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e+e− → hZ differential cross section in the effective field theory (EFT) approach, including

the complete set of dimension-6 operators contributing to this process. These results are

applicable to any model where the new physics mass scale is significantly above the weak

scale. Second, we present a complete one-loop calculation of the effect of third-generation

squarks, with arbitrary soft masses and mixing, on this cross section. This is expected to be

the leading correction in natural supersymmetric models. We demonstrate the agreement

between the full one-loop calculation and the EFT result in the limit of large stop masses.

Finally, we estimate the discovery reach of the e+e− → hZ cross section measurement in

the two models.
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1 Introduction

Experimental determination of the Higgs boson properties will be the major focus of high-

energy physics in the coming years. The well-known naturalness argument suggests that the

Standard Model (SM) picture of electroweak symmetry breaking (EWSB) is incomplete,

and new physics in the electroweak sector has to appear at energy scale of ∼TeV or less.

Given that the Higgs boson plays a central role in EWSB, it is natural to expect that this

new physics will influence its properties, leading to deviations from the SM predictions. A

program of precision measurements of Higgs properties offers an exciting opportunity to

search for such effects.

Some of the Higgs properties are already being constrained by the LHC experiments.

For example, the Higgs couplings to W/Z bosons and gluons have been measured and found

to agree with the SM to within about 20% [1]. The impending Run-2 of the LHC, and the

future luminosity upgrade program, will both improve the precision of these measurements

and measure additional couplings. However, the composite nature of the proton makes it

difficult to reduce the systematic and theory errors below a few %. In addition, interpre-

tation of the LHC rate measurements in terms of couplings is somewhat model-dependent,

as it depends on the total width of the Higgs which is not directly observable. To go

to the next level of precision, an electron-positron collider will be required. Currently,

plans for constructing such a “Higgs factory” are under serious consideration [2–4]. The

Higgs factory would run at a center-of-mass energy of about 250 GeV, where Higgs boson

production is dominated by the Higgsstrahlung process, e+e− → hZ. A multi-year experi-

mental program is envisioned, in which a combined data set of O(105–106) Higgsstrahlung

events would be accumulated. Experimentally, these events are very clean. They can be

tagged by the Z boson energy, without necessarily reconstructing the Higgs, providing a

robust, model-independent cross section measurement. Moreover, very precise SM predic-

tions can be obtained for this purely electroweak process. All these factors combine to

make the e+e− → hZ cross section a uniquely powerful observable in a search for physics
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beyond the SM. In this paper, we investigate the potential sensitivity of this measure-

ment to new physics, assuming that precision of O(0.1–0.5%) can ultimately be reached at

a Higgs factory.

The paper is organized as follows: in section 2 we review the Higgsstrahlung process in

the Standard Model and discuss the appropriate observables for characterizing deviations

from SM predictions for e+e− → hZ in the presence of new physics. In section 3 we frame

new physics contributions to Higgsstrahlung in the language of Effective Field Theory

(EFT), enumerating a complete basis of CP-conserving dimension-6 operators relevant to

the e+e− → hZ process and computing their respective contributions to the e+e− → hZ

cross section. The effect of anomalous Higgs couplings on this process has been considered

before [5–15]. However, most of these studies did not include the complete set of operators;

typically, the operators already constrained by precision electroweak measurements were

omitted. In addition, none of these studies included the effect of the shift in the couplings

entering the leading-order SM prediction for the e+e− → hZ cross section, relative to

their reference values, due to the effect of dimension-6 operators on the electroweak input

observables (e.g. the Z mass, GF , and α). Again, this was justified by the tight constraints

on such shifts from precision electroweak fits; also, many studies focused explicitly on

angular distributions, which, unlike the total rate, are unaffected by such coupling shifts.

Since the currently discussed Higgs factories would be able to measure the Higgsstrahlung

cross section with precision approaching that of the best precision electroweak observables,

these effects need to be taken into account to properly interpret this measurement. We

will do so in this paper. (Note that another study of the e+e− → hZ process with the

complete operator set and proper inclusion of the SM coupling shifts has recently appeared;

see ref. [16].) We also estimate the energy scales that can be probed by the Higgs factory

Higgsstrahlung measurement interpreted in the EFT approach. In section 4 we consider a

specific realization of new physics in the form of third-generation squarks in supersymmetric

models. We perform both a full next-to-leading order (NLO) calculation1 of e+e− → hZ

and the corresponding EFT calculation of e+e− → hZ in the presence of third-generation

squarks. To this end we make use of the recent calculation of Wilson coefficients for third

generation squarks [24]. The excellent agreement between our NLO and EFT results in the

limit of large squark mass serves as a highly non-trivial check of both calculations, while

the full NLO result allows us to establish the range of validity of the EFT approach as the

squark mass is lowered. We also discuss the reach of the Higgs factory indirect searches for

stops, including both Higgsstrahlung and the measurement of h → gg, γγ decay widths.

Finally, we present our conclusions in section 5.

2 e+e− → hZ in the Standard Model

To define notation and set the stage for subsequent discussion, let us briefly review the well-

known results for the Higgsstrahlung process in the Standard Model (SM). The differential

1For earlier work considering the NLO corrections to the Higgsstrahlung process in the presence of new

physics, including supersymmetric theories, see refs. [17–23].
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cross section is given by
dσSM
d cos θ

=
pZ

16πs3/2
FSM(s, t), (2.1)

where θ is the angle between the electron beam and the Z momentum and

pZ =

√
s

2

(
1− (mh +mZ)2

s

)1/2(
1− (mh −mZ)2

s

)1/2

(2.2)

is the Z boson momentum in the center-of-mass frame of the collision. Assuming unpolar-

ized beams, a tree level calculation yields [25–28]

FSM(s, t) =
1

4
g2ZZh

(
g2L + g2R

) 2s+ tu
m2

Z
−m2

h

(s−m2
Z)2

, (2.3)

where gL and gR are the couplings of the left-handed and right-handed electrons to the Z

boson. Here we used the standard Mandelstam variables:

s = (p1 + p2)
2, t = (p1 − p4)2 = m2

Z −
√
s(EZ − pZ cos θ),

u = (p1 − p3)2 = m2
Z −
√
s(EZ + pZ cos θ) = m2

Z +m2
h − s− t, (2.4)

where

EZ =
s+m2

Z −m2
h

2
√
s

(2.5)

is the Z energy in the c-o-m frame. For reference, the numerical value of the tree-level SM

cross section at
√
s = 250 GeV is 224 fb.

In the context of our study, the coupling constants appearing in eq. (2.3) deserve

a careful discussion. Potential precision of the e+e− → hZ cross section measurement

at the Higgs factories, of order 0.1%, matches or surpasses that achieved in precision

electroweak (PEW) experiments at the Z pole. A comparison of the SM with experiment

at this level requires that all numerical inputs into the SM prediction be known to at least

the same precision. The standard approach, well-known in the case of PEW analyses, is

to use three most precisely measured electroweak-sector observables as inputs, infer the

“reference” values of the SM Lagrangian parameters from these inputs, and compute the

numerical values of all other observables using these reference values. We will adopt the

same approach. Specifically, we will consider two sets of inputs, or “bases”. In the first

basis, we take the Z mass, the fine-structure constant α at zero momentum transfer, and

the Fermi constant GF inferred from muon decay rate, as inputs. In the second basis,

we use the W mass instead of the Fermi constant.2 The reference values of the relevant

couplings are given by

ĝZZh = ĝzmZ , ĝL = ĝz

(
−1

2
+ sin2 θ̂W

)
, ĝR = ĝz sin2 θ̂W , (2.6)

where

ĝz =
4
√
πα

sin 2θ̂W
(2.7)

2While GF has been measured to a much higher precision than mW , the second basis will be important

for a comparison of the full one-loop and effective field theory calculations in section 4.1.
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and the reference value of the Weinberg angle depends on the basis:

(mZ , GF , α) : sin 2θ̂W =

(
4πα√

2GFm2
Z

)1/2

,

(mZ ,mW , α) : cos θ̂W =
mW

mZ
. (2.8)

If the SM is the true theory, the numerical value of the SM cross section obtained with

these two input bases, or indeed any other basis, are identical within the experimental

errors on the inputs. However, if there is new physics, it may affect the observables used

to define the reference couplings. In this case, the true values of the couplings gi in the SM

Lagrangian differ from their reference values ĝi:

gZZh = ĝZZh + δgZZh, gL = ĝL + δgL, gR = ĝR + δgR. (2.9)

To search for new physics in e+e− → hZ, one would compare the experimentally mea-

sured cross section σexp with the reference SM cross section σSM(ĝi). The apparent cross

section shift

∆σ ≡ σexp − σSM(ĝi) (2.10)

should thus incorporate the effect of coupling shifts δgi, as well as the direct contribution

of new physics to the e+e− → hZ cross section. In the presence of new physics, the

reference SM cross section values obtained in different bases are no longer the same. Since

σexp is physically observable and therefore must be basis-independent, this leads to basis

dependence of the cross section shift δσ. We will observe this dependence in our explicit

calculations of δσ in the following section. It should be emphasized that bounds on new

physics obtained in different bases must be identical, as long as a global fit to all available

observables is performed in each case and the uncertainties in the input observables are

properly taken into account.

Next-to-Leading-Order (NLO) corrections to the Higgsstrahlung cross section in the

SM are well-known [29–31]. For a Higgs mass of 125 GeV and CM energy
√
s = 250 GeV the

full NLO electroweak corrections amount to a 3% shift in the Higgstrahlung cross section

relative to the LO result. While small, such corrections are within the realm of proposed

future colliders. NNLO electroweak and mixed QCD-electroweak corrections have not yet

been calculated, although they are likely to constitute the dominant source of theoretical

uncertainty. In this paper, we will assume that a sufficiently precise SM prediction will be

available to bring the theory uncertainty to a level subdominant to the statistical error in

the cross section measurement.

3 Effective Field Theory approach

The effects of any new physics appearing at a mass scale Λ on the Higgsstrahlung cross

section can be described in terms of an Effective Field Theory (EFT), as long as Λ is large

compared to the center-of-mass energy
√
s and the weak scale v. In general, the EFT

Lagrangian is an expansion in inverse powers of Λ. The term of order Λ−n contains all
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OWW = g2|H|2W a
µνW

a,µν

OBB = g′2|H|2BµνBµν

OWB = gg′H†σaHW a
µνB

µν

OH =
1

2

(
∂µ|H|2

)2
OT =

1

2

(
H†

↔
DµH

)2
O(3)`
L =

(
iH†σa

↔
DµH

) (
L̄Lγ

µσaLL
)

O(3)`
LL =

(
L̄Lγµσ

aLL
) (
L̄Lγ

µσaLL
)

O`L =
(
iH†

↔
DµH

) (
L̄Lγ

µLL
)

OeR =
(
iH†

↔
DµH

)
(ēRγ

µeR)

Table 1. A complete set of CP-conserving dimension-6 operators which contribute to e+e− → hZ.

possible operators of mass dimension 4 + n compatible with the symmetries imposed on

the theory, in our case the full SM gauge symmetry as well as lepton and baryon number.

With these restrictions, the leading term in the expansion is n = 2, containing dimension-6

operators.

A complete set of CP-conserving dimension-6 operators that can contribute to the

e+e− → hZ process is listed in table 1. This basis is complete in the sense that an arbitrary

set of CP-conserving dimension-6 operators contributing to the e+e− → hZ process can be

reduced to the operators listed in table 1 (plus additional operators irrelevant to e+e− →
hZ) by field redefinitions. In principle there can be additional contributions from the

dipole-type operators OeDB ∼ L̄Lσ
µνeRHBµν , OeDW ∼ L̄Lσ

µνeRσ
aHW a

µν . However, these

are expected to be Yukawa-suppressed due to the chirality flip; moreover, since they do not

interfere with the SM amplitude, their leading contribution is of order 1/Λ4. We therefore

do not include them in this analysis. This completes the enumeration of CP-conserving

dimension-6 operators contributing to e+e− → hZ.

The dimension-6 Lagrangian has the form

Lpre−EWSB =
∑
i

ci
Λ2
Oi , (3.1)

where ci are dimensionless Wilson coefficients. Given a complete theory at the scale Λ,

the Wilson coefficients can be computed in terms of the parameters of that theory; we will

consider an example of this in section 4.1. In this section, we treat ci’s as free parameters.

To account for electroweak symmetry breaking, we write the Higgs doublet as H =(
0, v+h√

2

)T
, where v ≈ 246 GeV is the Higgs vev, while h is the physical Higgs boson field.

Note that in the presence of new physics, the field h defined in this way is not canonically

normalized; to return to canonical normalization requires a field redefinition

h→
(

1 +
cH
2Λ2

v2
)
h. (3.2)
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Performing this field redefinition and dropping the terms that do not contribute to e+e− →
hZ, the dim.-6 Lagrangian of eq. (3.1) reduces to

Lpost−EWSB =
d1v

3

2Λ2
hZµZ

µ +
d2v

4Λ2
hZµνZµν +

d3v

2Λ2
hFµνZµν

+
v

Λ2
ψ̄γµ (d4PL + d5PR)ψZµh, (3.3)

where Zµ is the SM Z boson field, Zµν = ∂µZν − ∂νZµ, Fµν is the electromagnetic field

strength tensor, ψ is the (Dirac) electron field, and PR = 1
2(1 + γ5) and PL = 1

2(1− γ5) are

helicity projectors. The Feynman rules derived from this Lagrangian are

Zµ
↘k1

Zν

↗
k2

h
←kh

= igZZhg
µν +

iv

Λ2

[
gµν

(
v2d1 − (k1 · k2)d2

)
+ kν1k

µ
2d2

]
(3.4)

Zµ
↘k1

γν
↗
k2

h
←kh

=
ivd3
Λ2

[
−(k1 · k2)gµν + kν1k

µ
2

]
(3.5)

e+

e− h

Zµ

=
iv

Λ2
γµ (d4PL + d5PR) . (3.6)

The dimensionless coefficients di are given by

d1 = −g
2
z

2

(
1

2
cH + 2cT

)
,

d2 = 4g2z
(
s4θcBB + s2θc

2
θcWB + c4θcWW

)
,

d3 = 2g2zcθsθ
(
−2s2θcBB − (c2θ − s2θ)cWB + 2c2θcWW

)
,

d4 = −gz
(
c
(3)`
L + c`L

)
,

d5 = −gzceR, (3.7)

where we used the shorthand notation cθ ≡ cos θW , sθ ≡ sin θW , and the coupling gz defined

in eq. (2.7).3 Our expressions for the di are in excellent agreement with EFT results for

comparable bases in the existing literature (e.g. [32–36]).

3Note that the difference between the actual and reference values of gz, discussed in the previous section,

is irrelevant in these formulas. This difference amounts to corrections of order Λ−4 to physical observables,

i.e. of the same order as dim.-8 operators that we ignored.
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F1

(
g2L + g2R

)
v2

2s+ tu

m2
Z

−m2
h

(s−m2
Z)

2

F2

(
g2L + g2R

) s(s+m2
Z−m

2
h)

(s−m2
Z)

2

F3 −e(gL + gR)
s+m2

Z−m
2
h

s−m2
Z

F4 gL
2s+ tu

m2
Z

−m2
h

s−m2
Z

F5 gR
2s+ tu

m2
Z

−m2
h

s−m2
Z

Table 2. Direct contributions to the e+e− → hZ differential cross section from each operator in

the post-EWSB Lagrangian.

In addition, upon electroweak symmetry breaking, the dim.-6 operators in (3.1) induce

shifts between the coupling constants in the SM Lagrangian and their reference values, as

explained in section 2. In the two bases of interest, we obtain:4

(mZ , GF , α) : δgZZh =
gZZhv

2

Λ2

(
cT − c(3)`L + c

(3)`
LL

)
,

δgL =
gzv

2

2Λ2

[
− 1

2
(
c2θ−s2θ

)cT +
2e2

c2θ−s2θ
cWB+

2s2θ
c2θ−s2θ

c
(3)`
L − 1

c2θ−s2θ
c
(3)`
LL −c

`
L

]
,

δgR =
gzv

2

2Λ2

[
−

s2θ
c2θ − s2θ

cT +
2e2

c2θ − s2θ
cWB +

2s2θ
c2θ − s2θ

(
c
(3)`
L − c(3)`LL

)
− ceR

]
;

(mZ ,mW , α) : δgZZh =
gZZhv

2

Λ2

[(
1−

c2θ
2s2θ

)
cT + g2cWB

]
,

δgL =
gzv

2

2Λ2

[
1

2s2θ
cT − g2cWB − c(3)`L − c`L

]
,

δgR =
gzv

2

2Λ2
[cT − ceR] . (3.8)

The e+e− → hZ cross section shift with respect to the reference SM cross section, as

defined in eq. (2.10), is given by

d∆σ

d cos θ
=

pZ
16πs3/2

[
2

(
δgZZh
gZZh

+
gLδgL + gRδgR

g2L + g2R

)
FSM(s, t) +

gZZhv

2Λ2

5∑
i=1

diFi(s, t)

]
, (3.9)

where the functions Fi are collected in table 2. The first term in the square brackets reflects

the effect of the coupling constant shifts, while the second term is the “direct” contribution

of new interactions, eq. (3.3), to this cross section. The direct contribution is due to the

interference between the SM diagrams and those with a single di insertion.

4We are grateful to Michael Fedderke for pointing out an error in the first set of formulas in eq. (3.8) in

the original version of this paper.
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The fractional deviation of the total cross section from its reference SM value, in the

(mZ , GF , α) basis and at
√
s = 250 GeV, is approximately given by

∆σ

σ
≈
(

0.26cWW + 0.01cBB + 0.04cWB − 0.06cH − 0.04cT + 0.74c
(3)`
L

+ 0.28c
(3)`
LL + 1.03c`L − 0.76ceR

)
Λ−2TeV, (3.10)

where ΛTeV ≡ Λ/(1 TeV). To estimate the sensitivity of Higgs factories to new physics, we

consider two scenarios for the cross section measurement precision: a “conservative” one,

δσ/σ = 0.5%, and an “optimistic” one, δσ/σ = 0.1%. (If statistical error dominates, the

conservative scenario corresponds to an integrated luminosity
∫
Ldt ≈ 180 fb−1, or about 3

years of running the ILC-250 at design luminosity. The optimistic scenario corresponds to∫
Ldt ≈ 4500 fb−1, which would probably require combining data from multiple detectors

as envisioned, for example, in the TLEP proposal.) Table 3 and figure 1 show the exclusion

and discovery reaches in a new physics scenario where a single dim.-6 operator dominates.

For this estimate, we only used the total cross section measurement, and assumed that it is

in exact agreement with the reference value computed in the (mZ , GF , α) basis. Of course,

this information can be augmented with angular distributions, asymmetries, etc., further

improving the reach. We defer a consideration of such improvements to future work.

In addition to running at
√
s = 250 GeV, the physics program of the Higgs factory may

include running at higher energies as well; for example, in the case of the ILC, running

scenarios including periods of running at 350 GeV and 500 GeV are being discussed. While

a detailed analysis of the physics reach of such scenarios is beyond the scope of this paper,

to facilitate future work we present the analogues of eq. (3.10) at these energies:

√
s = 350 GeV :

∆σ

σ
≈
(

0.36cWW + 0.01cBB + 0.06cWB − 0.06cH − 0.04cT + 2.01c
(3)`
L

+ 0.28c
(3)`
LL + 1.73c`L − 1.48ceR

)
Λ−2TeV,

√
s = 500 GeV :

∆σ

σ
≈
(

0.45cWW + 0.02cBB + 0.08cWB − 0.06cH − 0.04cT + 3.82c
(3)`
L

+ 0.28c
(3)`
LL + 4.10c`L − 3.02ceR

)
Λ−2TeV. (3.11)

As expected, the contributions of most operators grow with energy, and better reach can

be obtained if an equivalent sample of Higgs bosons is collected at higher energies.

It is instructive to compare the sensitivity of the measurement discussed here with

the current bounds on these operators, which come primarily from precision electroweak

fits and the LHC measurements of the Higgs rates. The final two columns of table 3 list

the precision electroweak constraints, obtained from ref. [37], and the bounds derived from

the agreement of the CMS measurement of the effective hγγ vertex, κγ , with the SM [38].

(ATLAS constraints on this vertex are very similar [39].) For most operators, the sensitivity

of the Higgs factory is well in excess of the current bounds, the only exceptions being OBB
and, for the conservative luminosity assumptions, OWB.

Another relevant question is how the Higgsstrahlung cross section will compare, in

terms of new physics sensitivity, to various other observables that can be measured at

– 8 –
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δσ/σ = 0.5% δσ/σ = 0.1% PEW LHC

OWW 5.1/3.2 11.5/7.5 – 2.5

OBB 1.0/0.64 2.2/1.4 – 2.5

OWB 2.1/1.3 4.6/2.9 0.3 2.5

OH 2.5/1.6 5.5/3.5 – –

OT 2.0/1.3 4.5/2.8 1.0 –

O(3)`
L 8.6/5.4 19/12 1.2 –

O(3)`
LL 5.3/3.4 12/7.5 4.3 –

O`L 10.1/6.4 23/14 1.5 –

OeR 8.7/5.5 19/12 1.0 –

Table 3. Exclusion (95% c.l.)/discovery (5-sigma) reach of a measurement of σ(e+e− → hZ) at√
s = 250 GeV. The reach is in terms of Λ/

√
ci, in TeV, for each operator Oi. For comparison,

current precision electroweak bounds from ref. [37] and LHC bounds from hγγ effective coupling

measurement [38] are also shown.

Figure 1. Graphical representation of the results in table 3. The exclusion reach is shown in

orange and the discovery reach in blue (paler colors for higher accuracy). Black lines denote the

current precision electroweak and LHC bounds.

the Higgs factory. The operators OBB, OWB and OWW will be constrained by a precise

measurement of κγ , to which they contribute as

∆κγ =
1

2

∆Γ(h→ γγ)

Γ(h→ γγ)
≈ −2.9(cWW + cBB − cWB)Λ−2TeV. (3.12)

We estimate that a measurement of κγ with 8% precision, roughly corresponding to the

ILC-500 projection of the Snowmass-2013 study [4], would have a 95% c.l. exclusion reach of

Λ/
√
ci ≤ 4.3 TeV for each of these operators. The same measurement with a 1.5% precision,

– 9 –
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projected for TLEP in the same study, would increase the reach to about 10 TeV. This

is comparable to the Higgsstrahlung sensitivities in the case of OWW , and significantly

exceeds the Higgsstrahlung reach for OBB and OWB. However, we emphasize that the

relative size of dimension-6 operators depends on the details of new physics at the scale

Λ, and the Higgsstrahlung cross section gives access to several operators not accessible to

other measurements.

4 Third-generation squarks: the NLO calculation

In this section, we analyze the corrections to e+e− → hZ due to loops of third-generation

squarks of supersymmetric (SUSY) models. There are two related reasons to focus on

these particular contributions. First, third-generation squarks are required to be relatively

light, below 1 TeV, to avoid the need for significant fine-tuning in the EWSB sector [40–

44]. Most other superpartners can be heavier without inducing fine-tuning. In fact, such

a split spectrum, often referred to as “Natural SUSY”, is preferred in light of the strong

LHC bounds on gluinos and squarks of the first two generations. Second, even if some

other superpartners are below 1 TeV, the third-generation squark effects in e+e− → hZ

are enhanced due to the large value of the top Yukawa coupling.

We implemented the “Natural SUSY” model in the FeynArts package [45, 46] by

including the third generation left-handed doublet Q̃3 =
(
T̃L, B̃L

)
and right-handed singlet

T̃R fields within the SM model file. (The right-handed sbottom B̃R does not have to

be below 1 TeV to maintain naturalness, and we do not include it in the calculation.)

The three input parameters for the squark sector are the two soft masses m̃L, m̃R and

the At trilinear soft coupling. The D-term scalar potential is also included; however this

does not introduce additional free parameters as the couplings are determined through the

electroweak couplings. The Lagrangian is thus given by

L = LSM + LKin,t̃ − m̃
2
L|Q̃3|2 − m̃2

R|T̃R|2 −At
(
T̃RH · Q̃3 + h.c.

)
(4.1)

− λ2t |H|2
(
|Q̃3|2 + |T̃R|2

)
− g′2

2

(
2

3
|T̃R|22−

1

6
|Q̃3|2 −

1

2
|H|2

)2

(4.2)

− g2

2

∑
a

(
Q̃†3 · τ

a · Q̃3 +H† · τa ·H
)2
, (4.3)

where τa = σa/2 with σa the usual Pauli matrices. This Lagrangian can be obtained from

the MSSM by decoupling all superpartners other than Q̃3 and T̃R, and taking the usual

decoupling limit in the Higgs sector, m2
Hd
→ ∞ and tanβ → ∞. Note, however, that our

implementation treats the Higgs mass mh as a free parameter, while in the MSSM it is

not. This is motivated by the well-known tension between naturalness and the 125 GeV

Higgs in the MSSM. The tension is reduced in extended models with additional tree-level

contributions to mh, such as the NMSSM or models with non-decoupling D-terms. Our

implementation of mh ensures that our results are applicable in such models, in the limit

when extra BSM states are decoupled. It should also be noted that due to the absence

of A-terms mixing B̃L with B̃R the physical mass of B̃L is very close to m̃L, and hence
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h
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Figure 2. Feynman diagrams corresponding to e+e− → hZ at a lepton collider. The Higgs

wavefunction correction diagram discussed in [51] is shown in (a), and all possible counterterm

diagrams are shown in (d) with the understanding that in the calculation of one-loop counterterms

only the stop and left-handed bottom squarks are included. One-loop Z/γ wavefunction correction

diagrams (b,e) and vertex correction (c,f) diagrams are also shown. Diagrams involving left-handed

bottom squarks are not shown, but also contribute.

whenever m̃L . 120 GeV we will assume that other bounds from direct searches are satisfied

by additional mixings in the sbottom sector which raise the physical mass of both sbottoms.

In order to renormalize the theory for the calculation of virtual corrections, a mini-

mum basis of three input parameters must be chosen, and then counterterms are defined

for those parameters and the SM field strengths. Due to the ease of implementation in the

FeynArts, FormCalc, and LoopTools suite of packages [45, 46] we opt for the com-

plete on-mass-shell renormalization scheme [47–50] and hence choose electroweak inputs of

(MZ ,MW , αEM) following the prescription of [47].

The full set of counterterms includes the field strength counterterms, particle mass

counterterms (including the Higgs mass counterterm, which we consider to be independent

unlike in the MSSM), a counterterm for the EM coupling at low energies, and a counterterm

for the Higgs vev. All other counterterms are then defined through combinations of this

set. Due to their weak charges and couplings to the Higgs, the squarks enter into the

counterterms for the weak sector.

Some of the NLO diagrams contributing to e+e− → hZ are shown in figure 2. It has

been analytically checked that the full NLO correction is finite and gauge invariant. As

a further check, setting stop couplings to gauge bosons to zero in our NLO calculation

reproduces the results of [51], where gauge-singlet scalars t̃0 were considered.5 In the case

of t̃0, the effect arises entirely from the quartic coupling λ2t |H|2|t̃0|2, which induces an

irreducible physical correction to the Higgs wavefunction renormalization, figure 2 (a), and

the corresponding counterterm. Naively, one might expect this contribution to dominate

5For proper comparison, At must be set to 0 in the stop case, since it has no counterpart in the case

of t̃0; and the t̃0 correction must be rescaled by 6 to account for the number of degrees of freedom in the

two stop fields.
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Figure 3. The ratio of the full NLO correction from stops/sbottoms (t̃) relative to the correction

from gauge-singlet scalar top partners (t̃0).

the NLO correction for stops as well, since it is enhanced relative to other diagrams by

the ratio of the top Yukawa to gauge couplings. However, this is not the case, as can be

seen in figure 3 which compares the full NLO correction from stops to the correction from

t̃0. The Higgs wavefunction renormalization accounts for 50–70% of the full NLO result,

depending on the stop mass. We conclude that the electroweak interactions of stops do

play an important role in the NLO contribution.

4.1 Comparison between EFT and full-NLO predictions

As the EFT and NLO calculation methods must agree in the heavy-squark limit, the

combination of both methods allows for a non-trivial cross check of the results. There is

additional interplay between the two as the NLO calculation allows the regions of validity of

the EFT calculation to be clearly determined, and on the other hand the EFT calculation

allows for some physical insights into the results of the NLO calculation. The comparison is

also interesting as although the differences between EFT results and loop functions in LO

processes such as gg → h or h→ γγ have been thoroughly studied, the interplay between

EFT and NLO results, where the full systematics of renormalization are at play, is much

less studied and makes the comparison interesting in a formal sense.

To perform this comparison, we utilize the results of ref. [24], where the Wilson coeffi-

cients of all relevant dim.-6 operators induced by third-generation squark loops have been

calculated at the one-loop order. Equal soft masses, m̃L = m̃R ≡ m̃S , have been assumed;

we will only consider this limiting case in this subsection. The basis of dim.-6 operators

used in ref. [24] is slightly different from the one we use, table 1. Using equations of mo-

tion, we obtain a dictionary to translate the results of [24] into our basis, shown in table 4.

The EFT prediction for the e+e− → hZ cross section is then obtained by inputting the ci
coefficients into the formulas of section 3. It is important to use the same input basis in

the EFT and NLO calculations; in our case, it is the basis (mZ ,mW , α).
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Figure 4. Left: fractional corrections to the Higgsstrahlung cross section as a function of the

physical mass m̃1 of the lightest stop squark, for equal soft masses m̃L = m̃R and two values of the

A-term. NLO results are shown in solid black and EFT results in dashed red. For comparison the

conservative and optimistic estimates of the 2σ reach of a Higgs factory are shown in dashed blue.

Right: the ratio of EFT to NLO results R = δEFT
σ /δNLO

σ − 1 for the same parameters.

cWW ĉWW

cBB ĉBB

cWB ĉWB

cH ĉH − ĉR + 3
4g

2ĉ2W − 3
2g

2ĉW

cT ĉT + 1
4g
′2ĉ2B − 1

2g
′2ĉB

c
(3)`
L −1

4g
2ĉ2W + 1

4g
2ĉW

c
(3)`
LL −1

8g
2ĉ2W

c`L
1
4g
′2ĉ2B − 1

4g
′2ĉB

ceR
1
2g
′2ĉ2B − 1

2g
′2ĉB

Table 4. A dictionary to translate the Wilson coefficients in table II of ref. [24], denoted here by

ĉi, into coefficients ci of the operators in our basis.

The EFT and NLO calculations are at the same order (one-loop) in the usual pertur-

bation theory in gauge and Yukawa couplings. The EFT result is in addition leading-order

in the expansion in inverse powers of m̃S , while the NLO result is exact in m̃S . Thus we

expect the discrepancy between the two to scale approximately as the ratio of m̃S and the

other mass scales in the calculation, such as mZ ,mH , v, and
√
s. As the CM energy

√
s is

the largest of the relevant energy scales, we estimate that the difference between NLO and

EFT calculations should be O
(
s/m̃2

s

)
, and the two should converge rapidly in the heavy

squark limit.

In figure 4 we show both results for two choices of the soft trilinear coupling At =

0, 1 TeV. The two results indeed converge rapidly, becoming virtually indistinguishable

when the lightest stop mass exceeds m̃1 & 500 GeV. The difference between the two ap-

proaches scales as ∝ 1/m̃2
S as expected, confirming that the other details of the calculation,

in particular the Wilson coefficients of the effective operators, are in excellent agreement.
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Figure 5. Conservative (solid black) and optimistic (dashed black) estimates of the 2σ reach of

a Higgs factory through precision Higgstrahlung measurement. Left: equal soft masses m̃L = m̃R,

with physical masses plotted on each axes. Contours of constant A-term are also shown in dotted

blue, and regions with color-breaking vacua have been shaded out in pink. In the yellow bands,

the observed Higgs mass is realized within the MSSM. Right: NLO results for unequal soft masses

and vanishing A-term, with the physical left and right-handed stop masses shown on the axes. It

should be noted that in all regions of parameter space the corrections to the Higgsstrahlung cross

section are negative.

In figure 4 it is also clear that in the light-stop region accessible to a potential future

Higgs factory, the EFT calculation may significantly over- or underestimate corrections to

Higgstrahlung. This behavior is particularly notable in the case with vanishing A-term.

The EFT expansion in the inverse powers of m̃S breaks down when m̃S .
√
s. In the case

of At = 0, physical stop masses m̃1,2 ∼ mt actually imply very small soft masses m̃S ∼ 0,

since m̃1,2 = mt in the limit of exact SUSY. For non-zero A-terms this situation may be

avoided, as small physical masses are possible with relatively large (weak-scale) soft masses

by tuning the A-term contribution against the soft mass contribution. In this case, the

EFT expansion remains valid to accuracies ∼ O(10’s%). In summary, in the parameter

space which may be accessible to a future Higgs factory the NLO calculation is desirable

for an accurate prediction; however, as long as the soft masses are not vanishing, the EFT

calculation serves as a useful approximation.

4.2 Higgs factory reach for stops

As there are three input parameters, m̃L, m̃R and At, a full characterization of the param-

eter space would require a three dimensional scan. In figure 5 two well-motivated ‘slices’

of this parameter space are presented. On the left-hand plot the two soft masses are set

equal m̃L = m̃R = m̃S , and the trilinear A-term is varied. On the right-hand plot the

A-term is set to zero and both soft masses are varied. In both cases, 2σ Higgs factory

reach contours, in the conservative and optimistic scenarios, are projected onto the plane

of physical stop masses.

We first consider the left-hand plot. In the region with a small A-term (m1 ∼ m2)

the conservative (optimistic) experimental reach extends to about 250 (500) GeV. As the

A-term is increased, the sensitivity decreases. The reason is suppression of the Higgs
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coupling to the lightest stop squark, due to a cancellation between the coupling from the

trilinear term and the coupling from the quartic term. This leads to a “blind spot” around

the line m1 = m2 ±
√

2mt. However, as the A-term is increased further, the cancellation

no longer persists and the sensitivity increases again. The maximum size of the A-term

is limited by the requirement that the theory must possess no color-breaking vacua. This

constraint implies that the maximal possible size of the effect in Higgsstrahlung cross

section is about 1%. For illustration, we also show the region of the parameter space

where the MSSM Higgs mass prediction is mh = 125± 2 GeV. (This prediction is subject

to significant theoretical uncertainty, since it is obtained using the two-loop leading-log

approximation of ref. [52] for stop loops, and does not include contributions from other

MSSM particles.) An observable shift in the Higgsstrahlung cross section is predicted in

parts of that region.

On the right-hand plot the difference between the left- and right-handed squark con-

tributions is illustrated. It is clear that the corrections due to left-handed stops exceed

those from right-handed stops. This is perhaps not surprising as the right-handed stops

only couple to the Higgs and hypercharge. In theories with small A-terms the estimated

experimental reach is ∼ 225 (475) GeV for left-handed stops alone, and ∼ 170 (250) GeV

for right-handed stops.

An extensive program of direct searches for stops is currently underway at the LHC.

If R-parity is conserved and the stop-LSP mass splitting is large, mt̃ −mLSP � mt, the

current bounds on the stop mass are already about 700–750 GeV, well in excess of the Higgs

factory reach we found. However, direct searches depend crucially on the spectrum of the

SUSY particles, and on the stop decay channels. For example, in the R-parity conserving

case, for stop and LSP masses in the regions mt̃ − mLSP ≈ mt or mt̃ − mLSP ≈ mW ,

stops below 200 GeV are allowed by direct searches. Additional constraints on light stops

in this region have recently been placed by high-precision measurements of the tt̄ cross

section [53] and tt̄ spin correlations [54]. The tt̄ cross section measurement excludes stops

between mt < mt̃ < 177 GeV assuming the decay t̃1 → tχ̃0
1 proceeds predominantly to

right-handed top quarks. Although this does provide a weak limit for light stops, it may

be entirely eroded by mixed branching ratios, three-body decays, or changes in the LSP

identity. The tt̄ spin correlation measurement excludes stops between mt < mt̃ < 191 GeV,

likewise assuming the decay t̃1 → tχ̃0
1 proceeds to predominantly right-handed top quarks

with mχ̃0
1

= 1 GeV. Dependence of the limit on mχ̃0
1

is relatively weak, but as in the case

of the cross section limit it may be substantially eroded by mixed branching ratios, three-

body decays, or changes in the LSP identity. Also, removing the assumption of R-parity

conservation drastically weakens the bounds. For example, if the stops decay to two jets

via the RPV UDD operator, all stop events result in purely hadronic final states buried

under the large QCD background. Currently there is no LHC bound on this scenario [55].

In both cases, the difficulty faced by direct searches is not statistics — in fact the LHC

Run-1 would already have produced a large sample of stops in these scenarios — but rather

the difficulty of separating signal from background. This indicates that these scenarios will

remain challenging for the LHC in Run-2 and beyond, and may well still be unconstrained

at the time the Higgs factory becomes operational.
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Figure 6. As in figure 5 with the addition of projected conservative (dotted) and optimistic

(dotdashed) sensitivity from h→ gg measurement shown in purple. Absolute deviations are shown

but it should be kept in mind that the h → gg corrections are positive for small A-terms (central

region of left-hand plot and all of right hand plot) and negative for large A-terms (large mass

splittings).

In addition to Higgsstrahlung measurement, the Higgs factory can perform other in-

direct searches for stop squarks. The leading sensitivity would be due to modifications of

the h → gg decays arising from loops of heavy stops. To compare the sensitivities, we

again consider a “conservative” and an “optimistic” scenario, assuming a 4.6% and 1.6%

precision in the measurement of Γ(h→ gg). (The two numbers correspond to the estimates

of the Snowmass report [4] for the “ILC-500” and “TLEP-350” scenarios, respectively.) In

figure 6 we compare the reach of the Higgs factory for stops via h→ gg and Higgsstrahlung

measurements. It is clear that h→ gg has the higher sensitivity throughout the parameter

space. Note that the “blind spot” is common for both measurements, since it is due to

the suppression of the ht̃1t̃1 coupling which affects equally both channels. Thus, the Hig-

gsstrahlung measurement unfortunately cannot be used to eliminate or shrink this gap in

the coverage of hgg. However, both measurements probe interesting regions of parameter

space, and they are complementary in that while hgg is only sensitive to the color quantum

numbers of stops, the Higgsstrahlung is sensitive to their electroweak quantum numbers.

Sensitivity to the electroweak quantum numbers of top partners is particularly useful in

more exotic scenarios such as folded supersymmetry [56], in which scalar top partners (the

F -stops) are charged under Standard Model electroweak interactions but neutral under

QCD. The F -stop corrections to e+e− → hZ are identical to those of stops, but there is

no corresponding modification to h → gg. Rather, the competing indirect probe would

be modifications to h → γγ decays arising from loops of F -stops, which is less strongly

constrained than h → gg at a Higgs factory. We consider an optimistic baseline scenario,

corresponding to a 3.0% precision in the measurement of Γ(h→ γγ). (This corresponds to

the estimate of the Snowmass report [4] for the “TLEP-350” scenario.) Figure 7 compares

the reach of the Higgs factory for F -stops via h→ γγ and Higgsstrahlung measurements.

As with h → gg and Higgsstrahlung, h → γγ exhibits the common “blind spot” due
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Figure 7. As in figure 5 with the addition of projected optimistic (dotdashed) sensitivity from

h → γγ measurement shown in brown. Absolute deviations are shown but it should be kept in

mind that the h → γγ corrections are negative for small A-terms (central region of left-hand plot

and all of right hand plot) and positive for large A-terms (large mass splittings).

to suppression of the ht̃1t̃1 coupling. However, in contrast to h → gg, h → γγ has lower

sensitivity than Higgsstrahlung across the parameter space. This is due to both the smaller

numerical coefficient for hγγ corrections relative to hgg corrections at a given point in

parameter space, and the weaker fractional sensitivity of the Higgs factory to hγγ. Thus in

exotic scenarios such as folded supersymmetry, Higgsstrahlung provides the most sensitive

indirect tool to search for top partners at the Higgs factory.

5 Conclusions

A very precise measurement of the Higgsstrahlung cross section can be performed at a

future Higgs factory. In this paper, we considered the potential of this measurement to

search for new physics. First, we computed the shift in the cross section due to a complete

set of effective dim.-6 operators that can contribute. Second, we performed a complete NLO

calculation of the cross section shift due to third-generation squarks in supersymmetric

models. We established that the two calculations agree in the limit of large stop masses,

providing a highly non-trivial check on both sides. We also discussed the physics reach of

this measurement. In the case of dim-6 operators induced at tree-level, we find that the

typical scale of new physics that can be probed is of order a few TeV, with the precise

number depending on the operator, as well as the assumed measurement precision (see

table 3 and figure 1). In the case of stops, we found that masses up to about 500 GeV

can be probed under the best-case scenario, see figure 5. The weaker sensitivity for stops

is due to the fact that they only affect the cross section at the one-loop order. Using the

projections from the Snowmass study [4], we find that the measurement of Γ(h → gg)

will provide a more sensitive indirect probe of stops than the Higgsstrahlung cross section

measurement at a Higgs factory. This remains true throughout the model parameter space:

in particular, in the “blind spots” where the stop contribution to Γ(h→ gg) vanishes due
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to an accidental cancellation, their contribution to Higgsstrahlung is also highly suppressed

and cannot be used to probe this region. On the other hand, in models such as “Folded

SUSY”, where the top partners have electroweak quantum numbers as stops but are not

colored, a Higgsstrahlung cross section measurement does provide the best sensitivity,

beating Γ(h→ γγ).
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