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1 Introduction and summary of the main results

The study of equilibrium black holes in D ≥ 5 (see [1] for a review) has revealed that the

physics of these objects can be very different from that of their four-dimensional coun-

terparts. In particular, black holes with a non-spherical horizon topology, such as black

rings [2–4], black ringoids [5], and regular multi-black hole spacetimes in vacuum [6–10],

among others [11–14], have been shown to exist. These types of black objects do not exist

in D = 4, and thus they possess fundamentally new physical properties. A natural question

to ask is whether these objects can also exist in asymptotically anti-de Sitter (AdS) space.

This question is further motivated by the gauge/gravity correspondence [15], according to

which these new types of stationary black holes should correspond to new finite temper-

ature phases of gauge theories. Furthermore, AdS is a maximally symmetric space and,
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as such, can be regarded from a mathematical viewpoint as being as fundamental as the

Minkowski space. The study of black holes in AdS is therefore also an interesting question

in its own right.

Through the AdS/CFT duality, one can look for new types of black holes by solving the

equations of motion of the dual field in their hydrodynamic regime, in which they simplify

considerably. Using this approach, [16] looked for solutions to the Navier-Stokes equations

on the Einstein static universe, Rt×S3, corresponding to rotating fluid configurations. How-

ever, they found only stationary fluid configurations which are dual rotating spherical black

holes in AdS which are already known [17–19]. Still, the assumption of AdS asymptotics

also allows for more general boundary conditions, such as Scherk-Schwarz compactifica-

tions of AdS. In these settings, [20] constructed solutions to the relativistic Navier-Stokes

equations corresponding to rotating plasma balls and plasma rings, and hence they were

able to study the phase diagram of rotating black holes in such spacetimes. Of course, this

approach can only capture the physics of black holes that admit a hydrodynamic limit,

which unfortunately is not always the case.

In this paper we will focus on the study of stationary black rings in global AdS. For

simplicity, we will concentrate only on the D = 5 case, which is more interesting from the

point of view of the gauge/gravity correspondence, and leave the higher dimensional cases

for future work. Therefore, the horizon topology of the black holes that we consider in this

paper is S1×S2. The solution generating techniques [21–23] that have been so successfully

used in the studies of 5D asymptotically flat (AF) stationary vacuum black holes do not

seem to have a straightforward extension to the AdS case. In spite of this, ref. [24] was

able to access black rings in global AdS for the first time using approximate methods.

In AF space, black rings come in two families, namely the thin and fat ones, depending

on the ratio between the typical sizes of the horizon S1, denoted RS1 , and of the horizon

S2, denoted RS2 . In AdS, however, there is yet another length scale which can play a

role in the physics of black rings, namely the radius of AdS, denoted `. In order to take

the latter into account, ref. [24] introduced the following terminology to describe various

notions of size for black rings in AdS:

• Thin rings have RS2 � RS1 , while fat rings have RS2 & RS1 .

• Small rings have RS2 < `, while large rings have RS2 > `.

• Short rings have RS1 < `, while long rings have RS1 > `.

According to this terminology, the approximation of [24] is valid for small thin rings, which

can be either short or long.1 Based on quantitative results for thin rings and some educated

guesses, [24] put forward a proposal for the phase diagram of black rings in AdS in the

microcanonical ensemble. According to this proposal, the phase diagram of black rings in

AdS is qualitatively similar to the phase digram in the asymptotically flat case, but it is

compressed into the range J ≤M `. In this paper, we use numerical methods to construct

black rings in global AdS which can be thin or fat, small or large, and short or long. This

1Note that ref. [24] did not assume any hierarchy between the radius of the S1 of the ring and `.
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allows us complete the phase diagram of 5D black rings in AdS. In particular, we confirm

that fat rings merge with the spherical black holes at a singular solution with zero area,

as in the AF case. This suggests that, in D ≥ 6, the pattern of connections between

various stationary black hole phases of different topologies conjectured in [24] is indeed

correct. One of the main unanswered questions in [24] was whether rings which are both

thin and large exist. We address this question in this paper and, quite confidently, we find

no evidence for such thin large rings.

We use the method of [25, 26] to construct black rings in AdS numerically. In this

approach, it is more natural to study stationary solutions of the Einstein equations in the

grand canonical ensemble, since the temperature of the black hole, TH , and its angular

velocity, ΩH , naturally appear as directly specifiable boundary data. Therefore, before

describing our results for black rings, it is worth reviewing the grand canonical ensemble

for rotating spherical black holes in AdS. As is well-known, in the static limit, ΩH = 0,

black holes only exist for temperatures greater than the Hawking-Page temperature, THP :=√
2

π ` [27]. Furthermore, static black holes in AdS are classified as large or small according

to their size compared to the radius of AdS. On the other hand, in the rotating case,

ΩH 6= 0, black holes can exist for any non-zero temperature, but it no longer makes sense

to distinguish between “large” and “small” black holes from a geometrical point of view.

One can, however, still classify black holes according to their thermodynamical stability.2

In analogy to the static case, we shall refer to the thermodynamically stable black holes as

“large” black holes, and to the thermodynamically unstable ones as “small” black holes.

We must emphasise that this terminology does not necessarily reflect the geometric size

of the black hole. Large rotating black holes only exist for temperatures greater than

some critical temperature, TH > Tc := 1
π ` , whilst small rotating black holes exist at all

non-zero temperatures. Moreover, large black holes always obey the Hawking-Reall bound,

|ΩH `| < 1 [28]. Rotating AdS black holes satisfying this bound admit a globally defined

timelike Killing vector field, and this implies that they should also be classically dynamically

stable [28]. On the other hand, some small rotating black holes violate this bound, and

hence one deduces that they could be classically dynamically unstable, in particular under

the superradiant instability. The latter has been recently studied in detail in [29].

In this paper we place AdS black rings among the known stationary black hole phases

in the grand canonical ensemble. One of our main results is that black rings in AdS never

dominate the grand canonical ensemble. Moreover, AdS black rings always obey |ΩH `| > 1,

and hence they should all be classically dynamically unstable under superradiance. The

thermodynamic behaviour of AdS rings is qualitatively and quantitatively similar to that

of small rotating black holes. Furthermore, we found a new family of black rings below a

certain temperature T ∗ < Tc, which we call membrane rings. The phase diagram for AdS

black rings, expressed in terms of TH and ΩH , can be summarised as follows:

• TH > Tc: the |ΩH `| → ∞ limit is reached from the fat family of rings, and the limit

is saturated by a singular solution which merges with the small spherical black hole

2We want to remind the reader that the thermodynamic stability of black holes does not necessarily

have any correlation to their actual dynamical stability.
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(a) Spherical AdS black holes. (b) AdS black rings.

Figure 1. Phase diagrams of singly-spinning a spherical black holes and b black rings in 5D global

AdS, presented in the (TH ,ΩH) plane. Both kinds of objects exists at all non-zero temperatures.

All of our AdS black rings have |ΩH `| > 1. The black rings can be classified into two distinct

phases according to their heat capacity at constant angular momentum, CJ . Those with CJ > 0

are fat rings, as in the AF case, while those with CJ < 0 exhibit somewhat more complicated

behaviour. At high temperatures, TH ` > 1/π, these rings are indeed thin, again as in the AF case.

However, for TH ` < 1/π the outer radius of the S1 these rings grows much more quickly than its

inner radius as |ΩH `| → 1, causing the S2 to become highly stretched. In this regime, the ring no

longer becomes “thin” in the geometric sense, but instead approaches a membrane-like geometry.

family, as in the AF case. On the other hand, the |ΩH `| → 1 limit corresponds to

an infinitely thin and long ring, and hence accessible using the perturbation theory

of [24].

• T ∗ < TH < Tc: the limit |ΩH `| → ∞ still corresponds to the (singular) merger

of a fat ring with the spherical black hole. However, the |ΩH `| → 1 limit now

corresponds to a new membrane-like limit for rings which are not geometrically thin.

In this limit, black rings tend to the same singular black membrane-type solution,

with horizon topology H2 × S1, as the small black holes (see [24]). For intermediate

angular velocities, geometrically thin rings can still occur.

• TH < T ∗: there are no geometrically thin rings below a certain temperature T ∗. This

may be related to the fact that we find no evidence for long thin rings which are also

large. The limits |ΩH `| → ∞ and |ΩH `| → 1 respectively are reached by fat and

membrane-like rings respective, as in the previous case. We find that T ∗` > 1
2π .

We sketch the various black ring phases on the (TH ,ΩH) plane in figure 1. Finally, we note

that neither fat rings nor membrane-like rings seem to develop new negative modes of the

Lichnerowicz operator as one moves along the family of solutions. This suggest that, at

least in 5D, these black rings are not unstable under a Gregory-Laflamme type of instability

along the rotation plane.

Using standard holographic renormalisation techniques [30], we extract the one-point

function for the stress-energy tensor of the dual N = 4 super Yang-Mills (SYM) field on S3.

– 4 –
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This observable allows us to get some idea as to how the dual field theory might be affected

by the horizon topology of the black hole in the bulk. We find that long thin rings can get

very close to the boundary of AdS, giving rise to an energy distribution which is highly

localised on one of the poles of the boundary S3. This energy distribution is very different

from the one corresponding to the small black hole with the same temperature and angular

velocity. Unsurprisingly, fat rings give rise to an energy distribution which is qualitatively

and quantitatively very similar to that of the corresponding small black hole. It would

be interesting to investigate other observables, such as higher point correlation functions,

Wilson loops or entanglement entropy. In figure 10 we depict the energy distribution of

some representative black rings.

The rest of the paper is organised as follows. In section 2 we describe our numerical

construction of black rings in AdS and in section 3 we explain how we calculate various

physical quantities, in particular the mass, from our numerical solutions. In section 4, we

study the geometry of the horizon of the AdS black rings, and in section 5 we study the

thermodynamics and produce phase diagrams for the grand canonical and microcanonical

ensembles. Finally, in section 6, we extract the v.e.v. of the stress tensors of the dual CFT

and compare them with that of the spherical black holes.

Throughout this paper, we shall use tilde to denote quantities which have been nondi-

mensionalised with respect to the AdS radius `. In particular, we make the following

definitions

M̃ := M `−2 , κ̃ := κ ` , ÃH := AH `
−3 , Ω̃H := ΩH ` , J̃ := J `−3. (1.1)

2 Numerical construction of AdS black rings

In this section, we explain the methods that we use to numerically construct black rings

in global AdS. We begin in section 2.1 by discussing our choice of coordinates and the

formulation of our spacetime metric ansatz. We then proceed to explain our construction

of the reference metric in section 2.2, followed by the description of our boundary conditions

in section 2.3. We finish the section with further technical details in section 2.4

2.1 Basic setup

Our goal is to construct black rings in 5D with the asymptotics of global AdS. These are

stationary black hole solutions to the vacuum Einstein equations with a negative cosmo-

logical constant, whose spatial horizon topology is S1×S2. For simplicity, we shall restrict

ourselves to singly-spinning black rings, i.e. those which are only rotating along the S1

direction, while leaving the doubly-spinning case for future work. Therefore, our solutions

should be thought of as the AdS-generalisation of the black rings of [2].3

The isometry group of the AdS rings is the same as that of the AF rings, namely

Rt × U(1)2, corresponding to time translations and rotations on the two 2-planes. In

3Ref. [31] constructed an AF black ring with rotation only on the S2 but this solution has conical

singularities. One should expect that the generalisation of this solution to global AdS should also suffer

from conical singularities, but we will not investigate this here.

– 5 –
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the AF case, the Einstein equations restricted to spacetimes with this isometry group are

completely integrable. This makes it possible to explicitly construct all solutions within

this class using an algebraic procedure [21–23]. Unfortunately, it is not currently known

whether this integrability persists in the presence of a cosmological constant. Therefore,

in this paper we shall rely on numerical methods to construct our solutions. Specifically,

we numerically solve the Einstein-DeTurck equations on our spacetime (M, g),

Rab −∇(aξb) +
4

`2
= 0 , with ξa := gbc

(
Γabc − Γ̄abc

)
, (2.1)

where g is the physical spacetime metric that we seek, Γ is its corresponding Levi-Civita

connection, and Γ̄ is the Levi-Civita connection associated to a reference metric ḡ on

the spacetime manifold M. This method has now become standard in the field and we

refer the reader to the references [25, 26, 32] for more details. Under certain regularity

assumptions, [33] proved that all static solutions to the Einstein-DeTurck equations are in

fact Einstein. A similar result is not yet available for stationary spacetimes, and therefore

we must check a posteriori that our solutions are Einstein to within a numerical tolerance.

This is indeed the case for the solutions presented in this paper.

Ref. [2] (see also [4, 34]) wrote down the black ring metric in a C-metric type of

coordinates. These coordinates are adapted to the geometry of the black ring in the sense

that they foliate the spatial slices of the spacetime with surfaces of ring-like topology.

Similar coordinate system can be used in AdS [35], but so far they have not facilitated the

finding of the AdS black ring metric analytically. The drawback is that this coordinate

system is singular at infinity, in the sense that the latter is represented by a single point.

Whilst in principle one could use this type of coordinate system to numerically construct

solutions, it would be essential to first analyse the non-trivial (singular) behaviour of the

various metric coefficients near the boundary of AdS. Moreover, in the discretised system,

spatial infinity would inevitably be poorly resolved, which could become an issue when it

comes to extracting the stress tensor of the dual CFT. We will therefore follow a different

strategy and use two coordinate systems to cover different parts of the spacetime: one

coordinate system will be adapted to the “outer” region, near the boundary of AdS, whilst

the other coordinate system will be adapted to cover the “inner” region, near the horizon

of the ring.

The geometry near the AdS black ring horizon can be thought of as a deformation

of the near-horizon geometry of the AF black ring. In general, this deformation is not

necessarily small, but at very high temperatures (i.e., small rings) we can expect the near-

horizon geometry to be very close to that of the AF solution. Therefore, we build our inner

region ansatz by “dressing” the AF black ring metric:

ds2
inner =− T0 e

T dt2 + X0 e
X dx2 + Y0 e

Y(dy −W dx)2

+ U0 e
U dφ2 + V0 e

V (dψ −Z0 (1 + Z) dt)2 ,
(2.2)

where F := (T ,X ,Y,U ,V,W,Z) are unknown functions of (x, y), and F0 := (T0,X0,Y0,

U0,V0,Z0) are functions which are analytically prescribed so that we recover the AF black

ring line element when F ≡ 0. In order to normalise the coordinate ranges and impose
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boundary conditions, we found it useful to transform the ring-like (x, y) coordinates from

the ones described in [4, 34] to

x→ cos(π x) , y → −1 + ν + (1− y) cos(π y)

2 ν
. (2.3)

The ranges of these transformed coordinates then become 0 ≤ {x, y} ≤ 1 in this near

horizon region. Here ν is the dimensionless parameter introduced in [34], which is related

to the ring’s surface gravity κ and horizon angular velocity ΩH by

ν =
ΩH√

4κ2 + Ω2
H

. (2.4)

For the AF black ring the range of this parameter is 0 < ν < 1, however in AdS we found

that the lower bound increases as the temperature lowers, see section 5.1. Writing down

the AF ring in these new (x, y) coordinates allows us to identify the expressions for the

functions F0.

Near the conformal boundary of the spacetime, we expect that the black ring spacetime

will be just a small deformation of global AdS. Therefore, to cover the outer region, we use

the most general metric which is manifestly asymptotically AdS and that is closed under

diffeomorphisms which preserve the Rt ×U(1)2 isometry group:

ds2
outer =−

(
1 + λ2R2

)
eT dt2 +

eX

1 + λ2R2
(dR−W da)2

+R2
[
π2

4 eY da2 + cos2
(
π a
2

)
eU dφ2 + sin2

(
π a
2

)
eV (dψ −Z0 (1 + Z) dt)2

]
,

(2.5)

where λ := `−1 is the inverse of the AdS radius, F := (T,X, Y, U, V,W,Z) are unknown

functions of (R, a), and Z0 is identical to the function that appeared in (2.2) but trans-

formed into (R, a) coordinates via a relation which we shall explain in due course. We use

λ rather than ` as a parameter in our solutions as it is computationally easier to make

contact with the AF rings by setting λ = 0 rather than trying to make ` very large.

In order to cover the AdS boundary, we define a compact radial coordinate r via

R =
r

1− r2/k2
, (2.6)

where k is some constant with dimensions of length. The ranges of these coordinates are

rmin ≤ r ≤ k and 0 ≤ a ≤ 1, where rmin is a parameter that sets the location where we

switch between the outer and inner region patches. This is in principle an arbitrary gauge

choice, as long as the coordinates remain well-defined everywhere (see below). In practice,

we found that choosing rmin ≈ k/2 worked best.

The outer region coordinates (r, a) and the inner region ones (x, y) are related by a

simple coordinate transformation,

x = (1− r/k) cos
(
π a
2

)
, y = 1− (1− r/k) sin

(
π a
2

)
. (2.7)

Note that the coordinate change becomes singular when r = 0, which sets a lower bound on

the parameter rmin introduced above. Our choice avoids any of such issues. We henceforth

choose to fix k = 1 throughout, thereby setting the scale for the solutions. We depict the

two coordinate patches in figure 2.

– 7 –
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Figure 2. Our computational grid, shown in the inner (left) and outer (right) region coordinates.

Orange dots show grid points where the inner patch ansatz (2.2) is used. Pink dots show grid

points where the outer patch ansatz (2.5) is used and vice versa. Green dots show grid points where

boundary conditions are imposed. Blue dots show grid points where function values are obtained

by interpolating data from the other patch. Note that these diagrams are only illustrative as the

grid resolution used for actual calculations is significantly higher than what is shown above.

2.2 Reference metric

In the Einstein-DeTurck method, the gauge condition is determined simultaneously with

the solution. The particular choice of gauge is made by fixing a reference metric ḡ on the

spacetime manifold M. To do so, we follow [25] and construct a suitable reference metric

simply by considering

ḡab dx
a dxb = [1− I(r̂)] ḡouter

ab dxa dxb + I(r̂) ḡinner
ab dxa dxb , (2.8)

where ḡouter
ab is obtained from (2.5) and ḡinner

ab is obtained from (2.2) after setting F ≡ 0 ≡ F .

I(r̂) is an interpolating function which is a function of a suitably defined coordinate r̂

satisfying r̂ = 0 at the horizon and r̂ = 1 at infinity. The requirements on I(r̂) are that it is

smooth and monotonic,4 with I(0) = 1 and I(1) = 0. In previous works, e.g. [25], one used

an interpolating function whose compact support is limited to some subregion which does

not extend to the boundaries, thus manifestly ensuring that the reference metric satisfied all

the boundary conditions. However, such a function tends to have large derivatives which are

inevitably inherited by the solutions, and in our present setting we found that this proved

problematic for the numerics. Instead, we use an interpolation function which is supported

near the boundaries, but whose normal derivatives vanish up to at least fourth order, both

at the horizon and at the boundary of AdS. This still ensures that the reference metric (2.8)

satisfies all the boundary conditions without introducing excessively large gradients into

4Strictly speaking we only need 0 ≤ I(r̂) ≤ 1 with equality only at the endpoints. However, we found

that the system behave better when I(r̂) is monotonic.
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Figure 3. Interpolating function I(r̂) in terms of the inner region coordinates (x, y). This is a

smooth function defined everywhere but it is not compactly supported.

various functions. To construct such an interpolating function, we first exploit the fact

that the (x, y) coordinates (2.3) can be used to cover our entire computational domain.

We can therefore globally define a non-compact “radial” coordinate, centered at the AdS

boundary (x, y) = (0, 1), by

R̂ :=

√(
x

1− x

)2

+

(
1− y
y

)2

. (2.9)

This can be compactified to obtain r̂ ∈ [0, 1] via

r̂ :=
1

1 + R̂
. (2.10)

Note that we have y ∼ r̂ as r̂ → 0 in the inner patch, and r ∼ r̂ as r̂ → 1 in the outer

patch. In terms of r̂, we may now define our interpolating function as

I(r̂) := 1− %̂4
(
6− 8 %̂+ 3 %̂2

)2
where %̂ := sin2

(
π r̂

2

)
. (2.11)

Note that, by defining I in terms of %̂ rather than r̂, we ensure that all even-order normal

derivatives of I vanish at y = 0 and r = 1. We depict our choice of interpolating function

in figure 3.

2.3 Boundary conditions

The boundary conditions that we impose on our unknown functions are detailed below.

Note that at all boundaries there is an additional requirement that the reference metric also

satisfies the same conditions. This has already been taken care of in our construction above.

– 9 –
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Near region patch.

• Horizon (y = 0): regularity of the spacetime metric requires that we impose a Neu-

mann boundary condition ∂yF|y=0 = 0 on all functions, except for W which has to

vanish. To ensure that the temperature and angular velocity of the AdS rings are the

same as those of the AF ring, we further impose Y = T and Z = 0 on this boundary.

• S1 axis (y = 1): regularity of the spacetime metric requires that we impose a Neu-

mann boundary condition ∂yF
∣∣
y=1

= 0 on all functions, except for W which has to

vanish. To avoid conical singularities, we further require Y = V on this boundary.

• S2 axes (x = 0 and x = 1): again, regularity of the spacetime metric requires that

we impose a Neumann boundary condition ∂xF
∣∣
x=0,1

= 0 on all functions, except for

W which has to vanish. To avoid conical singularities, we further require X = U on

these boundaries.

• Interpolation boundary (blue dots in figure 2 (left)): the value of each function is

determined by first interpolating the values of the functions in the outer patch, then

applying the coordinate transformations.

Far region patch.

• Spacelike infinity (r = 1): our ansatz is manifestly asymptotically AdS, provided that

we impose a Dirichlet boundary condition F = 0 on all functions.

• S3 axes (a = 0 and a = 1): regularity of the spacetime metric requires that we impose

a Neumann boundary condition ∂aF
∣∣
a=0,1

= 0 on all functions, except for W which

has to vanish. To avoid conical singularities, we further require Y = V at a = 0 and

Y = U at a = 1.

• Interpolation boundary (blue dots in figure 2 (right)): the value of each function is

determined by first interpolating the values of the functions in the inner patch, then

applying the coordinate transformations.

These boundary conditions are compatible with the DeTurck vector, ξ, vanishing ev-

erywhere on the manifold M. However, we reiterate that for stationary spacetimes we do

not have a result analogous to that in [33] for the static case, so a priori our boundary

conditions do not necessarily imply that ξ = 0. A posteriori, we have checked that this is

indeed the case to within a numerical tolerance.

2.4 Technical details

For the data presented in this paper, the outer patch consists of 320×320 grid points which

are equispaced in both 0.49 ≤ r ≤ 1 and 0 ≤ a ≤ 1. The inner patch is constructed by

taking a 320× 320 grid of points which are equispaced in both 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1,

then removing points corresponding to r > 0.51. We use either fourth- or sixth-order

centered difference stencils to discretise the Einstein-DeTurck equations. The resulting

– 10 –
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non-linear algebraic system is solved using Newton line-search method with adaptive step

size. We used MUMPS [36, 37] or Intel MKL PARDISO [38, 39] to solve the linear system

at each Newton step. The code is written on top of the PETSc framework [40, 41].

We bootstrap our solution procedure by starting at a high temperature, κ̃� 1, and a

“friendly” angular velocity, Ω̃H ≈ 2, where we simply use the reference metric as the initial

guess to seed the Newton solver. The κ̃ � 1 condition ensures that the effects of AdS is

small, and so the reference metric, which is built from analytically-known AF solutions, is

already almost Einstein in both the near-horizon and near-boundary regions. Meanwhile,

the Ω̃H ≈ 2 condition ensures that the geometry interpolating these two regions are not

too highly deformed. These two properties combine to give us the best chance of obtaining

convergence from Newton’s method. Once we have obtained a solution in this somewhat

uninteresting regime, we can use it as the initial guess to seed the Newton solver at less

ideal parameters. In this way, we can progressively move away from asymptotic flatness

towards the more extreme corners of the parameter space.

3 Calculating physical quantities

Having constructed the AdS black rings numerically, we now explain how we calculate

various physical quantities from our solutions. In particular, we chose a rather nontrivial

process to calculate of the rings’ mass in order to make sure that we have obtained an

accurate answer.

3.1 Horizon area

Our boundary condition manifestly makes the hypersurface H := {xa ∈M | y ≡ 0} a

Killing horizon of ∂t − ΩH ∂ψ. To obtain the horizon’s area, we simply need to integrate

the volume form pulled back onto a constant-t slice of H, thus

AH =

∫
H|t

dS
√

det g inner|t,y=0

= 4π2

∫ 1

0
dx
√
X0(x, 0)R0(x, 0)S0(x, 0) e

1
2

[X (x,0)+R(x,0)+S(x,0)] . (3.1)

We perform the integration using Mathematica’s NIntegrate feature, where the unknown

functions are first interpolated using polynomial splines.

3.2 Angular momentum

Ref. [42] showed that the usual AF Komar integral for angular momentum also gives the

correct result in AdS asymptotics. Therefore, we calculate

J =
1

16π

∫
Σ
? d(∂ψ)[ , (3.2)

where Σ is any closed spacelike 3-surface bounding a region containing the horizon. The full

expression for the integrand is complicated and unenlightening so we will not reproduce it

here. We choose Σ to reside completely in the outer patch as the hypersurface of constant

r ≡ rJ , where rJ can be any number. In practice, we found that our result varies by less

than 1% over the range 0.75 < rJ < 0.95.
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3.3 Mass

We found that the most reliable means of calculating the mass is through the first law of

black hole mechanics. In terms of nondimensional quantities this reads

dM̃ =
κ̃

8π
dÃH + Ω̃H dJ̃ . (3.3)

Since each of our data series are obtained by varying Ω̃H while keeping κ̃ fixed, we can

write the above as an ODE

dM̃

dΩ̃H

=
d

dΩ̃H

(
κ̃ ÃH

8π
+ Ω̃H J̃

)
− J̃ , (3.4)

which can be integrated to give

M̃(Ω̃H) =
κ̃ ÃH(Ω̃H)

8π
+ Ω̃H J̃(Ω̃H)−

∫ Ω̃H

Ω̃0

dω J̃(ω) + c̃1, (3.5)

where Ω̃0 is some chosen limit of integration, and c̃1 is some constant which depends only

on κ̃. Clearly, the formula (3.5) is not of much use unless we also have a way to fix c̃1

for each κ̃. One way to do this is by integrating (3.3) over a different data series which

is continuously connected to an asymptotically flat solution, where we can then use the

analytically known mass to fix the constant. To be more precise, we reintroduce explicit

factors of the inverse AdS radius λ := `−1 into the first law, thus

d
(
λ2M

)
=

(κ/λ)

8π
d
(
λ3AH

)
+ (ΩH/λ) d

(
λ3 J

)
(3.6)

= d

[
λ2

(
κAH

8π
+ ΩHJ

)]
+ λ

(
κAH

8π
+ ΩHJ

)
. (3.7)

If we now keep κ and Ω fixed while allowing λ to vary, this turns into an ODE which we

can integrate with respect to λ, thus

M(λ) =

(
κAH(λ)

8π
+ ΩHJ(λ)

)
+

1

λ2

∫ λ

0
dλ′
[
λ′
(
κAH(λ′)

8π
+ ΩHJ(λ′)

)]
+ c2. (3.8)

To fix the constant c2, note that as λ→ 0 the integral term becomes

1

λ2

∫ λ

0
dλ′

[
λ′
(
κAH

8π
+ ΩHJ

)
λ=0

+O(λ′2)

]
∼ 1

2

(
κAH

8π
+ ΩHJ

)
λ=0

. (3.9)

The AF mass is therefore given by

M |λ=0 =
3

2

(
κAH

8π
+ ΩHJ

)
λ=0

, (3.10)

where we have fixed c2 = 0 by identifying the above formula as nothing but the familiar

Smarr relation. Our mass calculation can thus be summarised as two-step process:
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1. Produce a “mass calibration” series of numerical solutions at fixed κ and ΩH , but

over a range of λ. Calculate A and J for each point in the series, then use (3.8) to

calculate M . In this paper we somewhat arbitrarily chose κ̃ = 0.4 and Ω̃H = 0.6.

Note that, in order to calibrate the mass at larger values of λ, we had to increase

both κ and ΩH . This is not a problem provided that ΩH/κ remains constant, as

we can then divide all three parameters (κ, ΩH , λ) by the same number to restore

constancy. Using this technique, we were able to fix the mass at Ω̃H/κ̃ = 1.5 for

temperatures down to κ̃ = 0.68.

2. For our “main” datasets at some fixed κ̃, we can now use (3.5) to calculate the mass

by setting Ω̃0 = 1.5κ̃ and c̃1 =
(
M̃ − κ̃ ÃH

8π − Ω̃H J̃
)

Ω̃H=Ω̃0

, using the values obtained

in step 1.

We close this section by recalling that [43] proved that regular black holes solutions in

AdS with a single (positive) angular momentum satisfy a BPS bound:

J ≤M ` . (3.11)

The rotating spherical AdS black holes [17–19] and perturbative black rings [24] satisfy

this bound. Indeed, all of our numerical AdS black ring solutions also satisfy this bound.

However, since the black ring becomes singular as J → M `, the solutions that we have

managed to construct never get very close to saturating this limit.

4 Geometry

In this section we study the geometry of the spatial cross sections of the horizon of the AdS

black rings. Throughout this section we shall refer to the size of the rings relative to the

the AdS radius `, as in section 1. For small and short black rings, either thin or fat, the

horizon geometry is similar to that of the AF black ring. Therefore, we shall not study the

horizon geometry of those rings any further. In what follows, we will describe the geometry

of black rings which are either long (RS1 > `) or large (RS2 > `). In addition, as we noted

in section 1, we have not found any evidence that long rings which are both thin and large

exist; in other words, our results suggest that all long thin rings are small.

The induced metric on the spatial cross sections of the horizon is

ds2
H = R‖(x)2 dψ2 +R⊥(x)2 dφ2 + X0(x, 0) eX (x,0) dx2 , (4.1)

where R‖(x) :=
√
S0(x, 0) e

1
2
S(x,0) and R⊥(x) :=

√
R0(x, 0) e

1
2
R(x,0). To characterise the

geometry, it is useful to consider the the radii of the rotation circle, RS1 , and of the trans-

verse two-sphere, RS2 . However, unless the ring is very thin, these are rather ambiguously

defined because the S2 can be highly distorted. It is possible to come up with some rea-

sonable characterisations of these radii that can provide some information about the actual

geometry of the horizon. Here we follow [44], and define the inner and outer radii of the

horizon S1 as

R
(inner)
S1 := R‖

∣∣
x=1

, R
(outer)
S1 := R‖

∣∣
x=0

. (4.2)
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There are various ways to characterise the size and shape of the S2. One option is to define

the S2 radius as the radius of its equator, where the S2 is fattest,

R
(eq)
S2 := max

0<x<1
(R⊥(x)) . (4.3)

Alternatively, we can define the radius of the S2 in terms of the proper length of the S2

meridians,

R
(mer)
S2 :=

1

π

∫ 1

0
dx
√
X0(x, 0) e

1
2
X (x,0) . (4.4)

These two definitions of RS2 coincide when S2 is perfectly round. For thin rings, these two

numbers remain very close, however as the rings become fatter neither of these numbers

alone provides an authoritative “size” of the S2. We can characterise the distortion in the

shape of the S2 by defining the stretch σ as

σ :=
R

(mer)
S2

R
(eq)
S2

− 1 . (4.5)

A perfectly round S2 would therefore have σ = 0. For the black rings, the gravitational

self-attraction means that the S2 is always prolate, and so σ ≥ 0. Finally, there is a third

definition of the S2 radius in terms of its area

R
(area)
S2 :=

√
AS2

4π
, (4.6)

where the S2 area is given by

AS2 := 2π

∫ 1

0
dxR⊥(x)

√
X0(x, 0) e

1
2
X (x,0) . (4.7)

Note that these three radii are always related by R
(eq)
S2 ≤ R

(area)
S2 ≤ R(mer)

S2 .

4.1 Isometric embeddings

A useful way is to visualise the distortion of the horizon’s transverse S2 is to isometrically

embed it into 3D Euclidean space E3, as was done in [44] (see also [14]). The metric on

the horizon S2 is given by

ds2
S2 = X0(x, 0) eX (x,0) dx2 +R⊥(x)2 dφ2 . (4.8)

We wish to embed it into E3 via cylindrical polar coordinates,

ds2
E3

= du2 + dρ2 + ρ2 dφ2 . (4.9)

Letting

u = u(x) , ρ = R⊥(x) , (4.10)

the resulting induced geometry is given by

ds2
emb =

(
R′⊥(x)2 + u′(x)2

)
dx2 +R⊥(x)2 dφ2 . (4.11)
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(b) κ ` = 0.5, ΩH ` = 1.0375

Figure 4. Isometric embeddings. a Embedding of a thin ring with R̃
(inner)
S1 = 1.573 and R̃

(outer)
S1 =

2.097. The stretch (4.5) is given by σ = 0.006 and hence the horizon S2 is almost perfectly round.

b Embedding of a fat ring with R̃
(inner)
S1 = 0.285 and R̃

(outer)
S1 = 53.040. The stretch is σ = 1.812

and hence the horizon S2 is highly deformed from spherical symmetry.

By comparing (4.11) and (4.8), one obtains the embedding

u(x) =

∫ x

0
dη
√
X0(η, 0) eX (η,0) −R′⊥(η)2 , (4.12)

which exists for as long as R′⊥(η)2 ≤ X0(η, 0) eX (η,0). We find that this condition is satisfied

for all the AdS black rings that we have managed to construct.

In figure 4 we present embedding plots of some representative AdS black rings. For

long thin rings one would expect that the gravitational self-interaction is small, and hence

the horizon S2 should be nearly round. This is precisely what figure 4a shows for a ring with

κ̃ = 5 and Ω̃H = 1.3113. Note that the gravitational pull due to the negative cosmological

constant is compensated by having a large enough angular momentum, and hence it should

not affect the geometry of the horizon in a significant manner.

Fat rings in AdS have a more interesting geometry. Whilst R
(inner)
S1 may be small,

R
(outer)
S1 can be very large, and so in this sense it can be long. In figure 4b we depict the

S2 embedding of a ring which fits this description: at κ̃ = 0.5 and Ω̃H = 1.0375, we have

a rather long R̃
(outer)
S1 = 53.040. On the other hand, this ring is not large in the sense that

the typical size of the S2 is not larger than the radius of AdS. For this particular example

we have R̃
(eq)
S2 = 0.224, R̃

(area)
S2 = 0.415 and R̃

(mer)
S2 = 0.629, so the S2 is indeed highly

distorted, as figure 4b shows. Note that for any measure of the size of the S2, we have

that R̃
(outer)
S1 � R̃S2 , so this ring actually looks like a very large and thin membrane with

a tiny hole drilled through the middle. It seems reasonable to expect that, by lowering the

temperature even further, one should be able to obtain long and fat rings which are also

large. But at least in our set up, these are hard to construct numerically.

In figure 5 we depict the stretch σ, as defined in (4.5), as a function of the angular

velocity Ω̃H for rings at temperatures κ̃ = 0.5, 1., 2. (from top to bottom). At sufficiently

high temperatures, the Ω̃H → 1 limit is reached by thin rings and hence σ → 0 in this
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0.5

1

0.05

0.1

ΩH ℓ

σ

Figure 5. The S2 stretch, σ, plotted against Ω̃H , for rings with κ̃ = 0.5, 1, 2 (top to bottom).

At high temperatures, the Ω̃H → 1 limit is reached by thin rings and hence σ → 0 in this limit.

σ increases monotonically as the ring becomes fatter. At low temperatures, the Ω̃H → 1 limit is

reached by membrane rings, so σ cannot be a monotonic function of Ω̃H .

limit as the S2 becomes perfectly round. As the ring becomes fatter, increasing Ω̃H while

keeping κ̃ fixed, the stretching increases monotonically since the deformation of the S2 also

increases. It seems natural to expect that σ will diverge in the Ω̃H → ∞ limit. On the

other hand, at sufficiently low temperatures, the Ω̃H → 1 limit is reached by the membrane

rings. For these temperatures, increasing Ω̃H makes the hole in the middle grow, which

implies that σ will decrease for a while. However, at some point, the ring starts to become

fatter again and hence σ increases.

4.2 Invariant radii

Since R⊥(x) and R‖(x) are both geometric invariants, plotting them against each other

allow us to directly compare the relative sizes of the two cycles. However, the information

about the lengths along the S2 meridian is lost and it is therefore important to keep in

mind that distances along the curve in these diagrams do not have any real meaning.

Before we describe the geometry of AdS black rings, let us recall some facts about

the geometry of rotating AdS black holes. In AdS, the rotating spherical black holes have

two different singular limits [24]. In 5D and for fixed mass, the angular momentum of the

spherical black hole is strictly less than the BPS value, Jmax < M `. In the limit J → Jmax

for fixed M , the size of the black hole on the plane of rotation remains finite but the total
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horizon area goes to zero, hence becoming singular. One can see that in this limit the

angular velocity of the horizon diverges. In D ≥ 6 this corresponds to the well-known

ultraspinning limit of black holes, and the value of the angular momentum approaches

the BPS value. In AdS, it is possible to take another limit [24], even in 5D, in which

both the mass M and the angular momentum J diverge whilst their ratio remains finite

with J/(M `) → 1. In this limit, the black hole approaches a rotating black hyperboloid

membrane with a horizon topology H2 × S1.

In figure 6 we depict some representative plots for rings in different regimes: thin,

fat and membrane. We compare the geometry of the ring with that of the rotating AdS

black hole with the same temperature and angular velocity. Note that because we have

not fixed the total mass, the actual “sizes” of the black ring and the black hole can be

quite different in certain limits. Long thin rings are depicted in 6a. As this plot shows,

the radius of the S1 of the ring is quite large compared to the radius of AdS, and in

some sense the black ring is close to the boundary. As we shall see in section 6, this gets

imprinted into the stress-energy tensor of the dual CFT. In figure 6b we show a fat ring;

even though we could not reliably construct fatter rings at this particular temperature,

this plot suggests that black ring and the black hole are going to merge in the Ω̃H → ∞
limit. At low enough temperatures, as Ω̃H → 1 the black ring should tend to the same

rotating hyperbolic membrane as does the spherical black hole. This is shown in figures 6c

and 6d. In particular, in figure 6d it is quite apparent that the black ring and the black

hole are tending to the same solution. Note that, since both the ring and the black hole

are close to the same black membrane, fixing the mass and the angular momentum instead

does not produce a significantly different plot.

5 Thermodynamics of AdS black holes

We now move on to discuss the thermodynamics of singly-spinning black holes and black

rings in AdS. In section 5.1 we work in the grand canonical ensemble and study the black

hole phases at a fixed temperature and angular velocity. Most of our discussion will lie in

this section, as this ensemble is much easier for us to access numerically. We also briefly

consider the microcanonical ensemble in section 5.2, where we instead fix the total mass of

the solution. This will allow us to make a direct comparison with the perturbative results

of [24].

5.1 The grand canonical ensemble

The grand canonical ensemble naturally arises from our numerical procedure, as it is pre-

cisely the surface gravity and horizon angular velocity that we are able to fix directly as

boundary conditions on the horizon. We first review the properties of the rotating spherical

AdS black holes in section 5.1.1, before looking at the thermodynamics of our numerical

black ring solutions in section 5.1.2.

5.1.1 Spherical black holes

We begin by looking at 5D asymptotically AdS solutions for which the metric is known

analytically. The most trivial of these is of course the pure global AdS solution itself.
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Figure 6. Invariant radii plots for some representative temperatures and angular velocities. The

solid line corresponds to the black ring and the black dashed line corresponds to the rotating AdS

black hole with the same temperature and angular velocity. In d we depict the invariant radii for

the same black ring as in figure 4b. The aspect ratio is the same in all the plots above, with the

vertical axis stretched at exactly 10 times the scale of the horizon axis.

This is a solution without a horizon. As a result, we can assign an arbitrary period to the

Euclidean time coordinate, and so the temperature can be taken to be anything whatsoever.

In this context, it is usually referred to as thermal AdS. The other class of solutions that

we will consider in this subsection are the topologically spherical black holes rotating in a

single plane. These are described analytically by the following metric [18, 19]

ds2 = −∆

ρ2

[
dt− a sin2 θ

1− a2/`2
dψ

]2

+
Σ

ρ2
sin2 θ

[
a dt− r2 + a2

1− a2/`2
dψ

]2

+
ρ2

∆
dr2 +

ρ2

Σ
dθ2 +

r2

ρ2
cos2 θ

[
r2 Σ + a2 cos2 θ

(
1 +

r2

`2

)]
dφ2 (5.1)

ρ2 := r2 + a2 cos2 θ , ∆ :=
(
r2 + a2

)(
1 +

r2

`2

)
− 2µ , Σ := 1− a2

`2
cos2 θ,

where µ > 0 is the mass parameter and a is the rotation parameter. Cosmic censorship

requires that |ã| < 1. The event horizon occurs at r = rH, where rH is the largest real root

of the polynomial ∆(r). After nondimensionalising the parameters,

µ̃ := µ/`2 , ã := a/` , r̃H := rH/`, (5.2)
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the physical quantities for these black holes are given by [45]

M̃ =
π µ̃
(
3− ã2

)
4 (1− ã2)2 , (5.3)

κ̃ = r̃H

(
1 +

1 + r̃2
H

r̃2
H + ã2

)
, (5.4)

ÃH =
2π2 r̃H

(
r̃2
H + ã2

)
1− ã2

, (5.5)

Ω̃H =
ã
(
1 + r̃2

H

)
r̃2
H + ã2

, (5.6)

J̃ =
2 ã M̃

3− ã2
. (5.7)

The solution saturates the BPS bound |J̃ | ≤ M̃ as |ã| → 1 (although strictly speaking this

is a singular limit). It is easy to verify that these quantities do indeed satisfy the first law

of black hole mechanics (3.3). From now on we will always take ã (and hence Ω̃H and J̃)

to be positive.

We begin by solving for ã in terms of κ̃ and r̃H :

ã =

√
r̃H
(
1− κ̃ r̃H + 2 r̃2

H

)
κ̃− r̃H

. (5.8)

The BPS limit ã = 1 corresponds to r̃H = r̃
(max)
H := κ̃/2. This is the upper bound on r̃H

which holds at all temperatures. The static limit Ω̃H = 0, i.e. ã = 0 and r̃H 6= 0, yields

two roots r̃
(±)
H := 1

4

(
κ̃±
√
κ̃2 − 8

)
. The limit r̃H → 0 corresponds to Ω̃H →∞.

When κ̃ ≥
√

8 both r̃
(±)
H are real. In this regime, the solutions split into two families:

those with 0 < r̃H < r̃
(−)
H are the small rotating black holes, while those with r̃

(+)
H < r̃H <

r̃
(max)
H are the large rotating black holes. There are no solutions with r̃

(−)
H < r̃H < r̃

(+)
H and

so these two families are not connected.

It is well known [27] that, in the presence of a negative cosmological constant, static

black holes cannot exist below the critical Hawking-Page temparature. This is reflected in

our calculation here as the Ω̃H → 0 limit yields imaginary roots when κ̃ < κ̃HP :=
√

8 ≈
2.828. However, rotating black holes can still exist at these temperatures as long as they

are spinning quickly enough. To see this, we substitute (5.8) into the expression for Ω̃H to

obtain

Ω̃2
H =

1

r̃H
(κ̃− r̃H)

(
1− κ̃ r̃H + 2 r̃2

H

)
, (5.9)

and hence
∂Ω̃2

H

∂r̃H

∣∣∣∣∣
κ̃

= − 1

r̃2
H

(
κ̃− 3 κ̃ r̃2

H + 4 r̃3
H

)
. (5.10)

The behaviour of Ω̃H is clearly governed by the cubic factor C(r̃H) := κ̃ − 3 κ̃ r̃2
H + 4 r̃3

H ,

which is always monotonic in 0 ≤ r̃H ≤ r̃
(max)
H . While C(0) = κ̃ > 0 at all tempera-

tures, C(r̃
(max)
H ) = 1

4 κ̃
(
4− κ̃2

)
changes sign at κ̃ = 2. The low temperature solutions are

therefore further split into two regimes.
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For 2 < κ̃ < κ̃HP we have C(r̃
(max)
H ) < 0, so C must have a root r̃∗H corresponding to

the turning point in Ω̃H . Solutions with r̃H < r̃∗H are the low-temperature continuation of

the small black holes family, while those with r̃H > r̃∗H are the continuation of the large

black holes family. These two branches are now continuously connected to each other at

these temperatures.

For 0 < κ̃ < 2 the function Ω̃H has no turning point. Instead, it is monotonically

decreasing, with Ω̃H → 1 as r̃H → r̃
(max)
H . Physical quantities of these solutions behave like

those of the small black holes, while the large black holes cease to exist in this temperature

regime. Note, however, that these “small” black holes can still grow to arbitrarily large

horizon areas as Ω̃H ↘ 1.

We can now discuss the thermodynamics of these solutions. Fixing the values of κ̃ and

Ω̃H is analogous to placing the system in the grand canonical ensemble, and thus phase

dominance is determined by the grand canonical potential Φ̃ := M̃− 1
8π κ̃ ÃH−Ω̃H J̃ . With

our normalisation, thermal AdS obviously has Φ̃ = 0. The small black holes always have a

positive Φ̃ and therefore never dominates the ensemble. On the other hand, large rotating

black holes with negative Φ̃ do exist at all κ̃ > 2. In the range 2 < κ̃ < 3, some large

black holes still have a positive Φ̃ and so there is an angular velocity threshold below which

thermal AdS is still dominant. When κ̃ > 3, even the static solution has Φ̃ < 0 and so

the entire large black hole branch becomes dominant. It is important to note that large

rotating black holes always obey the Hawking-Reall bound, Ω̃H < 1, and hence they should

be classically dynamically stable. On the other hand, small black holes with Ω̃H > 1 should

be unstable under superradiance. The actual phase diagram of rotating AdS black holes is

summarised in figure 7.

5.1.2 Black rings

Using the procedure described in section 3 to accurately calculate the physical quantities

for the AdS black rings, it is straightforward to compute the associated grand canonical

potential. In figure 8 we depict the grand canonical potential for representative AdS black

rings at κ̃ = 5, as a function of the angular velocity Ω̃H , and compare it with that of the

small rotating AdS black holes at the same temperature. For these configurations, the

grand canonical potential of the large black holes is always negative and off the scale of

this plot. At any other non-zero temperature, the picture for the rings is qualitatively

the same. The only difference in the phase diagram for rings as one varies κ̃ is that, for

κ̃ > 2, the Ω̃ ↘ 1 limit is attained by thin rings, whilst for κ̃ < 2 this limit is attained

by membrane rings. Therefore, we conclude that black rings in AdS, regardless of their

size or shape, never dominate the grand canonical ensemble. Moreover, in the Ω̃H → ∞
limit, which is always attained from the fat branch, black rings are connected to the

small rotating AdS black holes. Hence, from a thermodynamic point of view, black rings

behave in a similar manner as small rotating black holes. In particular, they are always

thermodynamically unstable.
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Figure 7. A phase diagram for rotating spherical AdS black holes. The colour shows the horizon’s

angular velocity Ω̃H for each black hole solution, each uniquely parametrised by (κ̃, ÃH). Blue-

tinted points are superradiant-stable solutions with Ω̃H < 1. The coloured region is bounded on

the right by a thick curve corresponding to the static solutions, which only exist when κ̃ ≥
√

8.

The solid interior curve marks the boundary between the small and large black holes, the latter of

which cease to exist when κ̃ ≤ 2. Instead, in this regime “small” black holes can have an arbitrarily

large ÃH . Lastly, solutions above the dashed interior curve (all of which are large black holes) have

negative grand canonical potential Φ̃, and thus dominate the ensemble.

5.2 The microcanonical ensemble

Accessing the microcanonical ensemble is rather more challenging from the numerical point

of view. This is because the mass of the black hole is defined in terms of an integral over

some hypersurface in the spacetime, which is not a local condition at any given point.

We are not aware of any boundary condition which would allow for a specific mass to be

fixed directly. For a given mass, we instead resort to first estimating the combinations of

the parameters (κ̃, Ω̃H) by interpolating the M̃ across the datasets that we produced for

the grand canonical ensemble. Having obtained solutions near the desired mass at various

values of κ̃, we then proceed to fine-tune our estimation by performing a bisection search

on Ω̃H until the mass becomes correct to within some tolerance. This entails a significant

amount of work for each data point (on average we had to obtain four full solutions for each

bisection search), and therefore we only present here a phase diagram for one particular

choice of M̃ .

We choose to focus on M̃ = 10 as this allows us to complete the perturbative picture

presented in figure 1 of [24]. For this mass, we have obtained ten solutions in the range

0.6 ≤ κ̃ ≤ 2.0, and plotted their horizon areas ÃH against the angular momenta J̃ . This is

shown in figure 9, where we superpose this onto the corresponding curve for the spherical

black holes at the same mass, and also the perturbative result of [24]. As expected, our

data points approach the perturbative curve at larger values of κ̃, for which the ring is
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Figure 8. Grand canonical potential for AdS black rings (black dots) and small AdS black holes

(gray curve) for κ̃ = 5. The dashed red line indicates the Ω̃ = 1 limit. AdS black ring never dominate

the grand canonical ensemble and their angular velocity always exceeds the Hawking-Reall bound.

geometrically thin. The BPS bound is approached as κ̃ → ∞, where we have ÃH → 0,

J̃ → M̃ , and the ring becomes arbitrarily thin. Similarly to the AF black rings, the

(ÃH , J̃) curve for the AdS black rings has a cusp separating “fat” and “thin” rings in

the thermodynamical sense. We estimate that for M̃ = 10 this occurs at κ̃∗ ≈ 0.93. As κ̃

decreases beyond κ̃∗, the ring becomes fatter and the curve approaches that of the spherical

black hole, before merging at the singular solution at κ̃ = 0.

The existence of the cusp allows us to precisely separate thin rings from fat rings in

the microcanonical ensemble. We define fat rings by requiring

∂ÃH
∂κ̃

∣∣∣∣∣
M̃

> 0 . (5.11)

One can easily apply the first law (3.3) and the chain rule to deduce that this is equivalent to

∆ :=
∂ÃH

∂Ω̃

∣∣∣∣∣
κ̃

∂J̃

∂κ̃

∣∣∣∣∣
Ω̃

− ∂ÃH
∂κ̃

∣∣∣∣∣
Ω̃

∂J̃

∂Ω̃

∣∣∣∣∣
κ̃

> 0 . (5.12)

It was shown in [46] that the above quantity is proportional to the Hessian determinant of

the grand canonical potential Φ̃ with respect to the coordinates (κ̃, Ω̃). Note also that ∆

carries the same sign as the constant-J heat capacity, CJ .
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Figure 9. Microcanonical ensemble phase diagram for mass M̃ = 10, showing the horizon area ÃH
against angular momentum J̃ . The faint blue curve in the background is the exact result for the

spherical AdS black holes, while the yellow one shows the perturbative results of [24]. Red points

show our black rings with κ̃ ≥ 1, i.e. the thin rings, while the blue points show rings with κ̃ < 1,

i.e. the fat rings. There is a cusp at the minimum value of J̃ around κ̃∗ ≈ 0.93. Our numerical

results approach the perturbative curve at high κ̃, while for low κ̃ the fat rings approach the curve

for spherical black holes.

6 Holographic stress tensor

In this section we study the stress tensor of N = 4 SYM on Rt × S3 for states which are

dual to rotating AdS black holes and black rings. For rotating spherical black holes in AdS

this was first done in [16] and we shall borrow some results from this reference.

We extract the stress tensor using the standard holographic renormalisation prescrip-

tion [30]. Note that with our choice of outer patch, see (2.5), the boundary geometry is

given by the standard metric on the Einstein static universe, Rt × S3. As is well known,

N = 4 SYM on this geometry has a non-zero Casimir contribution [47]. In the derivatione

below we will have to subtract this universal piece.

In order to extract the stress tensor of the dual CFT, we must first transform the outer

region metric ds2
outer from (2.5) into Fefferman-Graham coordinates. In these coordinates,

ds2
outer can be expanded around z = 0 in the form

ds2
outer ∼

`2

z2

(
dz2+

[
g(0)(x)+z2 g(2)(x)+z4 g(4)(x)+O

(
z5
)]
ij

dxi dxj
)
, (6.1)

g(0)(x)+z2 g(2)(x) := diag
[
−1− z2

2 `2
, `2− z2

2 , cos2 θ
(
`2− z2

2

)
, sin2 θ

(
`2− z2

2

) ]
,

xi := (t, θ, φ, ψ) .

Note that index contractions are with respect to the metric g(0), which in this case is just

the standard metric on the Einstein static universe. Then, the v.e.v. of the dual stress
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tensor is given by [30]

〈Tij〉 =
`3

4πG5

(
g(4)ij−

1

8

[(
Tr g(2)

)2−Tr g2
(2)

]
g(0)ij−

1

2

(
g2

(2)

)
ij

+
1

4

[
Tr g(2)

]
g(2)ij

)
. (6.2)

We perform the change into FG coordinates by substituting r → r(z, θ) and a → a(z, θ)

into (2.5) and then imposing the Einstein-DeTurck equations near z = 0 at each order in z

up to (and including) O(z5). We also subtract off the contribution from pure global AdS,

i.e. the Casimir energy. The final result, expressed in terms of our unknown functions, is

given by

〈Tij〉sub dxi dxj =
N2
c k

8

768π2 `8

[
− T (4)(θ) dt2−2 `Ξ(θ) dt dψ (6.3)

+ `2
(
Y (4)(θ) dθ2+cos2 θ U (4)(θ) dφ2+sin2 θ V (4)(θ) dψ2

)]
,

where F (4)(θ) := ∂4
rF
(
r, 2 θ

π

)
|r=k for any function F , and

Ξ(θ) :=
3π4 Γ

(
Γ+Ω̃H

)2 [ (
Γ+Ω̃H

)
−
(
Γ−3 Ω̃H

)
cos 2θ

]2
sin2 θ

8 k4
(
Γ−Ω̃H

)4 (
1+Z

(
k, 2 θ

π

))
,

with Γ :=

√
4κ̃2+Ω̃2

H . (6.4)

Note that our differentiation variable r has the dimensions of length, and we have reinstated

the compactification scale k, as defined in (2.6), so that the expression above manifestly

has the correct dimensions. The expression has already been somewhat simplified by using

the relation T (4)(θ) +Y (4)(θ) +U (4)(θ) +V (4)(θ) = 0 which arises from Einstein’s equation

at O(z2). However, we have not completely eliminated any one of the four functions out

altogether, so 〈Tij〉sub is not manifestly traceless. This will prove useful for our calculation

method as detailed in section 6.1. From now on all our stress tensors will have the Casimir

contribution subtracted, and thus we no longer explicitly show the “sub” superscripts.

6.1 Accurate extraction of the stress tensor

Having derived the stress tensor components in terms of our unknown functions, we now

explain our method of actually evaluating (6.4) numerically. For each unknown function

F , we first apply the following protocol. At each a ∈ [0, 1] in the outer patch grid, we take

eight data points closest to the boundary at r = 1 and fit onto them a polynomial of the

form pa(r) := 1
4! αa (1 − r)4 + 1

5! βa (1 − r)5 + 1
6! γa (1 − r)6. The coefficients {αa, βa, γa}

are determined by least squares regression. This fitting naturally has large numerical

errors, and so the set A := {(a, αa) | a ∈ grid} must be regarded as a noisy sampling of

the fourth derivative F (4)
(
π a
2

)
evaluated on the boundary r = 1. Rather than applying

standard noise-reduction filters (e.g. moving averages) on A, we can achieve significantly

better results if we take into account the fact that F (4) is a smooth function of θ in the

continuum limit. Since we have ∂aF
(4)
(
π a
2

)
= 0 at both a = 0 and a = 1, we can expand

it spectrally as

F (4)
(
π a
2

)
=
∞∑
n=0

fn cos(nπ a) . (6.5)
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We can therefore obtain a good approximation for F (4) by fitting the coefficients fn to

the first N terms in the series above. Once again, we determine these fn by applying

least squares regression on the set A. In this paper, we managed to achieve good results

at N = 20.

Next, we note that Einstein’s equations imply that we should have

ε(a) := T (4)(π a2 ) + Y (4)(π a2 ) + U (4)(π a2 ) + V (4)(π a2 ) = 0 (6.6)

on the r = 1 boundary. Numerical errors mean that we can never expect the functions

obtained by fitting fn as described above to yield ε(a) ≡ 0 exactly. However, we noticed

that in many cases ε(a) is actually of the same order of magnitude as the F (4) themselves,

even though the DeTurck vector norm
√
ξiξi suggests that these solutions should have very

small errors. The nonzero ε(a) therefore seems to contain some systematic discrepancy

beyond what one would expect from pure numerical errors.

With this in mind, we manually enforce (6.6) by subtracting ε(a)/4 from each of the

functions
{
T (4), Y (4), U (4), V (4)

}
. One way to gauge the accuracy of our procedure is to

calculate the total energy v.e.v. from the stress tensor,

〈E〉 = −4π2 `3
∫ π/2

0
dθ cos θ sin θ

〈
T tt(θ)

〉
. (6.7)

To our surprise, this seemingly ad hoc procedure resulted in energy densities which,

when integrated, agree remarkably well with the black hole masses as calculated by first law

method as described in section 3.3, with differences ranging between 0.0005% and 0.1%.

These results were obtainable by following the above procedure exactly, without having to

fine-tune it for each particular solution.

We will leave the rigorous analysis of our methods for future work, however we will make

a few comments here. The imposition of (6.6) amounts to solving the leading-order term of

Einstein’s equations on the AdS boundary. At the computational level, there are infinitely

many ways to do this. One could add unequal proportions of ε(a) to each function, or

apply some completely different operations altogether. Our choice corresponds to pulling

out a conformal factor from the boundary metric and imposing Einstein’s equations by

only modifying this conformal factor. We note that this bears a striking resemblance to

the usual conformal decomposition widely used elsewhere in numerical relativity, and it

would be interesting to see if a formal justification can be made for its use in this context.

6.2 Results

In this subsection we present the results for the stress tensor of CFT states dual to the black

rings for some representative configurations. We will concentrate on the energy density

distribution on the boundary S3 and shall compare it to the energy density distribution

of the rotating AdS black hole at the same temperature and angular velocity, using the

results of [16].

In order to make the correlation between the horizon geometry and the stress tensor of

the boundary CFT apparent, in figure 10 we have depicted the energy density distribution
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Figure 10. Energy density distribution, normalised by the total energy of the CFT, as a function of

the polar angle θ = π a
2 on the boundary S3. The data for the black ring is represented as solid black

curves, while the data for the corresponding spherical black hole is represented as dashed curves.

Firstly, a shows the energy density distribution for the same long and thin ring as in figure 6a. The

ring approaches the boundary along the axis of symmetry that goes through one of the poles of

the S2 and hence the energy density is concentrated near the corresponding pole of the boundary

S3, while the spherical black hole exhibits a much more uniform distribution. Next, c shows the

distribution for a typical fat ring, while b and d show the distributions for rings approaching the

membrane limit. In all of these cases, the energy densities corresponding to the black ring and the

rotating black hole are very similar. Indeed, the two curves become virtually indistinguishable as

one moves further towards either of these two limits.

for same black rings and black holes as in figure 6. For thin long rings, figure 10a, the energy

density gets concentrated on one of the poles of the boundary S3, whilst it is negligible on

the other pole. The reason is that the ring gets very close to the boundary only along one

of the axes of symmetry; the other axis goes through the hole of the ring and hence the

energy density in that direction is negligible. Therefore, for such configurations, it becomes

particularly simple to distinguish states dual to black rings from the states dual to spherical

black holes. As the black ring becomes fatter, figures 10b–10d, the energy densities of the

black hole and the black ring approach each other, and the distinction between the two
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becomes less obvious. This is expected since these two phases should eventually merge.

This is particularly striking near the membrane limit, figure 10d, for which it is very hard

to distinguish the energy density corresponding to the ring from that of the black hole. The

fact the we see that the energy densities of the two phases approach each other in this limit

is reassuring of the correctness of our calculations. Note that in the membrane limit the

energy density also gets concentrated on one of the poles. The reason is that in this limit,

the bulk solution spreads out on the plane of rotation whilst it becomes infinitely thin in

the transverse directions. Therefore, the energy density should get very large (eventually

diverge) around the pole of the S3 that connects to the rotation plane, and be negligible

around the other pole.

We have noted in section 5 that the thermodynamic behaviour of the AdS black rings

is qualitatively similar to that of the small rotating black holes in AdS. This gets reflected

on the dual stress tensor in the sense that the latter does not fall into the hydrodynamic

regime, even though the stress tensor for rings can be quite different from the stress tensor

corresponding to black holes with the same temperature and angular velocity. This is

result is unsurprising since [16] solved the relativistic Navier-Stokes equations on S3 for

stationary fluid configurations and they only found the solutions corresponding the large

rotating black holes in AdS.
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