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1 Introduction

The flavor structure of quarks and leptons in the standard model is mysterious. Why are

there three generations? Why are their masses hierarchically different from each other?

Why do they show the specific mixing angles? It is challenging to try to solve this flavor

mystery. A flavor symmetry could play an important role in particle physics models in

order to understand the flavor structure of quarks and leptons. Since the Yukawa matrices

of the standard model include many parameters, flavor symmetries are useful to effectively

reduce the number of parameters and to obtain some predictions for experiments. In

particular, non-Abelian discrete flavor symmetries can be key ingredients to make models

with a suitable flavor structure. Indeed, there are many works of flavor models utilizing

various non-Abelian discrete flavor symmetries (see [1–5] for reviews).

It is known that some non-Abelian discrete flavor symmetries have a stringy origin.1

In particular, in orbifold compactification of heterotic string theory [9–22] (also see a re-

view [23]), non-Abelian discrete symmetries D4 and ∆(54) respectively arise from one- and

two-dimensional orbifolds, S1/Z2 and T2/Z3, as discussed in [24].2 The non-Abelian dis-

crete symmetries originate from a geometrical property of extra-dimensional orbifolds, the

1In [6–8], field theoretically, non-Abelian discrete groups are derived from non-Abelian gauge groups

through spontaneous symmetry breaking.
2Similar non-Abelian discrete symmetries including ∆(27) can appear in intersecting/magnetized D-

brane models [25–30]. See also [31].
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permutation symmetry of orbifold fixed points, and a string selection rule between closed

strings. Phenomenological applications of string derived non-Abelian discrete symmetries

to flavor models are analyzed, e.g. in [32].

Furthermore, in [33], it is argued that the non-Abelian discrete symmetries D4 and

∆(54) have a gauge origin within the heterotic string theory. Namely, these symmetries

are respectively enhanced to continuous gauge symmetries U(1)⋊ Z2 and U(1)2 ⋊ S3 at a

symmetry enhancement point in the moduli space of orbifolds. After certain scalar fields

which are associated with the Kähler moduli fields get vacuum expectation values, the U(1)

symmetries break down to Abelian discrete subgroups, and there remains a Z4 ⋊ Z2
∼= D4

or (Z3 ×Z3)⋊ S3
∼= ∆(54) symmetry group, respectively. This result suggests that a non-

Abelian discrete symmetry can be regarded as a remnant of a continuous gauge symmetry.

Also, this result could provide us with a new insight on model building for flavor physics.

Various non-Abelian discrete symmetries other than D4 and ∆(54) have been used in

field-theoretical model building, e.g. S3, S4, A4, ∆(3N2), ∆(6N2) (see [1–5]). Thus, it is

important to extend the stringy derivation of D4 and ∆(54) from U(1)⋊Z2 and U(1)2⋊S3,

by studying a field-theoretical derivation of other non-Abelian discrete flavor symmetries

from U(1)m ⋊ Sn or U(1)m ⋊ Zn (See also [34]). That is the purpose of this paper. Some

of them may be reproduced from other types of string compactifications.

In this paper we consider an extension of the argument of the gauge origin in [33] to

field-theoretical model building. We show that phenomenologically interesting non-Abelian

discrete symmetries can be embedded into U(1)m ⋊ Sn or U(1)m ⋊ Zn continuous gauge

theory. Spontaneous symmetry breaking of U(1)m to Abelian discrete symmetries leads

to non-Abelian discrete flavor symmetries. In the next section we discuss a gauge theory

realization of non-Abelian discrete symmetries. In section 3, we show a concrete lepton

flavor model based on a U(1) flavor symmetry. Section 4 is devoted to conclusions.

2 Gauge extension of non-Abelian discrete symmetry

In this section we investigate a field theoretical model building technique in which non-

Abelian discrete symmetries have a continuous gauge symmetry origin. We start with a

gauge theory with group structure of the form U(1)n⋊Sm or U(1)n⋊Zm. Then, by giving

a suitable VEV to a scalar field, a non-Abelian discrete symmetry is realized effectively.

2.1 S3 group

We consider a U(1)⋊ Z2 model with the field contents as in table 1. The action of the Z2

symmetry on the U(1) charge q is given by

Z2 : q → −q. (2.1)

By this we mean that the U(1) gauge field Aµ transforms as Aµ → −Aµ, and that the

oppositely charged fields in this model transform into each other, e.g. U1 ↔ U2 and M1 ↔
M2. This implies that the kinetic (and gauge interaction) terms are invariant under the Z2.

Now, we consider VEVs for fields Ui obeying the relation

〈U1〉 = 〈U2〉. (2.2)
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Field U(1) charge Z3 charge S3 rep.

U1, U2 +1,−1 0, 0 —

M1,M2 +1
3 ,−1

3 1, 2 2

M 0 0 1

M ′
1,M

′
2 +1,−1 0, 0 1⊕ 1′

Table 1. Field contents of the U(1) ⋊ Z2 model for the S3 group. Besides the U(1) charges, the

charges under the unbroken discrete Z3 subgroup of U(1) are shown. Representations under the

resulting S3 group are also shown.

This VEV relation maintains the original Z2 permutation symmetry,
(

0 1

1 0

)

, (2.3)

but breaks the U(1) group to a discrete Z3 subgroup since the field Mi has U(1) charge

±1/3. The Z3 charges are 1 for the field M1 and 2 for the field M2, so the Z3 action is

expressed by
(

ω 0

0 ω−1

)

, (2.4)

with the cubic root ω = e2πi/3. The combination of the two actions (2.3) and (2.4) gives

rise to a non-Abelian discrete symmetry, which is nothing but S3
∼= Z3 ⋊ Z2. It turns out

that (M1,M2) forms a doublet of this S3 group.

Next, we read off the S3 representation of the other matter fields. First, the field

M can be regarded as the trivial singlet 1 of the S3 group. In the case of (M ′
1,M

′
2), we

see that these fields have trivial Z3 charges. Then we can perform a change of basis as

M̃ ′
1 ≡ M ′

1 + M ′
2 and M̃ ′

2 ≡ M ′
1 − M ′

2. In this basis, the Z2 action is given by M̃ ′
1 → M̃ ′

1

and M̃ ′
2 → −M̃ ′

2. Hence, (M ′
1,M

′
2) forms a 1 ⊕ 1′ of the S3 group. As a result, we can

reproduce all irreducible representations of the S3 group.

2.2 D4 group

Now, we consider a U(1) ⋊ Z2 model with the field contents as in table 2. This model is

based on a U(1) symmetry and possesses an additional Z2 symmetry which acts on the

U(1) charge as in the previous case (2.1), so the fields transform as U1 ↔ U2 and M1 ↔ M2

etc. We consider the following VEV relation

〈U1〉 = 〈U2〉. (2.5)

This VEV relation maintains the original Z2 permutation symmetry,
(

0 1

1 0

)

, (2.6)
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Field U(1) charge Z4 charge D4 rep.

U1, U2 +1,−1 0, 0 —

M1,M2 +1
4 ,−1

4 1, 3 2

M 0 0 1++

M ′
1,M

′
2 +1,−1 0, 0 1++ ⊕ 1−−

N1, N2 +1
2 ,−1

2 2, 2 1+− ⊕ 1−+

Table 2. Field contents of the U(1) ⋊ Z2 model for the D4 group. Besides the U(1) charges, the

charges under the unbroken discrete Z4 subgroup of U(1) are shown. Representations under the

resulting D4 group are also shown.

but breaks the U(1) group to its discrete Z4 subgroup. The Z4 charges for M1 and M2 are

1 and 3 respectively, hence the Z4 action is written as
(

i 0

0 −i

)

. (2.7)

The combination of actions (2.6) and (2.7) leads to the non-Abelian discrete symmetry

D4
∼= Z4 ⋊ Z2. It turns out that (M1,M2) forms the doublet of the D4 group.

Next, we read off the D4 representation of the other matter fields. First, the field M

can be regarded as the trivial singlet 1++ of D4. In the case of a set of fields (M ′
1,M

′
2), we

make redefinitions as M̃ ′
1 ≡ M ′

1+M ′
2 and M̃ ′

2 ≡ M ′
1−M ′

2. In this basis, the Z2 action acts

as M̃ ′
1 → M̃ ′

1 and M̃ ′
2 → −M̃ ′

2. Thus, (M ′
1,M

′
2) forms a 1++ ⊕ 1−− of the D4 group. For

the fields (N1, N2), both fields have Z4 charge 2. Then we can take a linear combination

as Ñ1 ≡ N1 + N2 and Ñ2 ≡ N1 − N2, and observe that the Z2 action acts as Ñ1 → Ñ1

and Ñ2 → −Ñ2. Then (Ñ1, Ñ2) forms 1+− ⊕ 1−+ of the D4 group. As a result, we can

reproduce all irreducible representations of the D4 group by a suitable field setup.

2.3 S4 group

We consider a U(1)2 ⋊ S3 model with the field contents as in table 3. This model has a

gauge U(1)2 symmetry and fields are characterized by two U(1) charges q1 and q2. We

define the two dimensional U(1)2 charges e1, e2 and e3 used in the table as

e1 ≡ (
√
2, 0), e2 ≡

(

−
√
2

2
,

√
6

2

)

, e3 ≡
(

−
√
2

2
,−

√
6

2

)

. (2.8)

The additional non-Abelian discrete S3 symmetry is generated by a 120 degree rotation

and a reflection on the two-dimensional U(1)2 charge plane (q1, q2) as

Rotation :

(

q1
q2

)

→
(

−1
2

√
3
2

−
√
3
2 −1

2

)(

q1
q2

)

, (2.9)

Reflection :

(

q1
q2

)

→
(

1 0

0 −1

)(

q1
q2

)

. (2.10)
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Field U(1)2 charge Z2
2 charge S4 rep.

U1, U2, U3 −e1,−e2,−e3 (0, 0), (0, 0), (0, 0) —

M1,M2,M3
e1
2 ,

e2
2 ,

e3
2 (1, 1), (1, 0), (0, 1) 3

M 0 (0, 0) 1

N1, N2, N3 e1, e2, e3 (0, 0), (0, 0), (0, 0) 1⊕ 2

Table 3. Field contents of the U(1)2 ⋊ S3 model for the S4 group. Besides the U(1)2 charges, the

charges under the unbroken discrete Z2

2
subgroup of U(1)2 are shown. Representations under the

resulting S4 group are also shown.

The S3 action permutes e1, e2 and e3, which corresponds to a permutation of the fields as

U1 ↔ U2 ↔ U3 and M1 ↔ M2 ↔ M3. We consider the VEV relation as

〈U1〉 = 〈U2〉 = 〈U3〉. (2.11)

This VEV relation maintains S3,






0 1 0

1 0 0

0 0 1






,







1 0 0

0 0 1

0 1 0






, (2.12)

but breaks the U(1)2 group down to a discrete Z2
2 subgroup. The Z2 charges z1 and z2

in table 3 are determined from the U(1)2 charges as z1 = 2(q1/
√
2− q2/

√
6) (mod 2) and

z2 = 2(q1/
√
2 + q2/

√
6) (mod 2). Then, the Z2

2 action is given by







−1 0 0

0 −1 0

0 0 1






,







−1 0 0

0 1 0

0 0 −1






. (2.13)

The combination of (2.12) and (2.13) gives rise to the non-Abelian discrete symmetry

S4
∼= (Z2 × Z2)⋊ S3. It turns out that (M1,M2,M3) forms the triplet 3 of the S4 group.

Next, we read off the S4 representation of the other matter fields. First, the field

M can be regarded as the trivial singlet 1 of S4. In the case of the fields (N1, N2, N3),

we make redefinitions as Ñ1 ≡ (N1 + N2 + N3)/
√
3, Ñ2 ≡ (N1 + ωN2 + ω2N3)/

√
3 and

Ñ3 ≡ (N1 + ω2N2 + ωN3)/
√
3. In this basis, the three fields transform as the 1⊕ 2 of the

S3 group. After the VEV, these fields have the trivial Z2
2 charge (0, 0), so they correspond

to 1 ⊕ 2 of S4. Note, that fields with opposite U(1)2 charges −ei/2 have, after U(1)2

breaking, the same Z2
2 charges as the fields Mi. Hence, such fields also lead to the 3 of S4.

As a result, we can realize the 1,1⊕ 2,3 representations of the S4 group in this setup.

We have introduced the specific combination of U(1)2 charges, e1, e2, and e3 which can

be interpreted as weights of the fundamental SU(3) triplet (or anti-triplet) representation.

Then, the action of the S3 group on the ei corresponds to the action of the Weyl group of

SU(3) on the triplet weights. Thus, one might wonder about a SU(3) origin of this setup. In

– 5 –
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fact, U(1)2⋊S3 is a subgroup of SU(3) where U(1)2 furnishes maximal torus and S3 is a lift

of the Weyl group into SU(3). Also, note that the representation matrices (2.12) of S3 do

not actually belong to SU(3), so they give rise to genuine U(1)2 ⋊ S3 representations. The

fundamental triplet and anti-triplet of SU(3) also give rise to U(1)2 ⋊ S3 representations

which we did not cover here (in these cases, the representation matrices are given by those

in (2.12) amended by a minus sign). For a short remark on these kinds of representations

please refer to the conclusion section.

Furthermore, in a stringy realization of ∆(54), the SU(3) gauge symmetry appears in

toroidal compactification at a symmetry enhanced point. Then, by a Z3 orbifolding the

charged root vectors are projected out [33], leaving a symmetry group U(1)2 ⋊ S3.

To realize ∆(54), A4 and ∆(27) in the next subsections, we also use the vectors e1, e2
and e3, as well as the Weyl reflections and the Coxeter elements.

2.4 ∆(54) group

We consider a U(1)2⋊S3 model for the ∆(54) group, with field contents given as in table 4.

The difference from the previous subsection is that the matter fields now have relative U(1)

charges of 1/3 when compared to the fields Ui. Then, by the VEV relation (2.11) for the

field Ui, the S3 symmetry remains but U(1)2 is broken down to its Abelian subgroup Z2
3 .

The two Z3 charges z1, z2 in table 4 are determined as z1 = 3(q1/
√
2 − q2/

√
6) (mod 3)

and z2 = 3(q1/
√
2 + q2/

√
6) (mod 3), and the Z2

3 action is described by







ω 0 0

0 ω−1 0

0 0 1






,







ω 0 0

0 1 0

0 0 ω−1






. (2.14)

The actions (2.12) and (2.14) together generate the non-Abelian discrete symmetry

∆(54) ∼= (Z3 × Z3) ⋊ S3. It turns out that (M1,M2,M3) forms the triplet 31(1) of the

∆(54) group.

Next, we read off the representation of the other matter fields under the ∆(54) group.

First, the fields (M ′
1,M

′
2,M

′
3), which have opposite U(1)2 charges and Z2

3 charges when

compared to the Mi field, lead to the 31(2) of ∆(54). The field M can be regarded as

the trivial singlet 1+ of ∆(54). In the case of the fields (N1, N2, N3), we use the linear

combinations Ñ1 ≡ (N1 + N2 + N3)/
√
3, Ñ2 ≡ (N1 + ωN2 + ω2N3)/

√
3 and Ñ3 ≡ (N1 +

ω2N2+ωN3)/
√
3. In this basis, one sees that they transform as a 1⊕2 of the S3 group. After

the VEV, these fields have trivial Z2
3 charges, so they correspond to 1+ ⊕ 21 of the ∆(54)

group. Note, that instead of the Mi which have U(1)2 charges ei/3, we can also introduce

fields with charges −2ei/3. Since the Z
2
3 charges of such fields are identical to the Mi, they

also lead to the 31(1) representation. As the result, we can realize 1+,1+ ⊕ 21,31(1),31(2)
representations of the ∆(54) group in our setup.

2.5 A4 group

We consider a U(1)2⋊Z3 model with the field contents as in table 5. There, we add fields Ai

to the field contents of the model for the S4 group (table 3). We define the two-dimensional

– 6 –
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Field U(1)2 charge Z2
3 charge ∆(54) rep.

U1, U2, U3 −e1,−e2,−e3 (0, 0), (0, 0), (0, 0) —

M1,M2,M3
e1
3 ,

e2
3 ,

e3
3 (1, 1), (2, 0), (0, 2) 31(1)

M ′
1,M

′
2,M

′
3 − e1

3 ,−
e2
3 ,−

e3
3 (2, 2), (1, 0), (0, 1) 31(2)

M 0 (0, 0) 1+

N1, N2, N3 e1, e2, e3 (0, 0), (0, 0), (0, 0) 1+ ⊕ 21

Table 4. Field contents of the U(1)2 ⋊ S3 model for the ∆(54) group. Besides the U(1)2 charges,

the charges under the unbroken discrete Z2

3
subgroup of U(1)2 are shown. Representations under

the resulting ∆(54) group are also shown.

U(1)2 charges as

w1 ≡
(
√
2

2
,

√
6

6

)

, w2 ≡
(

−
√
2

2
,

√
6

6

)

, w3 ≡
(

0,−
√
6

3

)

. (2.15)

The introduction of Ai fields breaks the original S3 symmetry to a Z3 symmetry (under

reflections, their U(1)2 charges are not mapped onto each other). Then, this model has a

U(1)2 ⋊ Z3 structure, the Z3 symmetry acting as U1 → U2 → U3 → U1 and M1 → M2 →
M3 → M1, etc. We consider a VEV relation as

〈U1〉 = 〈U2〉 = 〈U3〉. (2.16)

This VEV relation maintains Z3,







0 0 1

1 0 0

0 1 0






, (2.17)

but breaks U(1)2 to its Abelian subgroup Z2
2 . The two Z2 charges z1, z2 in table 5 are

determined by z1 = 2(q1/
√
2− q2/

√
6) (mod 2) and z2 = 2(q1/

√
2 + q2/

√
6) (mod 2), and

the Z2
2 action is given by







−1 0 0

0 −1 0

0 0 1






,







−1 0 0

0 1 0

0 0 −1






. (2.18)

By combining (2.17) and (2.18), this leads to non-Abelian discrete symmetry A4
∼= (Z2 ×

Z2)⋊ Z3. It turns out that (M1,M2,M3) forms the triplet 3 of the A4 group.

Next, we read off the A4 representation of the other fields. First the field M can be

regarded as the trivial singlet 1 of A4. The fields (A1, A2, A3) have a similar structure to

the fields Mi, and they also lead to a 3 of A4. In the case of the fields (N1, N2, N3), we

use the linear combinations Ñ1 ≡ (N1 +N2 +N3)/
√
3, Ñ2 ≡ (N1 + ωN2 + ω2N3)/

√
3 and

– 7 –



J
H
E
P
0
3
(
2
0
1
5
)
1
5
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Field U(1)2 charge Z2
2 charge A4 rep.

U1, U2, U3 −e1,−e2,−e3 (0, 0), (0, 0), (0, 0) —

M1,M2,M3
e1
2 ,

e2
2 ,

e3
2 (1, 1), (1, 0), (0, 1) 3

M 0 (0, 0) 1

N1, N2, N3 e1, e2, e3 (0, 0), (0, 0), (0, 0) 1⊕ 1′ ⊕ 1′′

A1, A2, A3
3w1

2 , 3w2

2 , 3w3

2 (1, 0), (0, 1), (1, 1) 3

Table 5. Field contents of the U(1)2 ⋊Z3 model for the A4 group. Besides the U(1)2 charges, the

charges under the unbroken discrete Z2

2
subgroup of U(1)2 are shown. Representations under the

resulting A4 group are also shown.

Ñ3 ≡ (N1+ω2N2+ωN3)/
√
3. In this basis, the three fields transform as 1⊕1′⊕1′′ of Z3.

After the VEV, these fields have trivial Z2
2 charges, so they correspond to 1 ⊕ 1′ ⊕ 1′′ of

the A4 group. Note that other fields (M ′
1,M

′
2,M

′
3) with U(1)2 charges (2n+1)ei/2, where

n is an integer, also lead to 3 representation since they have same Z2
2 charges as Mi. As a

result, we can realize 1,1⊕ 1′ ⊕ 1′′,3 representations of A4 in this setup.

2.6 ∆(27) group

We consider a U(1)2⋊Z3 model with the field contents as in table 6. There, we have added

fields Ai and Bi to the field content of the ∆(54) model (table 4). These fields break the S3

symmetry to a Z3 symmetry. We now consider the VEV relation (2.16), which maintains

Z3 (2.17) but breaks U(1)
2 to its Abelian subgroup Z2

3 . The two Z3 charges z1, z2 in table 6

are determined as z1 = 3(q1/
√
2 − q2/

√
6) (mod 3) and z2 = 3(q1/

√
2 + q2/

√
6) (mod 3).

Also, the Z2
3 action is given by







ω 0 0

0 ω−1 0

0 0 1






,







ω 0 0

0 1 0

0 0 ω−1






. (2.19)

The generators (2.17) and (2.19) generate a non-Abelian discrete symmetry ∆(27) ∼= (Z3×
Z3)⋊ Z3. It turns out that (M1,M2,M3) forms the triplet 3[0][1] of the ∆(27) group.

Next we read off the representation of the other matter fields under the ∆(27) group.

First, the fields (M ′
1,M

′
2,M

′
3) which have opposite U(1)2 charges and Z2

3 charges when

compared to the fields Mi lead to a 3[0][2] of the ∆(27) group. The field M can be regarded

as the trivial singlet 10,0 of ∆(27). In the case of the fields (N1, N2, N3), we use the

linear combinations Ñ1 ≡ (N1 + N2 + N3)/
√
3, Ñ2 ≡ (N1 + ωN2 + ω2N3)/

√
3 and Ñ3 ≡

(N1+ω2N2+ωN3)/
√
3. In this basis, the three fields transform as 1⊕1′⊕1′′ of Z3. After

the VEV, these fields have the trivial Z2
3 charges, so they correspond to 10,0 ⊕ 11,0 ⊕ 12,0

of the ∆(27) group. Next we consider the fields (A1, A2, A3). They have degenerate Z2
3

charges, so by diagonalization we observe that they transform as 1 ⊕ 1′ ⊕ 1′′ under Z3.

Then, these fields lead to a 10,2⊕11,2⊕12,2 of the ∆(27) group. Similarly (B1, B2, B3) lead
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Field U(1)2 charge Z2
3 charge ∆(27) rep.

U1, U2, U3 −e1,−e2,−e3 (0, 0), (0, 0), (0, 0) —

M1,M2,M3
e1
3 ,

e2
3 ,

e3
3 (1, 1), (2, 0), (0, 2) 3[0][1]

M ′
1,M

′
2,M

′
3 − e1

3 ,−
e2
3 ,−

e3
3 (2, 2), (1, 0), (0, 1) 3[0][2]

M 0 (0, 0) 10,0

N1, N2, N3 e1, e2, e3 (0, 0), (0, 0), (0, 0) 10,0 ⊕ 11,0 ⊕ 12,0

A1, A2, A3 w1, w2, w3 (1, 2), (1, 2), (1, 2) 10,2 ⊕ 11,2 ⊕ 12,2

B1, B2, B3 2w1, 2w2, 2w3 (2, 1), (2, 1), (2, 1) 10,1 ⊕ 11,1 ⊕ 12,1

Table 6. Field contents of the U(1)2 ⋊ Z3 model for the ∆(27) group. Besides the U(1)2 charges,

the charges under the unbroken discrete Z2

3
subgroup of U(1)2 are shown. Representations under

the resulting ∆(27) group are also shown.

to 10,1 ⊕ 11,1 ⊕ 12,1 of the ∆(27) group. As a result, we can realize the 10,0,10,0 ⊕ 11,0 ⊕
12,0,10,1 ⊕ 11,1 ⊕ 12,1,10,2 ⊕ 11,2 ⊕ 12,2,3[0][1],3[0][2] representations of the ∆(27) group in

this setup.

3 U(1)2 ⋊ S3 lepton flavor model

In this section we present a concrete model for the lepton sector based on the U(1)2 ⋊ S3

symmetry, which is related to the ∆(54) discrete symmetry discussed in section 2.4. Several

interesting flavor models based on the ∆(54) symmetry have been investigated in [35–40].

Here we consider a supersymmetric model with U(1)2 ⋊ S3 × Z2 symmetry, and with

the field content as in table 7. There, in addition to the MSSM fields (the lepton doublets

(Le, Lµ, Lτ ), the right-handed lepton fields (ec, µc, τ c) and Higgs doublet pairs (Hu, Hd))

we introduce flavon fields Ai, Bi, Ci and Di. The VEV of the flavon fields breaks the

U(1)2 ⋊ S3 symmetry completely. Corresponding representations under ∆(54) are also

shown in table 7. It is also possible to add other flavon fields, e.g. fields Ui in table 4,

and consider the situation where the VEV of the fields, 〈U1〉 = 〈U2〉 = 〈U3〉, breaks the

symmetry as U(1)2⋊S3 → ∆(54) at an intermediate scale. In this paper we do not consider

this possibility.

3.1 Yukawa mass matrices

First, we consider the Yukawa sector of the model. By invariance under U(1)2 ⋊ S3 × Z2,

the superpotentials of the neutrino sector and the charged lepton sector are given by

Wν = yν1 (B1LeLe +B2LµLµ +B3LτLτ )HuHu/Λ
2 (3.1)

+ yν2 (A1(LµLτ + LτLµ) +A2(LeLτ + LτLe) +A3(LeLµ + LµLe))HuHu/Λ
2

+ yν3
(

C2
1 (LµLτ + LτLµ) + C2

2 (LeLτ + LτLe) + C2
3 (LeLµ + LµLe)

)

HuHu/Λ
3,

– 9 –



J
H
E
P
0
3
(
2
0
1
5
)
1
5
3

Field U(1)2 charge Z2 charge ∆(54) rep.

(Le, Lµ, Lτ ) (2e13 , 2e23 , 2e33 ) 0 31(2)

(ec, µc, τ c) (−3e1,−3e2,−3e3) 1 1+ ⊕ 21

Hu 0 0 1+

Hd 0 0 1+

(A1, A2, A3) (2e13 , 2e23 , 2e33 ) 0 31(2)

(B1, B2, B3) (−4e1
3 ,−4e2

3 ,−4e3
3 ) 0 31(2)

(C1, C2, C3) ( e13 ,
e2
3 ,

e3
3 ) 0 31(1)

(D1, D2, D3) (7e13 , 7e23 , 7e33 ) 1 31(1)

Table 7. Field contents of the U(1)2 ⋊ S3 ×Z2 lepton flavor model. U(1)2 charges and Z2 charges

are shown. Representations under the ∆(54) group are also shown.

and

We = ye1 (D1Lee
c +D2Lµµ

c +D3Lττ
c)Hd/Λ, (3.2)

respectively. Here, we assume a UV cutoff scale Λ. Then the mass matrices are given by

Mν =
v2u
Λ2







yν1b1 yν2a3 yν2a2
yν2a3 yν1b2 yν2a1
yν2a2 yν2a1 yν1b3






+

yν3v
2
u

Λ3







0 c23 c22
c23 0 c21
c22 c21 0






, (3.3)

Me =
ye1vd
Λ







d1 0 0

0 d2 0

0 0 d3






, (3.4)

where we used the following definition for the VEVs of the flavon fields:

〈(A1, A2, A3)〉 = (a1, a2, a3), (3.5)

〈(B1, B2, B3)〉 = (b1, b2, b3), (3.6)

〈(C1, C2, C3)〉 = (c1, c2, c3). (3.7)

〈(D1, D2, D3)〉 = (d1, d2, d3). (3.8)

Note that the charged lepton mass matrix is diagonal. Thus, the mixing angles are deter-

mined only by the neutrino mass matrix.

3.2 Flavon potential and vacuum alignment

Next we consider the flavon sector. The superpotential up to three-point level including

only flavon fields is given by

Wf = λ1A1A2A3 + λ2B1B2B3 + λ3C1C2C3 + λ4

(

A2
1B1 +A2

2B2 +A2
3B3

)

. (3.9)
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The F-flatness condition for the flavon superpotential leads to (for i 6= j 6= k 6= i)

0 =
∂Wf

∂Ak
= λ1AiAj + 2λ4AkBk, (3.10)

0 =
∂Wf

∂Bk
= λ2BiBj + λ4A

2
k, (3.11)

0 =
∂Wf

∂Ck
= λ3CiCj , (3.12)

0 =
∂Wf

∂Dk
= 0. (3.13)

There are two branches of solutions:

(a) Let us first assume Ai 6= 0 and Bi 6= 0. Then we can solve (3.10) for Bk and insert the

solution in to (3.11). Then, we obtain the condition 4λ3
4 = −λ2λ

2
1, so we can choose

the VEVs as:

〈Ai〉 =







a1
a2
a3






, 〈Bi〉 = − λ1

2λ4







a2a3
a1

a3a1
a2

a1a2
a3






. (3.14)

(b) If not all Ai 6= 0 or Bi 6= 0 then there exist solutions, and they can be brought into the

following form by an S3 transformation:

〈Ai〉 =







0

0

a3






, 〈Bi〉 =







b1
b2
0






, (3.15)

with the condition λ2b1b2 + λ4a
2
3 = 0.

Furthermore, the VEVs of any two components Ci must be zero. In the following we

assume

〈Ci〉 =







c1
0

0






. (3.16)

The Di are not constrained from F-flatness.

3.3 Neutrino mass/mixing properties

In the following we consider only the case (a). By inserting the VEVs the mass matrix

becomes

Mν =
v2u
Λ2







−yν1
λ1

2λ4

a2a3
a1

yν2a3 yν2a2

yν2a3 −yν1
λ1

2λ4

a1a3
a2

yν2a1

yν2a2 yν2a1 −yν1
λ1

2λ4

a1a2
a3






+

yν3v
2
u

Λ3







0 0 0

0 0 c21
0 c21 0






. (3.17)
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For the later convenience we define the following parameters

a′2 ≡
a2
a1

, a′3 ≡
a3
a1

, A ≡ v2uy
ν
2a1

Λ2
, B ≡ −yν1

yν2

λ1

2λ4
, C ≡ yν3

yν2

c21
a1Λ

, (3.18)

(A, B and C not to be confused with the flavon fields Ai, Bi and Ci) and rewrite the mass

matrix (3.17) as

Mν = A









Ba′2a
′
3 a′3 a′2

a′3 B
a′
3

a′
2

1 + C

a′2 1 + C B
a′
2

a′
3









. (3.19)

It turns out that this mass matrix has the following relations,

M22

M11
=

(

M23 −AC

M13

)2

, (3.20)

M33

M22
=

(

M13

M12

)2

, (3.21)

M11

M33
=

(

M12

M23 −AC

)2

. (3.22)

Note that the three equations are dependent. Actually, the third equation is a consequence

of the first and the second equations. The first equation (3.20) can be solved by AC as

AC = M23 ±M13

√

M22

M11
, (3.23)

thus if the mass matrix Mν is fixed, the parameter AC can be derived. Hence, (3.21) is a

prediction for ratios of elements of the neutrino mass matrix Mν .

Now, we investigate whether this model can explain the experimental values of mass

hierarchies and mixings. In our model, the charged lepton mass matrix (3.4) already takes

a diagonal form, so the PMNS mixing matrix UPMNS is given by a unitary matrix Uν which

diagonalizes the neutrino mass matrix (3.19) as

UPMNS = Uν = R23U13R12P12. (3.24)

Here, the rotation matrices are defined by three mixing angles (θ12, θ23, θ13) and three CP

phases (δ, β1, β2) as

R23 =







1 0 0

0 cos θ23 sin θ23
0 − sin θ23 cos θ23






, U13 =







cos θ13 0 sin θ13e
−iδ

0 1 0

− sin θ13e
iδ 0 cos θ13






, (3.25)

R12 =







cos θ12 sin θ12 0

− sin θ12 cos θ12 0

0 0 1






, P12 =







eiβ1 0 0

0 eiβ2 0

0 0 1






. (3.26)
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0.1 0.2 0.3 0.4
m3

48.5

49.0

49.5
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50.5

Θ23

Θ13=8.2

Θ13=8.7

Θ13=9.1

Figure 1. The mixing angle θ23 (in degrees) against the third generation neutrino mass m3 (in

eV) for various values of the mixing angle θ13 (in degrees).

For simplicity, here we consider only the case where

δ = β1 = β2 = 0. (3.27)

We also set the mixing angle θ12 to fit the experimental value as

θ12 = 35.3◦. (3.28)

Then the mixing matrix (3.24) is a real matrix. As for the neutrino mass differences, we

wish to reproduce the case of the inverted hierarchy:

∆m2
21 = m2

2 −m2
1 = 7.60× 10−5 eV2, (3.29)

∆m2
31 = m2

3 −m2
1 = −2.38× 10−3 eV2, (3.30)

and regard the third family neutrino mass m3 as a parameter. These values are consis-

tent with the global analysis in [41] within 2σ range. The neutrino mass matrix is then

obtained as

Mν = UPMNS MUT
PMNS, (3.31)

where M = diag(m1,m2,m3). In figure 1, we show a prediction for various values of

(m3, θ13, θ23) from the ratio condition of this mass matrix (3.21). In the figure we show

solutions of the mixing angle θ23 against the third generation neutrino mass m3 for (3.21)

with fixed θ13 angles, θ13 = 8.2◦, 8.7◦, 9.1◦, which is in 2σ range.

Actually, there exist solutions for our parameters (A,B,C, a′2, a
′
3) in (3.19) to realize

these experimental values. For example, if we take the parameters to be

A = 0.00198 eV,

B = 30.5,

C = −5.94,

a′2 = −1.09,

a′3 = −1.06,

(3.32)

– 13 –



J
H
E
P
0
3
(
2
0
1
5
)
1
5
3

we can obtain m3 = 0.05 eV, θ13 = 8.7◦, θ23 = 49.1◦. This solution is also consistent with

the 2σ range of recent fits from neutrinoless double beta decay [42]:

mββ ≈ 0.05 eV, (3.33)

Σ = m1 +m2 +m3 ≈ 0.15 eV. (3.34)

3.4 Charged lepton masses

Next, we consider the charged lepton mass matrix (3.4). We want to fix the charged lepton

masses as

me =
yel vd
Λ

· d1 = 0.5× 106 eV, (3.35)

mµ =
yel vd
Λ

· d2 = 105× 106 eV, (3.36)

mτ =
yel vd
Λ

· d3 = 1776× 106 eV. (3.37)

The charged lepton masses are constrained from the D-flatness condition, which for this

model is given by

7

3
e1|d1|2 +

7

3
e2|d2|2 +

7

3
e3|d3|2 −

4

3
e1|b1|2 −

4

3
e2|b2|2 −

4

3
e3|b3|2

+
2

3
e1|a1|2 +

2

3
e2|a2|2 +

2

3
e3|a3|2 +

1

3
e1|c1|2 = 0, (3.38)

or equivalently

+
7

3

(

e1|me|2 + e2|mµ|2 + e3|mτ |2
)

·
∣

∣

∣

∣

Λ

ye1vd

∣

∣

∣

∣

2

− 4

3

(

e1|a′2a′3A|2 + e2

∣

∣

∣

∣

Aa′3
a′2

∣

∣

∣

∣

2

+ e3

∣

∣

∣

∣

Aa′2
a′3

∣

∣

∣

∣

2
)

·
∣

∣

∣

∣

λ1Λ
2

2λ4v2uy
ν
2

∣

∣

∣

∣

2

+
2

3

(

e1|A|2 + e2|a′2A|2 + e3|a′3A|2
)

·
∣

∣

∣

∣

Λ2

v2uy
ν
2

∣

∣

∣

∣

2

+
1

3
e1|AC| ·

∣

∣

∣

∣

Λ3

yν3v
2
u

∣

∣

∣

∣

= 0. (3.39)

After inserting the solution (A,B,C, a′2, a
′
3) from (3.32) we can numerically solve (3.39) as

a linear equation. Here, we only consider the simplified case where |λ1/(2λ4)| = 1. Then,

we obtain a single solution,
∣

∣

∣

∣

ye1y
ν
2

yν3
vd

∣

∣

∣

∣

≈ 2.10GeV, (3.40)

∣

∣

∣

∣

(ye1)
2

yν3

v2d
v2u

Λ

∣

∣

∣

∣

≈ 7.06× 1012 GeV. (3.41)

Then, by taking “natural” values, |ye1| = |yν2 | = |yν3 | = 1, and by imposing

v2u + v2d = (173GeV)2 (3.42)

we arrive at

tanβ =
vu
vd

≈ 82.4, (3.43)

Λ ≈ 4.79× 1016 GeV. (3.44)

Other values of tanβ and Λ are possible by appropriately adjusting the couplings.
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4 Conclusion

In this work, motivated by a gauge origin of discrete symmetries in the framework of the

heterotic orbifold models, we have investigated gauge theoretical realizations of non-Abelian

discrete flavor symmetries. We have shown that phenomenologically interesting discrete

symmetries are realized effectively from a U(1)n ⋊ Sm or U(1)n ⋊Zm gauge theory. These

theories can be regarded as UV completions of discrete flavor models. The main difference

between a discrete flavor model and a U(1) flavor model as shown in this paper can be seen

in the field interactions. Namely, some fields in a discrete flavor model can be distinguished

in a U(1) flavor model. For example, the 31(1) representation field of the ∆(54) symmetry

can be described by several U(1)2 charges, (e1/3, e2/3, e3/3), (−2e1/3,−2e2/3,−2e3/3)

etc. Thus a superpotential in a U(1) flavor model can be different from the one of the

corresponding discrete flavor model. In general, U(1)n⋊Sm and U(1)n⋊Zm flavor models

are constrained more than flavor models with non-Abelian discrete flavor symmetries, which

are subgroups of U(1)n ⋊ Sm and U(1)n ⋊Zm, because symmetries are larger. Our results

would provide a new insight on flavor models.

We have introduced the specific combination of U(1)2 charges, e1, e2, and e3, to realize

S4, ∆(54), A4 and ∆(27). They correspond to weights of the triplet (or anti-triplet)

representation of SU(3). In fact, U(1)2⋊S3 is a subgroup of SU(3), where S3 is associated

with the Weyl group. We also obtained genuine U(1)2 ⋊ S3 representations which are

not obtained from SU(3) triplets by spontaneous symmetry breaking. Also, in a stringy

realization of ∆(54), the SU(3) gauge symmetry appears in toroidal compactification, and

the non-zero roots can be projected out by an orbifold projection [33]. This may also

suggest that a similar situation can be realized field-theoretically in a higher-dimensional

SU(3) gauge theory with a suitable orbifold boundary condition.

Anomalies of non-Abelian discrete symmetries are important [43]. Anomalous discrete

symmetries would be violated by non-perturbative effects, but its breaking effects might

be small depending on dynamical scales of non-perturbative effects. By our construction,

discrete Abelian symmetries originating from U(1)n of U(1)n ⋊ Sm and U(1)n ⋊ Zm are

always anomaly-free and exact symmetries, but Sm and Zm of U(1)n⋊Sm and U(1)n⋊Zm

can include anomalous discrete symmetries depending on the model.

We have constructed a concrete flavor model for the lepton sector based on the U(1)2⋊

S3 continuous gauge theory. We have shown that it is possible obtain a realistic flavor

structure from this model. Since the model is based on an extended symmetry the number

of the parameters is relatively few. In particular, we could show a relation between the

angle θ23 and third generation neutrino mass m3.

We have shown six types of gauge realizations of non-Abelian discrete symmetries.

However, further extensions are possible. For example, extensions to higher N , ∆(6N2),

is possible if we consider models with U(1) charges q = ei/N . It is also possible to include

further representations of e.g. U(1)2 ⋊ S3 which we did not cover here for the sake of

simplicity. The general representation theory of these semidirect groups is obtained from

the little group method of Wigner, which is familiar from the representation theory of the

Poincaré group. Then, e.g. in the case of U(1)2 ⋊ S3 one obtains an uncharged singlet

representation which transforms as 1′ under S3 while being uncharged under the U(1)2.
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A phenomenological implication of our U(1) flavor models is that there should be Z ′

boson(s) which originate from U(1) gauge groups in the effective theory. In this framework

Z ′ bosons and flavor structures are related. Since we assigned different U(1) charges to

the three-generation leptons, the Z ′ bosons have flavor dependent interactions. Thus, if

Z ′ bosons are light as e.g. the TeV scale, they can be a probe of the flavor structure.

It will be interesting to investigate Z ′ phenomenology by extending well-known discrete

flavor models.
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