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1 Introduction

Color-kinematic duality (or BCJ duality) [2] was discovered by Bern, Carrasco and Jo-

hansson in 2008. This duality states that Yang-Mills amplitudes can be written in a so-

called BCJ formula where kinematic factors share the same algebraic properties (including

antisymmetry and Jacobi identity) with color factors. BCJ duality implies relations be-

tween color-ordered amplitudes at tree-level. Specifically, the antisymmetry implies Kleiss-

Kuijf relation (KK relation) [3], while the Jacobi-identity implies Bern-Carrasco-Johansson

(BCJ) relation [2]. With these relations, one can reduce the number of independent tree-

level color-ordered amplitudes to (n − 3)!. Both KK and BCJ relations have been proven

in string theory [4, 5] and field theory [6–10].

To understand the duality, further efforts including the loop-level BCJ duality [11–

17, 17–25], the construction of BCJ numerators (by pure spinor string method [26], by

kinematic algebra [27–30], with relabeling symmetry [31–33] and from scattering equa-

tions [33–37]) as well as the dual trace-factors [33, 38–41] have been made. In another direc-

tion, one may wonder whether the BCJ duality and the amplitude relations implied by the

duality exist in other theories. An interesting example is the duality and relations in three

dimensional supersymmetric theories with 3-algebra [42]. Another interesting extension is

the amplitude relations in nonlinear sigma model with traditional U(N) Lie algebra [1].

In [1], the authors proved the U(1) identity and the fundamental BCJ relation for

three-level currents with one off-shell leg. The on-shell versions of these two relations

– 1 –



J
H
E
P
0
3
(
2
0
1
5
)
1
5
6

were obtained by taking on-shell limit of the off-shell leg. Using the method for generat-

ing general on-shell KK and BCJ relations by the fundamental ones [43], one can obtain

all the general on-shell KK and BCJ relations which have the same formulae with the

corresponding relations in Yang-Mills theory.

Although all the on-shell versions of KK and BCJ relations for tree-level amplitudes in

nonlinear sigma model have been proven in [1], only two special off-shell relations, namely

U(1) identity and fundamental BCJ relation, have been studied. These off-shell relations

do not share the same formulae with those in Yang-Mills theory [1]. Actually, in Yang-Mills

theory, there have been suggested (all leg) off-shell KK relations [44] which have the same

formulae with the corresponding on-shell relations. No BCJ relation for off-shell currents

in Yang-Mills theory was found.1

A question is whether we can find the full off-shell extensions of the general on-shell KK

and BCJ relations in nonlinear sigma model. There are several possible ways to think about

this question. One way is to construct the BCJ formula in nonlinear sigma model and apply

the algebraic properties to the kinematic factors. The main obstacles for this approach are

the infinite number of vertices and the existence of off-shell leg. Another attempt is to gen-

erate all off-shell relations from the known off-shell U(1) identity and off-shell fundamental

BCJ relation. However, the existence of the off-shell leg again becomes the main trouble.

In this note, we propose a generalized U(1) identity for even-point off-shell currents

J(σ) in nonlinear sigma model. As already shown in the papers [45, 46], under Cayley

parametrization, the odd-point currents (with even numbers of on-shell legs and one off-

shell leg) have to vanish [45, 46]. The generalized U(1) identity for even-point currents

(with odd numbers of on-shell legs and one off-shell leg) is given by
∑

σ∈OP ({α1,...,αr}
⋃
{β1,...,βs})

J(σ)

=
∑

D∈Divisions of {α}, {β}
s.t.,|RD−SD |=1

(

1

2F 2

)

RD+SD−1

2

J(A1) . . . J(ARD
)J(B1) . . . J(BSD

). (1.1)

On the left hand side of (1.1), we summed over all the ordered permutations OP ({α}⋃{β})
with keeping the relative orders in each set. For example, in OP ({α1, α2}

⋃{β1, β2}),
we have permutations (α1, α2, β1, β2), (α1, β1, α2, β2), (α1, β1, β2, α2), (β1, α1, α2, β2),

(β1, α1, β2, α2), (β1, β2, α1, α2). On the right hand side, we have summed over all the possi-

ble divisions D of {α} and {β} into ordered subsets {A1}, . . . , {ARD
} and {B1}, . . . , {BSD

}
with odd numbers of elements in each subset. The numbers of subsets RD and SD for given

division D should satisfy |RD − SD| = 1. For example, if we have three elements in the

{α} set and four elements in the {β} set, we have

• two (1, 2) divisions with {α} → {α1, α2, α3} and {β} → {β1}, {β2, β3, β4} or {β} →
{β1, β2, β3}, {β4}

• two (3, 2) divisions with {α} → {α1}, {α2}, {α3} and {β} → {β1}, {β2, β3, β4} or

{β} → {β1, β2, β3}, {β4}
1Only the off-shell BCJ relation for φ3 colored scalar theory was proposed [44].
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• one (3, 4) division with {α} → {α1}, {α2}, {α3} and {β} → {β1}, {β2}, {β3}, {β4}.
A special case of the off-shell generalized U(1) identity (1.1) is r = 1 (or s = 1). In this

case, R, S (or S, R) have to be 1, 2 respectively and we arrive at the U(1) identity proven

in [1] (see (2.8)). When multiplying a p21 → 0 to the right hand side of the relation (1.1),

we just arrive at the corresponding on-shell relation for color-ordered amplitudes A2

∑

σ∈OP ({α1,...,αr}
⋃
{β1,...,βs})

A(1, {σ}) = 0, (1.2)

which has been shown to be equivalent with the on-shell KK relation [44].

To prove the off-shell identity (1.1), we first study the eight-point identity with r =

3, s = 4 by explicit calculations with Berends-Giele recursion. Because of the complexity, it

seems impossible to extend the calculation directly to a general proof. Instead, we redefine

the coefficients for products of subcurrents level by level. After this redefinition, all the

divisions D with RD + SD < r + s have the right coefficients in (1.1). Then we only need

to prove that the coefficient for (r, s) division has the right form. By combining the U(1)

identity with a generalized U(1) identity with fewer α’s, we obtain a set of equations which

are finally used to determine the (r, s) coefficient.

The structure of this note is following. In section 2, we review the Feynman rules,

Berends-Giele recursion and the U(1) identity proved in the paper [1]. In section 3, we

study the generalized U(1) identity with three elements in {α} and four elements in {β}
by Berends-Giele recursion directly. It will be quite hard to extend this calculation to a

general proof. In section 4, we provide another approach by redefining the coefficients of

divisions with RD + SD < r + s step by step. After these redefinitions, all divisions with

RD +SD < r+ s already have the right coefficients. We then prove that the coefficient for

(r, s) division also has the right form. At last, we conclude this work in section 5.

2 Preparation: Feynman rules, Berends-Giele recursion and U(1) iden-

tity

In this section, we review Feynman rules, the Berends-Giele recursion and the U(1) identity

in nonlinear sigma model.3 Most of the notations follow the recent papers [45, 46].

2.1 Feynman rules

Lagrangian. The Lagrangian of U(N) non-linear sigma model is

L =
F 2

4
Tr(∂µU∂µU †), (2.1)

where F is a constant. Using Caylay parametrization as in [45, 46], the U is defined by

U = 1 + 2
∞
∑

n=1

(

1

2F
φ

)n

, (2.2)

where φ =
√
2φata and ta are generators of U(N) Lie algebra.

2The on-shell generalized U(1) identity in Yang-Mills theory was firstly proposed in [47].
3Parts of this section overlap with the section 2 of [1].
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Trace form of color decomposition. The full tree amplitudes can be given by trace

form decomposition

M(1a1 , . . . , nan) =
∑

σ∈Sn−1

Tr(T a1T aσ2 . . . T aσn )A(1, σ). (2.3)

Since traces have cyclic symmetry, the color-ordered amplitudes A also satisfy cyclic sym-

metry

A(1, 2, . . . , n) = A(n, 1, . . . , n− 1). (2.4)

Feynman rules for color-ordered amplitudes. Vertices in color-ordered Feynman

rules under Cayley parametrization (2.2) are

V2n+1 = 0, V2n+2 =

(

− 1

2F 2

)n
(

n
∑

i=0

p2i+1

)2

=

(

− 1

2F 2

)n
(

n
∑

i=0

p2i+2

)2

. (2.5)

Here, pj denotes the momentum of the leg j; momentum conservation has been considered.

2.2 Berends-Giele recursion

In the Feynman rules given above, one can construct tree-level currents4 through Berends-

Giele recursion

J(2, . . . , n) =
i

P 2
2,n

n
∑

m=4

∑

1=j0<j1<···<jm−1=n

iVm(p1 = −P2,n, Pj0+1,j1 , · · · , Pjm−2+1,n)

×
m−2
∏

k=0

J(jk + 1, · · · , jk+1), (2.6)

where p1 = −P2,n = −(p2 + p3 + · · · + pn) is the momentum of the off-shell leg 1. The

starting point of this recursion is J(2) = J(3) = · · · = J(n) = 1.

Since there is at least one odd-point vertex for current with odd-point lines (including

the off-shell line) and the odd-point vertices are zero, we always have

J(2, . . . , 2m+ 1) = 0, (2.7)

for (2m + 1)-point amplitudes. The currents with even points in general are nonzero and

are built up by only odd numbers of even-point sub-currents. Since odd-point currents have

to vanish, in all following sections of this paper, we just need to discuss on the relations

among even-point currents.

2.3 The off-shell versions of U(1) identity

In [1], the authors have proven the U(1) identity for off-shell currents in nonlinear sigma

model. The identity is

∑

σ∈OP ({α1}
⋃
{β1,...,β2m})

J(σ) =
1

2F 2

∑

divisions{β}→{B1},{B2}

J(B1)J(B2), (2.8)

4In this paper, an n-point current is mentioned as the current with n−1 on-shell legs and one off-shell leg.
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Divisions Type-1 Type-2 Type-3

{α1}{α2}{α3}{β1}{β2}{β3}{β4} sα1α3
+sβ1β3

+sβ2β4
0 p21

{α1}{α2}{α3}{β1, β2, β3}{β4} −sα1α3
− (pβ1

+ pβ2
+ pβ3

)2 p21

{α1}{α2}{α3}{β1}{β2, β3, β4} −sα1α3
− (pβ2

+ pβ3
+ pβ4

)2 p21

{α1, α2, α3}{β1}{β2}{β3}{β4} −sβ1β3
− sβ2β4

− (pα1
+ pα2

+ pα3
)2 0

{α1, α2, α3}{β1, β2, β3}{β4} 0 (pα1
+pα2

+pα3
)2+(pβ1

+pβ2
+pβ3

)2 p21

{α1, α2, α3}{β1}{β2, β3, β4} 0 (pα1
+pα2

+pα3
)2+(pβ2

+pβ3
+pβ4

)2 p21

Table 1. The coefficients of eight-point case in general can be classified into three types. Here we

omit the coupling constants for convenience.

where on the left hand side, we summed over the permutations in {α1}
⋃{β1, . . . , β2m}

with keeping the relative order in the β set. On the right hand side, we summed over the

divisions of {β} into two ordered subsets.

3 Direct calculation of an eight-point example

We have checked the generalized U(1) identity (1.1) for four- and six-point currents. In the

four-point case, we only have r = 1, s = 2 and r = 2, s = 1, which are U(1) identities (2.8).

In the six-point case, r = 1, s = 4 and r = 4, s = 1 are also U(1) identities (2.8). The new

relations for six-point currents are the cases with r = 2, s = 3 and r = 3, s = 2, where the

later case can be obtained from the former one by exchanging the roles of α and β. We

just skip all the calculations of four- and six-point identities and show a more complicated

eight-point example.

We take the eight-point identity with three elements in {α} and four elements in {β}
as an example. The explicit form of the identity (1.1) with r = 3, s = 4 is

∑

σ∈OP ({α1,α2,α3}
⋃
{β1,β2,β3,β4})

J(σ)

=
1

2F 2
[J(α1, α2, α3)J(β1)J(β2, β3, β4) + J(α1, α2, α3)J(β1, β2, β3)J(β4)]

+

(

1

2F 2

)2

[J(α1)J(α2)J(α3)J(β1)J(β2, β3, β4) + J(α1)J(α2)J(α3)J(β1, β2, β3)J(β4)]

+

(

1

2F 2

)3

J(α1)J(α2)J(α3)J(β1)J(β2)J(β3)J(β4). (3.1)

To prove this identity, we use Berends-Giele recursion (2.6) to express all the currents

on the left hand side of (3.1) by six- and four-point subcurrents. Then we collect the

terms with a same vertex connected to the off-shell leg 1. After summing all the possible

diagrams in each collection, the left hand side of (3.1) is expressed by

• diagrams containing six-point and (or) four-point substructures of generalized U(1)-

identity (see figure 1(A))

• diagrams with neither six-point nor four-point substructure (see figure 1(B)).
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Figure 1. Two classes of diagrams: (A) diagrams containing substructures of generalized U(1)

identity such as σ ∈ OP (Ai

⋃

Bj) where Ai and Bj denote ordered subsets of {α} and {β}. (B)

diagrams with each subcurrent containing only {α} elements or {β} elements.

Remembering that the identity (1.1) is satisfied by four- and six-point currents, we apply

these lower-point identities to the four- and six-point substructures in the first class of

diagram. Then diagrams in the first class are rewritten in terms of products of subcurrents

containing only α or β elements. Since the second class of diagram does not have any

substructure, it is already expressed by products of subcurrents containing only α or β

elements. After this reduction, for a given product of subcurrents (or in other words, given

division of {α} set and {β} set), we collect the coefficients together. Thus the left hand

side of (3.1) is written as

(

1

2F 2

)3
[

(sα1α3 + sβ1β3 + sβ2β4) + p21
] 1

p21
J(α1)J(α2)J(α3)J(β1)J(β2)J(β3)J(β4) (3.2)

+

(

1

2F 2

)2
[

−sα1α3 − (pβ1 + pβ2 + pβ3)
2 + p21

] 1

p21
J(α1)J(α2)J(α3)J(β1, β2, β3)J(β4)

+

(

1

2F 2

)2
[

−sα1α3 − (pβ2 + pβ3 + pβ4)
2 + p21

] 1

p21
J(α1)J(α2)J(α3)J(β1)J(β2, β3, β4)

+

(

1

2F 2

)2
[

(−sβ1β3−sβ2β4)−(pα1+pα2+pα3)
2
] 1

p21
J(α1, α2, α3)J(β1)J(β2)J(β3)J(β4)

+

(

1

2F 2

)

[

(pα1+pα2+pα3)
2+(pβ1+pβ2+pβ3)

2+p21

] 1

p21
J(α1, α2, α3)J(β1, β2, β3)J(β4)

+

(

1

2F 2

)

[

(pα1+pα2+pα3)
2+(pβ2+pβ3+pβ4)

2+p21

] 1

p21
J(α1, α2, α3)J(β1)J(β2, β3, β4),

where sij ≡ (pi + pj)
2. Coefficients for each division can be classified into three types

(see 1). A type-2 coefficient always cancels with a propagator of a subcurrent and di-

vides the subcurrent into new subcurrents. For example, the coefficient in type-2 term

on the second line is −(pβ1 + pβ2 + pβ3)
2 which reduce the current J(β1, β2, β3) to

– 6 –
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Figure 2. We redefine the coefficients for R+S < r+ s divisions such that they are the right ones

as in the general form (1.1). Then we solve the R = r, S = s coefficient.

−
(

1
2F 2

)

sβ1β3J(β1)J(β2)J(β3). Thus this part of contribution cancels with the second

term of the type-1 coefficient of (3, 4) division. Similarly, other type-2 terms also cancel

with type-1 terms for divisions with larger RD + SD. All the type-1 and type-2 terms

cancel out in this way. Only the type-3 terms are left and give the right hand side of the

eight-point identity (3.1).

4 Proof of the generalized U(1) identity for off-shell currents

In the previous section, we have provided a direct approach to an eight-point example by

Berends-Giele recursion. Although the coefficients in the example were shown to have a

good pattern (see table 1), it will be quite hard to extend the calculation to a general

proof. One reason is that we will encounter many different lower-point substructures of

the identity (1.1) when the number of {α} elements grows. Thus we have to prove the

general formula (1.1) in a different way. In this section, we will show a general proof of the

identity (1.1). The main idea is following:

• As we have done in the eight-point example, we write the left hand side of the

identity (1.1) by Berends-Giele recursion and collect the diagrams with a same vertex

attached to the off-shell leg 1 (See figure 1(A) and (B)). Reducing the substructures

by lower-point identities and putting the coefficients corresponding to each product

of subcurrents together, we express the left hand side of (1.1) as follows

∑

σ∈OP ({α1,...,αr}
⋃
{β1,...,βs})

J(σ)

=
∑

D∈Divisions

1

p21





∑

i4,D

V
i4,D
4 −

∑

i6,D

V
i6,D
6 +

∑

i8,D

V
i8,D
8 − · · ·+ (−1)

RD+SD−1

2

∑

iRD+SD+1,D

V
iRD+SD+1,D

RD+SD+1
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× J(A1) . . . J(ARD
)J(B1) . . . J(BSD

), (4.1)

where V
il,D
l denote the l-point vertices which contribute to the division D and

∑

i4,D

means that we sum over all such l-point vertices. The prefactor (−1)
l−1
2 of l-point

vertex comes from the factor
(

− 1
2F 2

)n
in the Feynman rules (2.5).

• We show that the expression obtained in the above step can be rearranged (figure 2)

into the following formula

∑

σ∈OP ({α1,...,αr}
⋃
{β1,...,βs})

J(σ)

=
∑

D∈Divisions of {α},{β}
RD+SD<r+s

(

1

2F 2

)

RD+SD−1

2

δ(|RD−SD|−1)J(A1) . . . J(ARD
)J(B1) . . . J(BSD

)

+

(

1

2F 2

)
r+s−1

2

V(r,s)J(α1) . . . J(αr)J(β1) . . . J(βs), (4.2)

where V(r,s) is the dimensionless coefficient for the (r, s) division. The first term

of (4.2) is given by sum of divisions D (RD + SD < r + s) which already have the

correct coefficients in (1.1). Thus we only need to prove that the coefficient V(r,s) in

the second term of (4.2) also has the right expression in (1.1), i.e., V(r,s) = δ(|r−s|−1).

• The undetermined coefficient V(r,s) has the general form 1
p21

(

∑

i,j

cijsij

)

with appro-

priate cij . By combining an U(1) identity and a generalized U(1) identity with fewer

α’s, we can prove that V(r,s) = δ(|r − s| − 1). Therefore, the generalized U(1) iden-

tity (1.1) for off-shell currents is proved.

In the remainder of this section, we will show the left hand side of (1.1) can be rearranged

into (4.2) and then solve V(r,s).

4.1 Proof of the validity of (4.2) with an undetermined coefficient V(r,s)

Now we show that the left hand side of the off-shell generalized U(1) identity (1.1) can be

rearranged into the form (4.2). We start from several examples.

Four-point example. The four-point example is the four-point U(1) identity (see [1]).

By explicit calculation, this is given by the sum of three diagrams in figure 3, i.e.,

∑

σ∈OP ({α1}
⋃
{β1,β2})

J(σ) =

(

1

2F 2

)

J(α1)J(β1)J(β2). (4.3)

The identity with two α’s and one β can be obtained by exchanging the roles of α and β.

Before giving the next example, let us have a look at an off-shell extension of the right

hand side of (4.3), i.e., we replace the three on-shell legs α1, β1 and β2 in figure 3 by three

off-shell currents J(A1), J(B1) and J(B2) correspondingly. From Feynman rules (2.5),

– 8 –
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Figure 3. Diamgrams contributing to four-point identity.
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Figure 4. The off-shell extension of four-point identity. Here we absorb the 1
p2
1

corresponding to

the off-shell leg 1 into the coefficients for convenience.

the coefficient of J(A1)J(B1)J(B2) is written as a linear combination of 1
p21
(pi · pj), where

i, j can be either one of A1, B1, B2; we use pAi
, pBi

to denote the sum of momenta of

elements in Ai, Bi respectively. Then we consider the sum of diagrams with the off-shell

leg 1 connected to a four-point vertex whose other three legs are attached to the currents

J(A1), J(B1) and J(B2). In general, we should have

∑

σ∈OP ({A1}
⋃
{B1,B2})

J (4)(σ) = W(1,2)J(A1)J(B1)J(B2), (4.4)

with

W(1,2) ≡
(

1

2F 2

)[

1 +
1

p21

(

a
(1,2)
1 p2A1

+ b
(1,2)
1 p2B1

+ b
(1,2)
2 p2B2

)

]

. (4.5)

Here, J (4)(σ) denote the diagrams with the four-point vertices connected to 1, J(A1), J(B1)

and J(B2) and a
(1,2)
1 , b

(1,2)
1 and b

(1,2)
2 are some constant coefficients. The equation (4.4) is

the only possible formula of all-leg-off-shell extension of the four-point identity (4.3) for one-

leg-off-shell currents. This is because when replacing the currents J(A1), J(B1) and J(B2)

by on shell legs α1, β1 and β2, we have to return to (4.3). The coefficient thus can only be

the sum of
(

1
2F 2

)

and combinations of 1
p21
p2Ai

, 1
p21
p2Bi

, which vanish under on-shell limit. From

the explicit calculation in [1], we can see a
(1,2)
1 = b

(1,2)
1 = b

(1,2)
2 = 1. Thus the off-shell exten-

sion (4.5) can be expressed by figure 4. We will encounter (4.4), (4.5) in higher-point cases.
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Figure 5. Redefinition of the coefficient of (2, 3) division for the identity with two α’s and three β’s.

Six-point example. With the four-point identity in hand, let us consider the six-point

example. The first six-point example is the U(1)-identity with only one α, which has been

understood. Now we consider the generalized identity with two α’s

∑

σ∈OP ({α1,α2}
⋃
{β1,β2,β3})

J(σ) =
1

2F 2
J(α1)J(α2)J(β1, β2, β3)

+

(

1

2F 2

)2

J(α1)J(α2)J(β1)J(β2)J(β3). (4.6)

Step-1. To prove this identity, we start from the left hand side. We use Berends-Giele

recursion to express the currents on the left hand side. Then collect the diagrams together

with same substructures of generalized U(1)-identity. After reducing diagrams contain-

ing four-point substructures of U(1)-identity by (4.3), we collect the coefficients for given

division of {α} and {β}. Then the left hand side of the six-point identity has the form

∑

σ∈OP ({α1,α2}
⋃
{β1,β2,β3})

J(σ) = U (2,3)
1 J(α1)J(α2)J(β1)J(β2)J(β3)

+U (2,3)
2 J(α1)J(α2)J(β1, β2, β3), (4.7)

with U (2,3)
1 and U (2,3)

2 as coefficients. In general, U (2,3)
1 and U (2,3)

2 are written as sum of

terms of the form 1
p21
(pi · pj), where 1

p21
and (pi · pj) respectively come from the off-shell

propagator and vertices (as shown in (4.1)). The second term in (4.7) is the (2, 1) division

which can only get contribution from diagrams with the off-shell leg 1 directly connected to

four-point vertices whose other three lines are connected to J(α1), J(α2) and J(β1, β2, β3).

The sum of such contributions is noting but the off-shell extension (4.4) in the four-point

example with A1 → {β1, β2, β3}, B1 → {α1}, B2 → {α2}. Thus we have

U (2,3)
2 =

(

1

2F 2

){

1 +
1

p21

[

a
(1,2)
1 (pβ1 + pβ2 + pβ3)

2
]

}

, (4.8)

where the on-shell conditions of α1 and α2 have been used.
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Figure 6. The off-shell extension of the (2, 3) division in the six-point identity with two α’s and

three β’s.

Figure 7. The off-shell extension of the (1, 4) division in the six-point identity with one α and

four β’s.

Step-2. Since (pβ1 + pβ2 + pβ3)
2 further reduces J(β1, β2, β3) to J(β1)J(β2)J(β3) with

a coefficient
(

1
2F 2

)

sβ1β3 , we rearrange (4.7) by absorbing the term proportional to

(pβ1 + pβ2 + pβ3)
2 into U (2,3)

1 , the left hand side of (4.7) becomes

∑

σ∈OP ({α1,α2}
⋃
{β1,β2,β3})

J(σ) = V(2,3)J(α1)J(α2)J(β1)J(β2)J(β3)

+

(

1

2F 2

)

J(α1)J(α2)J(β1, β2, β3), (4.9)

where

V(2,3) ≡ U (2,3)
1 + a

(1,2)
1

(

1

2F 2

)2 1

p21
sβ1β3 (4.10)

which is shown by figure (5). The new defined coefficient of (2, 1) division is what we want.

We need to prove V(2,3) =
(

1
2F 2

)2
for the (2, 3) division. In the next subsection, we have a

general proof of this.
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Let us consider the off-shell extension of the first term on the right hand side of (4.9),

assuming that we have already proved V(2,3) =
(

1
2F 2

)2
. If all the α’s and β’s are allowed to

be off-shell, we replace J(αi) by J(Ai) and J(βi) by J(Bi). Recalling that the coefficient

of the off-shell extension should return to V(2,3) =
(

1
2F 2

)2
under the replacement J(Ai) →

αi, J(Bi) → βi and V(2,3) can only be of the form 1
p21

∑

ij

cijpi · pj , the off-shell extension of

V(2,3) must have the form (see figure 6)

W(2,3) ≡
(

1

2F 2

)2
[

1 +
1

p21

(

2
∑

i=1

a
(2,3)
i p2A +

3
∑

i=1

b
(2,3)
i p2B

)]

. (4.11)

Following a parallel discussion, we can do the same on the six-point relation with only one

α and extend the coefficient of (1, 4) division to off-shell case (see figure 7)

W(1,4) ≡
(

1

2F 2

)2 1

p21

(

a
(1,4)
1 p2A +

4
∑

i=1

b
(1,4)
i p2B

)

. (4.12)

Eight-point example. We now consider an eight-point example with three α’s and five

β’s. The formula of this example is given by (3.1) in section 3.

Step-1. To prove the eight-point example, we first express the left hand side of (3.1) by

Berends-Giele recursion and then collect the contributions to a substructure of generalized

U(1)-identity together. After applying generalized U(1)-identity, we get
∑

σ∈OP ({α1,α2,α3}
⋃
{β1,β2,β3,β4})

J(σ)

= U (3,4)
1 J(α1)J(α2)J(α3)J(β1)J(β2)J(β3)J(β4) + U (3,4)

2 J(α1)J(α2)J(α3)J(β1, β2, β3)J(β4)

+U (3,4)
3 J(α1)J(α2)J(α3)J(β1)J(β2, β3, β4) + U (3,4)

4 J(α1, α2, α3)J(β1)J(β2)J(β3)J(β4)

+U (3,4)
5 J(α1, α2, α3)J(β1, β2, β3)J(β4) + U (3,4)

6 J(α1, α2, α3)J(β1)J(β2, β3, β4). (4.13)

Again, we start from the R+S = 3 divisions, there are two cases corresponding to the

last two terms of the above equation. These cases only get contributions from diagrams with

the off-shell leg 1 connected to a four-point vertex. As shown in the six-point example, the

coefficients U5 and U6 can be given by the off-shell extension W(1,2) (figure 4), particularly

U (3,4)
5 =

(

1

2F 2

)

1

p21

[

p21 + a
(1,2)
1 (pα1 + pα2 + pα3)

2 + b
(1,2)
1 (pβ1 + pβ2 + pβ3)

2
]

(4.14)

and

U (3,4)
6 =

(

1

2F 2

)

1

p21

[

p21 + a
(1,2)
1 (pα1 + pα2 + pα3)

2 + b
(1,2)
2 (pβ2 + pβ3 + pβ4)

2
]

. (4.15)

Step-2. The term (pα1 + pα2 + pα3)
2 in U (3,4)

5 and U (3,4)
6 reduces J(α1, α2, α3) to

J(α1)J(α2)J(α3) with a factor
(

1
2F 2

)

sα1α3 , the term (pβ1 + pβ2 + pβ3)
2 in U (3,4)

5 reduces

J(β1, β2, β3) to J(β1)J(β2)J(β3) with a factor
(

1
2F 2

)

sβ1β3 , while the term (pβ2 + pβ3 + pβ4)
2
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in U (3,4)
6 reduces J(β2, β3, β4) to J(β2)J(β3)J(β4) with a factor

(

1
2F 2

)

sβ2β4 . As in the four-

point example, we can redefine the coefficients so that (4.13) becomes
∑

σ∈OP ({α1,α2,α3}
⋃
{β1,β2,β3,β4})

J(σ)

= U (3,4)
1 J(α1)J(α2)J(α3)J(β1)J(β2)J(β3)J(β4) + U ′(3,4)

2 J(α1)J(α2)J(α3)J(β1, β2, β3)J(β4)

+U ′(3,4)
3 J(α1)J(α2)J(α3)J(β1)J(β2, β3, β4) + U ′(3,4)

4 J(α1, α2, α3)J(β1)J(β2)J(β3)J(β4)

+

(

1

2F 2

)

J(α1, α2, α3)J(β1, β2, β3)J(β4) +

(

1

2F 2

)

J(α1, α2, α3)J(β1)J(β2, β3, β4), (4.16)

where

U ′(3,4)
2 = U (3,4)

2 +

(

1

2F 2

)2

a
(1,2)
1

1

p21
sα1α3 ,

U ′(3,4)
3 = U (3,4)

3 +

(

1

2F 2

)2

a
(1,2)
1

1

p21
sα1α3 ,

U ′(3,4)
4 = U (3,4)

4 +

(

1

2F 2

)2 1

p21

[

b
(1,2)
1 sβ1β3 + b

(1,2)
2 sβ2β4

]

. (4.17)

When all the subcurrents go on-shell, the redefined coefficients U ′(3,4)
2 and U ′(3,4)

3 have the

same pattern with V(3,4) (by exchanging the roles of α’s and β’s) in the six-point example,

while U ′(3,4)
4 has the same pattern with V(1,5) in the six-point example. For instance, if we

consider U ′(3,4)
2

• the coefficients U (3,4)
2 get contributions from

– a) the diagrams with the off-shell leg 1 connected to six-point vertices whose

other legs are attached to subcurrents containing only α or β elements (as shown

in figure 1 (B))

– b) the diagrams with the off-shell leg 1 connected to four-point vertices, which

contain substructures of generalized U(1) identity (as shown in figure 1 (A) ).

Both cases has correspondence in the U (2,3)
1 of (4.10) (with exchanging the roles of α’s

and β’s) and they have the same pattern with (4.10) when the off-shell subcurrents

goes on-shell.

• The part
(

1
2F 2

)2
a
(1,2)
1

1
p21
sα1α3 is same with a

(1,2)
1

(

1
2F 2

)2 1
p21
sβ1β3 in (4.10) when ex-

changing the roles of α’s and β’s.

Therefore, we can use the off-shell extensions (4.11) and (4.12) corresponding to V(2,3) and

V(1,4) in the six-point example

U ′(3,4)
2 =

(

1

2F 2

)2 1

p21

[

p21 + a
(2,3)
1 (pβ1 + pβ2 + pβ3)

2
]

,

U ′(3,4)
3 =

(

1

2F 2

)2 1

p21

[

p21 + a
(2,3)
2 (pβ2 + pβ3 + pβ4)

2
]

,

U ′(3,4)
4 =

(

1

2F 2

)2 1

p21
a
(1,4)
1 (pα1 + pα2 + pα3)

2 . (4.18)
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Figure 8. Redefinition of the coefficient of (3, 4) division for the identity with three α’s and four β’s.

Step-3. Now we notice that (pβ1 + pβ2 + pβ3)
2 in U ′(3,4)

2 reduces J(β1, β2, β3) to

J(β1)J(β2)J(β3) with a factor
(

1
2F 2

)

sβ1β3 . Thus this term contributes to the (3, 4)-

division. Similarly, the term (pβ2 + pβ3 + pβ4)
2 in U ′(3,4)

3 and (pα1 + pα2 + pα3)
2 in U ′(3,4)

4

reduce J(β2, β3, β4) and J(α1, α2, α3) to J(β2)J(β3)J(β4) and J(α1)J(α2)J(α3) respec-

tively. Then, we can rearrange (4.16) again as (figure (8))
∑

σ∈OP ({α1,α2,α3}
⋃
{β1,β2,β3,β4})

J(σ)

= V(3,4)
J(α1)J(α2)J(α3)J(β1)J(β2)J(β3)J(β4) +

(

1

2F 2

)2

J(α1)J(α2)J(α3)J(β1, β2, β3)J(β4)

+

(

1

2F 2

)2

J(α1)J(α2)J(α3)J(β1)J(β2, β3, β4) +

(

1

2F 2

)2

J(α1, α2, α3)J(β1)J(β2)J(β3)J(β4)

+

(

1

2F 2

)

J(α1, α2, α3)J(β1, β2, β3)J(β4) +

(

1

2F 2

)

J(α1, α2, α3)J(β1)J(β2, β3, β4), (4.19)

where

V(3,4) = U (3,4)
1 +

(

1

2F 2

)2 1

p21

[

a
(2,3)
1 sβ1β3 + a

(2,3)
2 sβ2β4 + a

(1,4)
1 sα1α3

]

. (4.20)

Thus we only need to prove V(3,4) =
(

1
2F 2

)3
. We leave the proof to the next subsection.

General discussion. In general, when we consider the generalized U(1)-identity (1.1)

with r α’s and s β’s, we can use Berends-Giele recursion to rewrite the left hand side
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and collect terms corresponding to a same substructure as shown in figure 1. Applying

the lower-point identity to the substructures and summing the coefficients for any given

division, we reexpress the left hand side of (1.1) by (4.1) or briefly by

∑

D

U (r,s)
D J(A1) . . . J(ARD

)J(B1) . . . J(BSD
). (4.21)

We start from the divisions with RD + SD = 3, i.e., (1, 2) division and (2, 1) division.

The contributing diagrams are those in the four-point example with replacing the on-shell

lines by off-shell currents. Thus it has the form of the off-shell extension (4.5). Since

p2Ai
JAi

and p2Bi
JBi

in (4.5) will further reproduce divisions of Ai and Bi with coefficients
∑ 1

p21
cijpi ·pj , we absorb all these contributions into the corresponding divisions with RD+

SD > 3. The only left contribution for divisions with RD+SD = 3 is the first term of (4.5)

which gives rise to the expected coefficients.

Then we consider divisions with RD + SD = 5, which get both contributions from its

corresponding U (r,s)
D in (4.21) as well as p2Ai

JAi
and p2Bi

JBi
in the off-shell extension (4.5)

of four-point case. Since the coefficients for divisions with RD + SD = 5 are defined in the

same way with the V(r′,s′) (r′ + s′ = 5) in the six-point example, they are just the off-shell

extensions (4.11), and (4.12). Again, the terms containing p2Ai
JAI

and p2Bi
JBi

in (4.11)

and (4.12) are absorbed into the divisions with RD + SD > 5. The left contributions are

those expected coefficients for divisions with RD + SD = 5.

Redefining the coefficients level by level, we finally have (4.2) where all the coefficients

of R+ S < r+ s divisions match with those in the final formula of the identity (1.1). The

coefficient V(r,s) defined by this method only get contributions from the U (r,s)
1 corresponding

to the (r, s) division as well as the off-shell extensions of V(R,S) with R+ S < r + s. Both

cases contain terms proportional to 1
p21
sij , where i and j denote arbitrary external on-shell

lines. Thus V(r,s) has the general form

V(r,s) =
1

p21





∑

1≤i<j≤r

cαiαj
sαiαj

+
∑

1≤i<j≤s

cβiβj
sβiβj

+

r
∑

i=1

s
∑

j=1

cαiβj
sαiβj



 . (4.22)

In the remaining part of this section, we will solve the coefficients c’s to show that V(r,s)

has the expected form.

4.2 Solving V(r,s)

In the above discussion, we have shown that the left hand side of the generalized U(1)-

identity (1.1) could be rearranged into the form (4.2). All the coefficients of divisions

in (4.2) with RD + SD < r+ s are those on the right hand side of the identity (1.1). Only

the coefficient V(r,s) for (r, s)-division are undetermined. Now let us prove that V(r,s) has

the right form, i.e.,

V(r,s) =

(

1

2F 2

)
r+s−1

2

δ(|r − s| − 1). (4.23)
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A B

Figure 9. Diagrams contributing to V(1,2m−2). A curved arrow line denotes the sum over all the

possible three positions of α1 around the four-point vertices.

4.2.1 r = 1

In this case, (1.1) becomes the U(1)-identity for 2m = s+2-point currents, which has been

studied in [1]. The V(1,2) for four-point relation with one α and two β’s is

V(1,2) =
1

2F 2
. (4.24)

The coefficient V(1,4) for six-point relation with only one α vanishes. Generically, V(1,2m−2)

only gets contributions from the diagrams in figure 9. Following direct calculation which

has been shown in [1], we find that

V(1,s) = 0, (for s > 2). (4.25)

Hence V(1,2m−2) satisfies the form (4.23).

4.2.2 r > 1

To solve V(r,s) for r > 1, we consider the following combination of currents

I(α1 | α2, . . . , αr;β1, . . . , βs) ≡
∑

ρ∈OP ({α2,...,αr}
⋃
{β1,...,βs})





∑

σ∈OP ({α1}
⋃
{ρ})

J(σ)



 , (4.26)
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where we have combined left hand sides of a U(1)-identity and a generalized U(1)-

identity with (r − 1) α’s. Now lets consider the coefficient of the (r, s)-division of

I(α1|α2, . . . , αr;β1, . . . , βs). This can be obtained in two different ways:

(a) For a given permutation ρ ∈ OP ({α2, . . . , αr}
⋃

{β1, . . . , βs}), we apply the U(1)-

identity (2.8) with {ρ} as the {β} set. Then we have

∑

σ∈OP (α1
⋃

ρ)

J(σ) =
∑

{ρ}→{ρL}{ρR}

(

1

2F 2

)

J(α1)J({ρL})J({ρR}). (4.27)

Here we summed over divisions {ρ} → {ρL}{ρR} on the right hand side. Substitut-

ing above expression into (4.26) and rearranging the summations, we reexpress the

combination I(α1 | α2, . . . , αr;β1, . . . , βs) by

I(α1 | α2, . . . , αr;β1, . . . , βs) (4.28)

=
∑

ρ∈OP ({α2,...,αr}
⋃
{β1,...,βs})

∑

{ρ}→{ρL}{ρR}

(

1

2F 2

)

J(α1)J({ρL})J({ρR})

=
∑

{α2, . . . , αr} → {αL}{αR}

{β1, . . . , βs} → {βL}{βR}

(

1

2F 2

)

J(α1)





∑

ρL∈OP ({αL}
⋃
{βL})

J({ρL})
∑

ρR∈OP ({αR}
⋃
{βR})

J({ρR})



 ,

where
∑

ρL∈OP ({αL}
⋃
{βL})

J({ρL}) and
∑

ρR∈OP ({αR}
⋃
{βR})

J({ρR}) are two lower-point

substructures of generalized U(1)-identity (2.8). From recursive assumption, we know

that both the coefficient V(rL,sL) for the (rL, sL)-substructure and the coefficient

V(rR,sR) for the (rR, sR)-substructure satisfy (4.23). Thus the coefficient V(r,s)
I of the

(r, s) division of I(α1 | α2, . . . , αr;β1, . . . , βs) is

V(r,s)
I =

∑

{α2, . . . , αr} → {αL}{αR}

{β1, . . . , βs} → {βL}{βR}

(

1

2F 2

)

V(rL,sL)V(rR,sR) (4.29)

=
∑

{α2, . . . , αr} → {αL}{αR}

{β1, . . . , βs} → {βL}{βR}

(

1

2F 2

)

rL+sL−1

2
+

rR+sR−1

2
+1

δ(|rL − sL| − 1)δ(|rR − sR| − 1).

The delta functions impose constraints on r = rL+ rR− 1 and s = sL+ sR. The only

nonzero contributions are the cases with r, s satisfying

r = s− 1, r = s+ 1, r = s+ 3. (4.30)

i) For r = s− 1, only terms with rL = sL − 1 and rR = sR − 1 in (4.30) are nonzero.

Thus we have

V(s−1,s)
I =

s−1
∑

sL=1

(

1

2F 2

)

(sL−1)+sL−1

2
+

(s−sL−1)+(s−sL)−1

2
+1

=
s−1
∑

sL=1

(

1

2F 2

)s−1

=

(

1

2F 2

)
r+s−1

2

(s− 1). (4.31)
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ii) For r = s+1, both terms with rL = sL−1, rR = sR+1 and terms with rL = sL+1,

rR = sR − 1 contribute. Then

V(s+1,s)
I =

s−1
∑

sL=1

(

1

2F 2

)

(sL−1)+sL−1

2
+

(s−sL+1)+(s−sL)−1

2
+1

+

s
∑

sL=0

(

1

2F 2

)

(sL−1)+sL−1

2
+

(s−sL+1)+(s−sL)−1

2
+1

=

(

1

2F 2

)
r+s−1

2

2s. (4.32)

iii) For r = s+ 3, the nonvanishing terms are those with rL = sL + 1, rR = sR + 1.

Thus we get

V(s+3,s)
I =

s
∑

sL=0

(

1

2F 2

)

(sL+1)+sL−1

2
+

(s−sL+1)+(s−sL)−1

2
+1

=

(

1

2F 2

)
r+s−1

2

(s+ 1).

(4.33)

(b) The combination of currents I(α1 | α2, . . . , αr;β1, . . . , βs) can be expressed from an-

other angle: considering a given {ρ} ∈ OP ({α1}
⋃{α2, . . . , αr}) as the {α} set on the

left hand side of (1.1), we have a combination of currents
∑

{σ}∈OP ({ρ}
⋃
{β1,...,βs})

J(σ).

After summing over all {ρ} ∈ OP ({α1}
⋃{α2, . . . , αr}), we express I(α1 |

α2, . . . , αr;β1, . . . , βs) by

I(α1 | α2, . . . , αr;β1, . . . , βs) =
∑

{ρ}∈OP ({α1}
⋃
{α2,...,αr})





∑

{σ}∈OP ({ρ}
⋃
{β1,...,βs})

J(σ)



 .

(4.34)

Expressing each
∑

{σ}∈OP ({ρ}
⋃
{β1,...,βs})

J(σ) by (4.2), we collect the coefficients of (r, s)

division for I(α1 | α2, . . . , αr;β1, . . . , βs). There are two parts of contributions A(r,s)

and B(r,s):

i) the first part A(r,s) is the sum of the V(r,s) coefficients for all possible ρ ∈
OP ({α1}

⋃{α2, . . . , αr}),
ii) the second part B(r,s) is the sum of terms with (r − 2, s) divisions containing a

nontrivial subcurrent J(φ ∈ OP ({α1}
⋃

{αi, αi+1})).

As shown in the previous subsection, the terms in B(r,s) already have the expected

coefficients
(

1
2F 2

)

(r−2)+s−1
2 δ(|r−2−s|−1). Collecting the (r−2, s) divisions containing

subcurrents J(α1, αi, αi+1), J(αi, α1, αi+1), J(αi, αi+1, α1) and applying the U(1)-

identity with one α and two β’s, we obtain a term with (r, s) division for I(α1 |
α2, . . . , αr;β1, . . . , βs). The coefficient is

(

1

2F 2

)
(r−2)+s−1

2
+1

δ(|r − 2− s| − 1) =

(

1

2F 2

)
r+s−1

2

δ(|r − 2− s| − 1). (4.35)
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After summing over i = 2, 3, . . . , r − 1, we get B(r,s)

B(r,s) =
r−1
∑

i=2

(

1

2F 2

)
r+s−1

2

δ(|r − 2− s| − 1). (4.36)

Therefore, V(r,s)
I is given by

V(r,s)
I = A(r,s) + B(r,s) = A(r,s) +

(

1

2F 2

)
r+s−1

2

(r − 2)δ(|r − 2− s| − 1). (4.37)

Again, the delta function imposes a constraint on r and s. The only nonzero cases

are r = s+ 1 and r = s+ 3.

i) For r = s+ 1, we have

V(s+1,s)
I = A(s+1,s) +

(

1

2F 2

)
r+s−1

2

(s− 1). (4.38)

ii) For r = s+ 3, we have

V(s+3,s)
I = A(s+3,s) +

(

1

2F 2

)
r+s−1

2

(s+ 1). (4.39)

Comparing these expressions of V(r,s)
I derived from (a) approach with those from (b) ap-

proach, we immediately conclude that

A(r,s) =

(

1

2F 2

)
r+s−1

2

rδ(|r − s| − 1). (4.40)

Then A(r,s) can be expanded as

A(r,s) =

(

1

2F 2

)
r+s−1

2 1

p21





∑

1≤i<j≤r

dαiαj
sαiαj

+
∑

1≤i<j≤s

dβiβj
sβiβj

+
r
∑

i=1

s
∑

j=1

dαiβj
sαiβj



 ,

(4.41)

where momentum conservation and on-shell conditions have been used; dij (i, j can be any

{α} or {β} elements) are defined by

dαiαj
= dβiβj

= dαiβj
= rδ(|r − s| − 1). (4.42)

If we exchange the roles of {α} and {β} in I(α1 | α2, . . . , αr;β1, . . . , βs), we get another

combination of currents

I(α1, . . . , αr;β1 | β2, . . . , βs) ≡
∑

ρ∈OP ({α1,...,αr}
⋃
{β2,...,βs})





∑

σ∈OP ({ρ}
⋃
{β1})

J(σ)



 , (4.43)

which has an equivalent form

I(α1, . . . , αr;β1 | β2, . . . , βs) =
∑

ρ∈OP ({α1,...,αr}
⋃
{ρ})





∑

σ∈OP ({ρ}
⋃
{β1})

J(σ)



 . (4.44)
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Figure 10. The diagrams cancel out with β1, β2 from reductions of different subcurrents when r1

is even.

Following a parallel discussion, we have

A′(s,r) =

(

1

2F 2

)
r+s−1

2 1

p21





∑

1≤i<j≤r

d′αiαj
sαiαj

+
∑

1≤i<j≤s

d′βiβj
sβiβj

+

r
∑

i=1

s
∑

j=1

d′αiβj
sαiβj



 ,

(4.45)

where A′(s,r) is similar with A(r,s) but defined from I(α1, . . . , αr;β1 | β2, . . . , βs) instead.

The coefficients d′s are given by

d′αiαj
= d′βiβj

= d′αiβj
= sδ(|s− r| − 1). (4.46)

Recalling that A(r,s) is given by sum of the V(r,s) corresponding to different permuta-

tions {ρ} ∈ OP ({α1}
⋃{α2, . . . , αr}) in (4.34) and V(r,s) have the general pattern (4.22),

we express A(r,s) in (4.41) by the general expression (4.22) of V(r,s). Comparing the coef-

ficients of each sαiβj
sαiαj

and sβiβj
on both sides of (4.41), we obtain a set of equations

for cij where either i or j can be α or β elements. Similarly, when expressing A′(s,r) by

the V(r,s)’s corresponding to different permutations ρ ∈ OP ({β1}
⋃{β2, . . . , βs}) in (4.44),

we can also establish the relations between cij and d′ij . Let us solve the coefficients cαiβj
,

cαiαj
and cβiβj

from these equations.

• cαiβj
.

We now solve cαiβj
from their relations with dαiβj

in (4.41). Noticing that any permu-

tation ρ in the first sum of (4.34) has the general form {α2, . . . , αi, α1, αi+1, . . . , αr},
the coefficient of sα1βj

in the second sum should be cαiβj
. This is because the α1 in

{α2, . . . , αi, α1, αi+1, . . . , αr} is inserted at the i-th position and plays as the αi in

the standard permutation {α1, α2, α3, . . . , αr}. Thus we get the following equation

dα1βj
=

r
∑

i=1

cαiβj
, (j = 1, 2, . . . , s). (4.47)
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Figure 11. The diagrams cancel out with β1, β2 from reductions of different subcurrents when r1

is odd. In A and B, we summed over σ ∈ OP (αr1+1, . . . , αr1+s1−1)
⋃

{β2, . . . , βs1} for given s1. In

C and D, we summed over σ′ ∈ OP (αr1−1, . . . , αr1+s1−1)
⋃{β2, . . . , βs1}.

Similarly, the coefficient of sαlβj
(2 ≤ l ≤ r) in the sum over σ ∈

OP ({α2, . . . , αi, α1, αi+1, . . . , αr}
⋃{β}) in (4.34) for given i is

{

cαlβj
(i < l ≤ r)

cαl−1βj
(1 < l ≤ i− 1)

. (4.48)

Thus dαiβj
with i = 2, . . . , r is given by

dαiβj
= (l − 1)cαlβj

+ (r − l + 1)cαl−1βj
, (l = 2, . . . , r, j = 1 . . . s). (4.49)

In the same way, when considering A′(s,r) and the combination (4.43), we obtain the

relations between d′’s and c’s

d′αiβ1
=

s
∑

j=1

cαiβj
, (i = 1, 2, . . . , r) (4.50)

d′αiβj
= (k − 1)cαiβk

+ (s− k + 1)cαiβk−1
, (i = 1, . . . , r, k = 2 . . . s). (4.51)

We first prove that cα1β1 = cα1β2 . Considering positions of β1 and β2, we can classify

the contributing diagrams into two types:
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i) β1 and β2 come from reduction of a same subcurrent.

ii) β1 and β2 come from reduction of different subcurrents.

The factors cα1β1 and cα1β2 receive equal contributions from the first types of dia-

grams. For the second type, we can always find diagrams cancel with each other. To

see this, we assume that the last α element in front of β2 (or in the same substructure

with β) is αr1 .

If r1 is even, the diagrams are typically given by figure 10. The left diagram in

figure 10 contribute a r1
2 sα1β1 ,

5 while the right diagram contribute a − r1
2 sα1β1 .

Thus these two contributions to cα1α1 cancel out. Since the r1 is even, there are

odd number of legs in front of β2. From Feynman rules, such diagrams do not

contribute to cα1β2 .

If r1 is odd, the diagrams in figure 11 should be taken into account. The A, B

diagrams of figure 11 contribute r1−2
2 and − r1−2

2 to cα1β1 , while the diagrams C

and D of figure 11 contribute r1−4
2 and − r1−4

2 to cα1β1 . Thus cα1β1 does not get

any nonzero contribution from figure 11. When considering cα1β2 , we find that

diagrams A, B, C, D in figure 11 contribute r1, −(r1 − 1), r1 − 3, −(r1 − 2).

Thus cα1β2 also does not get any nonzero contribution from these diagrams.

Now we substitute cα1β1 = cα1β2 into (4.51) with i = 1, k = 2 and remember d′ have

the form (4.46) we have

cα1β1 = cα1β2 = δ(|r − s| − 1). (4.52)

Inserting cα1β2 into (4.51) with i = 1, k = 3, we get

cα1β3 = δ(|r − s| − 1), (4.53)

Inserting cα1β3 into (4.51) with i = 1, k = 4, we get

cα1β4 = δ(|r − s| − 1). (4.54)

Repeating these steps, we can obtain cα1βk
= δ(|r − s| − 1) from d′α1βk

where k =

2, . . . , s.

We then substitute cα1β1 into (4.49) with l = 2, j = 1. Recalling that d have the

form (4.42), we get

cα2β1 = δ(|r − s| − 1). (4.55)

Substituting cα2β1 into (4.51) with i = 2, k = 2, we get

cα2β2 = δ(|r − s| − 1). (4.56)

5For convenience, we neglect a factor
(

1
2F2

)
r+s−1

2 in the remaining discussion and put the factor back

in the final result.
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Substituting cα2β2 into (4.51) with i = 2, k = 3, we get

cα2β3 = δ(|r − s| − 1). (4.57)

Repeating these steps, we solve that cα2βk
= δ(|r − s| − 1) from d′α2βk

where k =

2, . . . , s.

Following similar discussions and considering all the equations (4.49) and (4.51), we

finally solve all the coefficients

cαiβj
= δ(|r − s| − 1), (i = 1, . . . , r, j = 1, . . . , s). (4.58)

• cαiαj
and cβiβj

.

We consider d′αiαj
in (4.45). d′αiαj

gets a cαiαj
from each ρ ∈ OP ({β1}

⋃{β2, . . . , βs}).
Thus we arrive at

scαiαj
= sδ(|s− r| − 1). (4.59)

Then cαiαj
are solved as

cαiαj
= δ(|s− r| − 1). (4.60)

If we consider dαiαj
instead, we can solve cβiβj

from (4.41) in the same way. The

solution is

cβiβj
= δ(|s− r| − 1). (4.61)

To sum up, all the coefficients cαiαj
, cβiβj

and cαiβj
in (4.22) have the form δ(|s−r|−1).

Considering on-shell condition and momentum conservation, the sum in (4.22) then give rise

V(r,s) =

(

1

2F 2

)
r+s−1

2 1

p21
p21δ(|s− r| − 1) =

(

1

2F 2

)
r+s−1

2

δ(|s− r| − 1). (4.62)

5 Conclusions

In this paper, we proposed and proved the generalized U(1)-identity for tree-level off-shell

currents in nonlinear sigma model. When we take on-shell limit, this relation becomes

the on-shell generalized U(1) identity which is equivalent with KK relation. The U(1)-

identity for off-shell currents proposed in [1] is a special case of the generalized U(1)-identity.

There are several possible further extensions of this work, including the generalized off-shell

BCJ relation, the loop-level extensions and the BCJ duality which implies the relations in

nonlinear sigma model.
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