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1 Introduction and discussion

Cachazo and Strominger’s suggestion of a new soft theorem for graviton scattering sparked

a surge of interest in the low energy behaviour of these amplitudes [1]. Originally treated

to leading order by Weinberg [2, 3], it was shown by Gross and Jackiw that there are

universal subleading contributions [4]. Low showed that there is a very similar looking soft

expansion for Yang Mills theory [5].

The new soft theorem is usually stated as follows. The N graviton tree level amplitude

MN factorises in the presence of a soft particle with kN = q → 0 (and polarisation tensor

ǫµν) into a soft part and the (N − 1) point amplitude

MN =
(
S(0)
g + S(1)

g + S(2)
g

)
MN−1 +O(q). (1.1)

The colour ordered N gluon Yang Mills tree level amplitude AN behaves in a very similar

way

AN =
(
S
(0)
YM + S

(1)
YM

)
AN−1 +O(q). (1.2)

For graviton scattering, when taking the soft particle to be the N th particle, the soft factors

are

S(0)
g =

N−1∑

i=1

ǫµνp
µ
i p

ν
i

q.pi
, S(1)

g =
N−1∑

i=1

ǫµνp
µ
i (qρJ

ρν
i )

q.pi
, S(2)

g =
N−1∑

i=1

ǫµν(qλJ
λµ
i )(qρJ

ρν
i )

q.pi
(1.3)

while the analogous factors for Yang Mills theory are

S
(0)
YM =

ǫµp
µ
1

q.p1
−

ǫµp
µ
n

q.pn
, S

(1)
YM =

ǫµqνJ
µν
1

q.p1
−

ǫµqνJ
µν
n

q.pn
. (1.4)

The operator Jµν
i denotes the total angular momentum operator of the ith particle.

S
(1)
g , S

(2)
g , and S

(1)
YM are therefore derivative operators as opposed to the leading order

soft gluon and graviton factors, which are only multiplication operators. The leading and
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subleading soft graviton factors as well as the soft gluon factors are universal and the soft

graviton factor is protected from quantum corrections.

At approximately the same time when these ideas were first developed (in fact, three

years before), the group of symmetries at null infinity of asymptotically flat space was

investigated by Bondi, van der Burg, Metzner, and Sachs [6, 7]. This symmetry group is

known as the BMS group

BMS = T ⋊ SL(2,C) (1.5)

and consists of the semidirect product of the Abelian group T of “supertranslations” (which

are in no way related with supersymmetry) and the group SL(2,C) of non-singular trans-

formations of the two sphere at infinity. The latter can be extended to also contain singular

transformations — called superrotations — to form a Virasoro algebra [8–11]. This line

of thought has only recently been put forward by Barnich and Troessaert. While Low

already connected the soft gluon factors with gauge symmetry, it took fifty years for the

development of a logical connection between BMS and the soft graviton factor. Recently,

such a relation has been presented in a series of papers [12–15]. Note that the work by He,

Lysov, Mitra and Strominger not only connects the supertranslations with Weinberg’s soft

factor, but the subsequent work by Kapec, Lysov, Pasterski and Strominger also makes use

of the superrotations of the extended BMS group and connect these with the subleading

term. Thus the gravitational soft factors are protected by symmetries of the (classical)

gravitational S matrix. The work by Cachazo and Strominger mentioned before [1] also

introduced a novel sub-subleading term — S
(2)
g in (1.3) — which seems universal but is

not thought to be protected by any symmetry.

This connection has seen many checks and there have been notable extensions for sub-

leading soft theorems. The latter have been discussed by Casali for Yang Mills theory [16]

in the more modern language of the spinor helicity formalism following [1]. Bern, Davies

and Nohle as well as He, Huang and Wen have shown that the subleading soft factor in

Yang Mills theory receives corrections and so does the gravitational subleading soft factor

at the loop level [17–19], an alternative prescription has been offered by Cachazo and Yuan

in [20] which however clashes with the conventional way the soft theorem is understood

and used (see also [21]). The universality of the subleading and subsubleading soft factors

for arbitrary dimensions in gravity and Yang Mills theory have been checked in [22–25].

Du, Feng, Fu and Wang have shown that there is a nontrivial connection between the Yang

Mills subleading soft factor and the gravity subleading soft factor using the field theory

KLT relations [26]. These relations impose a novel nontrivial constraint on the field theory

KLT kernel. Broedel, de Leeuw, Plefka and Rosso as well as Bern, Davies, Di Vecchia

and Nohle [27–29] have shown that the form of the soft factors is highly constrained (see

also [30]). A derivation of the symmetry principle in ambitwistor string theory has been

given by Geyer, Lipstein and Mason. A theory at null infinity describing the observed

characteristics of graviton scattering in the soft limit was given by Adamo, Casali and

Skinner in [31, 32]. There have been multiple results on supersymmetric theories as well as

QCD [33–35]. On the other hand, a novel extension of BMS has been put forward in [36].
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In essence this note should be treated as an appendix to [37]. In this paper it was shown

that single trace type I superstring gluon scattering amplitudes satisfy the same subleading

soft theorem as field theory Yang Mills scattering amplitudes. As a tree level result, it is

independent of the dimension, chosen compactification or the amount of supersymmetry.

In the last section of the paper, a way to use the string theory Kawai-Lewellen-Tye (KLT)

relations [38]

M = (−1)N−3κN−2AT .S.A (1.6)

was mentioned to produce the closed string version of the soft theorem from the result for

open strings. In the last equation, M are either type I or type two closed string amplitudes,

A is a vector of colour ordered type I open string disk amplitudes, and S is the string theory

phase matrix. The notation which will be made more explicit in the text. Proving the soft

graviton theorem for string theory from this perspective involves an additional step. The

phase matrix S, which is necessary to combine two open string amplitudes into a closed

string amplitude in the KLT prescription must be shown to behave correctly under the soft

limit, too.

In the meantime, the above mentioned result by Du, Feng, Fu and Wang became avail-

able. Using this result it is possible to take a field theory path to the string theory result.

To do so, another string theory result connecting type I open string scattering amplitudes

with heterotic string scattering amplitudes and closed string scattering amplitudes [39] due

to Stieberger and Taylor has to be used. However, ref. [26] only showed the four dimensional

case, so here a version which is independent of the number of dimensions is presented as a

side product. It will turn out that combining these three results will make for a rather ele-

gant proof of the subleading soft graviton theorem for closed string scattering amplitudes.

It will only be shown that the subleading soft factor S
(1)
g can be recovered in this way.

A field theory proof that the subsubleading contribution in gravity can be obtained from

KLT and the Yang Mills soft theorem is still pending. A moment of reflection will make

clear that the subsubleading term in gravity will depend on subsubleading expressions from

Yang Mills amplitudes which are not thought to be universal. A possible way to attack

this problem would be to use the expansion for MHV amplitudes given in [18] to show that

the subsubleading term in gravity can be recovered from KLT at least in the MHV case.

This note’s organisation is as follows. In section 2, the preliminaries will be presented.

A review of [37] is given in subsection 2.1. Subsection 2.2 provides an introduction to the

single value projection which connects type I gluon scattering amplitudes with heterotic

string gluon scattering amplitudes [39, 40]. A byproduct will be the subleading soft theorem

for the heterotic string. The derivation of the theorem for gravity from Yang Mills theory

via the KLT relations in field theory is presented in 2.3. In this subsection, an extension

of the derivation to any dimension is given. The derivation of the subleading soft theorem

for closed string graviton scattering, which is very short, is presented in section 3.

2 Preliminaries

The following three subsections provide background for the closed string graviton result

and extend some results of previous papers.
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2.1 Soft behaviour of open string disk amplitudes

In [37] it was shown that the open string disk amplitudes behave just like the field theory

amplitudes in the limit of a single momentum becoming soft. Clearly, this result is reason-

able since string theory should not deviate from the field theoretic behaviour in this low

energy regime.

An open string disk amplitude AN = A(1, . . . , N) with N particles is given by essen-

tially two pieces. Employing the notation of [39] the first piece is a vector A of colour

ordered Yang Mills scattering amplitudes. The entries of this vector are denoted by

Aσ = A(1, σ2,N−2, N − 1, N) where σ ∈ SN−3 is a permutation of particles 2 to N − 2

σ : (2, . . . , N − 2) → (2σ, . . . , (N − 2)σ). (2.1)

This vector is dotted into the period matrix Fπσ where π, σ ∈ SN−3 such that

Aπ = FπσAσ (2.2)

where π denotes the colour ordering of the string disk amplitude. The form of the period

matrix F can be found in numerous publications, see e.g., [41, 42].

In the presence of a soft string momentum q → 0, the string disk amplitude factorises

A(1, π(2, . . . , N − 2, q), N − 1, N) → (S
(0)
YM + S

(1)
YM)A(1, π′(2, . . . , N − 2), N − 1, N). (2.3)

Here, as above, π ∈ SN−2 and π′ ∈ SN−3 are permutations of the particles in the string

disk scattering amplitudes. π′ preserves the order of the particles in π modulo the particle

q. The S
(i)
YM are the leading (i = 0) and subleading (i = 1) gluon soft factors from field

theory as in (1.2). Note that the Yang Mills soft factor for colour ordered amplitudes

always depends on the particles adjacent to the soft particle and only on these.

2.2 Single value projection

The next, vital ingredient to introduce is the single value projection sv [39, 40]. The map

sv is a homomorphism between the Hopf algebra of multiple ζ values (MZVs) defined by

ζn1,...,nr =
∑

0<k1<...<kr

r∏

ℓ=1

k−nℓ

ℓ (2.4)

and Brown’s single valued multiple ζ values ζsvn1,...,nr
defined as the evaluation of single val-

ued (multiple) polylogarithms at 1. As an example: single valued (simple) polylogarithms

Dm(z) = ℜ

(
im+1

[
m∑

k=1

(− log |z|)m−k

(m− k)!
Lik(z)−

(− log |z|)m

2m!

])
(2.5)

are a generalisation of the Bloch-Wigner-function

D(z) = ℑ(Li2(z)) + arg(1− z) log |z| (2.6)
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and were studied in slightly different forms by, e.g., Ramakrishnan [43], Zagier [44], Wo-

jtkowiak [45] and most recently Brown [40]. In the Ramakrishnan-Zagier form (2.5) it is

D2(z) = D(z). The single-value projection

sv : ζn1,...,nr 7→ ζsvn1,...,nr
(2.7)

satisfies various relationships which derive from the functional equations satisfied by the

single-valued polylogarithms. For example it is easy to see that

sv(ζ2) = sv(Li2(1)) = D(1) = ζsv2 = 0. (2.8)

Further examples and relationships can be found in the papers by Brown as well as in [46].

Note that scalars with respect to the Hopf algebra of multiple ζ-values pass through the

single value projection.

The relationship between (colour ordered) type I N gluon disk scattering amplitudes

A and the corresponding heterotic string scattering amplitudes AHET is governed by sv.

In [39] it was shown that these amplitudes are directly connected via the single value

projection (and a rescaling α′ → α′/4), i.e.,

AHET
π = sv(Aπ) = sv(Fπσ)Aσ. (2.9)

This is the single value projection of the matrix equation (2.2). The action of sv on Fπσ is

to take the ζ value expansion of Fπσ and replace every occurrence of a MZV by the corre-

sponding single valued MZV. Since the soft factors are scalar with respect to sv, the relation

AHET
N+1,π →

(
S
(0)
YM + S

(1)
YM

)

π(q+1),π(q−1)
AHET

N,π′ , (2.10)

where π ∈ SN−2, π
′ ∈ SN−3, follows almost trivially. As before, q is the soft momentum

and the subscript π(q+1), π(q−1) indicates that the soft factors will depend on the colour

ordering in the same way as they depend on the colour ordering in Yang Mills or type I disk

scattering amplitudes — via particles adjacent to the soft particle. Since the field theory

limit α′ → 0 of AHET are Yang Mills gluon scattering amplitudes, it is not surprising that

the heterotic string scattering amplitudes behave in this way. Despite that, the result will

be an important stepping stone for the closed string scattering amplitudes which will be

investigated in the next section.

The result in (2.9) has another implication [39]. The KLT relations split closed string

scattering amplitudes into a right moving and a left moving part. Using (2.2) as a basis

for the left moving part, let

ÃN,σ = A(1, σ(2, . . . , N − 2), N,N − 1) (2.11)

be a basis for the right moving part. The KLT relations connect (type I and type II) N

graviton string scattering amplitudes with a sum of products of open string amplitudes

M = (−1)N−3κN−2
∑

ρ,σ∈SN−3

AρSρ,σÃσ (2.12)

– 5 –



J
H
E
P
0
3
(
2
0
1
5
)
1
4
0

where [47]

Sρ,σ =

N−2∏

j=2

sin

(
s1,jρ +

j−1∑

k=2

θ(jρ, kρ)sjρ,kρ

)
(2.13)

with θ(jρ, kρ) = 1 if the ordering of jρ and kρ is the same in both ρ and σ, otherwise it is

zero.1 The scattering amplitudes A, Ã, and M on both sides of the equation have each the

same amount of legs N . The variables sij := α′pi.pj are the usual dimensionless kinematic

invariants. Using the sv projection and some manipulations it is possible to show that

closed string graviton scattering amplitudes can be given in terms of only one “stringy”

factor of AHET and contributions of the field theory KLT relations, i.e.,

MN = (−1)N−3κN−2AT .SFT.A
HET. (2.14)

In the last equation, AT is the transpose of the vector of colour ordered Yang Mills scat-

tering amplitudes appearing in (2.2), while SFT is the KLT-kernel

Sρ,σ =
N−2∏

j=2

(
s1,jρ +

j−1∑

k=2

θ(jρ, kρ)sjρ,kρ

)
(2.15)

subject to a basis change of the scattering amplitudes and sij = pi.pj here. This basis

change can be implemented by a matrix Dσ,ρ which connects the field theory amplitudes

A(1, σ(2, . . . , N − 2), N − 1, N) with the amplitudes Ã(1, ρ(2, . . . , N − 2), N,N − 1), i.e.,

Aσ = Dσ,ρÃρ and

SFT,ρ,σ =
∑

γ∈Sn−3

Sρ,γDγ,σ. (2.16)

2.3 Graviton soft factors from KLT

The KLT relations have proven to be a very valuable tool for investigations into the classical

gravity S matrix. With the growing understanding of the gauge theory S matrix the KLT

relations give guidance on how to generalise results from the gauge side to gravity. In a

recent paper [26], it was shown that the field theory KLT relations can also be used to

prove a connection between the soft factors in gauge theory and gravity.

One important caveat is in order. The results in [26] were derived using methods

available only in d = 4. The KLT relations hold in any dimension, and the subleading soft

theorem equally well extends to any dimension [22–25]. Trivial considerations then show

that the work by Du, Feng, Fu and Wang can be extended to arbitrary dimensions. In the

process of a review of the result, this generalisation will be derived.

The proof in [26] uses an alternative form of the KLT relations as its starting point.

Using the notation introduced in subsection 2.2, but now with field theory amplitudes (and

stripped gravitational coupling)

MN = (−1)N−3
N−2∑

t=2

∑

σ,β∈SN−4

AN (1, t, σ2,N−2, N − 1, N)Sp1
t,tS

pN−1

σ,β ÃN (t, 1, N − 1, β,N).

(2.17)

1The constant κ is the gravitational coupling constant. Note that A does not contain any factors of gYM.
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This expression is valid in any dimension. Note the appearance of yet another basis Ã for

the field theory amplitudes on the right hand side. Later on, it will be necessary to use a

basis transformation to bring it into the form of (2.14).

The KLT-kernel S
pN−1

σ,β is built around particle N − 1 which takes the place of particle

1 as given in (2.15). More compactly, this can be written as

MN = (−1)N−3
N−2∑

t=2

∑

σ,β∈SN−3

AN (t, σ)Sp1
t,tS

pN−1

σ,β ÃN (t, β). (2.18)

A quick calculation will show that the leading contribution to the soft limit follows very

naturally from this form.2 First, send p1 → 0. Then St,t = p1.pt =: s1t and

AN (1, t, σ,N − 1, N) → (S
(0)
YM + S

(1)
YM)t,NAN−1(t, σ,N − 1, N) (2.19)

ÃN (t, 1, N − 1, β,N) → (S
(0)
YM + S

(1)
YM)N−1,tAN−1(t,N − 1, σ,N) (2.20)

where the subscripts denote the particles adjacent to particle 1 in the given colour ordering.

After the expansion, the leading order term can be assembled for each t as S
(0)
t,Ns1tS

(0)
N−1,t.

This expression multiplies

(−1)N−4
∑

σ,β∈SN−3

AN−1(t, σ,N − 1, N)SN−1
σ,β ÃN−1(t,N − 1, β,N) (2.21)

in the sum over t. But (2.21) is just another KLT representation of the gravity amplitude

MN−1(2, . . . , N) and therefore in particular independent of t. Then, using conservation of

momentum it is easy to show that

N−2∑

t=2

S
(0)
t,Ns1tS

(0)
N−1,t = −

N∑

t=2

ǫ.ptǫ.pt
s1t

ǫµǫν→ǫµν
−−−−−−→ −S(0)

g (2.22)

which is Weinberg’s soft graviton factor. The minus sign cancels the missing minus sign

in (2.21) from the definition of MN . As usual for KLT in dimensions other than four, the

gluon polarisation vectors ǫµ will have to be exchanged for a graviton polarisation tensor

ǫµν to get the correct answer.

The subleading term is more subtle, and as was shown in [26], requires a non-trivial

identity for the KLT kernel to hold. The same identity

N−2∑

t=2

∑

σ,β∈SN−4

D[2, σ̃, N − 1, N |t, σ,N − 1, N ]SN−1
σ,β ∆tC[t,N − 1, β,N |2, N − 1, β̃, N ] = 0

(2.23)

where

∆t=ǫµp1ν

(
ǫ.ptJ

µν
N−1

s1,N−1
+

ǫ.pNJµν
t

s1,N
+

s1tǫ.pNJµν
N−1

s1,N−1s1,N
−

ǫ.ptJ
µν
N

s1,N
−

ǫ.pN−1J
µν
t

s1,N−1
−

s1tǫ.pN−1J
µν
N

s1,N−1s1,N

)

(2.24)

2The reader will have to excuse the profusion of quantities denoted by the letter S. Most of the time, the

meaning of the letter should be unambiguous as soft factors always bear a bracketed superscript denoting

their level in the soft expansion while KLT kernels always come with subscript indices.
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can be shown to arise in the calculation valid for any dimension. The base change matrices

D and C are used to transform the basis of colour-ordered Yang-Mills amplitudes via

AN−1(t, σ̃, N − 1, N) =
∑

σ∈SN−4

AN−1(s, σ̃, N − 1, N)D[s, σ̃, N − 1, N |t, σ,N − 1, N ] (2.25)

where s is arbitrary (s = 2 in (2.23)) and similarly for ÃN−1 and C. The operators ∆t

are more involved in this representation than in the spinor-helicity form given in [26] and

depend on the angular momentum operators of particles N − 1, N and t. In this note, no

attempts will be made at proving this result. It appears however that the calculation in

momentum variables is in fact easier to perform than in spinor helicity variables. Under

the above assumption, it can be shown that the subleading order in the soft expansion of

the terms in the KLT relation actually lead to the subleading soft graviton factor as given

in (1.3), i.e.,

(−1)N−3
N−1∑

t=2

∑

σ,β∈SN−4

[(
S
(0)
N−1,ts1tS

(1)
t,nAN−1

)
SN−1
σ,β ÃN−1 +AN−1S

N−1
σ,β

(
S
(0)
N−1,ts1tS

(1)
t,n ÃN−1

)]

=
N∑

t=2

ǫ.ptǫµp1νJ
µν
t

s1t
MN−1

ǫmǫν→ǫµν
−−−−−−−→ S(1)

g MN−1 (2.26)

With this, all that is left to do is to assemble the results of this section into the promised

proof.

3 Closed string scattering soft factor

This rather short section contains the actual proof of the subleading soft theorem for closed

string graviton scattering amplitudes. To perform the final step and show that closed string

graviton scattering amplitudes behave like field theory graviton scattering amplitudes in

the subleading soft limit, it is only necessary to synthesise the results in subsections 2.1, 2.2,

and 2.3.

First, revisit equation (2.14). The right hand side can be written more verbosely in

the following form

MN = (−1)N−3κN−2
∑

σ,β∈SN−3

A(1, σ2,N−2, N − 1, N)SFT[σ|β] svA(1, β2,N−2, N − 1, N).

(3.1)

The KLT field theory kernel SFT is related to the KLT kernel S used in section 2.3 via a

basis transformation which solely depends on combinations of kinematic data sij . There-

fore, this expression can be transformed into the alternative representation of the KLT

relations in (2.17) using basis transformations which do not interfere with the single value

projection, i.e.,

MN = (−1)N−3κN−2
N−2∑

t=2

∑

σ,β∈SN−3

AN (t, σ)St,tSσ,β sv ÃN (t, β). (3.2)

– 8 –
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This is possible since the heterotic string amplitudesAHET satisfy the same Kleiss-Kuijf [48]

and Bern-Carrasco-Johansson [49] identities as the field theory amplitudes. Furthermore,

the base change matrices connecting right moving Ã and left moving A are dimension-

less [39]. In particular, they do not depend on α′. It follows that the leading and subleading

soft limit follow in the same way as in section 2.3. Specifically, combining (2.10), (3.2),

and the soft gluon limit for particle 1

MN=(−1)N−3κN−2
N−2∑

t=2

∑

σ,β∈SN−3

(S(0)+S(1))N,tAN−1(t, σ)s1tSσ,β(S
(0)+S(1))t,N−1 sv ÃN−1(t, β)

(3.3)

But the above expression is exactly the same expression as the field theory KLT, which

means that all calculations in 2.3 hold in this case. Thus

MN
p1→0
−→ κ(S(0)

g + S(1)
g )MN−1 +O(p1) (3.4)

which ends the proof that closed string theory tree level amplitudes feature the same soft

limit as their field theory descendants.

In conclusion, all string and field theories connected through KLT relations, the single

value projection and the field theory limit α′ → 0 must be behaving in the same way under

the subleading soft limit at tree level. This encompasses gauge field theory, type I open

strings, and heterotic string theory gauge scattering amplitudes. On the gravitational side,

it was shown here that the behaviour of (type I, type II, heterotic and bosonic) closed

string graviton scattering can be determined from that of open string gluon amplitudes.

The field theory limit of these amplitudes coincides with the known gravitational result as

it should be. It remains to be seen whether there is an equivalent symmetry statement

behind these results as in the field theory case.
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