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1 Introduction

Flux compactifications of 10- and 11-dimensional supergravity are of huge phenomenologi-
cal importance. They provide a mechanism for moduli stabilisation, and one may also hope
to use them to realise deSitter and inflationary vacua [1]. They can also yield backgrounds
with interesting holographic duals.

There are numerous no-go theorems that make a simple flux compactification for stable
deSitter and inflation impossible [2-4]. A possible remedy for this situation without the
need for elaborate brane set-ups may be provided by non-geometric backgrounds [5-10].

In such a background the internal space of the compactification is patched by the T-
or more generally U-duality symmetries of string theory. Although non-geometric back-
grounds may look non-periodic and non-smooth from a spacetime perspective, they are well-
defined backgrounds for the string, i.e. the string worldsheet on these backgrounds is a CF'T.
Furthermore, many non-geometric backgrounds can be obtained by duality transformations
of geometric backgrounds [11]. Beyond their potential phenomenological significance, non-
geometric backgrounds are also interesting in their own right as they make explicit use of the
stringy duality symmetries. This allows them to probe stringy regimes beyond supergravity.

Exceptional field theory exhibits the string dualities as manifest symmetries and hence
is a natural language to describe non-geometric backgrounds. In this approach, extra coor-
dinates are introduced which are thought of as conjugate to the wrapping modes of branes.
U-duality then acts geometrically on the extended space given by the usual coordinates to-
gether with these new winding coordinates. Although we have extra coordinates, any physi-
cal field is constrained by the “section condition” to depend only on a subset of coordinates.

Attempts to make dualities manifest in such a manner first appeared nearly 25 years
ago [12-16], and have intensified following the incorporation of the ideas of generalised
geometry [17, 18], leading to a great deal of recent work realising T-duality and U-duality
in a generalised or extended geometry [19-24].

Non-geometric fluxes have been studied extensively for the NS-NS sector of 10-
dimensional supergravity [11, 25-33]. There one finds two non-geometric fluxes. Firstly,
there is a globally non-geometric “Q-flux” which arises when the background can be lo-
cally described by some metric and antisymmetric Kalb-Ramond form which are however
globally ill-defined. The metric and Kalb-Ramond form are globally well-defined, how-
ever, upon patching by a T-duality transformation. There is also a locally non-geometric



“R-flux” which cannot be described, even locally, using a metric and Kalb-Ramond form.
These backgrounds have a natural description through double field theory where T-duality
is promoted to a manifest symmetry. Furthermore, non-geometric branes, also known as
“exotic branes” [34, 35], show signs of non-commutativity and even non-associativity [36—
45]. However, it is not clear how these results may generalise to M-theory, or are modified
in the presence of R-R fields.

The first aim of this paper is to provide a generalised geometric structure which natu-
rally gives the Lagrangian of exceptional field theory. This will be based on a generalised
torsion tensor of a flat connection from which one can uniquely produce the correct La-
grangian. This formalism turns out to be exceptionally useful for studying geometric and
non-geometric fluxes.

The second aim of this paper is to use the “flux formulation” just constructed to
describe the non-geometric fluxes of M-theory and IIB supergravity. We give definitions
for globally and locally non-geometric fluxes for M-theory by identifying the spacetime
tensors that appear in the embedding tensor of the lower-dimensional gauged supergravity.
Intriguingly, the locally non-geometric “R-flux” in M-theory is not fully antisymmetric, in
contrast to the NS-NS “R-flux”. In the IIB theory, the Ramond-Ramond non-geometric
sector has already been studied in [46]. Here we extend that work in two ways. Firstly,
we describe the locally non-geometric fluxes and find a new kind of “R-flux” which mixes
the NS-NS and R-R sectors. Furthermore, we describe how the non-geometric fluxes can
be understood geometrically, i.e. in terms of spacetime tensors, for both M-theory and IIB
supergravity, generalising such work for the NS-NS sector as in [26-31, 33].

We will focus here on the exceptional field theory with manifest SL(5) duality, relevant
for the scalar sector of compactifications to seven dimensions. This theory was originally
introduced in [22] and further studied in [47-49]. We note that for our purposes it is
sufficient to focus solely on the scalar sector although it is also possible to treat the full
11-dimensional theory without making a truncation as for example in [50], and to include
fermions, as has been carried out for E7 [51].

This restriction to the SL(5) theory allows us to explore fully the consequences of the
extended theory in a simpler setting than the higher U-duality groups (in particular, one
does not yet need to worry about dualisations of the M-theory three-form). We note that
in string theory the prototypical toy model of a situation leading to non-geometric flux is
a three-torus carrying H-flux [25]. The analogous M-theory situation would involve flux
of the field strength of the three-form through a four-torus. This picks out D = 4 as the
lowest dimension in which one can study the M-theory versions of non-geometric fluxes:
the duality group acting on four dimensions is of course SL(5).

Although originally formulated for 11-dimensional supergravity, the SL(5) exceptional
field theory also contains a reduction to (a truncation of) type IIB supergravity [49] (see [52]
for a discussion for other duality groups). This is achieved by virtue of the fact that the
fundamental field in the extended theory is the generalised metric: this can be parametrised
in terms of physical fields in different ways. This will be an extremely important and useful
fact for us when we want to find expressions for all possible non-geometric fluxes, for which
one has to introduce alternative fields either instead of or alongside the usual parametri-
sations, similar to what has been done in string theory, for example in [53] and [26].



The geometry of extended field theories has been the subject of previous work [54—
56] (and see also [57, 58] for the case of exceptional generalised geometry, where the base
manifold is not extended but the tangent bundle is). An interesting feature, reminiscent of
issues in double field theory [59-62], is that there are obstructions to using the usual notions
of Riemann and Ricci curvatures. Indeed, it has proven impossible to provide a definition
for a generalised Riemann tensor for the exceptional extended geometry. One can still define
a generalised Ricci tensor, leading to a Ricci scalar which can be used as the action. It is also
possible to construct metric compatible connections which reproduce the known actions via
the generalised curvature scalar: however, these connections seem unavoidably to contain
undetermined components or else behave covariantly only under certain projections.

This situation is entirely analogous to the doubled case. There, one proposed alterna-
tive [62] was to turn aside from attempting to build the action from generalised curvature,
and instead to use a formalism in which a physically determined connection with non-
vanishing generalised torsion, and vanishing generalised curvature, led to the action.

The outline of our paper is then as follows. After reviewing the SL(5) theory in section
2, we will show in section 3 how the torsionful geometric framework extends to the SL(5)
exceptional field theory. Choosing as our covariant derivative the Weitzenbock connection,
we can uniquely fix the action in terms of the generalised torsion by demanding invariance
under the local generalised Lorentz symmetry of the theory.

We then study the geometrical content encoded by this connection, for the M-theory
and IIB cases. The generalised torsion of the Weitzenbock connection may be viewed as
containing information about fluxes [63, 64]. By using the extended formalism, we are able
to obtain all geometric and non-geometric fluxes: in order to do so we include dual fields and
allow for the possibility of non-trivial derivatives in winding directions. The precise frame-
work in which this should be possible in extended field theories is that of a Scherk-Schwarz
compactification [54, 63, 65-71], leading to gauged supergravity. In fact, the generalised tor-
sion of our formalism corresponds directly to the embedding tensor of gauged supergravity.

We give this analysis and definition of all fluxes for M-theory in section 4. We then
highlight some simple examples of duality chains involving geometric and non-geometric
fluxes in section 5. This procedure is repeated in section 6, where we define the IIB fluxes,
and section 7, where we present some example duality chains in type IIB theory.

The reader solely interested in the definitions of the fluxes, and their unification into
a U-duality tensor in the exceptional field theory, is invited to study sections 3.1 to 3.3 for
the generalised geometrical definitions, and then sections 4 and 6 for the M-theory and I1B
fluxes respectively.

We note that the paper [54] considers dynamical fluxes for the E7 theory. However these
are still packaged into a description in terms of a torsion-free connection with curvature
and undetermined components, which drop out of the final action. For an interesting recent
use of the Weitzenbdck connection in the context of generalised diffeomorphisms, see [72].

Index conventions. Indices in the 10 of SL(5) are referred to as “big” indices, and
denoted using capital Roman letters, A, B, C. Flat indices (transforming under the gener-
alised Lorentz group) here will be denoted with a bar over them, 4, B, C.



Indices in the 5 of SL(5) are referred to as “little” indices, and denoted using lower-case
Roman letters from the start of the alphabet, a, b, c. The corresponding flat indices will be
taken to be Greek, «, 3, .

Indices in the M-theory decomposition are four-dimensional spacetime indices, i, j, k,
and four-dimensional flat indices, u, v, p.

In the IIB decomposition we have three-dimensional spacetime indices, u, v, p, as well as
fundamental SL(2) indices, 4, j, k. The corresponding flat indices will be denoted using bars.

2 Review of the SL(5) theory

We adopt here a top down approach to describing the SL(5) theory. From the 11-
dimensional supergravity point of view, we describe solely what would be the scalar degrees
of freedom appearing in a compactification to seven dimensions. This is a simplifying trun-
cation which enables us to explore the essential consequences of the extended spacetime in
a relatively clean set-up.

2.1 Generalised diffeomorphisms

The SL(5) theory is defined on a 10-dimensional extended space [22]. The coordinates
24 lie in the antisymmetric 10-dimensional representation of SL(5) [47]. We write the 10-
dimensional index A as an antisymmetric pair of indices in the fundamental 5-dimensional
representation of SL(5), A = [ad'], a,d’ =1,...,5.

The fundamental symmetry of the theory consists of generalised diffeomorphisms [47].
These are generated by a generalised vector U# also in the 10 of SL(5). The general form
of generalised diffeomorphisms is [73]

SuVA =UBIgVA —VBagUA + YABpVCagUP , (2.1)

where the Y-tensor is formed out of group invariants: in particular for SL(5) we have
YAB o = ecaa'®' ¢ 0. where €gpede 1S the totally antisymmetric invariant of SL(5).

We can also give the explicit form of a generalised diffeomorphism acting on a funda-
mental SL(5) vector and covector as

1 1

5UVa - §Uefaefva + Evaaeref - Veaeraf ’ (2'2)
1 1

SV, = §Uefaefva - Zvaaeref + VoBag U . (2.3)

This defines a generalised Lie derivative, §y V¢ = Ly V€, if we also take a scalar ¢ to
transform in the obvious manner, iy = %U el o, 7.
The algebra of generalised Lie derivatives does not close unless one imposes the section
condition [47]:
Oab ® Oca) = 0, (2.4)
where the pair of derivatives may act on any object or any pair of objects in the theory.

Solving the section condition amounts to choosing a lower-dimensional subspace of the
10-dimensional extended space such that all quantities in the theory depend only on the



coordinates of the subspace, and so that (2.4) then holds. This choice of section thus
amounts to picking out the “physical” space.

The section condition is crucial in making statements about tensorial properties. For
instance, consider the derivative of a scalar . In ordinary geometry, this is automatically
a tensor. Here, however, one finds that

50 0abp = LuOapp + 3000 U . (2.5)
The final terms vanish by the section condition.

2.2 The action

The bosonic fields of the theory live in a coset RTx SL(5)/SO(5),! and in principle depend
on the full ten-dimensional extended coordinates 2. They may be packaged into a “gen-
eralised metric” Myp [13, 20] which parametrises the given coset and serves as the metric
on the extended spacetime [22]. As a consequence of the coset condition this generalised
metric Map can be decomposed in terms of a “little metric” my [47], with

Myp = Maa’,bb’ = MapMg'yy — Mab/Ma'b » (26)

where m is symmetric, and is a rank two tensor under SL(5) U-dualities.

Note that although we will refer to mg; as the little metric it itself is not a metric
on some space. However, it provides the most convenient way of constructing the theory,
containing exactly the right number of degrees of freedom to parametrise the coset R* x
SL(5)/SO(5). We should also mention that one can only decompose the full generalised
metric in this way in the SL(5) theory, and not for the higher exceptional groups.

The action for the truncated theory is completely fixed by searching for an expression
quadratic in derivatives of the little metric which is a scalar under generalised diffeomor-
phisms up to section condition. It is given by [22, 56]

_ 1 It 1 I
S = / m| ™ <—8mabma Y Ouarm Oy + §mabma Y Ouarm Oy mipa
)
1 AN 3 IAN] 1/
+ §8aa/m“b8bb/m“ Y+ gm“bm“ Y Ogar I |m| By In |m| — 2m@Y 9rm®Byy In ||
AN AN
+ @Y 8,0 Oy m™® — Mm®m®Y 8, Oy In m|> ) (2.7)

where 3 is some lower-dimensional section of the full ten-dimensional theory, and we have
used the determinant of the little metric, m = det mgy, to define an SL(5) singlet integral
measure, |m| 1.

2.3 Section choices

Let us briefly discuss the two inequivalent sections, corresponding to (truncations of) 11-
dimensional and 10-dimensional type IIB supergravity. We shall give explicit expressions
for the decomposition later, when we evaluate the generalised fluxes.

IThe extra RY factor is a consequence of our truncation, and leads to an extra scalar degree of freedom
related to the warping of the ignored external seven directions, see for example [49, 57].



M-theory section. The conventional solution to the section condition is the M-theory
section [22], where we split the 5-dimensional index a = ¢,5 where ¢ becomes a 4-
dimensional spacetime index. One then takes all fields to depend only on the four co-
ordinates 2 = z%, and to have no dependence on the 2. After choosing an appropriate
parametrisation of the generalised metric in terms of a metric g;;, three-form gauge field
Ci;r and additional scalar ¢ one find that the action (2.7) reduces to a truncation of 11-
dimensional supergravity to four dimensions [22, 56]. (This truncated theory essentially
corresponds to the internal (scalar) sector of 11-dimensional SUGRA reduced to seven
dimensions, note however that in this truncation we keep the 4-dimensional coordinate
dependence. Similar remarks apply in the IIB case below.)

A type IIA section may be trivially obtained from this choice by supposing that we
are also independent of one of the four coordinates !, in the usual way.

IIB section. An alternative section [49] is given by making a 3 + 2 split of the 5-
dimensional index, a = u,? where now g becomes a 3-dimensional spacetime index and
i = 1,2 becomes a fundamental SL(2) index corresponding to the S-duality symmetry of
type IIB.2 Our fields are taken to only depend on the three coordinates x*¥, and are inde-
pendent of the other coordinates ¢, . The spacetime coordinates ¥ may be dualised
to carry a single lower index, z, = %nw,px”p, so that vectors in this parametrisation are
written with lower indices. One may then parametrise the generalised metric by introduc-
ing a metric g*, a pair of two-forms C**?, a unit determinant two-by-two matrix of scalars
M;;, which incorporates the Ramond-Ramond zero form and string dilaton, and again an
additional scalar ¢. Evaluating the action in this section and parametrisation, one obtains
a truncation of type IIB supergravity to three dimensions [49].

Although the parametrisations we have described here for the IIB and M-theory cases
give the usual field content and description of these theories, other choices, involving so-
called dual fields, are possible. These will be important later on.

3 Connections, torsion and the action

In this section, we shall introduce geometric structure on the SL(5) theory, in the form of
connections. The goal is to seek some geometric origin of the action (2.7). This problem
has been considered before by other authors, both in the context of SL(5) and for other
duality groups [54-56]. We wish to provide an alternative approach, which evades some of
the issues that arise when considering metric-compatible connections with curvature, and
which is suited for describing fluxes.

3.1 Connections

We introduce a covariant derivative in the SL(5) theory in the usual way, by seeking a
connection I'gc” which, given the form of generalised diffeomorphisms, must transform as

5UFBCA = LUFBCA + 8380UA — YADCEaDE)BUE . (3.1)

2Similar inequivalent IIB sections were also discussed in [52] for the groups Fs, F7 and Es.



Here we have introduced a connection carrying solely “big” indices. For practical applica-
tions, it is convenient to introduce instead a connection which acts not on the antisymmetric
representation but on the fundamental. This “little” connection is defined via3

VeV =04V +TapgVE, (3.2)
and its transformation must be
1
ST apa’ = LuTapd’ — 6318@86 FU 4 00U (3.3)

up to terms that vanish by the section condition.
Given such a little connection there is an associated big connection, defined by

FBCA = be/cclaa/ = 4be/[c[a6z,] . (34)

Now, in ordinary general relativity one can easily find a special connection which leads
naturally to the action. This is the Levi-Civita connection, which is the unique torsion-free
metric-compatible connection. In extended theories in general, matters are not quite so
simple.

Ideally, we would like to find a connection which

e provides a true covariant derivative, mapping tensors to tensors,
e annihilates the generalised metric, Vg meq = 0,

e also annihilates the SL(5) invariant €,pcde,

e is completely determined in terms of the physical fields,

e by analogy with general relativity, has vanishing generalised torsion (to be defined in
the next subsection),

e has a natural curvature scalar that leads to the action (2.7).

Unfortunately, it proves difficult to meet all these requirements. One issue that arises is
simply how to generalise curvature. The normal definition of the Riemann tensor does
not provide a generalised tensor. Interestingly, despite several attempts, it has proven
impossible to construct a definition for a generalised Riemann tensor which is a true
generalised tensor [54-56]. One can still produce a two index tensor which is a generalised
Ricci tensor: contracting this tensor with the generalised metric yields a generalised Ricci
scalar which can be used as a Lagrangian.

3For the sake of completeness, note that if a generalised vector V' also carries weight w, so that
SuV® = LyV® + %waerﬁfV“
then its covariant derivative should be defined as
VarVE = 8apV° 4+ Lapa Ve + w(Teas” — Ceva®)V,

from which follows that if V' has weight one that Vg,V = 94, V0.



However, when one now looks for explicit connections one is forced to sacrifice one of
the above requirements. This is very similar to the case of double field theory. One can
find a covariant derivative which transforms correctly, but which contains undetermined
components, not expressible in terms of the physical fields, as in [54, 55]. Alternatively,
one can produce a derivative which has no undetermined components, but which only
transforms covariantly in certain circumstances (and is said to be semi-covariant) [56].

We stress that these apparent issues do not in fact cause any difficulty in obtaining
the correct action. One finds that the undetermined components, or equivalently those
that do not transform covariantly, in fact drop out when one constructs the generalised
Ricci scalar in these approaches.

Our goal in this section of the paper is to present an alternative framework, in which
one does not use notions of curvature but instead considers a torsionful flat connection.
This is provided by the Weitzenbock connection.

3.2 The generalised torsion

First, let us show what we mean by generalised torsion. The generalised torsion of a connec-
tion is defined by replacing partial derivatives with covariant derivatives in the generalised

Lie derivative:
Ly(V)VA = Ly(0)VA = 75 UBVY (3.5)
giving
8o =Tpc? —Tep? + YAP opTppt . (3.6)

Alternatively we may defined a generalised torsion in terms of fundamental quantities and
a little connection:

1
Ly(V)V® = Ly(Q)V* = 57ed" UV, (3.7)
giving
Thed”" = 3L (bea)® — Tepe)“0d — 2L capp“0g; - (3-8)

For big and little connections related by (3.4), the resulting big and little torsions are
related in the same way

7_bb’cc’aal = 47y [C[aéz]] ) (39)

We may therefore choose to use either as the basis for our construction. It is more conve-
nient to work with the little torsion.

Before proceeding, it will be useful to classify the transformation properties of the
torsion under global SL(5). A tensor 7peq® with Tpeq® = —7epq® lives in the tensor product
representation 5@ 5®10 = 10 10H 15340 175. The explicit realisation of the tensor
decomposition into irreducibles is:

a T a 2~ a Ta a 1 a 5 a 1 a
Toed" = Thhea)” + 3 (Tb(cd) — T (vay ) + §5dAbc + 55[1)/14(1 + 50p5da &0

1 a e 2 a e ’
+ §5d7_bce + gé[bTC]de )



where

5

~ 1 1 ~ ~
Thed" = Thed" = 500p5qa = g0aAse = gOpAda,  Tave" =0=Thea", (3.11)
with ] 9
Tbcda = 7—bcda - g(ngbcee - g(sﬁﬂ-c}dee ) Tbcaa = 07 (312)
and
Seq = Te(cd)e , Ag = Te[cd}e . (313)

The trace Tpee¢ lives in the 10, T[bcd]“ in the 40, the symmetric S.q in the 15, the antisym-
metric Acg in the other 10 and the mixed symmetry Tj4)* in the 175.
For the torsion (3.8) one finds that A,y = 0 and Tj(.q* = 0, as well as

Sab =2 (Feabe + Febzze) 5 (314)

1 1
7_abee = Fabee - ir‘eabe + §Febae s (315)
j\:‘bcda = ﬁbcd}a = 3F[bcd]a - 6ﬁyrcd}ee - 26&F|e|cd}e : (316)

Hence it contains just the irreducibles 10, 15 and 40. Note that the latter two irreps are
those of the embedding tensor of gauged maximal supergravity in 7-dimensions (where the
duality group is of course SL(5)) [74]. The remaining 10 can be thought of as a trombone
gauging. For convenience we relabel it as 7,5 = 74pe°.

3.3 The Weitzenbock connection

First, we introduce a generalised vielbein for the little metric. Recall that this object
parametrised the coset Rt x SL(5)/SO(5).* The group SO(5) acts by local internal rota-
tions, and may be thought of as the generalised Lorentz group of the extended theory. We
define a flat metric m,g, which we can take to be the identity, and introduce a generalised
vielbein £, such that

Map = BB ymags . (3.17)

The flat index « then transforms under local SO(5) transformations. Note that we will use
Mmap to lower and raise flat indices.

This introduction of a “little” generalised vielbein is compatible with the existence of
the big generalised metric. If we denote the big flat indices with bars, then the associated
big generalised vielbein would be given by

EA = B ) = B EY o — E¥ ,E®, (3.18)

with the flat big generalised metric given by the expected formula, Mz5 = magmapg —
Map'Mpa’-
We may then define the generalised Weitzenbtck connection with little indices:

Qped” = Eo Oy By . (3.19)

4If we were dealing with a truncation including the time direction, the coset space would instead be
Rt x SL(5)/SO(3,2) [75]. However, in this paper we assume our truncation is Euclidean.



This connection can be checked to annihilate both the little metric and the SL(5) invariant
€abede- 1t transforms as in (3.3) up to section condition. It has non-vanishing generalised
torsion, but has vanishing curvature and generalised curvature. This is easiest to check
by using the “big” form of the connection. Then, as in [62], one finds that although the
ordinary expression for the Riemann tensor is not in general a generalised tensor, it is for
the Weitzenbock connection by the section condition, and also vanishes for this connection.
Similarly, one can check that the proposed general form for a generalised Ricci tensor [55]
(see also [54, 56]) then vanishes for the Weitzenbock connection, again using the section
condition.
The associated big Weitzenbock connection

Qpc? = B4 0pE" ¢, (3.20)

is related to the little one by (3.4).

In order to use the generalised Weitzenbock connection we need parallelisability in
the sense of generalised geometry. Let us just mention that while parallelisability is a
notoriously stringent requirement for manifolds, it is a more relaxed requirement here.
This is because the generalised vielbein contains the spacetime vielbein as well as p-forms
and even at points where the spacetime vielbein vanishes, the p-forms may be non-zero.
Indeed, this allows spheres of all dimensions to be parallelisable [76].° The examples we
consider later will be parallelisable in the generalised sense.

3.4 Constructing the action

The Weitzenbock connection is not invariant under local generalised Lorentz transforma-
tions,
E% = XBE,,  Xap=—Dsa- (3.21)

In order to construct a Lagrangian in terms of the generalised torsion of this connection,
we can use this lack of invariance as a constraining principle. We are looking to write
down all possible torsion squared terms but as the generalised torsion does not fall into an
irreducible representation of SL(5), there are naively many possible such terms that can be
written down. However, several of these are equivalent. This is made clearer by working
in terms of the torsion irreducibles, in terms of which there are merely five independent
terms quadratic in the torsion:

ab, cd ab, cd ab, cd
mmSacSea , MM Sy Sea , MM T Tha

. - - (3.22)
M m mIN T ey “Tap® , m®mT 1 Thae”
and a single term involving the covariant derivative of the torsion trace:°
mabmalblvaa/Tbb/ . (3.23)

5 After this work first appeared, we were made aware of a proof of generalised parallelisability of hyper-
boloidal spaces to appear in the revised version of [71].
SNote that for the Weitzenbock connection, one has the useful result that

Vab|m\71 = 72\m|717ab .

,10,



It is straightforward to vary each of these terms under generalised Lorentz transformations,
with the result being that there is a unique (up to scale) combination of torsion squared con-
tractions giving a generalised Lorentz invariant scalar up to section condition. This scalar is

1 1 5
EmamedSachd - @(mabsab)Q + gmamedTachd ( )
3.24
1 [ 1 -
+ Emamedmefmgtheg“Tdfhb + Zm“medTacfedeef — 2m™®mCN e Toa

and under generalised Lorentz variation this has an anomalous transformation

GmeEaCEBdQ[adbfacd})‘aﬁ = _mabEaCE,Bd (Qeabe cd)\aﬁ + QQedbeaac)\aﬁ
(3.25)
+ QQadbeace)\aﬁ - chbeaae)\aﬁ) )

which indeed vanishes by the section condition.
It is then possible to check that this Lagrangian (3.24) agrees with that appearing in
the action (2.7) up to the section condition term

1
+ 5( ameanecegdfbf + 2mabm0d9acbegefdf (3 26)
— A0, Qera’ — MPmAQ, 1 Qaer” + MPmAQ, 1, Qeea” ) -
This term can be written as
1 1 aNa A !
§YABCDQAECQBFDMEF = —gﬁeaa Y ecccradr QaareQpy pmIm?e | (3.27)

and can be seen to be identical to the term which in [69] was necessary to add in by hand
in order to obtain a consistent Scherk-Schwarz reduction. This is exactly as expected from
the double field theory case, where the Lagrangian resulting from requiring invariance
under generalised Lorentz transformations led exactly to the analogous term needed for
gauged double field theory [62].

3.5 Relationship to gauged supergravity

Let us briefly expand on the links to gauged supergravity mentioned above. Recall that in
a gauged supergravity, some subgroup of the global duality group, which here is our SL(5),
is enhanced to a local gauge symmetry.

It is possible to formulate gauged supergravities in any dimension as deformations of
the more familiar ungauged supergravities. Here, the embedding tensor [77, 78|, which
describes explicitly the embedding of the gauged subgroup into the larger duality group,
plays an important role. In order to preserve supersymmetry, this object obeys various
constraints. Some of the allowed components of the embedding tensor correspond to gaug-
ings that can be obtained via a Scherk-Schwarz or flux compactification. However, others
do not - there are many allowed gaugings which can give a gauged supergravity which
appear to have no higher dimensional interpretation.

A resolution is provided by extended field theory. It turns out that Scherk-Schwarz
compactifications of double field theory give, after solving a set of Scherk-Schwarz con-
straints that replace the section condition, the Lagrangians of gauged (half-maximal) su-
pergravity [63, 67, 68] (for reviews of this material see [23, 24]). However, one can obtain all
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possible gaugings in this way. This relies crucially on the existence of the extra coordinates,
which enter into the theory in form of generalised gaugings. Thus one finds that double
field theory provides a higher dimensional uplift for all (electrically) gauged half-maximal
supergravities. This has been extended to the gauged maximal supergravities in the case
of the extended field theories for U-duality [54, 69-71].

In a gauged Scherk-Schwarz reduction of the SL(5) exceptional field theory, one in-
troduces twisting matrices Wf which carry all dependence on the internal coordinates of
the compactification. Here this would be the 10 coordinates 2% - the resulting effective
theory will depend only on the external coordinates, which we denote X. Quantities which
depend only on X will be denoted with a hat, and the Scherk-Schwarz Ansatz is to assume
that all physical fields and gauge parameters may be factorised as

Ve(r,X) = (W H4%2)VIX). (3.28)

Under this assumption, one finds that the symmetries of the theory are governed by the
resultant decomposition of the generalised Lie derivative

A A

1 N ~
LyV® = (W 1),° (LUVA — 2TBCDAUBCVD> : (3.29)

where fLU is just the generalised Lie derivative written in terms of only hatted quantities
and using only the capital indices A, B, C', which are the indices of the gauged exceptional
field theory. The quantity 7scp? is then nothing but the generalised torsion (3.8) written
in terms of the quantities
Qpep® = (W) p opcWe . (3.30)
The piece —%TBC pAUBCVD appearing in the local symmetries of the gauged theories then
amounts to a gauging. We see a direct link here between the generalised torsion and the
embedding tensor.
There are various conditions that must still be imposed to ensure we have a consistent

4 as giving effectively the structure constants

theory. Firstly, as we want to interpret 7acp
for some gauge group, we must assume that it is constant. One also has consistency
conditions from requiring these be preserved under the local symmetries, and from requiring
closure of the algebra of symmetries of the gauged theory. This gives various quadratic
constraints on the torsion [69], which are one and the same as the quadratic constraints on
the embedding tensor of gauged supergravity [74].

Note that in our formulation, the only bosonic field is the little metric, which is de-

composed in terms of the twists as
Map(z, X) = WAL ()W By (2)map(X). (3.31)

The dynamical degrees of freedom are carried by m 45, while information about the back-
ground on which we compactify is contained in the twist matrices. We can adopt the point
of view that we are only interested in studying properties of this background, in which case
we take map to be constant and identify the twist matrices with the generalised vielbein
for the background:

map(X) = 0ag,  Whi(z) — E%(2). (3.32)
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The situation thus reduces to that which we have been studying so far in this paper. We
shall now continue in this framework, and not explicitly refer to the gauged Scherk-Schwarz
setting again: however, we will remember that we have these close links. In particular,
although we will not study this in this paper, the quadratic constraints resulting from this
setting may be used to derive Bianchi identities for the geometric and non-geometric fluxes
which we now intend to study.

4 The torsion as generalised fluxes: M-theory fluxes

Having found a geometrical origin for the action of the SL(5) extended field theory, we
now want to explore the meaning of the generalised torsion from the point of view of
the physical spacetime. To do so, we choose a general parametrisation of the generalised
vielbein and work out the components of the generalised torsion in this parametrisation.
We will be able to identify a set of spacetime tensors which appear naturally and which
represent different fluxes in the spacetime picture. Some of these fluxes can be immediately
interpreted geometrically, while others must be thought of as being non-geometric.

4.1 Parametrisation and field transformations

The guiding principle in writing down a parametrisation of the generalised vielbein is
compatibility with the symmetries encoded in the generalised Lie derivative. For the M-
theory section, we may take the following general choice (which can also be constructed as
a non-linear realisation of SL(5) as explained in [79]):

B — e—¢/4 6_1/2 (eu’i + VMWZ) el/2vu (4 1)
a e~ 12 e1/2 ’ :
which has inverse
1/2,, i _—1/2
Bar=eort | C o e W) (4.2)
—_el/2yit =1/ (1_|_V]Wj)
The fields appearing here are as follows. We have a spacetime vielbein e#; with determinant
e = |dete|, and the scalar ¢ coming from the truncation (explicitly, one should take
e® = |g7|"/7, where g7 is the determinant of the metric in the external directions). The
vector V? is a dualisation of the three-form:
i L ik
VZ = gﬁ” Cjkl, (43)

and the covector W; is a dualisation of an antisymmetric field with three-vector indices:

1 .
Wi = geijle]kl . (44)

We refer to this as a dual field.”

"Parameterisations of the generalised vielbein using a dual field were considered for string theory in [53]
and [26]. In [26] the parameterisation in terms of a dual field is interpreted as a field redefinition of the
supergravity variables.
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Ordinarily one uses the local SO(5) symmetry of the generalised vielbein to remove the
dual field.®> However, in non-geometric situations (and also in certain cases when one has
timelike directions [80]) the local transformation needed to remove Q¥* turns out to not
be globally well-defined. This is discussed in the context of string theory in [53]. In order
to take into account all possible situations and parametrisations, we therefore include this
field.”

Although we appear to have both Cj;, and Q7% present, this does not mean we have
introduced additional degrees of freedom. The local SO(5) symmetry is instead unbroken
and can be used to relate different configurations. However, only SO(5) invariant combina-
tions appear in the Lagrangian (3.24). Thus the Lagrangian only contains specific, SO(5)
invariant, combinations of g;;, Cj;r and Qk . Note that this is why we do not have to
impose some constraint involving the physical field and its dual, as was proposed in [30] in
the NS-NS sector of type II, to remove extraneous degrees of freedom.

We can decompose the generalised Lie derivative of the generalised vielbein into compo-
nents to check that (4.1) is a sensible parametrisation with respect to the usual splitting of
the diffeomorphism parameter, U% — £/, A9, The vector parameter ¢ generates spacetime
diffeomorphisms, while S\ij = %nijkl)\kl gives gauge transformations of the three-form. If we
do not impose the section condition, the usual physical transformations will be modified
by terms involving derivatives along the dual directions.

Our goal is to use the spacetime symmetries to classify the objects appearing in our tor-
sion irreducibles. The natural symmetries to use are spacetime diffeomorphisms, generated
by &¢. Using the generalised Lie derivative we find that under these transformations we have

556“i = Ege“i,
3¢Ciji = LeCijie (4.5)

where L¢ here denotes the usual spacetime Lie derivative. We see that the dual field has an
unusual transformation under diffeomorphisms. This reflects the fact that it is associated
to non-geometric configurations, and does not fit naturally into the usual choice of section.
By choosing a different section, dual to the original, a subsector of the diffeomorphism
parameters would be reinterpreted as gauge transformations of the three-form, in which
case the above expression is natural. This is reminiscent of the NS-NS sector of 10-D
supergravity [28, 29].

4.2 Spacetime geometry

4.2.1 Derivatives

In the following discussion of fluxes we will include possibly dependence on winding coor-
dinates as this will allow us to discuss locally non-geometric configurations. However, it is

8Note that this local group has 10 components. Six of these are an SO(4) used to ensure the spacetime
metric has 10 rather than 16 components, leaving a remaining 4 to set Q%% to zero.

°In DFT, a similar general parameterisation of the vielbein was used to describe geometric and non-
geometric fluxes of the electric sector of half-maximal gauged SUGRA [29, 64, 67].
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important to stress that dependence on winding coordinates does not imply violation of the
section condition. Indeed, we will impose the section condition throughout. In double and
exceptional field theory, one can have configurations in which the fields depend on dual
coordinates, which may be related to usual physical frames by acting with “generalised
duality transformations” along non-isometry directions [11, 81-83]. Including the winding
derivatives will also allow for the possibility of off-section contributions to the fluxes (in a
constrained Scherk-Schwarz setting) although we do not discuss this further here.

The partial derivative 0y, on the extended space decomposes into what we interpret as
the usual spatial derivative, 0;, and the antisymmetric derivatives 9;;. Note that the natural
winding coordinates of the theory are x;; with lower indices: in the generalised coordinate
2% these are dualised using the alternating symbol 7% so that 2% = %nijklxkl. The
derivative 0;; is with respect to the dualised coordinate, and so actually carries a non-zero
weight under spacetime diffeomorphisms.

Natural derivatives to use in the flux formulation are provided by flattening the indices
on O, using the generalised vielbein, giving the flat derivatives

Dop = Eo"Ep%04p - (4.6)

We can obtain useful combinations of derivatives by unflattening these with the spacetime
vielbein. This defines

bij = e et Dy, 9= e 2D, (4.7)
The additional factor of e=#/2 is inserted here by hand to cancel the factor of e?/2 which

results from the generalised vielbein.
In terms of the ordinary spacetime and winding derivatives, we have

O = (1+ VIW;)d; — W;V79; — eVidy;, (4.8)
)ij = €dij + 2W};0j . (4.9)

Note that
8 — V3 = ;. (4.10)

The derivative (i-j may be dualised using the alternating tensor to define a natural duality
covariant extension of the winding derivatives:

N 1 0 a - -
99 = 5&]“% = 99 4 Qk, . (4.11)

This is an improvement over the bare 0% derivative in the following sense.' Consider some
spacetime diffeomorphism scalar, ¢. Then, although ;¢ is automatically a tensor, 0% ¢ is
not. However, one can check that 0”¢ defines a spacetime tensor:

553”(,0 — Egéijgo s (4.12)

103ee [28, 29] for a similar discussion for the NS-NS sector of type II supergravity.
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up to the section condition. Note that the latter is obeyed by 9" and 0;, i.e. we have
DI f0,g+ 0;f09g =0, ATy =0. (4.13)

Although we are not explicitly solving the section condition in the sense of setting 9% = 0
everywhere, we still impose the section condition as a constraint.

4.2.2 Tensors

In order to build tensors under spacetime diffeomorphisms, we first introduce flat connec-
tions for both types of derivatives:

Fijk = eukﬁie“j s (414)
! = euléije”k , (4.15)
with associated covariant derivatives, V; and Vi
Viek = 0" + Tij*¢? (4.16)
Vil = 9! + T Lok (4.17)
Under spacetime diffeomorphisms we have
5§Fi]‘k = Egl“ijk + 818]fk , (4.18)
60U, = £, 09,4+ 9 e (4.19)
These connections can be used to construct torsion-like quantities.

Let us now list the various spacetime tensors which can be constructed from these in-
gredients, giving also their classification according to the decomposition to four-dimensional
spacetime tensors, under SL(5) — SL(4). These tensors will be the geometric and non-
geometric fluxes that appear in the SL(5) torsion. The situation we find is quite analogous
to that of the well-known H-, geometric, ()- and R-fluxes in string theory which were
discussed in a similar fashion in [29], and we therefore use similar language. We wish to
stress, however, that our tensors are based on a different spacetime connection to that used

in [29]. As a result, the tensors here will not necessarily reduce in a straightforward manner
to those considered in the supergravity context [29] upon reducing to ITA.

F-flux: the field strength of the three-form is
Fijii = 40,;Cy - (4.20)
This lives in the trivial representation 1 of SL(4).

Geometric flux: the natural spacetime Weitzenbock torsion is as usual:
T’i ke = Fijk - Fjik . (421)

This is known as geometric flux. Its trace and trace-free parts correspond to the irreducible
representations 4 and 20 of SL(4).
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Q-flux: this is a globally non-geometric flux, given by the tensor
0/ = QM 4 3Pk 1l (4.22)
where we defined
QM = ,0M. (123

This is not a tensor by itself: under a spacetime diffeomorphism, the transformation (4.5)
of Q¥ leads to
5eQM = LeQM — 39Ukl (4.24)

From (4.19) one can see that the anomalous variation is cancelled by the winding connection
term Bf[jki”.

The Q-flux, Q;7*, fits into the 6 @ 10 representation of SL(4), corresponding again to
the trace and trace-free parts. We can also define the dualised form

1
Qij= gﬁjkzinklm, (4.25)
in which case the 6 and 10 correspond to the antisymmetric and symmetric parts.

R-flux: this is a locally non-geometric flux (i.e. it involves a dependence on a dual coor-
dinate). By acting with a hatted winding derivative on the dual field we can define a tensor

Ri,jklm _ 43@[]lem] ) (426)

This lives in a 4 of SL(4). The dual may be defined as

] .
L'= gejklmauﬂklm . (4‘27)
T-flux: the quantity
Th =1k, 7 (4.28)

also transforms as a tensor. It lives in a 6 & 10 of SL(4).

Finally, we will also have winding derivatives of the three-form:
Vi Cip (4.29)
which will turn out to usually appear in the dualised form @UV"; ,
VigVF = 455V Clipy (4.30)

giving additional pieces in the 4 and 20 of SL(4). This is a spacetime diffeomorphism
tensor although it is not gauge invariant.

4.3 Decomposition of the torsion irreps

We can now give the decomposition of the generalised torsion in terms of the above tensors
(some of the intermediate results in this calculation may be found in appendix B). This will
allow us to understand the effect of dualities on flux backgrounds as we will demonstrate
using examples in section 5
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15: We have

% ..
S5 = 4eViV* = e Fygy — S MO T
Sis = 2T4i" + 2V VF + e W, Ss5, (4.31)

Sz] - —46_1Q(i,j) + 6_12W(i5j)5 — 6_2WZ’WJ-S55 .
The recursive form and the factors of e are required by the generalised Lie derivative. In

terms of group theory, the 15 of SL(5) reduces to the 10 & 4 & 1 of SL(4). It is easy to
identify these:

100 Qi)
4: ViVIi 4Ty, (4.32)
1: Fijkl .

10: We have

Ti5 =

1 1 3
§V7;ka — §Tz‘kk — 531'@?7,

1 . (4.33)
Tij =€ (fijlek’l + Qi) — 2Wijls — 59 ¢>
Here we see the 10 of SL(5) reduces to the 4 & 6 of SL(4).
40: We obtain
Tijs® = —T;;* — 5[z i +VUV’“ + 5[Zvj]lv’, (4.34)
ﬁjkl =e” ewkam +2e 0y jk]mnTm + 26_1Q[” + 3e” W[ifjkbl, (4.35)
ﬁj55 = _ge_lg[i,j] - %6_ €T — 5_1WkTij5 , (4.36)
Tijk‘r’ = —6_2€Z'jlel — e_lVVlfijkl + 36_1W[7;fjk}55 — Be_QI/VlW[iTjkwl. (4.37)

Observe that these are not automatically spacetime irreducible representations: we have
Tijkk = — ij55 as a consequence of the tracelessness of T'. Let us dualise the former,

1 1 1 . .
Thi = *EzklmTklm] _ 3 -1 zgle l+ —IT[z Jjl —lT(z,j) + ie_lemlkaTlnﬁj ) (438)

3!
We can then check we have Tl = —ZEWMT k50, Hence the true SL(4) irreducibles may
be identified as
1 1 A SO
T[Z’J] 3 -1 zylekl 4= 2 —17'[Z7J] + §€—le[l|klkaTlm5|J] (439)
T6d) — =L (id) 4 56—16(i\klmwkflm5\j) (4.40)

The 40 here decomposes as 40 — 4 © 6 © 10 @ 20 and we can identify
20 : @iij — Tijk — trace,
1 7(6.9) 7

Qg »

L.

(4.41)

A oo o
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5 M-theory flux examples

In this section, we wish to present some examples of easily obtainable non-geometric back-
grounds in string theory and M-theory which are best described in the framework of an
extended theory. We will focus here on backgrounds which can be obtained by dualising
a geometric background with a single flux. Although we will not be presenting novel so-
lutions, we wish to stress the point that the approach of this paper allows one to fully
understand the non-geometric fluxes that appear.

5.1 The string theory prototype

First, let us describe the well-known prototypical toy example for the NS-NS sector [25, 26].
As usual, we will start with a flat 3-torus with H-flux:

ds? = da® + dy? + d2?,

(5.1)
By = Nzdx ANdy.
The H-flux is Hyy. = N.
Dualising along the z-direction one obtains a twisted torus:
ds? = (dz — Nzdy)® + dy* + d=?, (5.2)
By =0. '
The geometric flux of this background
TZ]k = e#ka[ie“j] 5 (53)

is non-zero: Tyzi =N.
Another duality, this time along the y-direction, gives a globally non-geometric back-
ground with @-flux. The usual metric and Kalb-Ramond form are then globally ill-defined

di? + di?
52:7"@ tay —l—d22,

1+N222 (54)
By= —— % 4indg '
2T 1 N22 TAGY-

This is because the local SO(5) transformation that would be needed to remove the 3%
field in the generalised vielbein is globally ill-defined. However, one could instead remove
the B-field. In the resulting “non-geometric” frame the background is

ds® = di* + dij? + dz?,

(5.5)
B% = Nz0z A0y
This non-geometric background has a Q-flux
Qigz = azﬁig =N. (5.6)
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Finally, one can perform a duality along the z-direction, which is not an isometry, to
obtain a locally non-geometric background,

ds? = di? + dj? + d3?,

(5.7)
52 = Nz0z A ag .

This background depends explicitly on z, which in this frame is a dual coordinate. Hence
we say that there is no local geometric description. The R-flux of this background is

R™* = 39139 = N . (5.8)
This chain of dualities is summarised by saying that
Hyy. =T, - Q", - R™*, (5.9)

Thus, we see that a single Buscher T-duality lifts an index from a subscript to a super-
script [11]. This is best understood as the action of T-duality on the O(D, D) generalised
torsion of the Weitzenbock connection [62] which analogously to the torsion considered here
is a covariant O(D, D) tensor containing the fluxes [63, 64].

5.2 Duality chains and an M-theory toy model

We described the fluxes of M-theory in terms of U-duality tensors. Thus, we can now
find the action of U-dualities on fluxes simply by performing matrix multiplication. In
order to describe duality chains similar to the above, we need to use the M-theory versions
of Buscher dualities. As the M-theory U-duality groups reduce only to the T-duality
subgroup SO(D, D) one such U-duality can be thought of as corresponding to a pair of
Buscher dualities. In fact one finds that the form of the duality in fact exchanges three
directions with dual coordinates - reducing to string theory on one of these directions one
is able to show that the duality descends to a Buscher duality acting on the other two (plus
an exchange of coordinates) [79].
The SL(5) element in question is

U, = (‘5 s ) , (5.10)

—n; 0

where n'n; = 1.

The choice of vector n’ specifies the directions in which the duality acts. Suppose our
physical coordinates are x,v, z,w,"' which we will think of as parametrising some four-
torus in the examples below. Let the duality be along the x, y, w directions (so that if we
reduce from M-theory to string theory on the w direction this descends to a usual pair of
Buscher dualities on the z and y directions). Then we should take n* = i, = 1, and the
effect of the duality on a generalised tensor is to swap the z index for a 5 index and a 5
index for a z index, up to a sign: if Ve = U%V? then letting o = x, y, w one has Ve = Ve,
VE=V5 V5= _V= (Similarly for V, = Vy(U~1)?, one has Vo=V, V.= Vs, Vs = -V..)

HWe will take ,r]rcyzw = Nzyzw = +1.
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For the generalised coordinates this means that for % = U®.U® ¢4,

) )

:iozﬁ _ xozﬁ7 GO — $a5 a~:o¢5 — 7 jZS _ .%'Z5 ] (511)

The physical coordinates in the new frame are £ and #*°. We shall denote a Buscher
duality along the three directions z,y,w by Ugyew.

Let us now turn to the fluxes to see what kind of non-geometric backgrounds we can ob-
tain by dualising geometric ones. This is a much more delicate matter than for string theory
because we always have to dualise along three directions. For simplicity, we will focus here
on geometric backgrounds with just one flux, either the four-form flux or the geometric flux.

If we start with a four-form flux turned on, then referring to the expres-
sions (4.31), (4.33) and (4.34) to (4.37) for the irreducible components, we see we only
have non-zero Sss5. By acting with the transformation matrix Uy, (any choice of direc-
tions could be made here) we find this can only be dualised into a Q-flux, corresponding
to having non-zero S,, component:

Uz w
Fw:pyz 5 Qz,z = Q""" (512)

(Recall that the globally non-geometric Q-flux Q;/*', defined in (4.23), appears as the

trace-free part, Q; j), and also a trace part Qy; ;.)

i’j)’
If instead we begin with a geometric flux of the form T;,* and no three-form, corre-

sponding to the torsion irreducible S5, then
i U, zw . Ua: w
Tie' <= Tix' = Qa,z) - (5.13)

Note that in this case the initial compactification is on a non-uni-modular Lie group
and so we do not expect the lower-dimensional supergravity to have a consistent action
principle [84].

Now let us consider the other kind of geometric background: one with traceless geo-
metric flux, e.g. T,.*. This corresponds to the torsion irreducible fyz5x and referring to
the component decompositions of this irreducible, equations (4.34) to (4.37), we now find
two different ways to obtain an R-flux:

U zZw
T,." <=

Uzy= T Uy Rz[:p,yzw]‘

Rw[x,yzw] ’
(5.14)
Tyy”

Note that these will involve carrying out dualities along directions which are not isometries.
This is of course expected to be the case for a background carrying locally non-geometric
R-flux, and is possible within the framework of the extended theory.

This configuration, T;,,” # 0, is also self-dual under U, or Uy

Ufl') w
T,,” &8 T, &8 T, 7 (5.15)

Obviously other duality chains will be possible involving more complicated set-ups. We will
finish this subsection by considering a toy model that presents in detail the generalisation
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to M-theory of the string theory three-torus with H-flux. We will realise two of the above-
mentioned example duality chains explicitly: Fyzy. <— Q.. and T." <— Rwlwyzw]

We thus introduce a four-torus with coordinate x, y, z, w, and include a general external
metric in the other seven directions as it will transform under dualities too. To be precise,
the external metric will transform conformally, with the scaling determined by the transfor-
mation of the extra scalar e? in the generalised metric, given the identification e? = | g7|1/ v,
For Fypy. «— Q. ., our initial T' 4 is flat and we choose a three-form with constant

flux through this torus:

ds® = ds% +d2? + dw? + dz® + dy? |

(5.16)
Cs = Nzdw A dx A dy,

This corresponds to Ss5 = 4N. We can now carry out a Buscher transformation along the
w, x,y directions. We find the resulting configuration to be

ds? = (14 N222)Y3ds? + (1 + N22%)V3d2% + (1 + N222) 723 (dw? + di® + dif?)

Nz o (5.17)

Cs =
This background is non-geometric: when using the 3-form C5 to express the solution looks
ill-defined globally. It needs to be patched by a U-duality transformation which is not a
diffeomorphism or gauge symmetry of Cs. This bad behaviour is introduced because the
local SO(5) transformation which is needed to obtain the frame involving Cj5 is globally
ill-defined. Instead we should consider an alternative frame, containing a trivector. Using
the expressions (A.2) we get

d5? = ds? + d2* + dw® + di* + dif?,

5.18
Q3z—NzE)j/\8gA8w. ( )

In this dual frame the solution is periodic but involves a dual field. It is easy to see that
there is non-zero Q-flux, Q%" = 2> = —N as expected from the duality chain: we
obtain S,, = 4N exactly as predicted by the transformation of the torsion under duality.

For the other duality chain, T}.% «— Rvlwyzw] et us instead start with a twisted
torus background

ds® = ds? + dw® + d2* + (dz — Nzdy)* + dy?,

5.19
C3=0. ( )

This background has non-zero geometric flux, 7. = N, which corresponds to the ir-
reducible Tyz5z = —N. This configuration is self-dual under Buscher duality on z,y,w
directions as seen from (5.15). Let us instead consider a Buscher duality acting on y, z, w
directions. In the ('3 frame we have

ds® = (1+ N222)Y3ds? + (1 + N22H)V3d5 4+ (1 + N222) 723 (da® + dZ* + di?)

Nz (5.20)
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This can be seen to depend on what is now a dual coordinate, z, and so is not even locally
geometric. However, one can still pass to a more appropriate description with the trivector:

d5? = ds? + dz* + dw?® + da* + dif?,

5.21
93:—]\7;;8@/\85/\8@. ( )

We can do nothing about the dependence on z, but this frame leads to a well-defined flux.
By carefully referring to the transformations (5.11), we see we can identify z with the
winding coordinate #*%, so that we have 9Y¥Q%*% = —N. Using the definition (4.26) we
see the R-flux is

R — N (5.22)

and as a result we indeed have from the decomposition (4.37) that fng = N.

5.3 The 53 solution

We will now demonstrate that our duality chains are also applicable to solutions of M-
theory. We thus consider acting with dualities on M-theory solutions with similar properties
to the toy examples just discussed. Ome such solution is the 5% brane [35, 85]. This is
obtained by acting dualising the M5 brane. The solution for the latter is

ds? = H™Y3(—dt? + dis?) + H?3dz?

5.23
Co=H"=1Ddt ANdy* n---Ndy, (5.23)

where H =1+ r% and r = |Z5|. We wrap the solution on a transverse T3, in the z3, 24, 25
directions and smear it in those directions. The resulting solution can then be dualised
along these directions. Prior to dualising, we have

ds® = HV3 (—dt* +-dgs?) + H*3 (dr?+12d0%) + H?/3 ((dz3)? +(dza)* +(d2z5)?) |

(5.24)
C3 =00dzs Ndzg Ndzs,

where now H = hg+olog £, with constant o = , L a regularisation scale and hg a

#241%5
divergent bare quantity (see the discussion in [35] for the very similar case of the 53 brane
in string theory). We have switched to polar coordinates, r, 6, in the z1, z2 directions. Note
that the solution carries a constant Fy flux.
We now consider U-duality acting in the z3, z4, 25 directions. The transformed solution
has the form
ds® = H'P K3 (—dt® +dgs®) + H* P K2 (dr® +1°d0%) + H* P K23 ((dZ3)° + (dZ4)* +(d35)%)

5.25
Cs = —K 'o0dzs A dzs A dZs (5.25)

where
K = H? 4+ 0%6*. (5.26)

This is a non-geometric solution: it is not single-valued for § — 6 + 2w, even modulo
coordinate transformations and gauge transformations. However, it can be seen to
transform by a duality transformation as § — 6 4+ 2w. The solution is thus an example of
a U-fold. This is the M-theory analogue of the “Q-brane” in string theory [44] and is also
known as the 53 brane.

— 23 —



The fact that we have such unpleasant behaviour of our physical fields is a consequence
of using an unsuitable parametrisation. We should as before instead use a non-geometric
frame, exchanging the three-form for a trivector Q3. Carrying out the field redefinition
using the generalised metric (A.2), one obtains the new form of the solution:

ds? = H'3(—dt®+dgs®) + HY? (dr? +r2d0%) + H /3 ((dz3)* 4+ (dza)* +(d35)?) |

05— g (5.27)

We see now that this solution is well-defined for § — 6 + 27, up to a simple gauge transfor-
mation of the trivector. Such a transformation has no simple interpretation in terms of the
usual geometric and physical variables, and is the source of the non-geometric behaviour.
It has constant M-theoretic Q-flux, Q3 = —¢g.

Similarly, one could start with the M-theory Kaluza-Klein monopole, which carries
geometric flux, and carry out a duality transformation along a non-isometry direction to
reach a configuration with R-flux, the analogue of the “R-brane” in string theory [44].

6 The torsion as generalised fluxes: IIB fluxes

We now repeat the analysis of the previous sections for the case where we choose a
parametrisation of the generalised vielbein that, after choosing an inequivalent section
choice, leads to IIB supergravity [49].

6.1 Parametrisation and field transformations

For IIB, by noticing that the little metric in M-theory parametrisation has a similar form
to the inverse little metric in IIB parametrisation, we may take

o, _gon (€0 WY (6.1)
a—E€ 61/2‘/2 e—1/2 (hzl + szWlp) ) .

with inverse

12 (e 4 WEVE) —em V2
By = e/t (€ kR i) 6.2
€ < _61/2VDZ el/thj ( )

Here g = det(g"”), with ez* the vielbein for this metric. Meanwhile h%i is a vielbein for
the unit determinant matrix of scalars, M;; (and so parametrises the coset SL(2)/SO(2)).
Again we have the scalar ¢ related to the truncation, with e? = |g7|*/7.

We have that Vlf is a dualisation of the two two-forms, V/f = %ewai”p, while similarly
Wi = LervrBy,, (here P = g'/2piP). The preceding involve what we take as the
“natural” position of the SL(2) index in defining these objects and the bivectors B
include the original bivector field of 10-d supergravity [26] (usually simply referred to as
pH) as well as its S-dual. Note that there will be a further dual field appearing in hi; (as
an alternative to the Ramond-Ramond zero form). Hence we have included dual fields for
all form fields appearing in the generalised vielbein. See section 4.1 for a discussion of the
relationship of the local SO(5) symmetry and the form-potentials and their dual fields in

the generalised vielbein.
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In the IIB parametrisation, the coordinates z% lead to physical coordinates T, =
%n#,,px”p, alongside dual coordinates z** and z%. The generalised diffeomorphism pa-
rameter U vector §u = %nw,pU”p, which generates spacetime diffeomorphisms, a pair
of 1-forms, A", which generate gauge transformations of the 2-forms B*", and an addi-
tional component U%, which vanishes from the transformation rules when the IIB section
is imposed.

Note that S-duality (acting on the SL(2) indices i, j) is manifest in this parametrisation,
and as a result when the action (2.7) is evaluated using (6.1) with W/ = 0 we reach (a
truncation of) the IIB supergravity action in Einstein frame [49].

We can evaluate the transformation properties of the fields under these transformations
using the generalised Lie derivative. As before, we will focus on the classification of tensors
and other objects in the theory using spacetime diffeomorphisms. Note that these are
defined by

depu = Lepu = §,0" 0y — 0,07, . (6.3)
The dualisation of the coordinates means that vectors carry a lower index.
Starting from the vielbein or generalised metric, one can show that

deel'y = Leel'y,

0¢ B = LB (6.4)

O¢ Bipw = LeBipw + 203,80 -
Again, we see that the dual fields have an unusual transformation under spacetime diffeo-
morphisms, just as was noted for the NS-NS sector in [28, 29].
6.2 Spacetime geometry
6.2.1 Derivatives

We have the same flattened partial derivatives (4.6) as before. We obtain useful combina-
tions of derivatives by curving with the spacetime vielbein on flat spacetime indices, and
with the scalar coset vielbein h%; on flat scalar indices:

>

i = ef¢/2€ﬂuhzipfﬁ s (65)

>

>

— —9/2_ n U
w = € ¢/ €MM€ l/Dﬁl_/-

In terms of the vanilla spacetime and winding derivatives,

Az‘j = 681‘]‘ + e*1Wi”Wj’/6W + 2W[‘;6ﬂu , (6.6
Opi = Opi — V,fém' ; (6.7)
éﬂ” = 6_18/“/ + QV[Lé,/]Z + V;Vjéw . (6.8)
Here we have introduced the quantity
i = Opi + Biyw0” = Opi — e " WLy, , (6.9)
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which is a generalisation of the anholonomic dual derivative introduced for the NS-NS
sector of type I supergravity in [28, 29].

The structure is a little more intricate in this case than it was for M-theory. The
derivatives we choose to express our tensors in are going to be 9" = %77“” POup, 5“1', and 511
All three of these derivatives have the property that if ¢ is a scalar, then the derivative of
 is a tensor, up to the section condition. Note that the section condition is obeyed using
these derivatives.

6.2.2 Tensors

We introduce flat connections built out of the above derivatives:

A~ — A

My — Sl Uy, V I Vo= i A oV LV = oM oV
', =et, 0", Tu’p=e'pouen”, Tiy"p,=e!,0ie5". (6.10)

Up to section condition, we have

5eTH = LM, 4+ HOVE, (6.11)
5£fuiyp = ﬁéfuiup + ém»a”fp, (6.12)
0¢Lif”p = Lelig” p + 0507, . (6.13)

We also define ‘connections’ (which are in fact spacetime tensors) built using the scalar
vielbein:

Th9 = hd0rh'y, T = hi?duhli, T = by Ouh's . (6.14)

Note the differing index positions in these definitions. In general, when we have an object
cpfi carrying both a spacetime and an S-duality index, we have by definition

Vaph, = 0agl, +Taj' 0l +Ta”ul, (6.15)

for A any index we are considering: A = #, ,;,4;.

We can now use these to give the full set of spacetime tensors which appear. We
may classify them group theoretically according to their spacetime tensor structure and
behaviour under S-duality, corresponding to the decomposition SL(5) — SL(3) x SL(2).
Before listing the tensors we find, we wish to reiterate that our geometric construction
here uses a different connection to that previously used to discuss 10-dimensional
supergravity [29].

H-fluxes: we have a pair of S-dual field strengths,

Hwe = 39l plilvel (6.16)
in the (1,2) of SL(3) x SL(2).
Geometric flux: the usual geometric flux is just

T, =T",-T"",. (6.17)

This exists in the 3 ® 6 representation of SL(3), and is invariant under the SL(2) S-duality.
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Q-fluxes: we have a pair of S-dual non-geometric @-fluxes, one for each dual bivector.
They are defined by
Quiup = Q'uiz/p - 2Fi[u“p} ’ (618)
where
Q"ivp = 0"Bivp . (6.19)
This is a tensor under spacetime diffeomorphisms and corresponds to a (3,2) @ (6,2) of
SL(3) x SL(2). The first term Q*;,, is not a tensor by itself: we have

6£Q'uiup = E{Q“iup - 2éz[uau§p] . (620)

However, comparing with equation (6.12) we see that the connection fi[l,“p] cancels the
anomalous variation.

R-flux: the R-flux structure is somewhat involved. Consider the combination

iBivp s (6.21)

for which
8¢0yiBjvp = LeDuiBiup + 20,0516, (6.22)
where the derivatives on the right only act on &,. It turns out that this can be completed

to form two tensors,
Rij = "P0,6:8)up » (6.23)

which lives in the (1,3) of SL(3) x SL(2), as well as
RMyi5 = €20, 1Bj1en — Dighs + 06T357, . (6.24)
which lives in the (1,1) & (8,1) of SL(3) x SL(2).

T-fluxes: the trace

T = o, (6.25)
is also a tensor, in the (3,2) of SL(3) x SL(2).

There are also winding derivatives of the usual form fields:

v j 1 = jpo v k 1 v kv

Vi V] = §€upanij , ViV = 56#,,,)%3 . (6.26)
These give pieces in (3¢ 6,1 ¢ 3) and (3,2) of SL(3) x SL(2), respectively.
Scalar fluxes: finally, the definitions (6.14) may be taken as providing a set of scalar
fluxes for each derivative:

T#7 T ik, fijkl . (6.27)

These are tensors in the (3,3), (3,2 @ 4) and the (1, 3) representations of SL(3) x SL(2).
Note that in the usual parametrisation, the scalar matrix is

2, -2
Mij = e? <(CO) (;;e (/10> , (6.28)
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where @ is the string dilaton and Cy the R-R zero form. Picking a vielbein

- -2
i = e2/2 e
¢ (Co 1)

one finds that the components of I'yp;/ are

I J_ —%&lb@ Coaab@ + 8abC0
abi 0 %8@1)(1) )

In general one may wish to introduce a dual field in place of Cj.

6.3 Decomposition of the torsion irreps

(6.29)

(6.30)

We can now, as before, express the torsion irreps in terms of these spacetime tensors

(again, see appendix B for the intermediate stages of the calculation). Note that the

covariant derivatives appearing in these expressions include a contribution from the scalar

flux, so for instance

VW-VV = 8WV —i—FW/’V —i—ka V
15: We have
S 4€Vk( V) - 2€6NA( TH)‘I,),
S :_mw +20Q%%,, + 2V VE + e WS,
Sij

—4R;j — Aly(ip)" + 27 WS)), — e PWIWE S,

This gives the decomposition into (6,1) @ (3,2) @ (1, 3) of SL(3) x SL(2).

10: We have

5 .3
vi[uVu]z - fem,p(?qu,

1. . 1 3= _
Tpi = 7§vijvuj Q inp = 5 Ui’ + Tipe — 8ui¢ +e Wit

Tuy = ieefi)\[uTﬁAV}

1 3
Tij = —5671Rppij — 567181']&1) — 2671W[I:Tj]l, — 672WZ~NW;’TU .
Here we have terms in the (3,1) & (3,2) @ (1,1) of SL(3) x SL(2).

40: We have

i 2 Ayt
Tuyp =€ euypv V/\

1
2 IKAC
= e €uup <3|6H>\0H 3

1 . 1 .
,EK)\UBM/\TJTT + QGRAUFUjZBJK)\> 7
= A 200k L ko, 1 A

Tyuwp” = €€up gT K — §6 VieVy | —e Wi, ,

T J 2 J 1 KA YV k

Ty = 26V,[M } eeW,\F §e5i 565,\[MT v — V;C[HVV]

—lyyer  J
+e W/ T,
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(6.31)

(6.32)

(6.33)

(6.34)

(6.35)

(6.36)



- 2 . . N -
Tywi” = Qi — 35@ (7\—2'\1/] + Vi) V) — 2Q%ix + Fu]ji]>

+ e WA — e WET i + e PWEWAT 0 (6.37)

~ . - 2 . -
k k k k l l
Tig™ = ViV = 20" + 505 (Vﬂqu +Q%up + Llupty) — 27}1u)

+ 2 AT — e PWEWMT " (6.38)
~ 1
Tuig” = R pij = 50, i

— eflw;;jfmjk + 2671W€Tj]“)\y — 672Wi”I/Vj)‘T'W{>\V

+ 26 WY W Tk — e P WEWIWE Tk (6.39)

The irreducible representations are

(8,1): RY,; — trace,

(6,2): QF;, — trace,

(3,3) Q@i[uVy]j — €l ¥ — trace, (6.40)
(57 1) TMVI/ 9

(1,2): H™r.

7 IIB flux examples

In this final section of the paper, we will present some straightforward examples of duality
chains connecting geometric and non-geometric fluxes in type I1IB.

7.1 Duality chains and toy model

To generate duality chains in the IIB parametrisation, we again introduce an SL(5) duality
element, which implements a pair of Buscher transformations (plus an interchange of the
dualised coordinates).

As before, let n, point along the direction not being dualised and introduce n* with
n,nt = 1. We also need a two-component vector m?, which should be taken to point along
the ¢ = 1 direction for a normal Buscher T-duality and along the ¢ = 2 direction for its
S-dual. Introduce m; such that m'm; = 1. Then we can take

Ty At
U%—(dy nfn,  ntm; ) (7.1)

-m'n, 0'5 —m'm;

If we label our coordinates z,y, z as before, and take n, = 1, m' = 1, then the effect of
this duality is to exchange a z index for a S-duality 1 index, and a 1 index for a z, up to
a sign: letting a = z,y we would have V® = V¥ V? = V1 V! = —VZ# and V2 = V2 for
Ve =y, Vo, Similarly, the effect on a lower index is to give V, = 1, Vi =V, and the rest
unchanged.
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As well as Buscher type transformations, we can also generate new fluxes using S-
duality. These transformations are embedded in SL(5) in the obvious way:

S A'; € SL(2) (7.2)
"o ay)” J ' '

The basic S-duality inversion is generated by

. (01
- (1), -

and we will denote the corresponding SL(5) transformation by S. We can immediately see
for instance that our three-form fluxes H**? form a natural doublet under S-duality, as do
their Buscher duals, the Q-fluxes Q*;,,. Similarly, the symmetric R-fluxes R;; (which are
Buscher dual to geometric flux) mix under S-duality transformations.

The NS-NS sector duality chain of section 5.1 is of course available to us in the I1IB
theory, with the obvious difference that we are only allowed to do two Buscher dualities at
a time. Just as in the M-theory case, the chain thus splits between the two irreducibles.

Consider first the irreducible fabcd, whose decomposition into IIB fluxes is given in
equations (6.34)—(6.39). Let us consider the toy set-up with coordinates z,y, z. Note that
the coordinates x, in the IIB extended theory can be exchanged under duality for winding
coordinates associated either to the NS-NS sector, #*!, or the Ramond-Ramond sector, 2.
We will denote the T-duality elements that do this for z,y and their duals by 77,1 and
Ty,2, respectively. The effect of these elements on a U-duality tensor is, as noted above,
to exchange the z index with the 1 or 2 index, respectively. Note that T}, 2 = S _1Txy,1 S.

Let us start with a configuration with three-form NS-NS flux, H'*¥?. This corresponds
to the szzl component of the irreducible. Acting with T-duality on x,y leads of course to
Q-flux, corresponding to a non-zero fmylz. Acting with S-duality gives the same picture,
but in terms of Ramond-Ramond flux leading to a Ramond-Ramond @-flux, which in our
notation is Q%94 (in the literature this has been referred to as P?,, [46]).

We can further act with 7}, 2 on the Q%;, configuration or with 7}, 1 on the Q%9
one, to reach the fxlgz component, which corresponds to a configuration with the non-
vanishing R-flux, R?;12 # 0. This is not the usual R-flux, but the novel type defined
in (6.24). This involves a duality acting on the non-isometry z direction, and so indeed is
expected to give a non-locally geometric flux.

Alternatively, one can generate scalar flux (6.27) by acting with T, 2 on the Q%4
configuration, which leads to the T, 12 component containing a non-vanishing I'*12.

Let us show how the latter two examples work in practice, in the context of the toy
model. We start with the non-geometric NS-NS @Q-flux solution in non-geometric frame:

ds® = dz® + dy? + d2?,

(7.4)
B2 =Nz, N, .

Let us act first with the T}, 2 transformation. This produces a configuration in which the
spacetime metric is unchanged and there are no two-form or bivectors present. However,
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Figure 1. Duality relations involving 3-form, Q- and new R-flux in IIB.

there is a non-trivial matrix of scalars, giving

ds® = da® + dy? + d2?,
Co=—-Nz, (7.5)
d=0.

Here @ is the string dilaton and Cj is the Ramond-Ramond zero form. We see that the
latter has a constant one-form flux, F; = —N. This corresponds to a non-zero scalar flux
I'?12, as can be seen by checking the explicit decomposition (6.30).

Now, act on (7.4) with T,,92. This does not change the form of the solution, but
changes which coordinates we are viewing as physical:

ds® = di® + dy? + d3*,

(7.6)
B2 = Nz0; A Oy -

We see that we are in the by now familiar situation of having an explicit dependence on
what is now a dual coordinate, z. This has a similar form to that of the usual R-flux
background in the NS-NS sector, (5.7), however the coordinates &,y appearing here are
not the usual dual coordinates (but rather their S-duals). To avoid becoming confused
about which coordinates are which, rewrite the above as

ds® = dz® + dy? + d2*,

o (7.7)
B* = —Ni"0, N0, .

where we have noted that the original coordinate z becomes after the Buscher transfor-
mation the 2% coordinate from the point of view of this frame. This makes it easy to
see that we have 5:,326% = —N. Referring to the definitions of the two types of R-flux
tensors, (6.23) and (6.24), we see that the former vanishes, and we have

R*10=—N, (7.8)

as expected from the duality chain.

It is clear that the duality chains can be made more intricate, and that there are
multiple paths between different backgrounds. For instance, we could also have obtained
the R-form flux starting from a Ramond-Ramond scalar flux via:

S Ty

2 %l % R% 1. (7.9)
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Finally, let’s consider the other irreducible, Sy, given in terms of fluxes in (6.32). A
configuration with non-zero geometric flux T%%, will have non-zero S,, component. The
Buscher transformation Tj.; involving the non-isometry direction z will then lead to a
non-zero S1; component, which means that we will have the usual non-geometric R-flux,
Rjy1, as defined in (6.23) (from which it is immediately clear that this component is the
usual R-flux). Acting with the basic S-duality element then gives a non-zero Rgs, which is
just the R-flux defined for the Ramond-Ramond sector.

7.2 The 5% solution and its S-dual

We can again illustrate a realistic example of how this works. This time we make use of
the 53 brane, which may be obtained by T-duality from the NS5 brane. As such it exists
in both ITA and IIB supergravity: the ITA form of the solution can in fact be obtained by
reduction of the 5% solution in M-theory. Hence the analysis of this brane is very similar
to what we did before. Let us compactify two transverse directions of the NS5. Carrying
out a Buscher duality along one of these directions gives the Kaluza-Klein monopole, and
then carrying out an additional Buscher duality along the other direction gives the 53. The
solution has been comprehensively analysed in [34, 35], and can be written as

ds* = H (dr* +r?d6*) + HK ' (da® + dy?) + dig,
By = —0oK 'dx Ady, (7.10)
e — HV2K1/?
where the function H results from taking the original harmonic function of the NS5 and
smearing on the compact directions, £ and g, which are T-dual to the compact directions

x and y:
H:ho—i—alogﬁ, (7.11)
r

and p is some cut-off and hg a bare quantity [35]. The non-geometric properties of the back-
ground are due to the function K, which depends explicitly on the circular coordinate 6,

K = H? 4 0%6*. (7.12)

For 6 ~ 0 + 27 we have to act with a duality transformation that corresponds to a shift
of a g field. This cannot be realised on the above fields in terms of diffeomorphisms and
B-field gauge transformations. If we change frame, replacing the two-form with a bivector,
then we obtain a solution that looks geometric [44, 64],

ds* = H (dr* 4+ r*d6*) + H™ ! (dz® + dy®) + dj,
52 = 000, N ay ) (713)
e® = H 1?2,

Due to the bivector with 3,, = 6o this solution is thought of as carrying non-geometric
Q-flux.
We will now see that, as expected, the same holds after an S-duality.
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Figure 2. Duality relations leading to a solution with non-geometric Q-flux in IIB.

If we start from the IIB NS5 brane then the 53 brane will also exist in IIB, with no
R-R fields turned on. If we act with the simple S-duality

0—1
(7). -

then the net effect will be to exchange the Bs field for a Cy field. The resulting solution
is known as the 52 [35], and can be written (in Einstein frame, note that (7.10) is given in

string frame) as

dsp = H¥* KM (dr? + r?d0) + HYA K34 (da? + dy?) + H V4KV dasg

, By 0
B; = = 1
2 (Cg) (—GUK_lda: A dy) ’ (7.15)

o® — 12512

We can describe this in terms of the SL(5) exceptional field theory by supplementing the
0, x,y directions with seven dual coordinates. We have a choice of two parametrisations
of the generalised vielbein (6.1), and hence the generalised metric, either using Vlf with
W =0, or using W} with V}f = 0. By evaluating the generalised metric in the different
parametrisations as in (A.8), we can straightforwardly read off the definitions of the various
fields in the dual frame.

The dual frame form of the solution is

d3% = 54 (dr® + r2d?) + H-¥4 (o + dy?) + HY 42,

s [B%) _ 0
Bi = (72) = (_eaaany> ; (7.16)

e® = HY/?.

It is clear this solution carries a non-geometric flux associated to the derivative d,v*Y of
the dual field ~, which we use in place of the usual R-R 2-form. This is just the S-dual of
the usual non-geometric flux associated to the 53 solution. One can check that the solu-
tion (7.16) is indeed related by S-duality to the 53 solution in non-geometric frame, (7.13).
The duality chain is summarised in figure 2.
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7.3 IIB solution with R-flux

It is possible to obtain solutions with R-fluxes by various duality chains, all of which will
at some point need to include a duality along a non-isometry direction. For instance, one
could act with T-duality along the non-isometry direction of the 5% solution to obtain the
novel R-flux, R*,1o, similar to the toy example discussed above. Alternatively, one could
start with the D7, which has a particularly simple S-duality monodromy affecting only
the Ramond-Ramond zero form and thus has scalar flux. Applying first an S-duality one
obtains an S-fold: further applications of T-duality lead to a background carrying the new
R-flux, R*,12. Finally, a solution carrying the usual R-flux, R;;, could be found starting
from a configuration with geometric flux, for instance the Kaluza-Klein monopole.

8 Conclusion

In this paper, we have studied a geometric formalism for exceptional field theory which
naturally contains information about all geometric and non-geometric fluxes. This geo-
metric formalism made use of the generalised torsion of the Weitzenbtck connection: this
generalised torsion can be used to naturally construct the action (by requiring invariance
under local generalised Lorentz transformation), and unifies geometric and non-geometric
fluxes into a single U-duality covariant object. As exceptional field theory reduces to both
M-theory and type IIB, we obtain a unifying formalism for treating the fluxes of both these
theories.

We focused for simplicity on the U-duality group SL(5) and found new locally non-
geometric fluxes which mix the R-R and NS-NS sector. We also showed how the new fluxes
can be constructed by dualising geometric backgrounds. It would certainly be interesting
to generalise the analysis here to the higher U-duality groups, leading to more complicated
duality chains with more non-geometric fields.

It would be of interest to try and use the formalism developed here as a tool in gen-
erating backgrounds which cannot be linked by duality to a known geometric solution.
Such a background would be considered “truly non-geometric”. In order to do so, it will
be necessary to understand the consistency constraints, or equivalently, Bianchi identities,
that the fluxes must obey. We leave it to a future work to present a full analysis of these
constraints in terms of the spacetime fluxes we have identified.

Our formalism would also allow us to construct actions involving non-geometric fluxes.
The non-geometric branes considered here would then be solutions of these actions. The
actions would allow one to further study configurations involving dual fields, for instance,
and would be useful for determining the effective potentials resulting from a Scherk-Schwarz
reduction. It would be interesting to understand the phenomenological consequences of the
new fluxes considered here. Furthermore, the results presented here will help us understand
how the non-commutativity / non-associativity of strings and exotic branes [36-45] in non-
geometric backgrounds generalise to M-theory or are modified in the presence of Ramond-
Ramond fields. In particular, it is interesting to note that the locally non-geometric flux
in M-theory is not totally antisymmetric, in contrast to the NS-NS case. This makes non-
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associative behaviour unlikely. However, it may signal that a higher bracket structure, such
as a Nambu bracket, is needed in the analysis.

We have seen in this paper that exceptional field theory provides a natural setting for
studying non-geometric backgrounds. It would be interesting to study the generalised co-
ordinate patching [86, 87] of the extended space necessary to fully define such backgrounds,
as has been studied in the T-duality case [88-90].

Acknowledgments

We would like to thank David Berman, Ralph Blumenhagen, Dieter Liist and Malcolm
Perry for useful discussions. CB thanks St John’s College, Cambridge, for their sup-
port. EM is funded by the National Research Foundation (NRF) of South Africa under
grant CSUR13091742207. EM would also like to thank the Max Planck Institute Munich
(Werner-Heisenberg Institute) for hospitality while part of this work was undertaken.

A Generalised metrics and non-geometric frames

A.1 M-theory changes of frame

The idea here is simple. The generalised metric itself is taken to be the fundamental field
of the theory. The choice of physical fields is viewed as a choice of how to parametrise
the generalised metric. This frees us from having to always use one particular set of fields,
which in certain circumstances may be in fact unsuitable.

The particular situation we are interested in will be changes of frame from a situation
where, by acting with duality transformations, we have a description of a background in
terms of the usual metric and the three-form, to a frame where we have an alternative
metric and a dual trivector in place of the three-form.!?

The little metric that follows from the general form of the M-theory generalised viel-
bein, (4.1), is

Mgy = €_¢/2 (glﬂ (gij + WzVJ + Vin + Win(l + VZ)) Vi + Wi(l + V2)> (A.l)

Vi +W;(1+V?) 9?1+ v?)
In the usual geometric description, we set W; = 0. In a non-geometric situation, we
may have to take instead V? = 0. The generalised metric remains the same in both

expressions. The transformation from frame to frame can be realised as a generalised
Lorentz transformation acting on the flat index of the generalised vielbein. There may be
global issues in defining such a transformation.

Using the expressions for the generalised metric in each frame, one can read off the
definitions of the dual metric §;;, trivector QY% and (via e? = |g7|'/7) the metric in the

12The idea of parameterising the generalised metric of string theory in terms of a dual field was used
in [53] and [26] to study non-geometric backgrounds.
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seven transverse directions, §yj, in terms of the original variables:

Gij = (L+VH (1 + Vg — ViVj)
QF = 1+ V) gl g g Clpyy (A.2)
grr=1+V?) Vg,
A.2 1IB changes of frame

The standard parametrisation involves a three-dimensional metric, g"¥, a pair of two-forms,
B two scalars packaged into a symmetric unit determinant two-by-two matrix, M;;,
and the transverse metric g/’ (denoted with upper indices for consistency). Let us suppose
we change frame to a parametrisation in which instead of two-forms we have a pair of
bivectors 3;,,. Again, we denote the other quantities in the new frame with tildes. The
general expression for the little metric, from the parametrisation (6.1), is

Map = e~ /2 91/2(9;”/ + VlfVVk) Vi + Wy + V;prkW]P s
‘ Vl/i + Wyi + VVkVpkWip mgj ) .
where
mij = g (Mg + WEWs + VoWE 4+ Vo WE + WIWSVS Vi) . (Ad)

To write down the expressions for the change from geometric to non-geometric frame, we
first define the following determinants:

lgal =det(g"), g7l =det(g"’), g+ VZ[ =det (g + ViMyV]) . (A5)
Here,
V= %EMVpBin, (A.6)
and we similarly would define
wl = %%"”pﬁi,,p , (A.7)

for the dual field.
We then have the following formulae for the quantities in the new frame:
G = 19312 lg + VA7 (g + VM V)
g7 =lgs| "V g + VT AT

o (A.8)
5j,uzz = ‘93‘1/2‘9 + V2’1/2g,upguankkaa )
Mij = |ga|"2g + V2V2 M — WIWY G-
B Details of the torsion decompositions
B.1 M-theory
We first give the components of the flattened Weitzenbock connection, defined by
Qupy’ = B “DusEla, (B.1)
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and evaluated using the parametrisation (4.1). These involve

1 . .
DosWy, = DogWy + Tap" Wy — Lo W, = geuzeijklpaﬁszﬂkl , (B.2)

1 3
Dagvu = Da,gV“ — Fagl,“V” + I‘aﬁppv,u = geﬂiewklpaﬁcjkl , (B.3)

using the flat partial derivatives (4.6) and the spacetime Weitzenbocks with flat indices,
Copu’ = euiDaﬁe”i. The generalised Weitzenbock components are then

v v 1y v Lo,
Qapgp” =Tapu” — iéuraﬁ)\)\ + V"DuogW, — Z%Dam, (B.4)
Qaﬁu5 = DaBWu7 (B5)
Qups! = DagV" — VIV DogW,, | (B.6)
1 1
Qa555 = _VuDa,BWu + §Faﬁ>\)\ - ZDQB(ZS . (B?)

We introduce the following notation to distinguish between the different types of deriva-
tives. Derivatives flattened with the spacetime vielbein will be denoted with a bar:

(% = euiai, 5#1, = euiel,jaij , (B.8)

and objects (connections and torsions) built using these will also be barred. We have

D, — V Dy, = 0,. (B.9)
Using this, we find for the 15,
S =4 (o) = D) (B.10)
S5 =2 (T,\,/\ + Dy VA + 2V’\D(MW,\)> : (B.11)
Ss5 = 4(D,V* — VEVYD,W,) (B.12)

which leads to
Suv = _46(1)/29(#71/) )

5#5 = 2e¢/2 (éAMV/\ + T)\#)‘> — VVSW, R (B.l?))
Sss = 4e?/20, VI — 2V S, 5 — VIVVS,, .
For the 10,
1 1 _
Tus = 5TMA - iDA#V’\ — VD, Wy, (B.14)
Tuy = _QA[MV]A - FW’)\A + D[#Wl’} ’ (B.15)
leading to
_ )2 - 34
Tuy = € Euun/\T i Q[IMV} - §8MV¢ )
] 1 3 (B.16)
Tus = e’/ <—23>\uv>\ o §Tu)\)\ ) ¢> V7.
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For the 40,

T;wp5 = 3D[unp] ) (B'17)
_ 4
Tuws” = =3V Dy, Wiy + T — 5 (D{ Wy + FA[W]A) ; (B.18)
T A A KSA A K
T'wjp =3V D[;WW} + 3F[wjp] + QD[MW (5,0] N[}U/ o — 25[ul“yp],$ , (B.lg)
Typs" = Dyy V¥ = T,/ — 3VIVEDy,,, W,y — 2VFD, W,
2 K 2 K 2 K 2 KT
+ géu[VDp]mV — gd’u[,ij},{ — géﬂ[,,v Dp]WH + gé“[VV DH]Wp, (B.QO)
leading to
j\::prg) = —e(b/ze‘wijL’i’ (B21)
- 4 1 3 -
T,uu55 = e¢/2 <_3Q[u,y] - 56/1,1/%)\7- 7/\> - V)\T;W/\E)v (B22)
T, = (2% Lo+ e,wp,;r“ T “) F VALY (B.23)
~ A A 2
FVET s> = VAT, " 4 VEVAT, 00 (B.24)
B.2 IIB

First, let us give the components of the flat Weitzenbock. We have spacetime connections
Losls = € Dapes’ (B.25)

and similarly for the scalar coset vielbein A’

og5 = h'iDaghs’. (B.26)

J

The components involve the following combinations
_ _ - I | _
DogWh = DogWh — T gi? WH 4+ T s WY — T’ s WE = 5h,;ke“uewpaﬁﬁk,,p, (B.27)

- _ _ 1 -
DogVE = DogVF + T oss™Vi] — Tap”uVIE + Tup? Ve = fh’“keﬁuewpaﬁBW. (B.28)

afj

Then we have

Qopi™ = —Taphs + %Faﬁ 08 —VED asWl — 75“1)@@, (B.29)
Qi = DagW?, (B.30)
Qapp' = DagVi — VEVIDasW? | (B.31)
Qogi’ = Tagi’ — éraﬁﬁﬁé; + ViDasW? — iagpaﬁqs. (B.32)
Then for the 15,
Sip = —4lpa" 5y + 4‘/(152 Wi + 4Dy Vk) + 4V3V(§D17)5W/§’ (B.33)
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1 2 5 5 p k

Er. p kEr _1i7P ivk . yisP
+ V- Dkﬁ W—.p — V;—L Dﬁi Wl—f — V—jV— Dy; WJ—'.O , (B.34)
o P _k k D
S =4D. oG W]) ('j) +4Vﬁ Dk( W]) (B.35)

These lead to
S5 = —4e?? (R + D))
i = 2e%/ ( Dpi™ + QP55 + é,;;vﬂ’_“) Vil S5 (B.36)
S = 4e?? <5E<qu>E - % Giprva)) — 2V Sy — Va' Vo 5.

Next, for the 10,

_ 5 3
k W
Tﬁl? = Fﬁ[ﬂpﬂ] -+ Vv[ l/]p ”/ p [ Vy] + V Vv[i l/]k 5p - §Dﬁl7¢7 (B37)
1. 1. . 1.

1 ;o1
— 5Dﬁﬂmgf’ — ivﬁ’ﬂD,;ﬁWp V’“D WP

+ %DE;V’“ V’V’“D,WW” Dﬂ;¢>, (B.38)
75 = —Ti5"5 — DapW4 — Vka[sz 2 Dij¢ (B.39)
which lead to
= - ;e‘z’/ ’ (R”pa + 3%¢)
Ta = —;eW (& Vil + QP+ Tsd — 2T, + 30, ¢) + Vi, (B.40)

1 < . - _ -
Tap = —§e¢/2 (—ewﬁT“ﬂ + 205 Vi)' + 36;“7,36%) + 2V T — Vi Wylrs .

Finally, for the 40, let us first simplify the calculation by noting that

Tvbcda = 3Q[bcd]a - 5FbQCd]ee - 25&;|Qe|cd]e

. . . . (B.41)
Thus the novel terms will be the first two. One obtains the expressions
Tins' = 3DV — 3VIVED W3, (B.42)
~ 3 - 7 3 3 3
X X X R k X X
Tanp” = =3T(an" 5 + 303155 & — 3Vp D) Wi + 20( (Tvp] + 2Dy,ﬂ¢> ; (B.43)
7k 5 2 i 3
k _ k __1/k k l . _
Tyif" = =2 +2Vy DygWh+ DV =V ViD; Wp+ 5[1 <Tj1p+2pjm¢> o (B.44)
7 3
Tuui =— W;U—V]D W’D+2D1[HV3] 2V/§V[ ,,]1W'°+ 6] ( +2DW¢> , (B.45)
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T =

mi 2F5[M v T 267,

1z 3

Tyi” = —Ti5"n + 050575 + 2D Wi — VED=WY + 5” (r— + D——¢>>

These lead to the following expressions:

v __ 2 vo__ 7 pA
Tyi” = e? (R i 75 R m) :
2 E 12 ]
T[ﬁj = e/ <& Vi 2Fu[m] 5[2( VatQ” J]NP+F|MZ|J] 27;]ﬂ)

~ _ 92
P _ ,b/2 _ -
T = €/ (Qpiw ~ 3% (Tmm + 01V = 2Q0p5 + Fu]aﬂ)>

- 2 = /1 . _ _
_ 2 g RA _ k
Tt = €/ (2& Vi — €Al + 35@ ( el 7] _8k[ﬁVV]>>

J _ ]
+2VET i + VT, 5" — 2V VET,

At i u]kz )

SO 9 1 <~ -
Taop” = **euwp < T2 — eMoaszﬁ)
- 3‘/[%,T17p]z 3‘/’[ Vl/] p]Ej ’

Tﬂf/ﬁl = e / 6/]1758)\‘/1 —+ VZ ;,LV,D 3‘/[# 1/,0]]

—_3yd VFT

i i kmr
+ 3VIVI Ty — BV VET i + VIV VET

In

3
Fl/]z by + DMVWP - 2‘/[ D, )i Wp + 5p <Tl7]i + /Dp]ng) 5 (B46)

(B.47)

(B.48)
(B.49)

(B.50)

(B.51)

(B.52)

(B.53)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] M. Grana, Flux compactifications in string theory: a comprehensive review,
Phys. Rept. 423 (2006) 91 [hep-th/0509003] [INSPIRE].

[2] M.P. Hertzberg, S. Kachru, W. Taylor and M. Tegmark, Inflationary constraints on type ITA

string theory, JHEP 12 (2007) 095 [arXiv:0711.2512] [INSPIRE].

[3] C. Caviezel et al., On the cosmology of type IIA compactifications on SU(3)-structure

manifolds, JHEP 04 (2009) 010 [arXiv:0812.3551] INSPIRE].

[4] U.H. Danielsson, S.S. Haque, G. Shiu and T. Van Riet, Towards classical de Sitter solutions

in string theory, JHEP 09 (2009) 114 [arXiv:0907.2041] INSPIRE].

[5] B. de Carlos, A. Guarino and J.M. Moreno, Fluz moduli stabilisation, supergravity algebras

and no-go theorems, JHEP 01 (2010) 012 [arXiv:0907.5580] [INSPIRE].

[6] B. de Carlos, A. Guarino and J.M. Moreno, Complete classification of Minkowski vacua in

generalised fluz models, JHEP 02 (2010) 076 [arXiv:0911.2876] [INSPIRE].

[7] J. Blabéck, U. Danielsson and G. Dibitetto, Fully stable dS vacua from generalised fluzes,

JHEP 08 (2013) 054 [arXiv:1301.7073] [INSPIRE].

— 40 —


http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.physrep.2005.10.008
http://arxiv.org/abs/hep-th/0509003
http://inspirehep.net/search?p=find+EPRINT+hep-th/0509003
http://dx.doi.org/10.1088/1126-6708/2007/12/095
http://arxiv.org/abs/0711.2512
http://inspirehep.net/search?p=find+EPRINT+arXiv:0711.2512
http://dx.doi.org/10.1088/1126-6708/2009/04/010
http://arxiv.org/abs/0812.3551
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.3551
http://dx.doi.org/10.1088/1126-6708/2009/09/114
http://arxiv.org/abs/0907.2041
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.2041
http://dx.doi.org/10.1007/JHEP01(2010)012
http://arxiv.org/abs/0907.5580
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.5580
http://dx.doi.org/10.1007/JHEP02(2010)076
http://arxiv.org/abs/0911.2876
http://inspirehep.net/search?p=find+EPRINT+arXiv:0911.2876
http://dx.doi.org/10.1007/JHEP08(2013)054
http://arxiv.org/abs/1301.7073
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.7073

[8] C. Damian, L.R. Diaz-Barron, O. Loaiza-Brito and M. Sabido, Slow-roll inflation in
non-geometric flux compactification, JHEP 06 (2013) 109 [arXiv:1302.0529] [INSPIRE].

[9] C. Damian and O. Loaiza-Brito, More stable de Sitter vacua from S-dual nongeometric
fluzes, Phys. Rev. D 88 (2013) 046008 [arXiv:1304.0792] INSPIRE].

[10] F. Hassler, D. Liist and S. Massai, On inflation and de Sitter in non-geometric string
backgrounds, arXiv:1405.2325 [INSPIRE].

[11] J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications,
JHEP 10 (2005) 085 [hep-th/0508133] [INSPIRE].

[12] M.J. Duff, Duality rotations in string theory, Nucl. Phys. B 335 (1990) 610 [INSPIRE].

[13] M.J. Duff and J.X. Lu, Duality rotations in membrane theory, Nucl. Phys. B 347 (1990) 394
[INSPIRE].

[14] A.A. Tseytlin, Duality symmetric formulation of string world sheet dynamics,
Phys. Lett. B 242 (1990) 163 [NSPIRE].

[15] W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826
[hep-th/9305073] [iNSPIRE].

[16] W. Siegel, Two vierbein formalism for string inspired axionic gravity,
Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].

[17] M. Gualtieri, Generalized complex geometry, math/0401221 [INSPIRE].

[18] N. Hitchin, Generalized Calabi- Yau manifolds, Quart. J. Math. Oxford Ser. 54 (2003) 281
[math/0209099] [INSPIRE].

[19] C. Hull and B. Zwiebach, Double field theory, JHEP 09 (2009) 099 [arXiv:0904.4664]
[INSPIRE].

[20] C.M. Hull, Generalised geometry for M-theory, JHEP 07 (2007) 079 [hep-th/0701203]
[INSPIRE].

[21] C. Hillmann, Generalized E7(7y coset dynamics and D = 11 supergravity,
JHEP 03 (2009) 135 [arXiv:0901.1581] [INSPIRE].

[22] D.S. Berman and M.J. Perry, Generalized geometry and M-theory, JHEP 06 (2011) 074
[arXiv:1008.1763] [INSPIRE].

[23] D.S. Berman and D.C. Thompson, Duality symmetric string and M-theory,
Phys. Rept. 566 (2014) 1 [arXiv:1306.2643] [INSPIRE].

[24] G. Aldazabal, D. Marques and C. Nunez, Double field theory: a pedagogical review,
Class. Quant. Grav. 30 (2013) 163001 [arXiv:1305.1907] [INSPIRE].

[25] S. Kachru, M.B. Schulz, P.K. Tripathy and S.P. Trivedi, New supersymmetric string
compactifications, JHEP 03 (2003) 061 [hep-th/0211182] INSPIRE].

[26] D. Andriot, M. Larfors, D. Liist and P. Patalong, A ten-dimensional action for
non-geometric fluzes, JHEP 09 (2011) 134 [arXiv:1106.4015] [INSPIRE].

[27] R. Blumenhagen, A. Deser, E. Plauschinn and F. Rennecke, Non-geometric strings,
symplectic gravity and differential geometry of Lie algebroids, JHEP 02 (2013) 122
[arXiv:1211.0030] [iNSPIRE].

[28] D. Andriot, O. Hohm, M. Larfors, D. Liist and P. Patalong, A geometric action for
non-geometric fluzes, Phys. Rev. Lett. 108 (2012) 261602 [arXiv:1202.3060] INSPIRE].

— 41 —


http://dx.doi.org/10.1007/JHEP06(2013)109
http://arxiv.org/abs/1302.0529
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.0529
http://dx.doi.org/10.1103/PhysRevD.88.046008
http://arxiv.org/abs/1304.0792
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.0792
http://arxiv.org/abs/1405.2325
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.2325
http://dx.doi.org/10.1088/1126-6708/2005/10/085
http://arxiv.org/abs/hep-th/0508133
http://inspirehep.net/search?p=find+EPRINT+hep-th/0508133
http://dx.doi.org/10.1016/0550-3213(90)90520-N
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B335,610
http://dx.doi.org/10.1016/0550-3213(90)90565-U
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B347,394
http://dx.doi.org/10.1016/0370-2693(90)91454-J
http://inspirehep.net/search?p=find+J+Phys.Lett.,B242,163
http://dx.doi.org/10.1103/PhysRevD.48.2826
http://arxiv.org/abs/hep-th/9305073
http://inspirehep.net/search?p=find+EPRINT+hep-th/9305073
http://dx.doi.org/10.1103/PhysRevD.47.5453
http://arxiv.org/abs/hep-th/9302036
http://inspirehep.net/search?p=find+EPRINT+hep-th/9302036
http://arxiv.org/abs/math/0401221
http://inspirehep.net/search?p=find+EPRINT+math/0401221
http://dx.doi.org/10.1093/qjmath/54.3.281
http://arxiv.org/abs/math/0209099
http://inspirehep.net/search?p=find+EPRINT+math/0209099
http://dx.doi.org/10.1088/1126-6708/2009/09/099
http://arxiv.org/abs/0904.4664
http://inspirehep.net/search?p=find+EPRINT+arXiv:0904.4664
http://dx.doi.org/10.1088/1126-6708/2007/07/079
http://arxiv.org/abs/hep-th/0701203
http://inspirehep.net/search?p=find+EPRINT+hep-th/0701203
http://dx.doi.org/10.1088/1126-6708/2009/03/135
http://arxiv.org/abs/0901.1581
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.1581
http://dx.doi.org/10.1007/JHEP06(2011)074
http://arxiv.org/abs/1008.1763
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.1763
http://dx.doi.org/10.1016/j.physrep.2014.11.007
http://arxiv.org/abs/1306.2643
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.2643
http://dx.doi.org/10.1088/0264-9381/30/16/163001
http://arxiv.org/abs/1305.1907
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.1907
http://dx.doi.org/10.1088/1126-6708/2003/03/061
http://arxiv.org/abs/hep-th/0211182
http://inspirehep.net/search?p=find+EPRINT+hep-th/0211182
http://dx.doi.org/10.1007/JHEP09(2011)134
http://arxiv.org/abs/1106.4015
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.4015
http://dx.doi.org/10.1007/JHEP02(2013)122
http://arxiv.org/abs/1211.0030
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.0030
http://dx.doi.org/10.1103/PhysRevLett.108.261602
http://arxiv.org/abs/1202.3060
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.3060

[29] D. Andriot, O. Hohm, M. Larfors, D. Liist and P. Patalong, Non-geometric fluzes in
supergravity and double field theory, Fortsch. Phys. 60 (2012) 1150 [arXiv:1204.1979]
[INSPIRE].

[30] D. Andriot and A. Betz, S-supergravity: a ten-dimensional theory with non-geometric fluzes
and its geometric framework, JHEP 12 (2013) 083 [arXiv:1306.4381] [INSPIRE].

[31] R. Blumenhagen, A. Deser, E. Plauschinn, F. Rennecke and C. Schmid, The intriguing
structure of non-geometric frames in string theory, Fortsch. Phys. 61 (2013) 893
[arXiv:1304.2784] [INSPIRE].

[32] R. Blumenhagen, X. Gao, D. Herschmann and P. Shukla, Dimensional ozidation of
non-geometric fluzes in type II orientifolds, JHEP 10 (2013) 201 [arXiv:1306.2761]
[INSPIRE].

[33] D. Andriot and A. Betz, Supersymmetry with non-geometric fluzes, or a 3-twist in
generalized geometry and Dirac operator, arXiv:1411.6640 [INSPIRE].

[34] J. de Boer and M. Shigemori, Fzotic branes and non-geometric backgrounds,
Phys. Rev. Lett. 104 (2010) 251603 [arXiv:1004.2521] [INSPIRE].

[35] J. de Boer and M. Shigemori, Ezotic branes in string theory, Phys. Rept. 532 (2013) 65
[arXiv:1209.6056] [INSPIRE].

[36] D. Liist, T-duality and closed string non-commutative (doubled) geometry,
JHEP 12 (2010) 084 [arXiv:1010.1361] [INSPIRE].

[37] R. Blumenhagen and E. Plauschinn, Nonassociative gravity in string theory?,
J. Phys. A 44 (2011) 015401 [arXiv:1010.1263] [INSPIRE].

[38] R. Blumenhagen, A. Deser, D. Liist, E. Plauschinn and F. Rennecke, Non-geometric fluzes,
asymmetric strings and nonassociative geometry, J. Phys. A 44 (2011) 385401
[arXiv:1106.0316] INSPIRE].

[39] C. Condeescu, I. Florakis and D. Liist, Asymmetric orbifolds, non-geometric flures and
non-commutativity in closed string theory, JHEP 04 (2012) 121 [arXiv:1202.6366]
[INSPIRE].

[40] D. Mylonas, P. Schupp and R.J. Szabo, Membrane o-models and quantization of
non-geometric flux backgrounds, JHEP 09 (2012) 012 [arXiv:1207.0926] [INSPIRE].

[41] D. Andriot, M. Larfors, D. Liist and P. Patalong, (Non-)commutative closed string on T-dual
toroidal backgrounds, JHEP 06 (2013) 021 [arXiv:1211.6437] [INSPIRE].

[42] 1. Bakas and D. Liist, 3-cocycles, non-associative star-products and the magnetic paradigm of
R-fluz string vacua, JHEP 01 (2014) 171 [arXiv:1309.3172] [INSPIRE].

[43] L. Davidovie, B. Nikolic and B. Sazdovic, Canonical approach to the closed string
non-commutativity, Eur. Phys. J. C 74 (2014) 2734 [arXiv:1307.6158] [INSPIRE].

[44] F. Hassler and D. Liist, Non-commutative/non-associative IIA (IIB) Q- and R-branes and
their intersections, JHEP 07 (2013) 048 [arXiv:1303.1413] [INSPIRE].

[45] C.D.A. Blair, Non-commutativity and non-associativity of the doubled string in
non-geometric backgrounds, arXiv:1405.2283 [INSPIRE].

[46] G. Aldazabal, E. Andres, P.G. Camara and M. Grana, U-dual fluzes and generalized
geometry, JHEP 11 (2010) 083 [arXiv:1007.5509] [INSPIRE].

— 42 —


http://dx.doi.org/10.1002/prop.201200085
http://arxiv.org/abs/1204.1979
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.1979
http://dx.doi.org/10.1007/JHEP12(2013)083
http://arxiv.org/abs/1306.4381
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4381
http://dx.doi.org/10.1002/prop.201300013
http://arxiv.org/abs/1304.2784
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.2784
http://dx.doi.org/10.1007/JHEP10(2013)201
http://arxiv.org/abs/1306.2761
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.2761
http://arxiv.org/abs/1411.6640
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.6640
http://dx.doi.org/10.1103/PhysRevLett.104.251603
http://arxiv.org/abs/1004.2521
http://inspirehep.net/search?p=find+EPRINT+arXiv:1004.2521
http://dx.doi.org/10.1016/j.physrep.2013.07.003
http://arxiv.org/abs/1209.6056
http://inspirehep.net/search?p=find+EPRINT+arXiv:1209.6056
http://dx.doi.org/10.1007/JHEP12(2010)084
http://arxiv.org/abs/1010.1361
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.1361
http://dx.doi.org/10.1088/1751-8113/44/1/015401
http://arxiv.org/abs/1010.1263
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.1263
http://dx.doi.org/10.1088/1751-8113/44/38/385401
http://arxiv.org/abs/1106.0316
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.0316
http://dx.doi.org/10.1007/JHEP04(2012)121
http://arxiv.org/abs/1202.6366
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.6366
http://dx.doi.org/10.1007/JHEP09(2012)012
http://arxiv.org/abs/1207.0926
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.0926
http://dx.doi.org/10.1007/JHEP06(2013)021
http://arxiv.org/abs/1211.6437
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.6437
http://dx.doi.org/10.1007/JHEP01(2014)171
http://arxiv.org/abs/1309.3172
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.3172
http://dx.doi.org/10.1140/epjc/s10052-014-2734-5
http://arxiv.org/abs/1307.6158
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.6158
http://dx.doi.org/10.1007/JHEP07(2013)048
http://arxiv.org/abs/1303.1413
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.1413
http://arxiv.org/abs/1405.2283
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.2283
http://dx.doi.org/10.1007/JHEP11(2010)083
http://arxiv.org/abs/1007.5509
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.5509

[47] D.S. Berman, H. Godazgar, M. Godazgar and M.J. Perry, The local symmetries of M-theory
and their formulation in generalised geometry, JHEP 01 (2012) 012 [arXiv:1110.3930]
[INSPIRE].

[48] D.S. Berman, H. Godazgar, M.J. Perry and P. West, Duality invariant actions and
generalised geometry, JHEP 02 (2012) 108 [arXiv:1111.0459] [INSPIRE].

[49] C.D.A. Blair, E. Malek and J.-H. Park, M-theory and type IIB from a duality manifest
action, JHEP 01 (2014) 172 [arXiv:1311.5109] [INSPIRE].

[50] O. Hohm and H. Samtleben, Exceptional field theory. IIl. Egs),
Phys. Rev. D 90 (2014) 066002 [arXiv:1406.3348] [INSPIRE].

[51] H. Godazgar, M. Godazgar, O. Hohm, H. Nicolai and H. Samtleben, Supersymmetric Ez )
exceptional field theory, JHEP 09 (2014) 044 [arXiv:1406.3235] [INSPIRE].

[52] O. Hohm and H. Samtleben, Ezceptional form of D = 11 supergravity,
Phys. Rev. Lett. 111 (2013) 231601 [arXiv:1308.1673] [INSPIRE].

[63] M. Grana, R. Minasian, M. Petrini and D. Waldram, T-duality, generalized geometry and
non-geometric backgrounds, JHEP 04 (2009) 075 [arXiv:0807.4527] [INSPIRE].

[54] G. Aldazabal, M. Grana, D. Marqués and J.A. Rosabal, Eztended geometry and gauged
mazximal supergravity, JHAEP 06 (2013) 046 [arXiv:1302.5419] [INSPIRE].

[55] M. Cederwall, J. Edlund and A. Karlsson, Ezceptional geometry and tensor fields,
JHEP 07 (2013) 028 [arXiv:1302.6736] [INSPIRE].

[56] J.-H. Park and Y. Suh, U-geometry: SL(5), JHEP 04 (2013) 147 [Erratum ibid. 11 (2013)
210] [arXiv:1302.1652] [INSPIRE].

[57] A. Coimbra, C. Strickland-Constable and D. Waldram, Eyq) X RT generalised geometry,
connections and M-theory, JHEP 02 (2014) 054 [arXiv:1112.3989] [INSPIRE].

[58] A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as generalised geometry
II: Eqq) x R and M-theory, JHEP 03 (2014) 019 [arXiv:1212.1586] [INSPIRE].

[59] O. Hohm and S.K. Kwak, Frame-like geometry of double field theory,
J. Phys. A 44 (2011) 085404 [arXiv:1011.4101] [INSPIRE].

[60] I. Jeon, K. Lee and J.-H. Park, Differential geometry with a projection: application to double
field theory, JHEP 04 (2011) 014 [arXiv:1011.1324] [INSPIRE].

[61] O. Hohm and B. Zwiebach, On the Riemann tensor in double field theory,
JHEP 05 (2012) 126 [arXiv:1112.5296] [INSPIRE].

[62] D.S. Berman, C.D.A. Blair, E. Malek and M.J. Perry, The Op p geometry of string theory,
Int. J. Mod. Phys. A 29 (2014) 1450080 [arXiv:1303.6727] [NSPIRE].

[63] D. Geissbuhler, Double field theory and N = 4 gauged supergravity, JHEP 11 (2011) 116
[arXiv:1109.4280] [INSPIRE].

[64] D. Geissbuhler, D. Marques, C. Nuifiez and V. Penas, Ezploring double field theory,
JHEP 06 (2013) 101 [arXiv:1304.1472] [INSPIRE].

[65] J. Scherk and J.H. Schwarz, How to get masses from extra dimensions,
Nucl. Phys. B 153 (1979) 61 [INSPIRE].

[66] C.M. Hull and R.A. Reid-Edwards, Flux compactifications of M-theory on twisted tori,
JHEP 10 (2006) 086 [hep-th/0603094] [nSPIRE].

— 43 —


http://dx.doi.org/10.1007/JHEP01(2012)012
http://arxiv.org/abs/1110.3930
http://inspirehep.net/search?p=find+EPRINT+arXiv:1110.3930
http://dx.doi.org/10.1007/JHEP02(2012)108
http://arxiv.org/abs/1111.0459
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.0459
http://dx.doi.org/10.1007/JHEP01(2014)172
http://arxiv.org/abs/1311.5109
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.5109
http://dx.doi.org/10.1103/PhysRevD.90.066002
http://arxiv.org/abs/1406.3348
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.3348
http://dx.doi.org/10.1007/JHEP09(2014)044
http://arxiv.org/abs/1406.3235
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.3235
http://dx.doi.org/10.1103/PhysRevLett.111.231601
http://arxiv.org/abs/1308.1673
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.1673
http://dx.doi.org/10.1088/1126-6708/2009/04/075
http://arxiv.org/abs/0807.4527
http://inspirehep.net/search?p=find+EPRINT+arXiv:0807.4527
http://dx.doi.org/10.1007/JHEP06(2013)046
http://arxiv.org/abs/1302.5419
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.5419
http://dx.doi.org/10.1007/JHEP07(2013)028
http://arxiv.org/abs/1302.6736
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.6736
http://dx.doi.org/10.1007/JHEP04(2013)147
http://arxiv.org/abs/1302.1652
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.1652
http://dx.doi.org/10.1007/JHEP02(2014)054
http://arxiv.org/abs/1112.3989
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.3989
http://dx.doi.org/10.1007/JHEP03(2014)019
http://arxiv.org/abs/1212.1586
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.1586
http://dx.doi.org/10.1088/1751-8113/44/8/085404
http://arxiv.org/abs/1011.4101
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.4101
http://dx.doi.org/10.1007/JHEP04(2011)014
http://arxiv.org/abs/1011.1324
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.1324
http://dx.doi.org/10.1007/JHEP05(2012)126
http://arxiv.org/abs/1112.5296
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.5296
http://dx.doi.org/10.1142/S0217751X14500808
http://arxiv.org/abs/1303.6727
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.6727
http://dx.doi.org/10.1007/JHEP11(2011)116
http://arxiv.org/abs/1109.4280
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.4280
http://dx.doi.org/10.1007/JHEP06(2013)101
http://arxiv.org/abs/1304.1472
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.1472
http://dx.doi.org/10.1016/0550-3213(79)90592-3
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B153,61
http://dx.doi.org/10.1088/1126-6708/2006/10/086
http://arxiv.org/abs/hep-th/0603094
http://inspirehep.net/search?p=find+EPRINT+hep-th/0603094

[67]

[68]

[69]

[70]

G. Aldazabal, W. Baron, D. Marques and C. Nunez, The effective action of double field
theory, JHEP 11 (2011) 052 [Erratum 4bid. 11 (2011) 109] [arXiv:1109.0290] [INSPIRE].

M. Grana and D. Marques, Gauged double field theory, JHEP 04 (2012) 020
[arXiv:1201.2924] [INSPIRE].

D.S. Berman, E.T. Musaev, D.C. Thompson and D.C. Thompson, Duality invariant
M-theory: gauged supergravities and Scherk-Schwarz reductions, JHEP 10 (2012) 174
[arXiv:1208.0020] [INSPIRE].

O. Hohm and H. Samtleben, Consistent Kaluza-Klein truncations via exceptional field
theory, JHEP 01 (2015) 131 [arXiv:1410.8145] [INSPIRE].

[71] W.H. Baron and G. Dall’Agata, Uplifting non-compact gauged supergravities,

[72]

73]

[74]

[75]

[76]

[77]

(78]

[79]
[80]

[81]

[82]

[83]

[84]

[85]

[36]

JHEP 02 (2015) 003 [arXiv:1410.8823] [INSPIRE].

J.A. Rosabal, On the exceptional generalised Lie derivative for d > 7, arXiv:1410.8148
[INSPIRE].

D.S. Berman, M. Cederwall, A. Kleinschmidt and D.C. Thompson, The gauge structure of
generalised diffeomorphisms, JHEP 01 (2013) 064 [arXiv:1208.5884] [INSPIRE].

H. Samtleben and M. Weidner, The maximal D = 7 supergravities,
Nucl. Phys. B 725 (2005) 383 [hep-th/0506237| [INSPIRE].

C.M. Hull and B. Julia, Duality and moduli spaces for timelike reductions,
Nucl. Phys. B 534 (1998) 250 [hep-th/9803239] [INSPIRE].

K. Lee, C. Strickland-Constable and D. Waldram, Spheres, generalised parallelisability and
consistent truncations, arXiv:1401.3360 [INSPIRE].

H. Samtleben, Lectures on gauged supergravity and fluz compactifications,
Class. Quant. Grav. 25 (2008) 214002 [arXiv:0808.4076] [INSPIRE].

H. Nicolai and H. Samtleben, Maximal gauged supergravity in three-dimensions,
Phys. Rev. Lett. 86 (2001) 1686 [hep-th/0010076] [INSPIRE].

E. Malek, U-duality in three and four dimensions, arXiv:1205.6403 [INSPIRE].

E. Malek, Timelike U-dualities in generalised geometry, JHEP 11 (2013) 185
[arXiv:1301.0543] [iNSPIRE].

J. Shelton, W. Taylor and B. Wecht, Generalized flux vacua, JHEP 02 (2007) 095
[hep-th/0607015] [INSPIRE].

A. Dabholkar and C. Hull, Generalised T-duality and non-geometric backgrounds,
JHEP 05 (2006) 009 [hep-th/0512005] [INSPIRE].

C.M. Hull and R.A. Reid-Edwards, Non-geometric backgrounds, doubled geometry and
generalised T-duality, JHEP 09 (2009) 014 [arXiv:0902.4032] [INSPIRE].

E. Bergshoeff et al., The Bianchi classification of maximal D = 8 gauged supergravities,
Class. Quant. Grav. 20 (2003) 3997 [hep-th/0306179] [NSPIRE].

E. Lozano-Tellechea and T. Ortin, 7-branes and higher Kaluza-Klein branes,
Nucl. Phys. B 607 (2001) 213 [hep-th/0012051] [INSPIRE].

D.S. Berman, M. Cederwall and M.J. Perry, Global aspects of double geometry,
JHEP 09 (2014) 066 [arXiv:1401.1311] [INSPIRE].

— 44 —


http://dx.doi.org/10.1007/JHEP11(2011)052
http://arxiv.org/abs/1109.0290
http://inspirehep.net/search?p=find+EPRINT+arXiv:1109.0290
http://dx.doi.org/10.1007/JHEP04(2012)020
http://arxiv.org/abs/1201.2924
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.2924
http://dx.doi.org/10.1007/JHEP10(2012)174
http://arxiv.org/abs/1208.0020
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.0020
http://dx.doi.org/10.1007/JHEP01(2015)131
http://arxiv.org/abs/1410.8145
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.8145
http://dx.doi.org/10.1007/JHEP02(2015)003
http://arxiv.org/abs/1410.8823
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.8823
http://arxiv.org/abs/1410.8148
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.8148
http://dx.doi.org/10.1007/JHEP01(2013)064
http://arxiv.org/abs/1208.5884
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.5884
http://dx.doi.org/10.1016/j.nuclphysb.2005.07.028
http://arxiv.org/abs/hep-th/0506237
http://inspirehep.net/search?p=find+EPRINT+hep-th/0506237
http://dx.doi.org/10.1016/S0550-3213(98)00519-7
http://arxiv.org/abs/hep-th/9803239
http://inspirehep.net/search?p=find+EPRINT+hep-th/9803239
http://arxiv.org/abs/1401.3360
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.3360
http://dx.doi.org/10.1088/0264-9381/25/21/214002
http://arxiv.org/abs/0808.4076
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.4076
http://dx.doi.org/10.1103/PhysRevLett.86.1686
http://arxiv.org/abs/hep-th/0010076
http://inspirehep.net/search?p=find+EPRINT+hep-th/0010076
http://arxiv.org/abs/1205.6403
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.6403
http://dx.doi.org/10.1007/JHEP11(2013)185
http://arxiv.org/abs/1301.0543
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.0543
http://dx.doi.org/10.1088/1126-6708/2007/02/095
http://arxiv.org/abs/hep-th/0607015
http://inspirehep.net/search?p=find+EPRINT+hep-th/0607015
http://dx.doi.org/10.1088/1126-6708/2006/05/009
http://arxiv.org/abs/hep-th/0512005
http://inspirehep.net/search?p=find+EPRINT+hep-th/0512005
http://dx.doi.org/10.1088/1126-6708/2009/09/014
http://arxiv.org/abs/0902.4032
http://inspirehep.net/search?p=find+EPRINT+arXiv:0902.4032
http://dx.doi.org/10.1088/0264-9381/20/18/310
http://arxiv.org/abs/hep-th/0306179
http://inspirehep.net/search?p=find+EPRINT+hep-th/0306179
http://dx.doi.org/10.1016/S0550-3213(01)00177-8
http://arxiv.org/abs/hep-th/0012051
http://inspirehep.net/search?p=find+EPRINT+hep-th/0012051
http://dx.doi.org/10.1007/JHEP09(2014)066
http://arxiv.org/abs/1401.1311
http://inspirehep.net/search?p=find+EPRINT+arXiv:1401.1311

[87] G. Papadopoulos, Seeking the balance: patching double and exceptional field theories,
JHEP 10 (2014) 089 [arXiv:1402.2586] [INSPIRE].

[88] O. Hohm and B. Zwiebach, Large gauge transformations in double field theory,
JHEP 02 (2013) 075 [arXiv:1207.4198] [INSPIRE].

[89] O. Hohm, D. Liist and B. Zwiebach, The spacetime of double field theory: review, remarks
and outlook, Fortsch. Phys. 61 (2013) 926 [arXiv:1309.2977] [InSPIRE].

[90] J.-H. Park, Comments on double field theory and diffeomorphisms, JHEP 06 (2013) 098
[arXiv:1304.5946] [iNSPIRE].

— 45 —


http://dx.doi.org/10.1007/JHEP10(2014)089
http://arxiv.org/abs/1402.2586
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.2586
http://dx.doi.org/10.1007/JHEP02(2013)075
http://arxiv.org/abs/1207.4198
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.4198
http://dx.doi.org/10.1002/prop.201300024
http://arxiv.org/abs/1309.2977
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.2977
http://dx.doi.org/10.1007/JHEP06(2013)098
http://arxiv.org/abs/1304.5946
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.5946

	Introduction
	Review of the SL(5) theory
	Generalised diffeomorphisms
	The action
	Section choices

	Connections, torsion and the action
	Connections
	The generalised torsion
	The Weitzenboeck connection
	Constructing the action
	Relationship to gauged supergravity

	The torsion as generalised fluxes: M-theory fluxes
	Parametrisation and field transformations
	Spacetime geometry
	Derivatives
	Tensors

	Decomposition of the torsion irreps

	M-theory flux examples
	The string theory prototype
	Duality chains and an M-theory toy model
	The 5**3 solution

	The torsion as generalised fluxes: IIB fluxes
	Parametrisation and field transformations
	Spacetime geometry
	Derivatives
	Tensors

	Decomposition of the torsion irreps

	IIB flux examples
	Duality chains and toy model
	The 5**2(2) solution and its S-dual
	IIB solution with R-flux

	Conclusion
	Generalised metrics and non-geometric frames
	M-theory changes of frame
	IIB changes of frame

	Details of the torsion decompositions
	M-theory
	IIB


