homogeneous decay.

2 Tachyon Fisher equation and the travelling front

We recall that the dynamics of the open string modes are given by the cubic open string

field theory. In a given background, the string field can be expanded in terms of the states

in the Hilbert space of the underlying boundary conformal field theory on the worldsheet

with coefficients that are the ‘wavefunctions’. The leading contribution is the tachyon field

φ(xµ) on the unstable brane. This is a Klein-Gordon equation with negative mass-square

augmented by non-local cubic self-interactions. The solutions of this equations are untamed

oscillations [2] which may be attributed to the fact that the energy in the D-brane cannot

be dissipated to the closed string modes in the absence of any coupling between the open

and closed string modes.

A simple and elegant approach to this problem that avoids the complexities of an

open-closed string field theory was proposed in ref. [3] and explored further by us [8, 18].

The idea is to consider one of the light-cone coordinates (say x+) as time, and at the

same time consider a dilaton background that in linear along the other light-cone direction

x−. This changes the essential character of the dynamical equations, while retaining the

solvability of the underlying conformal field theory. In particular, the equation of motion

of the tachyonic scalar field is

b∂tφ− ∂2xφ−m2φ+K3e−2αb∂t+α∂
2
x

(
eα∂

2
xφ
)2

= 0, (2.1)

– 2 –
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where −m2 = −1 is the mass-square of the tachyon, b is the slope of the linear dilaton

and α = lnK = ln
(
3
√

3/4
)

is a number originating in the conformal maps that define the

string field theory. As mentioned above, t ≡ x+ denotes light-cone time, and for simplicity,

we have taken φ to depend only on one spatial coordinate x. This is a reaction-diffusion

equation with time delay and spatial non-locality. We refer to it as the Fisher equation for

the tachyon on a decaying brane.

Like all equations of this type, of which there are innumerable examples in the liter-

ature, the above admits travelling front solutions. To see this, let us change variables to

the comoving coordinate2 and time

ξ = x+ vt, τ = t,

in terms of which the equation reads as follows:

b
∂φ

∂τ
+ bv

∂φ

∂ξ
− ∂2φ

∂ξ2
− φ+K3e−2αb∂τ−2αbv∂ξ+α∂

2
ξ

(
eα∂

2
ξφ
)2

= 0. (2.2)

The travelling front does not have an explicit dependence on t and is a function ξ alone.

Therefore it satisfies

bv
∂Φv

∂ξ
− ∂2Φv

∂ξ2
− Φv +K3e−2αbv∂ξ+α∂

2
ξ

(
eα∂

2
ξΦv

)2
= 0. (2.3)

The nonlocalities in the equations above can alternatively be written using the Gaussian

kernel

eα∂
2
ξ f(ξ) =

1

2
√
απ

∫ ∞
−∞

dξ′ e−
1
4α

(ξ′−ξ)2 f(ξ′) ≡ Gα[f(ξ)], (2.4)

and the fact that e−a∂xf(x) = f(x − a), (for which e−a∂x (f(x)g(x)) = f(x − a)g(x − a)

holds):(
b
∂

∂τ
+ bv

∂

∂ξ
− ∂2

∂ξ2
− 1

)
φ(ξ, τ) +K3Gα

[
(Gα [φ(ξ − 2αbv, τ − 2αb)])2

]
= 0,

bv
∂Φv(ξ)

∂ξ
− ∂2Φv(ξ)

∂ξ2
− Φv(ξ) +K3Gα

[
(Gα [Φv(ξ − 2αbv)])2

]
= 0.

The travelling front solution to these equations [8] can be obtained in singular perturbation

theory.

2.1 Convergence and (in-)stability around the fixed points

The differential equation above for inhomogeneous decay to leading order is of order two.

However, as in the case of the homogenous decay studied in ref. [3], it has two fixed points,

and the travelling front interpolates between the unstable fixed point φU = 0 to the stable

one at φS = K−3 ' 0.456. It goes away from φU = 0 exponentially, the exponent being

determined by the negative mass-square of the tachyon. Around φS, however, due to the

2This corresponds to a front moving to the left. The front moving to the right is obviously also a solution.

– 3 –
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presence of the delay and non-locality, convergence is oscillatory. These can be deduced

from a linearized perturbation analysis around the fixed points.

First, consider the unstable fixed point φU = 0. We can ignore the non-linear term in

eq. (2.3) and substitute φ = eµξ. This gives

µ =
1

2

(
bv ±

√
b2v2 − 4

)
which gives the minimum speed of the front as bv = 2. The nonlocalities in the interaction

term does not affect this behaviour, thus it is the same as in the standard Fisher equation.

Indeed, this is true not only of the asymptotic speed, but also the way it is approached.

Given a profile φ(x, 0) at τ = 0, the solution to the equation linearized around φU = 0,

namely b∂τφ = ∂2xφ+ φ, is given by3

φ(x, τ) =

∫ ∞
−∞
dy φ(y, 0)

1√
4πτ/b

e
b
4τ

(
−(x−y)2+( 2τ

b )
2
)

∝ 1√
4πτ/b

e−
b
4τ
ξ2+ξ+O(y), (2.5)

where, we have rewritten the argument of the exponential in terms of the comoving coor-

dinate with the asymptotic velocity ξ = x + 2τ
b . (Note that the expression above is valid

for ξ & −∞, near the unstable fixed point.) Now let (ξφ0 , τ) be the coordinates at which

the tachyon profile has reached a specific constant value φ0. Solving the equation above

for ξφ0(τ), we obtain ξφ0(τ) ' 1
2 ln

(
τ
b

)
. Therefore, the asymptotic velocity is reached as

v(τ) = vasym − ξ̇φ0 ' 2
b −

1
2τ + O(τ−2). While this is indeed the qualitative nature of

the asymptotics, the coefficient of the 1/τ term is not quite correct. This is because a

derivative of the kernel of the diffusion equation also gives a solution, and in particular,

taking the correction from the first derivative into account, we find

φ(x, τ) ∝
(
x+

2τ

b

)
exp

[
− b

4τ

(
x+

2τ

b

)2

+

(
x+

2τ

b
+

3

2
ln
(τ
b

))]

v(τ) = vasym − ξ̇φ0 '
2

b
− 3

2τ
+ · · · (2.6)

We would like to reiterate that this analysis is exactly as in the case of the standard Fisher

equation (see, for example, the review [19]) and is not affected by the non-local interactions.

On the other hand, the linearized equation for ψ = φ − φS = φ − K−3 around the

stable fixed point differs from the standard case. The substitution ψ = eλξ in the linearized

equation leads to

bvλ− λ2 − 1 + 2e2αλ
2−2αbvλ = 0. (2.7)

This is a transcendental equation which does not have any real solution, however, it ad-

mits an infinite number of complex solutions,4 for example, the leading behaviour is deter-

3A transformation φ→ eτ/bφ brings it to the standard form of the diffusion equation.
4The corresponding equation for the homogeneous case, bλ − 1 + e−2αbλ = 0, is also a transcendental

equation [3, 8]. Its leading solutions are −0.249613 ± i 1.90371, however, −3.91104 ± i 14.4748, −5.03573 ±
i 26.7603, −5.73776 ± i 38.9404, etc., which also satisfy the equation, are some of the non-leading solutions.

– 4 –
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mined by

λ = −0.327933± i 0.716793 (2.8)

which differs slightly from the homogeneous case. (Some other solutions are −2.17775 ±
i 2.27752, −3.8092 ± i 4.04854, −4.42422 ± i 4.70868 etc.) The exponent (2.8) is also not

very different from the standard Fisher case, to which our equation reduces when α = 0:

(λ− 1)2 = 2, a solution of which is 1−
√

2 ' −0.4142.

One should note, however, 1 +
√

2 ' +2.4142 is also a solution of this quadratic

equation — the positive real part of λ suggests that this corresponds to moving away from

the stable fixed point φS. However, in the standard analysis [19], this positive exponent is

eliminated by fixing the asymptotic conditions at ξ → ±∞ determined by the front.

This potential instability is also present in the case of the tachyon. The equation for the

exponent in eq. (2.7) has a symmetry around λ = 1 (for bv = 2), and hence admits a solution

2.32793 ± i 0.716793 with a positive real part (and similarly for the other roots). The

singular perturbation analysis that starts with the solution of the homogeneous equation

as the seed, and thus fixes the asymptotic conditions at ξ → ±∞, is not affected by this

instability and yields a travelling front solution that converges. Nevertheless this instability

could potentially cause the inhomogeneously decaying tachyon to oscillate around φS with

increasing amplitude, the behaviour that was seen in the analysis of ref. [2]. In particular,

as in ref. [3], one may attempt to solve eq. (2.3) by converting it into a recursion relation:

an =
eα(n

2−4n+3)

(n− 1)2

n−1∑
m=1

(
ame

αm2
) (

an−me
α(n−m)2

)
(2.9)

for an in Φbv=2 =
∑
ane

nξ. The coefficients increase rapidly, resulting in a divergent series.

3 Perturbation of the non-local Fisher equation of the tachyon

In this section, we shall analyze small fluctuations around the travelling front. To this

end, let us separate the leading order front solution Φv, that depends only on ξ, from the

(small) perturbations around it

φ(ξ, τ) = Φv(ξ) + η(ξ, τ), |η|� |Φv|.

Thanks to eq. (2.3) satisfied by the leading order solution Φv (‘classical solution’), the

perturbations satisfy the linearized equation

b
∂η

∂τ
+ bv

∂η

∂ξ
− ∂2η

∂ξ2
− η + 2K3e−2αb∂τ−2αbv∂ξ+α∂

2
ξ

(
eα∂

2
ξΦv

) (
eα∂

2
ξ η
)

= 0 (3.1)

where we have neglected terms of O(η2). As expected, the translation zero-mode η(ξ, τ) =

∂ξΦv(ξ) is a solution to this.

Let us expand the perturbation η(τ, ξ) in terms of its (Fourier-Laplace) modes

η(τ, ξ) =

∫ ∞
0

dE

∫ +∞

−∞

dp

2π
e−Eτ+ipξ η̃E(p),

– 5 –
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but leave the front Φv as it is for the moment. If we make the plausible assumption that

the operator e−2αb∂τ−2αbv∂ξ+α∂
2
ξ in eq. (3.1) is invertible, we arrive at the equation:(

−bE + p2 − 1 + ibvp
)
e−2αbE+αp2+i2αbvp η̃E (p) = 2K3Gα[Φv] e

−αp2 η̃E(p) ,(
1

2

∂

∂α
Lα − 1

)
η̃E (p) = 2K3Gα[Φv] η̃E(p) . (3.2)

In the above, we have rewritten the equation in terms of a formal derivative of the operator

Lα = e−2αbE+2αp2+i2αbvp ∼ e2αb∂τ+2αbv∂ξ−α∂2ξ

with respect to α by an abuse of notation. (Recall that α = ln
(
3
√

3/4
)

is a fixed number

in OSFT.)

Following [20], let us consider the conditions for stability at asymptotic values of the

front profile ξ → ±∞. The Gaussian convolution Gα [Φv] of the front profile Φv softens

the oscillations around the stable fixed point.

As ξ → −∞, the tachyon profile Φv as well as its Gaussian transform Gα [Φ]→ 0. In

this region, we have the operator equation ∂α (lnLα) = 2:

bE = (p2 − 1) + ibvp. (3.3)

This condition is exactly the same as in the case of the standard Fisher equation without

any non-locality. This is not unexpected, as the behaviour of the two equations and their

travelling front solutions are the same in this region. The travelling solution is said to be

linearly stable if the perturbation decays exponentially in time, i.e., if Re(E) ≥ 0 (where

E = 0 corresponds to the translation zero-mode). Thus eq. (3.3) may seem to indicate an

instability at first sight because Re(bE) = p2 − 1, hence it is negative for |p|< 1. However,

this is just the tachyonic instability at the maximum of the potential — the region ξ → −∞
still has the unstable D-brane.

Before we analyze the stability conditions in the asymptotic region ξ → ∞ of the

travelling front of the tachyon, let us review the situation for the usual Fisher equation,

i.e., the case α→ 0. Eq. (3.2) reduces to a simple form:

bE =
(
p2 − 1 + 2K3Φv

)
+ ibvp. (3.4)

Recall that at the true vacuum, Φv approaches the value K−3. This means the solution

is stable Re(bE) ≈ p2 + 1 at the non-perturbative vacuum. (As mentioned above, in the

region ξ → −∞ corresponding to the perturbative vacuum Φv ≈ 0, the stability condition

is exactly the same with or without non-locality.)

Getting back to general case with non-locality (α 6= 0), the analytic form of the

eigenvalue E can be found by integrating the formal first order differential equation (3.2)

for the operator Lα with an integrating factor. By a straightforward integration of

∂

∂α

(
e−2αLα

)
= 4e−2αK3Gα[Φv] η̃E(p)

– 6 –
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Figure 1. Real parts of bE(p), from eqs. (3.5) and (3.4), for the travelling front of the tachyon

Fisher equation and the standard Fisher equation around the non-perturbative vacuum (region

where tachyon condensation has taken place) in dashed and solid lines, respectively. Both spectra

are clearly non-negative, however, the tachyon front is even more stable than the travelling front of

the standard Fisher equation.

we obtain

bE = p2 − 1 + ibvp− 1

2α
ln

(
1− 4K3

∫ α

0
Gα′ [Φv] e

−2α′dα′
)
. (3.5)

This is valid for any value of ξ, and, in particular, the results for the region ξ → −∞
corresponding to the perturbative (unstable) extremum can be recovered. On the other

hand, in the region ξ → ∞, the front has settled to the stable (local) minimum where

Gα[Φv] ≈ K−3. Therefore, the argument of the logarithm can be approximated as 2e−2α−1

which gives the real part of Re[bE] ≈ p2 + 2.22. As a consequence, the travelling front of

the tachyon is even more stable than the standard Fisher equation. The plots of Re (E (p))

for both cases are shown in figure 1.

3.1 Euclidean Schrödinger equation

We can isolate the leading tachyonic instability around the perturbative vaccum from the

effect of fluctuations around the travelling front by the substitution

η(τ, ξ) = ebvξ/2ψ(τ, ξ),

which gets rid of the ∂ξη term in eq. (3.1) and brings the above to the form of an Euclidean

Schrödinger equation. However, one should be careful due to subtelties that arise from the

fact that ψ does not belong to the Hilbert space of L2-functions (because of the presence

of the ξ-dependent prefactor). This is true of the standard Fisher case as well [19].

The equation satisfied by ψ is

b
∂ψ

∂τ
=
∂2ψ

∂ξ2
+

(
1− 1

4
b2v2

)
ψ

− 2K3e−
1
2
bvξ
[
e−2αbv∂ξ+α∂

2
ξ

(
eα∂

2
ξΦv

) (
eα∂

2
ξ−2αb∂τ e+

1
2
bvξψ

)]
.

(3.6)

In order to simplify this further, we use the Campbell-Baker-Hausdorff formulas to write

eα∂
2
ξ ebvξ/2 = eαb

2v2/4 ebvξ/2 eαbv∂ξ+α∂
2
ξ

e−2αbv∂ξ ebvξ/2 = e−αb
2v2 ebvξ/2 e−2αbv∂ξ .

– 7 –
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This gives us the Euclidean Schrödinger equation for the perturbation function ψ(ξ, τ) as

b
∂ψ

∂τ
=
∂2ψ

∂ξ2
+

(
1− 1

4
b2v2

)
ψ

−2K3e−
1
2
αb2v2

[
e−αbv∂ξ+α∂

2
ξ

(
eα∂

2
ξΦv

) (
eα∂

2
ξ+αbv∂ξ−2αb∂τψ

)]
=
∂2ψ(ξ, τ)

∂ξ2
+

(
1− 1

4
b2v2

)
ψ(ξ, τ)

−2K3e−
1
2
αb2v2 Gα [Gα[Φv(ξ − αbv)] ?Gα[ψ(ξ, τ − 2αb)]] . (3.7)

(Notice that the argument of ψ does not have a shift in ξ, though it has one in τ .) In the

case of the standard Fisher equation without any non-locality, (α→ 0) the above is a usual

Schrödinger equation:

b∂τψ = ∂2ξψ +

(
1− 1

4
b2v2

)
ψ − 2K3Φvψ (3.8)

with the ‘potential’ determined by the ‘classical’ front solution Φv(ξ).

Let us point out some features of eq. (3.7). The interaction with the ‘potential’ Φv is

non-local and in terms of a convolution product. Moreover, there is a delay in the argument

of ψ on the r.h.s. of the above. Due to the delay, we do not get the conventional eigen-

value equation; rather writing ψ(ξ, τ) = e−Eτ ΨE(ξ), the ‘time-independent’ Schrödinger

equation

bEΨE(ξ) = −∂
2ΨE(ξ)

∂ξ2
−
(

1− 1

4
b2v2

)
ΨE(ξ)

+ 2e2αbEK3e−
1
2
αb2v2 Gα [Gα[Φv(ξ − αbv)] ?Gα[ΨE(ξ)]]

(3.9)

is a transcendental equation for E. In order to show that the solution is stable, we need

to prove that all the solutions to (3.9) have E ≥ 0. (Recall that E = 0 is a solution that

corresponds to translating the leading order solution.)

In terms of the (Laplace-Fourier) modes

ψ(τ, ξ) =

∫ ∞
0

dE

∫ +∞

−∞

dp

2π
e−Eτ+ipξ ψ̃E(p), (3.10)

eq. (3.8) gives

bE = p2 +

(
1

4
b2v2 − 1

)
+ 2K3Φv (3.11)

in the standard Fisher case. It is obvious from eq. (3.11) that E(p) ≥ 0 for all values of

p. This is due to the factor of 1
4b

2v2 on the right-hand side, and is expected from the form

of the ‘potential’ Φv. In the non-local case of α 6= 0, we follow the same steps as in the

analysis of η to obtain:

bE = p2 +

(
1

4
b2v2 − 1

)
− 1

2α
ln

[
1− 4K3

∫ α

0
dα′Gα′ [Φv] e

−2α′(1+ibvp)
]
. (3.12)

– 8 –
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Figure 2. Real parts of bE(p), from eqs. (3.11) and (3.13), for the travelling tachyon and standard

Fisher cases around the perturbative (lower dotted curve — exactly identical in both cases) and

the non-perturbative vacua (upper curves: the solid one for the tachyon and the dashed one for

standard Fisher equation). For the travelling tachyon the minimum of the energy spectrum is at

p ≈ ±0.86.

Similar to the conclusion for η, it turns out that at perturbative vacuum the spectrum is in

the same form as Fisher case bE = p2+
(
1
4b

2v2 − 1
)
, and it is always non-negative. For non-

perturbative vacuum, it may seem that non-negativity of Re[bE] is not guaranteed because

of the oscillations from eibvp. However, at the non-perturbative vacuum Gα[Φv] ≈ K−3,

whence eq. (3.12) reduces to

bE = p2 +

(
1

4
b2v2 − 1

)
− 1

2α
ln

[
1− 2

(
1− e−2α(1+ibvp)

1 + ibvp

)]
. (3.13)

From the equation above, we find that the spectrum is symmetric, but not convex. The

minimum of energy is not at zero: Re[bE] ≈ 2.40 at p ≈ ±0.86. The oscillatory profile of

Φv produces small potential wells, however, the positive contribution to the spectrum from

the excitations can overcome the negative part from logarithmic term (of non-local effect).

Numerical plots of real parts of spectrum Re[bE(p)] for both the standard Fisher and the

travelling tachyon cases around the perturbative and non-perturbative vacua are shown in

figure 2.

In the above, we have taken the travelling front profile Φv to the leading order in

the singular perturbation expansion (that is, we have worked with Φ
(0)
v ). However, it

is straightforward to work with the profile including the effects at higher order. The

qualitative behaviour is not expected to change. Plots for both the real and the imaginary

parts of the Fourier transform of the tachyon front computed numerically are shown in

figure 3. For this, we have put the system in a finite-size box (IR regulator). In spite of

the oscillations around the stable vacuum, the difference from the standard Fisher case is

small, and restricted to a finite region in momentum space.

One may also attempt to solve the non-local Schrödinger equation by reducing it in to

an integral eigenvalue problem. In terms of the modes Ψ̃E(k):(
bE − k2 + 1− 1

4
b2v2

)
Ψ̃E(k)

= 2K3 e2αbE−2αk
2−iαbvk− 1

2
αb2v2

∫
d`

2π
e2α`(k−`)+iαb` Φ̃v(k − `)Ψ̃E(`).

(3.14)
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Figure 3. Left: real parts of Fourier transform of Φ
(0)
v for the tachyon Fisher and standard Fisher

case in are shown in blue and magenta, respectively. The very small deviations between two plots

occur in the region 1.4 ≤ |p|≤ 2.2. Right: the corresponding imaginary parts. The very small

deviations between the two plots are seen in the region 0.6 ≤ |p|≤ 1.4.

Setting α = 0 in (3.14) recovers the standard Fisher equation (no delay or nonlocality) and

its perturbation that satisfies(
bE − k2 + 1− 1

4
b2v2

)
Ψ̃E(k) = 2K3

∫
d`

2π
Φ̃v(k − `)Ψ̃E(`). (3.15)

The equations above are Fredholm integral equation of the second kind.

As before, we may introduce

Uα = exp

(
−2α

(
bE − k2 + 1− 1

4
b2v2

))
∼ exp

(
2α

(
b∂τ + ∂2ξ + 1− 1

4
b2v2

))
to write eq. (3.14) compactly as

− ∂

∂α
UαΨ̃E(k) = 4K e−iαbvk

∫
d`

2π
e2α`(k−`)+iαb` Φ̃v(k − `)Ψ̃E(`)

(1− Uα) Ψ̃E(k) = 4K

∫
d`

2π

[
eα(2`(k−`)+ib(`−vk)) − 1

2`(k − `) + ib (`− vk)

]
Φ̃v(k − `)Ψ̃E(`),

where the last line is the result of integrating over the non-locality parameter from 0 to α,

the required value.

Before we close this section, since we have not come across it in the literature, it may

not be entirely out of place to mention that the (Euclidean) Schrödinger equation for the

perturbation of the standard Fisher equation, namely eq. (3.8), can be solved exactly to the

lowest order in singular perturbation theory where Φ
(0)
v (ξ) = K−3y(ξ) = K−3/

(
1 + e−ξ/bv

)
.

If we change variable from ξ to y and write

ψ(τ, y(ξ)) = e−Eτyµ(1− y)νF (y),

then F (y) satisfies a hypergeometric differential equation with parameters a = (µ +

ν), b = (µ + ν + 1) and c = (2µ + 1), where µ2 = −b2v2
(
bE + 1− b2v2

4

)
and ν2 =

– 10 –
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−b2v2
(
bE − 1− b2v2

4

)
. We note in passing that the the change of variable used above can-

not be made in case of the tachyon Fisher equation, as the leading front is not monotonic

due to non-local effects.

4 Stability analysis in singular perturbation theory

The travelling front solution of the tachyon Fisher equation (2.3), was solved by using a

singular perturbation analysis [8], in which ε = 1/(bv)2 was used as a small parameter.

It is, therefore, natural to analyze the question of stability in this approach. In terms of

the rescaled variable ζ =
√
εξ = bvξ (and the derivative bv∂ξ = ∂ζ), used in the singular

perturbation theory, the equation for the perturbation (3.1) takes the form

b
∂η

∂τ
+
∂η

∂ζ
− ε∂

2η

∂ζ2
− η + 2K3e−2αb∂τ−2α∂ζ+εα∂

2
ζ

(
eεα∂

2
ζΦv

) (
eεα∂

2
ζ η
)

= 0. (4.1)

Following the expansion of the leading order solution Φv(ξ) = Φ
(0)
v (ξ) + εΦ

(1)
v (ξ) + · · ·, we

now expand the perturbation as well:

η(ξ, τ) = η(0)(ξ, τ) + ε η(1)(ξ, τ) + ε2 η(2)(ξ, τ) + · · ·

Moreover, since the Gaussian kernel is identity for α = 0, it can be divided as [8]

Gεα[F (ζ)] = F (ζ) + dGεα[F (ζ)], (4.2)

in which we treat dg ∼ O(ε).

This leads to the following equations:

O(1) : b
∂η(0)

∂τ
+
∂η(0)

∂ζ
− η(0) + 2K3e−2αb∂τ−2α∂ζ

(
Φ(0)
v η(0)

)
= 0,

O(ε) : b
∂η(1)

∂τ
+
∂η(1)

∂ζ
− η(1) + 2K3e−2αb∂τ−2α∂ζ

(
Φ(0)
v η(1)

)
=

∂2η(0)

∂ζ2
− 2K3e−2αb∂τ−2α∂ζ

(
dgεα

[
Φ(0)
v η(0)

]
+ Φ(0)

v

(
dgεα

[
η(0)
])

+
((

dgεα

[
Φ(0)
v

]
+ Φ(1)

v

)
η(0)
))

(4.3)

plus equations for higher order terms. The first equation above for the leading term of

the perturbation is not a Schrödinger-type equation being first order in time as well as the

space derivatives. However, it is homogeneous, while the equations at second (and higher)

order are inhomogeneous, with the sources determined from those at lower order.

Consider the Fourier transformed functions

Φv(ζ) =

∫
dk

2π
eikζ Φ̃v(k), η(τ, ζ) =

∫
dE

∫
dk

2π
e−Eτ+ikζ η̃E(k),

which are valid at every order in perturbation. The equation at lowest order is

(−bE + ik − 1) e−2αbE+2iαk η̃
(0)
E (k) = 2K3

∫
d`

2π
Φ̃(0)
v (k − `) η̃(0)E (`), (4.4)

– 11 –
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which is again a Fredholm integral equation of second kind. The equations at higher

order are Fredholm equation of first kind, consequently these may be solved by iterative

technique. For the standard Fisher equation (α = 0) one can once again change variable

to y = 1/
(
1 + e−ζ

)
, which leads to a simple quadrature

dη(0)

dy
=

1 + bE − 2y

y(1− y)
,

integrating which we get η(0)(y) = K−3y1+bE(1 − y)1−bE . We see that for bE = 0, η(0) is

a translation of the ‘classical’ front Φ
(0)
(v)

η(0) (y(ζ);E = 0) = K−3 y(1− y) =
K−3 e−ζ

(1 + e−ζ)2
=

d

dζ
Φ(0)
v (ζ)

as expected.

5 Conclusions

The dynamical equation of the tachyon on an unstable D-brane does not have a solution

that interpolate between the extrema of the potential [2]. However, in the background of

a dilaton that is linear along a light-like coordinate x−, the equation of motion (in light-

cone time x+) is first order. This admits an interpolating solution that has an oscillatory

convergence to the (closed-string) vacuum [3]. This equation is actually a variant of a

reaction-diffusion equation, which has nonlocal interactions, including a delay. Therefore,

in the case of an inhomogeneous decay, there is a travelling front solution that moves with

an asymptotic velocity converting regions of space from the unstable brane to the vacuum

in its wake [8]. In this paper, we have carried out a stability analysis of the front solution

using linearized perturbation theory. The equations for the perturbation is a nonlocal

Euclidean Schrödinger equation, with the front profile acting as a potential. Thanks to the

nonlocality, however, the potential and the ‘wavefunction’ are in a convolution product.

We find that the front solution found from a singular perturbation analysis is stable. We

have also analyzed (linear) stability around the closed string vacuum. The Lyapunov

exponents are determined by transcendental equations, which are different for the case of

homogeneous and inhomogeneos decay. For the latter, there are positive solutions that

corresponds to (oscillatory) divergence. Even though these modes do not destabilize the

travelling front obtained in the singular perturbation theory, their existence suggests that

there could be space-time dependent solutions of the equation of motion of the tachyon that

exhibit untamed oscillation with increasing magnitude around the (closed-string) vacuum,

similar to those of homogenous decay in usual time [2]. The inclusion of the higher string

modes may change the dynamics — we know that the tachyon perturbation corresponding

to the front solution can be extended to the equations of string field theory to the next

order [18].
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