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serving a single supercharge may be classified as having either trivial or SU(2) structure,

with the former including S4. We show that, in the absence of additional symmetries, the

partition function depends non-trivially on all couplings in the trivial structure case, and

(anti)-holomorphically on couplings in the SU(2) structure case. In both cases, this allows

for ambiguities in the form of finite counterterms, which in principle render the partition

function unphysical. However, we argue that on dimensional grounds, ambiguities are re-

stricted to finite powers in relevant couplings, and can therefore be kept under control.

On the other hand, for backgrounds preserving supercharges of opposite chiralities, the

partition function is completely independent of all couplings. In this case, the background
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supersymmetric invariants, we also demonstrate that N = 1 localization is not possible for

backgrounds without R-symmetry.
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1 Introduction and summary

Localization of supersymmetric field theories on curved spaces has recently played a central

role in elucidating some long standing puzzles. Pestun made use of localization to com-

pute the expectation value of half supersymmetric Wilson loops in N = 4 supersymmetric

Yang-Mills on S4 and to prove that it is given by a Gaussian matrix model [1], a conjec-

ture made more than a decade ago [2, 3]. Kapustin, Willett and Yaakov computed the

partition function of supersymmetric field theories on S3 [4], paving the way to a better

understanding of the number of degrees of freedom of such theories, and clarifying various

three-dimensional dualities (for a review, see e.g. [5]).

The program of computing supersymmetric observables on curved spaces thus high-

lights the question of how to systematically construct such field theories. Festuccia and

Seiberg initiated a program to answer this question in general, based on the principle of

rigid supergravity [6]. According to this principle, one considers the field theory as a matter

sector of a supergravity theory, and then proceeds to decouple supergravity. The conditions
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for the background to be supersymmetric are obtained by demanding that the gravitino

variation vanishes, and all couplings of the matter sector to the background supergravity

fields are dictated by the form of the supergravity Lagrangian.

Rigid supergravity provides us with a powerful set of tools for answering questions

within a broad family of theories on curved spaces [7–13]. One practically-minded ques-

tion is whether we can perform localization to calculate the partition function and other

observables on various curved backgrounds. Of particular interest are four-dimensional

backgrounds that do not possess an R-symmetry, such as the round and squashed S4, for

which exact results for N = 1 theories have so far been elusive. These backgrounds can be

naturally studied in the framework of old minimal supergravity, but they can not be found

as solutions to new minimal supergravity [6, 9, 10, 14–16].

The standard localization procedure makes use of the fact that there is at least one

supersymmetric operator O such that the partition function for a theory with Lagrangian

L ⊃ tO is independent of the corresponding coupling constant t, i.e.

dZ(t)

dt
= 0. (1.1)

If O has a positive semi-definite part, one can evaluate the partition function at t ≫ 1,

where it is given by a 1-loop determinant around the classical configuration Ocl = 0. To

understand in which cases localization is in principle possible, one needs to determine under

which circumstances (1.1) is satisfied. This condition is equivalent to the statement that

there is at least one “flat” direction in the space of coupling constants. The first goal of this

paper is therefore to better understand the geometry of the space of couplings of N = 1

theories on four-dimensional curved (Euclidean) backgrounds.

Our first step is to determine the supersymmetric invariants for a given multiplet,

which are the building blocks of supersymmetric Lagrangians. In the standard approach,

invariants are constructed using the tensor calculus of supergravity [17–20], and one finds

the curved space generalizations of the flat-space D-term, as well as a chiral F - and antichi-

ral F -term. However, the supergravity approach assumes that the background manifold

preserves all four complex supercharges of Euclidean N = 1. As was shown in [10, 11, 13],

there is a large set of interesting backgrounds with reduced supersymmetry, which preserve

fewer than four supercharges. In this case, there are more than just the three standard

SUSY-invariants. Furthermore, if the background is R-symmetric, one may also combine

superfields using an antisymmetric product S1 ∧ S2 to construct Lagrangians.

Since both of these subtleties are essentially invisible in the “top-down” approach of

supergravity, we instead employ a “bottom-up” approach: we take as our only input the

curved space SUSY algebra, derived via rigid supergravity [6, 7, 17, 19–21]. Using the

transformation rules, we can then construct the complete set of SUSY invariants, as well

as the multiplication rules for combining supermultiplets. For a general Euclidean N = 1

multiplet S = (C,ψL, ψR, F, F ,Aµ, λL, λR, D), bosonic SUSY invariants take the form

E = α1D + α2F + α3F + α4C + βµAµ, (1.2)

with background-dependent coefficients αi, β
µ. Demanding E to be supersymmetric, we

derive the differential conditions on the coefficients and give examples of invariants.
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A flat direction ti in the space of couplings is equivalent to the statement that the

corresponding invariant Ei is δ-exact. One central result of this paper is that every invariant

can be written as a SUSY-exact term, plus extra terms that depend on the geometry of

the background. Schematically, we find

Ei = δVi + ξµi Aµ + ηiC, (1.3)

up to a total derivative, where ξµi and ηi are background-dependent. A flat direction

exists only if ξµi = ηi = 0 for some i. We analyze eq. (1.3) for the backgrounds of old

minimal supergravity and extract properties of the space of couplings. Our results can be

summarized as follows:

1. Backgrounds with non-chiral Killing spinors of the form (ǫL, ǫR): such manifolds are

characterized by a trivial structure group G = 1, and S3-isometry (for example,

the round and squashed S4). They do not admit an R-symmetry. We find that

ξµi , ηi 6= 0 for all invariants. This means that SUSY-closed terms are not exact, and

the partition function depends nontrivially on all coupling constants.

2. Backgrounds with chiral Killing spinors of the same chirality, i.e. either (ǫL, 0) or

(0, ǫR): manifolds of this kind are characterized by SU(2)R or SU(2)L structure re-

spectively, and possess a U(1)R R-symmetry. Focussing on the former case, we find

that all but one invariant are exact. The exception is a generalized F -term, so the

partition function only depends on the corresponding coupling1 λF .

3. Backgrounds with chiral Killing spinors of opposite chirality, i.e. at least one pair

(ǫL, 0), (0, ǫR): these are torus fibrations T
2×Σ, where Σ is a Riemann surface. Their

structure group is reduced to the trivial group, and there is a U(1)R R-symmetry. We

find that all invariants are exact, so the partition function is completely independent

of couplings.

In particular, we use our results to argue that localization of N = 1 theories on S4 and

the related cases in point 1 above is not possible: since there are simply no flat directions

available, there is no freedom in tuning the couplings. In the cases 2 and 3, localization

proceeds in the usual way. We give an explicit prescription for performing localization on

such backgrounds in section 4.3.

In the cases 1 and 2, the obvious question that arises is how the partition function

depends on the couplings. The second goal of this paper is therefore to analyze this depen-

dence in detail, or in other words, to determine which features of the space of couplings

are captured by the partition function. For certain superconformal field theories (SCFTs),

it was shown that the partition function computes the Zamolodchikov metric on the space

of exactly marginal couplings [22–29]. Inspired by these results, we determine under which

circumstances one can extract similar physical quantities from Z. A generic complication

1Considering instead backgrounds with SU(2)L structure amounts to a flip of chiralities, so in this case

there is a dependence on λF .
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that arises is the fact that Z itself does not always have an unambiguous physical interpre-

tation [24, 30]: in general, finite counterterms can shift the partition function according to

logZ → logZ + F(λi), (1.4)

where F is a function of the couplings λi. If such ambiguities are present, Z is regularization

scheme dependent, and thus unphysical.

To determine the physical content of Z, it is therefore necessary to classify the set of

possible finite, supersymmetric counterterms. Focussing on couplings to chiral/antichiral

F - and F -terms, we perform a spurion analysis to construct such counterterms explicitly,

and determine whether or not they give rise to ambiguities in the partition function. Let

us again highlight some of our results:

1. For backgrounds with trivial structure and S3-isometry (i.e. backgrounds without

R-symmetry), there is an ambiguity of the form

logZ ∼ logZ + F (λ, λ) +G(λ) +H(λ), (1.5)

where F , G andH are a priori unconstrained function of all chiral/antichiral couplings

λ, λ. If we compute Z using different regularization schemes, we will find different

answers for its finite part, so the partition function itself is not a sensible physical

observable. However, if the theory contains relevant couplings m, simple dimensional

analysis reveals that the functions F , G and H are in fact more constrained: they can

only contain terms up to cubic order in m. We therefore argue that all ambiguities

can be removed by taking a suitable number of derivatives of logZ with respect to

relevant couplings.

2. For backgrounds with U(1)R R-symmetry and SU(2)R structure, the only nontrivial

coupling is λF . We find that the only ambiguity arises at quartic order in relevant

couplings m, and takes the form

logZ ∼ logZ + b(mr)4, (1.6)

where b is a background-dependent constant and r is a characteristic length scale.

The rest of this paper is organized as follows. In section 2, we review the framework of rigid

supersymmetry as applied to old minimal supergravity, following the particular conventions

and notation of [11]. In section 3, we discuss supersymmetric theories on manifolds with

trivial structure. We write down the general D-type invariants, as well as the additional

F -type invariants for chiral superfields and analyze them in some detail. In particular,

we determine for which backgrounds they can be written as SUSY-exact terms, so the

partition function is independent of the corresponding couplings. Using these results, we

argue that partition functions on manifolds with S3-isometry depend nontrivially on all

couplings, which implies that N = 1 localization is not possible. We proceed to discuss

the issue of ambiguities of the partition function by constructing finite counterterms for

chiral couplings. In section 4, we analyze manifolds with SU(2) structure. We construct
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supersymmetric invariants in an analogous way, and show that with one exception, all

SUSY-closed terms are also SUSY-exact, so Z is again independent of couplings. We then

present the general philosophy of localization using a simple toy model. We demonstrate

that the dependence of Z on antichiral F -term couplings is ambiguous, and highlight how

the presence of a second supercharge of opposite chirality removes the ambiguity completely,

hence identifying torus fibrations as the only compact backgrounds without ambiguities.

Finally, we comment on explicit R-symmetry breaking and the role of the auxiliary fields

of supergravity. We conclude with a discussion in section 5.

2 Rigid supersymmetry

The general approach of rigid supersymmetry [6] is to first start with a matter coupled

supergravity theory and then freeze out the gravitational sector, thus leaving a super-

symmetric field theory in a non-trivial background. Since we do not wish to impose any

gravitational dynamics on the background, it is necessary to work in an off-shell formu-

lation. In four dimensions, there are two off-shell N = 1 supergravities — one with the

“old minimal” set of auxiliary fields [31, 32] and one with the “new minimal” set [14, 33]

— both of which have been extended to the Euclidean case. Backgrounds preserving an

R-symmetry are naturally constructed in new minimal supergravity, while those without

R-symmetry only arise in old minimal supergravity.

To avoid confusion about terminology, let us note that the theory we refer to as N = 1

possesses 4 real supercharges in Minkowski space. In Euclidean signature, one a priori

has 4 complex supercharges, although certain backgrounds might break some of the super-

symmetries. Our analysis does not apply to, for example, the SUSY theories on squashed

4-spheres considered in [34]. Although these backgrounds admit either 2 or 4 supercharges,

the SUSY algebra descends from a theory with 8 real supercharges in Minkowski space,

i.e. N = 2.

2.1 Supersymmetric backgrounds from old minimal supergravity

The supergravity multiplet for off-shell supergravity with the “old minimal” set of auxiliary

fields is given by [20, 31, 32]

(gµν , ψLµ, ψRµ, bµ,M,M). (2.1)

In Euclidean signature, the chiral spinors ψLµ and ψRµ are independent, and transform

under the left-/right-handed part of SO(4) = SU(2)L × SU(2)R. The auxiliary fields are a

complex vector bµ, and two independent complex scalars M , M .

To find supersymmetric backgrounds, we assume a nontrivial background metric gµν ,

keeping the auxiliary fields arbitrary, but set the gravitino and its variation equal to zero:

δψLµ = δψRµ = 0. (2.2)

This condition gives rise to the following Killing spinor equations:

∇µǫL =
1

6
MγµǫR +

i

2
bµǫL − i

6
bνγµγνǫL,

∇µǫR =
1

6
MγµǫL − i

2
bµǫR +

i

6
bνγµγνǫR. (2.3)
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A solution ǫ ≡ (ǫL, ǫR) corresponds to a preserved supercharge. Generically, a background

is specified by an arbitrary configuration of the bosonic fields (gµν , bµ,M,M). However,

the condition that the background preserves supersymmetry yields nontrivial constraints

on the background fields. For each preserved supercharge ǫ, such a constraint is provided

by the integrability condition

[∇µ,∇ν ]ǫ =
1

4
Rµνλσγ

λσǫ, (2.4)

which relates the auxiliary fields bµ,M,M to the metric gµν . A complete analysis of

integrability conditions in a case-by-case study was performed, for example, in [11, 13]. For

our purposes, it is sufficient to note that demanding at least one unbroken supersymmetry

gives rise to the conditions

γµ∇µMǫR =

(
−1

2
R+ i∇µb

µ − 2

3
MM − 1

3
bµb

µ

)
ǫL,

γµ∇µMǫL =

(
−1

2
R− i∇µb

µ − 2

3
MM − 1

3
bµb

µ

)
ǫR. (2.5)

We can form a complete set of spinor bilinears that characterize the background manifold:

fL = ǫ†LǫL, fR = ǫ†RǫR,

Qµ = ǫ†RγµǫL, Kµ = ǫcRγµǫL,

JL
µν = iǫ†LγµνǫL, JR

µν = iǫ†RγµνǫR,

ΩL
µν = ǫcLγµνǫL, ΩR

µν = ǫcRγµνǫR. (2.6)

Throughout this paper, we follow the notation and conventions of [11].

The existence of a nowhere vanishing Killing spinor ǫ imposes additional struc-

ture on the supersymmetric backgrounds M considered here. There are two basic

cases [8, 11, 13, 35]:

• If the Killing spinor is of the form (ǫL, ǫR), with fLfR 6= 0 (except at isolated points)

the four linearly independent vectors Qµ, Q
⋆
µ,Kµ,K

⋆
µ explicitly trivialize the tangent

bundle TM. The structure group is broken down from SO(4) = SU(2)L × SU(2)R
to the trivial group G = 1. We refer to these manifolds as backgrounds with trivial

structure. They are discussed in section 3.

• An interesting feature of eq. (2.3) is that a nowhere vanishing solution ǫ still allows

for either ǫL or ǫR to vanish identically, i.e. fLfR = 0. Assuming for concreteness

that ǫR = 0, there are two linearly independent spinors ǫL and Cǫ⋆L characterizing

the background. Both spinors transform as singlets under SU(2)R, and the remaining

structure group is G = SU(2)R. Backgrounds with SU(2)-structure are discussed in

section 4.
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2.2 General multiplet and SUSY algebra

We now turn to the matter sector and its coupling to the supergravity background. The

general SUSY multiplet is given by [17, 19, 21]

S = (C,ψL, ψR, F, F ,Aµ, λL, λR, D), (2.7)

and has 8+8 components in Minkowski signature. In the Euclidean case, the chiral spinors

are taken to be independent, and all bosonic fields are complex holomorphic variables. In

particular, note that F and F are a priori independent, but will be related to each other

later by choosing an appropriate integration contour in the path integral.

The curved space supersymmetry transformations of S are found by taking the rigid

limit of the corresponding supergravity variations [19]:

δC = −ǫcLψL − ǫcRψR,

δψL =
1

2
γµ(Aµ −∇µC)ǫR − ǫLF,

δψR =
1

2
γµ(Aµ +∇µC)ǫL + ǫRF ,

δF = ∇µ (ǫcRγµψL)−MǫcLψL − ǫcRλR,

δF = ∇µ (ǫcLγµψR)−MǫcRψR − ǫcLλL,

δAµ = ǫcRγµλL − ǫcLγµλR +∇µ (ǫ
c
LψL − ǫcRψR) ,

δλL =
1

2
γµνǫL∇µAν −

1

2
ǫLD,

δλR =
1

2
γµνǫR∇µAν +

1

2
ǫRD,

δD = ∇µ (ǫcLγµλR + ǫcRγµλL) +
2i

3
bµ (ǫ

c
Lγ

µλR − ǫcRγ
µλL)

− 2

3
MǫcRλR − 2

3
MǫcLλL. (2.8)

Irreducible representations can be embedded into S by making certain identifications [21].

For example, a chiral multiplet is given by

Φ = (φ, ψL, 0, F, 0,−∇µφ, 0, 0, 0). (2.9)

Similarly, an antichiral multiplet is embedded via

Φ = (φ, 0, ψR, 0, F ,∇µφ, 0, 0, 0). (2.10)

The rules for multiplying two superfields S1, S2 are worked out in the appendix. For SU(2)

structure, there is an antisymmetric product S1∧S2 in addition to the standard symmetric

product S1×S2. This gives rise to some interesting features when building supersymmetric

Lagrangians (see section 4.3).

– 7 –



J
H
E
P
0
3
(
2
0
1
5
)
1
3
2

Throughout this paper, we take ǫ to be a commuting spinor parameter. The closure

relation of the algebra then takes the form

{δ1, δ2} = Lξ, (2.11)

where Lξ is the Lie derivative along the vector field

ξµ = ǫc1Lγ
µǫ2R + ǫc2Lγ

µǫ1R. (2.12)

Since ǫL and ǫR transform independently in Euclidean signature, the SUSY variation splits

up into the action of left- and right-handed components

δ = δL + δR = ǫcLQL + ǫcRQR, (2.13)

corresponding to an anticommuting supercharge of the form Q = (QL, QR). Given this

decomposition, we have

δ2L = δ2R = 0, δ2 = {δL, δR} = −2LK . (2.14)

While each δL and δR is nilpotent, the total supercharge squares to a Lie derivative along

the Killing vector Kµ. Since Kµ is in general complex, this provides an obstruction to

carrying out the usual localization procedure. Deforming the Lagrangian by a SUSY-exact

term ∼ δV generically breaks supersymmetry. While this is an obvious complication for

localization, it is not sufficient to show that localization is not possible. One of the goals

in the remainder of this paper is to make the obstruction to localization more precise, and

provide a no-go theorem for localization on certain manifolds with trivial structure.

One obvious way to avoid the above complication is to consider manifolds with SU(2)

structure, where either ǫL or ǫR (and thus Kµ) vanishes identically. In this case, δ is

nilpotent and localization proceeds in the standard way. We analyze this case in some

detail in section 4.

3 N = 1 theories on manifolds with trivial structure

We first consider the trivial structure case because it allows us to study manifolds that

do not admit an R-symmetry. This includes, in particular, the round and squashed S4.

In this case, the space is spanned by four linearly independent vectors Qµ, Q
⋆
µ,Kµ,K

⋆
µ,

with Q⋆
µQ

µ = K⋆
µK

µ = 2fLfR. The two-forms in (2.6) can be expressed in terms of these

vectors as

JL/R = − i

2fR/L
(K ∧K⋆ ±Q ∧Q⋆) , (3.1)

ΩL = − 1

fR
K ∧Q, (3.2)

ΩR =
1

fL
K ∧Q⋆. (3.3)

– 8 –
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One can check that ∇(µKν) = 0, so that K and K⋆ are Killing vectors. An interesting

non-trivial feature in Euclidean signature is that since K and K⋆ are linearly independent,

their commutator may give rise to a third Killing vector

Lµ ≡ [K,K⋆]µ = µQµ − µ⋆Q⋆
µ, (3.4)

where

µ =
1

3
(fLM − fRM

⋆)− 2

3
Im(bµ)Q⋆

µ. (3.5)

Notice that L is purely imaginary. The backgrounds then fall into two different

classes [11, 13]:

1. For L 6= 0, the three Killing vectors ReK, ImK and L satisfy an su(2)-algebra, which

allows us to locally write the metric as a warped product S3 × R:

ds2 = dξ2 + f(ξ)2(σ21 + σ22 + σ23). (3.6)

Here σi are the standard left-invariant one-forms on S3. Backgrounds of this form

have been explicitly constructed [11, 13] and include the round S4, R4, H4, S3 × R

and H
3 × R, all of which preserve four supercharges. Another interesting case is the

squashed S4, which only preserves two supercharges. Notice that at points where

f(ξ) = 0, either ǫL or ǫR vanishes.

2. The case L = 0 corresponds to a two-torus fibration over a Riemann surface. This

case splits up into two subclasses:

(a) The background hasM =M = 0 and admits Killing spinors of opposite chirality,

namely (ǫL, 0) and (0, ǫR). This is equivalent to having independent left- and

right-handed supercharges, both of which are nilpotent.

(b) The Killing spinor has a chiral form (ǫL, 0) or (0, ǫR). This is the case of SU(2)

structure with a chiral supercharge (see section 4).

3.1 General invariants

In order to construct supersymmetric Lagrangians on curved backgrounds, we will need the

complete set of supersymmetric invariants, which can be derived from the SUSY algebra.

In the flat space case with four supercharges, the bosonic invariants are the usual D-terms

and chiral F , F -terms. Using the tensor calculus for supergravity, these terms can be

generalized to curved space. The D-type invariant takes the form [6, 7, 19, 20]

e−1

∫
d2Θ(2ǫ)(DD − 8R)S = D +

2

3
(ibµA

µ −MF −MF )−
(
1

3
R− 2

9
MM +

2

9
bµb

µ

)
C,

(3.7)

where 2ǫ = e
(
1−Θ2M

)
is the chiral density, R is the curvature superfield, and S is a

general superfield. In addition, there are generalized chiral F - and F -terms

e−1

∫
d2Θ(2ǫ)S = F −Mφ,

e−1

∫
d2Θ(2ǫ)S = F −Mφ. (3.8)
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However, the superspace formalism generally assumes that the background preserves the

maximum number of supercharges. As we will demonstrate in this section, relaxing the

condition on the number or type of preserved supercharges can give rise to additional

invariants that are absent in the top-down approach via supergravity. Hence we proceed

with a more systematic analysis of SUSY-invariants in curved space.

We consider a general superfield S, and make the following ansatz for bosonic

invariants:

E = α1D + α2F + α3F + α4C + βµAµ. (3.9)

We generally expect the coefficients αi, β
µ to be given in terms of the background fields

(gµν , bµ,M,M). However, as we will show, in some cases this restriction is too strong

(see section 4.5), so we treat them as a priori arbitrary functions of x. On a compact

manifold,2 E is invariant if δE is a total derivative. Assuming no special field content

(such as chiral/anti-chiral fields), this gives rise to the following conditions:

(−∇µα1 +
2i

3
α1b

µ − βµ)γµǫL − (
2

3
α1M + α2)ǫR = 0,

(−∇µα1 −
2i

3
α1b

µ + βµ)γµǫR − (
2

3
α1M + α3)ǫL = 0,

∇µα2γµǫR + (α2M +∇µβµ + α4)ǫL = 0,

∇µα3γµǫL + (α3M −∇µβµ + α4)ǫR = 0. (3.10)

Away from isolated points where one of the chiral Killing spinors might vanish, we can

write down a formal solution to this system of equations:

α2 = −(∇µα1 + βµ − 2i

3
α1b

µ)
Qµ

fR
− 2

3
α1M,

α3 = (−∇µα1 + βµ − 2i

3
α1b

µ)
Q⋆

µ

fL
− 2

3
α1M,

α4 = −1

2

(
α2M + α3M +∇µα2

Q⋆
µ

fL
+∇µα3

Qµ

fR

)
,

Kµ∇µα1 = Kµ∇µα2 = Kµ∇µα3 = Kµ

(
βµ − 2i

3
α1bµ

)
= 0,

∇µβµ =
1

2

(
∇µα3

Qµ

fR
−∇µα2

Q⋆
µ

fL
+ α3M − α2M

)
. (3.11)

For given functions α1 and βµ, the first three equations in (3.11) determine α2, α3 and α4,

respectively. The final two equations can then be viewed as constraints on the form of α1

and βµ.

It is in general nontrivial to find solutions to the above system. However, the analysis

simplifies in the case of four supercharges. Since, we can construct four linearly independent

vectors Kµ
i (and similarly for Qµ

i ), we conclude that α1 = constant. Hence the only

2For non-compact manifolds, one may impose suitable fall-off conditions at infinity.
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solution is3

E ≡ D +
2

3
(ibµA

µ −MF −MF +MMC), (3.12)

up to a constant rescaling. Using the integrability conditions (2.5), one can check that

this is in fact a special case of the standard D-type invariant (3.7) of supergravity. For

backgrounds with less than maximal supersymmetry, there may be additional solutions

to (3.11), and hence more SUSY invariants. We will not attempt to write down all invari-

ants, but content ourselves with giving some examples of additional invariants that arise

in the case of SU(2) structure in section 4.1.

We can nevertheless study the dependence of the partition function on couplings to

general invariants, without making use of explicit solutions for αi, βµ. An obvious question

that arises is whether or not E can be written as a SUSY-exact term. If this were true, the

partition function would then be independent of the coupling to such terms. To proceed,

we again assume that ǫL/R 6= 0. This allows us to rewrite the fermionic variations in (2.8)

as eight scalar equations by contracting with ǫ†L/R and ǫcL/R:

F = −δ
(
ǫ†LψL

fL

)
+

1

2fL
Q⋆

µ(A
µ −∇µC),

F = δ

(
ǫ†RψR

fR

)
− 1

2fR
Qµ (A

µ +∇µC) ,

KµAµ = δ(ǫcRψR − ǫcLψL),

Kµ∇µC = δ(ǫcRψR + ǫcLψL),

D = δ

(
ǫ†RλR
fR

− ǫ†LλL
fL

)
+

(
i

2fR
JR
µν −

i

2fL
JL
µν

)
∇µAν ,

(
i

2fR
JR
µν +

i

2fL
JL
µν

)
∇µAν = −δ

(
ǫ†RλR
fR

+
ǫ†LλL
fL

)
,

ΩL
µν∇µAν = δ(2ǫcLλL),

ΩR
µν∇µAν = δ(2ǫcRλR). (3.13)

Using these relations along with (3.11) and the integrability conditions (2.5), we find that

the general invariant (3.9) reduces to

E = δVE + ξµAµ + ηC +∇(. . .), (3.14)

where

VE = α1

(
ǫ†RλR
fR

− ǫ†LλL
fL

)
−α2

(
ǫ†LψL

fL

)
+α3

(
ǫ†RψR

fR

)
+

2

3fLfR
(Imb ·K⋆) (ǫcLψL − ǫcRψR) ,

(3.15)

3Note that this is an invariant even in the vicinity of isolated zeroes of ǫL/R. For a general invariant,

one would need to check this explicitly by plugging the solution to (3.11) back into (3.10).
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and

ξµ =
1

(2fLfR)2
α1(Q

⋆
νQµ −QνQ

⋆
µ)L

ν ,

η =
1

6fLfR
α1(ML ·Q⋆ +ML ·Q) +

1

2fLfR
Lµ∇µα1 + ξµ

(
βµ − 2i

3
α1bµ

)
, (3.16)

and ∇(. . .) denotes total derivatives. We see that in general, E cannot be written as a

SUSY-exact term: there is an obstruction in the form of additional terms that depend on

the geometry.

• Assuming α1 6= 0, the extra terms vanish if and only if L = [K,K⋆] = 0, which is the

case of torus fibrations. For L = 0, we then have two options:

– If both ǫL and ǫR are nowhere vanishing, E = δVE holds everywhere. We

conclude that all SUSY invariants are exact, and the partition function does

not depend on the corresponding couplings. This result is not surprising: as

we noticed earlier, this case corresponds to a pair of nilpotent supercharges

δ2L = δ2R = 0.

– If, for example, ǫR = 0 (which implies G = SU(2)R), the invariants can be

written as a variation with respect to the left-handed supercharge, E = δLVE .

We discuss this case in more detail in section 4.1. Here we only note that the

partition function will again be independent of the couplings.

• For L 6= 0, which includes the interesting case of S4, equation (3.14) demonstrates

that there is no SUSY invariant that is also exact, and hence we expect Z to de-

pend nontrivially on all coupling constants. We analyze this dependence further in

section 3.4, where we discuss the issue of finite counterterms.

There is one invariant that needs to be discussed separately. Choosing α1 = 0, eqs. (3.11)

imply that α2 = α3 = α4 = 0 and βµ ∼ Kµ. This corresponds to

KµAµ = δ (ǫcRψR − ǫcLψL) , (3.17)

which is SUSY-exact. This invariant generically only conserves a single supercharge. We

will further comment on the relevance of this term in section 3.3.

3.2 Chiral invariants

In our analysis so far, we assumed that there are no restrictions on the field content. Of

course, any realistic theory will have such restrictions. For example, a theory with chiral

and antichiral fields will admit generalized F -type and F -type invariants, in addition to

the general D-type invariants (3.9).

To find these additional chiral/antichiral invariants, we proceed in a similar fashion as

before. Chiral and antichiral multiplets are embedded into the general multiplet as in (2.9)
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and (2.10). The SUSY variations for a chiral multiplet are

δφ = −ǫcLψL,

δψL = −γµǫR∇µφ− ǫLF,

δF = ∇µ (ǫcRγµψL)−MǫcLψL, (3.18)

while for an antichiral multiplet, we have

δφ = −ǫcRψR,

δψR = γµǫL∇µφ+ ǫRF ,

δF = ∇µ (ǫcLγµψR)−MǫcRψR. (3.19)

The most general bosonic chiral/antichiral invariant may be written as

I = β1F + β2φ,

I = β1F + β2φ, (3.20)

with functions β1, β2, β1 and β2 to be determined. Demanding SUSY-invariance of I and

I yields the conditions

∇µβ1γµǫR + (β2 + β1M)ǫL = 0,

∇µβ1γµǫL + (β2 + β1M)ǫR = 0, (3.21)

or equivalently

β2 = −β1M −∇µβ1
Q⋆

µ

fL
,

β2 = −β1M −∇µβ1
Qµ

fR
,

Kµ∇µβ1 = Kµ∇µβ1 = 0. (3.22)

Again, for a background that preserves four supercharges, the only solution is to take β1,

β1 to be constants, so the invariants are

I = F −Mφ,

I = F −Mφ. (3.23)

These are the curved space generalization of the standard F , F -terms. The coupling to

the background fields can be thought of as originating from the nontrivial chiral density 2ǫ

in the superspace formalism:

S
∣∣
I
= e−1

∫
d2Θ(2ǫ)S, S

∣∣
I
= e−1

∫
d2Θ(2ǫ)S. (3.24)

After setting the gravitino to zero, we find 2ǫ = e
(
1−Θ2M

)
, which shifts the F -terms as

in (3.23).
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For backgrounds that preserve fewer than four supercharges, there may be more solu-

tions to (3.21). We can ask if a general invariant I, I, with β1, β1 unspecified, is SUSY-exact.

We find that

I = δ

(
−β1

ǫ†LψL

fL

)
− 1

2f2LfR
β1(L ·Q⋆)φ+∇(. . .),

I = δ

(
β1
ǫ†RψR

fR

)
− 1

2fLf2R
β1(L ·Q)φ+∇(. . .). (3.25)

As before, the obstruction to exactness is related to Kµ not commuting with its com-

plex conjugate.

• For backgrounds with S3-isometry, where L 6= 0, neither I nor I are exact, and the

partition function depends nontrivially on all chiral/antichiral couplings.

• For torus fibrations, where L = 0, I and I are in general exact, and the partition

function is independent of chiral/antichiral couplings. Notice however that if one

of the chiral spinors ǫL or ǫR vanishes identically, then either the I or I equation

in (3.25) is no longer valid. We discuss this case separately in section 4.2.

3.3 Lagrangians and localization

With the knowledge of the SUSY invariants, one can construct Lagrangians for an arbitrary

field content. As an instructive example, we will discuss the case of a chiral and antichiral

multiplet (Φ,Φ). Guided by the “no-miracles” principle, we should write down the most

general terms consistent with the symmetries of the theory. We have seen that the invari-

ants are the D-type terms (3.9), and the chiral/antichiral F-type invariants (3.20). Hence

the most general Lagrangian is

e−1L = −1

2

∑

E

K(Φ,Φ)

∣∣∣∣
E

−
∑

I

W (Φ)

∣∣∣∣
I

−
∑

I

W (Φ)

∣∣∣∣
I

. (3.26)

Here K is a Kähler potential, which can be written as a power series involving the ×-

multiplication (see appendix A), and W is the holomorphic superpotential. The sums are

taken over all possible invariants for a given background. For a maximally supersymmetric

space, there are only three invariants, namely the E invariant of (3.7), and the I and I in-

variants of (3.23), so the analysis simplifies somewhat. In this case, evaluating (3.26) yields

e−1L = K

(
1

6
R+

1

9
bµbµ − 1

9
MM

)
+K(1,1)

(
∂µφ̄∂µφ− FF

)

+
i

3
bµ

(
K(1,0)∂µφ−K(0,1)∂µφ̄

)
+ F

(
1

3
MK(1,0) −W (1)

)

+F̄

(
1

3
MK(0,1) −W

(1)
)
+WM +WM

+K(1,1)ψc
Rγ

µ∇̃µψL +
1

2

(
W (2) +K(2,1)F − 1

3
MK(2,0)

)
ψc
LψL

1

2

(
W

(2)
+K(1,2)F − 1

3
MK(0,2)

)
ψc
RψR − 1

4
K(2,2)ψc

LψLψ
c
RψR, (3.27)
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where K(n,m) ≡ ∂n+mK/∂φn∂φ
m

and W (n) ≡ ∂nW/∂φn. We have also defined

∇̃µψL =

(
∇µ +

i

6
K(1,1)bµ +K(1,1)K(2,1)∂µφ

)
ψL. (3.28)

The Lagrangian (3.27) is of course the same result one obtains by taking the rigid limit of

the supergravity Lagrangian, analytically continued to Euclidean signature [6, 7, 20].

An interesting question is whether the partition function for (3.26) can be computed

via localization. Let us therefore review the general philosophy of localization [1, 4]. Given

a supersymmetric background and field content, one should consider a Lagrangian that

includes all possible terms consistent with symmetries. In our case, the symmetries are

N = 1 with a certain number of supercharges, and potentially global symmetries and

R-symmetries. Schematically, we have

L =
∑

i

λiLi, (3.29)

where each Li is supersymmetric. A priori, the partition function depends on all the

coupling constants λi, i.e.

Z = Z[λ1, λ2, . . .]. (3.30)

Now, suppose there is a linear combination of couplings, called t, such that

dZ

dt
= 0. (3.31)

We can then evaluate Z for any given value of t, and are guaranteed to get the same

result. In particular, we can go to a corner in the space of couplings where t ≫ λi (i.e.

formally take t → ∞), and compute Z there. If Lt has a positive semi-definite bosonic

part, the theory localizes around the classical locus Lt

∣∣
bos.

= 0 and the partition function

is one-loop exact.

The necessary and sufficient condition for (3.31) to hold is that the corresponding term

in the Lagrangian is SUSY-exact:

Lt = δV. (3.32)

This is why localization is usually thought of as “adding” an exact deformation to the

Lagrangian, and consequently taking the coupling to infinity. While there is certainly

nothing wrong with this point of view, it seems more useful to think about the localization

term δV as already being part of the original Lagrangian. Localization then simply utilizes

the fact that there are “flat” directions in the space of coupling constants.

To summarize, there are two basic conditions that need to be satisfied for localization:

1. The Lagrangian contains a term Lt that is both SUSY-closed and exact.

2. The bosonic part of Lt is positive semi-definite.

Using our results from the previous section, we can easily check these conditions for a broad

class of manifolds.
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• For trivial structure with L = [K,K⋆] = 0, all SUSY invariants are exact. In princi-

ple, there is no obstruction to performing localization. The nontrivial task is to find

a positive semi-definite localization term. We will do so for the closely related case

of manifolds with SU(2) structure in section 4.3.

• For L 6= 0, none of the invariants are exact. We conclude that for manifolds with

S3-isometry, in particular the squashed and round S4, the partition function does

not localize.

Finally, there is one invariant that needs to be discussed separately, namely (3.17), which

preserves only one supercharge. Evaluated on a Kähler potential K(Φ,Φ), it reads

KµAµ = Kµ
(
K(1,0)∇µφ−K(0,1)∇µφ+K(1,1)ψc

LγµψR

)
. (3.33)

This can be regarded as a coupling of the global U(1)-current to the background. It is

obvious that its bosonic part cannot be made positive semi-definite, so (3.33) cannot be

used for localization.

We should note that our result strictly speaking only holds for a chiral/antichiral field

content. Considering other irreducible representations, such as gauge or linear multiplets,

might lead to additional invariants, analogous to the chiral/antichiral I and I terms. How-

ever, our analysis of the general D-type terms was independent of the field content, so

it is still true that for L 6= 0, there are no D-type invariants that are exact. Since the

kinetic terms for fields are generally only found among these D-terms, we conjecture that

the possible additional invariants cannot be utilized for localization.

3.4 Counterterms and the physical part of Z

For the case L 6= 0, we have established that the partition function is a nontrivial function

of all couplings (with one exception, see above). The next question to ask is whether this

dependence is non-ambiguous.

It is instructive to review the logic of extracting physical data from partition functions.

On compact manifolds, infrared divergences in the partition function are absent, due to

the finite volume of the background. However, there might still be ultraviolet divergences

that need to be regularized. Very schematically, the partition function may take the form

logZ(λi) =
∑

j

aj(λi)Λ
j +A(λi)logΛ + F (λi) . (3.34)

The first term captures power law divergences, with Λ being the UV cutoff. The log-

divergent term is the analog of the A-type anomaly in CFTs. The last part is the finite

contribution F to the free energy. From our analysis above, we expect all terms to be

nontrivial functions of the couplings.

A regularization scheme corresponds to choosing a certain set of counterterms, which

can be used to tune some of the terms in (3.34) to zero. Only the parts of the partition
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function that are unaffected by counterterms are physical observables.4 Let us now de-

termine the physical content of N = 1 theories on backgrounds with Lµ 6= 0. Instead

of considering all possible couplings, we focus on couplings to chiral invariants I,I. The

interactions take the form

e−1Lint =W
∣∣
I
+W

∣∣
I
. (3.35)

For a renormalizable theory, the superpotential W contains relevant couplings mi and

marginal couplings λi. We can classify the possible counterterms by performing a spurion

analysis. For clarity of presentation, we will focus on the case of only a single pair of

relevant couplings (m,m) and marginal couplings (λ, λ) each. The generalization to an

arbitrary number of couplings should be straightforward. Treating the couplings as the

lowest components of spurious chiral/antichiral superfields (Σm,Σm,Σλ,Σλ), we see that

renormalizable interactions arise from

e−1Lint =
[
ΣmΦ2 +ΣλΦ

3
]∣∣

I
+
[
ΣmΦ

2
+ΣλΦ

3]∣∣
I

(3.36)

upon taking expectation values.

The possible finite counterterms are local interactions of spurions, consistent with the

symmetries of the underlying theory. Let us start by choosing a supersymmetric back-

ground with the smallest possible set of symmetries. Those are manifolds with trivial

structure and only one conserved supercharge, so the desired counterterms are all local,

diffeomorphism invariant terms that preserve one supersymmetry. We have already derived

the complete set of such terms, so we can conclude that the counterterms are given by the

E-, I-, and I-terms of sections 3.1 and 3.2. Hence the possible finite counterterms arise

from interactions of the form

F (Σλ,Σλ,Σm,Σm)
∣∣
E
+G(Σλ,Σm)

∣∣
I
+H(Σλ,Σm)

∣∣
I
. (3.37)

Taking the appropriate expectation values, we find the following counterterm Lagrangian:

e−1Lct = α4F (λ, λ,m,m) + β2G(λ,m) + β2H(λ,m). (3.38)

Here α4, β2 and β2 are solutions to the system (3.11). Instead of attempting to work with

the most general solution, let us simply note that the standard choice

α4 = −1

3
R+

2

9
MM − 2

9
bµb

µ, (3.39)

β2 = −M, (3.40)

β2 = −M, (3.41)

is a solution for any number of preserved supercharges and work with the invariants corre-

sponding to this choice.

4Note that in some cases one might have to take a certain number of derivatives of logZ with respect to

the couplings λi to extract the unambiguous physical data. One example is the Zamolodchikov metric on

the space of exactly marginal couplings of a CFT [22–29], gij ∼ ∂i∂j logZ(λk, λl).
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Using dimensional analysis, we can further constrain the form of the counterterms.

Assuming that Φ is canonically normalized, we have [m] = 1, so the function F in (3.38)

needs to be a quadratic function of relevant couplings, while G and H are cubic. Carrying

out the volume integral to compute the action will produce a curvature scale
∫ √

gα4 ∼ r2,

and similarly for β2, β2. Thus the partition function itself exhibits a regularization scheme

dependent ambiguity of the form

logZ ∼ logZ + f
(
mr,mr, λ, λ

)
+ (mr)3g(λ) + (mr)3h(λ), (3.42)

where f contains only terms that are quadratic in relevant couplings. To be completely

general, we should also consider counterterms that involve curvature multiplets [24, 30].

For example, there are D-type counterterms of the form

RiRj
Σk
mΣ

l
mF (Σλ,Σλ)

∣∣
E
, (3.43)

where R is the chiral curvature superfield, with expectation value

− 6 〈R〉 =M +Θ2

(
1

2
R+

2

3
MM +

1

3
bµbµ − i∇µbµ

)
. (3.44)

Since its lowest component has mass dimension 1, we see that i + j + k + l = 2 in (3.43).

In addition, we should also consider the more general chiral/antichiral counterterms

RiΣ3−i
m G(Σλ)

∣∣
I
, Ri

Σ
3−i
m H(Σλ)

∣∣
I
. (3.45)

If we include all such mixed matter-gravity counterterms, the ambiguity becomes

logZ ∼ logZ + F2

(
mr,mr, λ, λ

)
+G3(mr, λ) +H3(mr, λ), (3.46)

where F2,G3,H3 are now general quadratic (cubic) polynomials in the relevant couplings,

but arbitrary functions of marginal couplings:

F2

(
mr,mr, λ, λ

)
=

∑

i+j≤2

ai,j(mr)
i(mr)jfi,j(λ, λ),

G3(mr, λ) =
∑

i≤3

bi(mr)
igi(λ),

H3(mr, λ) =
∑

i≤3

ci(mr)
ihi(λ). (3.47)

The coefficients a, b, c are dimensionless, background-dependent constants that arise from

integrating curvature invariants.

We conclude that in general, finite counterterms may shift the free energy by regular-

ization scheme dependent terms according to (3.46). If we expand logZ(m,λ) in powers

of relevant couplings, all terms up to cubic order are subject to ambiguities, and thus

unphysical. However, higher powers of m are free from ambiguities, so we may extract

the physical part of the partition function by taking suitable derivatives with respect to

coupling constants. Inspecting (3.47), we see that, for example,

∂4

∂(mr)4
logZ,

∂3

∂(mr)3
∂2logZ

∂λ∂λ
, (3.48)
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are unambiguous physical observables. The minimum number of derivatives one has to take

is model-dependent, since additional global symmetries may forbid certain counterterms.

Note that the second expression in (3.48) is reminiscent of the Zamolodchikov metric for

CFTs [22–29].

Another way to avoid counterterm ambiguities of the partition function is to further

constrain the background manifolds, such that the coefficients multiplying the countert-

erms in (3.38) vanish identically. The rule of thumb is that more symmetries imply fewer

counterterms, which allows for more physical observables to exist. For manifolds with the

maximum number of four preserved supercharges, the integrability conditions (2.5) imply

R = −4

3
MM − 2

3
bµbµ, (3.49)

and hence

α4 =
2

3
MM, β2 = −M, β2 = −M. (3.50)

Following [13], there are two types of backgrounds

• For M,M 6= 0, the space is locally isometric to the round S4 or H4. In this case, the

ambiguity (3.46) remains. Since the round sphere is a limiting case of the squashed

sphere S̃4, α4 cannot vanish identically for S̃4, so the ambiguity is present in this

case as well.

• For M = M = 0, the background is locally isometric to M3 × R, where M3 has

constant curvature. In this case, the candidate counterterms vanish identically, and

there is no obvious obstruction for the finite part of F = logZ to be a physical

observable. To prove that F is indeed physical, one would need to perform a more

complete analysis involving also purely gravitational counterterms constructed out of

the curvature multiplets of supergravity, along the lines of [30].

It is interesting to compare our result (3.46) to the case of SCFTs on S4 [24]. In the latter

case, there is no mass scale m. However, counterterms that couple marginal operators to

the background (e.g. the case k = l = 0 in (3.43)) are still present, so there is an ambiguity

of the form

logZ ∼ logZ + f(λ, λ), (3.51)

where f is an arbitrary function of the marginal couplings, and the finite part of the

partition function is completely unphysical.

4 N = 1 theories on manifolds with SU(2) structure

We now turn to the case of manifolds with SU(2) structure, which possess an R-symmetry.

In general, the Killing spinor equations (2.3) mix left- and right-handed spinors, so there

can be no R-symmetry. However, this mixing is not present whenever either ǫL or ǫR vanish

identically. Without loss of generality, we will assume that there is a supercharge of the

form (ǫL, 0). Setting ǫR = 0 in (2.3) then yields the Killing spinor equation

∇µǫL =
i

2
bµǫL − i

6
bνγµγνǫL, (4.1)
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along with the requirement M = 0. Note that M has completely dropped out of this

expression, so a priori it is an arbitrary function.

Backgrounds with SU(2) structure possess a U(1)R R-symmetry, under which ǫL carries

charge 1. Theories with R-symmetry can be naturally coupled to new minimal supergrav-

ity [6, 9, 10, 14–16]. In this framework, the six auxiliary degrees of freedom are captured

by a conserved vector Vµ and a U(1)R-gauge field Aµ. The conditions for a background to

preserve supersymmetry are [6]

DµǫL = −3i

2
VµǫL +

i

2
V νγµγνǫL,

DµǫR =
3i

2
VµǫR − i

2
V νγµγνǫR, (4.2)

where Dµ = ∇µ − ir(Aµ + 3
2Vµ) is an R-covariant derivative. The left- and right-handed

supercharges carry R-charges 1 and −1. If we restrict to a subclass of backgrounds with

Aµ = −3

2
Vµ, Vµ ≡ −1

3
bµ, (4.3)

we recover (4.1) and its right-handed counterpart. Hence backgrounds with SU(2) structure

in old-minimal supergravity are a subclass of the backgrounds of new minimal supergravity.

Let us briefly summarize some known features of the backgrounds M considered here.

From (4.1), we can derive the integrability conditions

R = 2i∇ · b− 2

3
bµb

µ,

∂[µbν] =
1

2
ǫµνλσ∂

λbσ. (4.4)

As before, we can construct bilinears from the Killing spinor:

fL = ǫ†LǫL, Jµν =
i

fL
ǫ†LγµνǫL, Ωµν = ǫcLγµνǫL. (4.5)

Note that there are no invariant vectors in the SU(2) structure case. Using Fierz identities,

we have JµνJ
νρ = −δρµ, so J defines an almost complex structure. It can be shown that

the corresponding Nijenhuis tensor Nµ
νρ vanishes identically [13], so the almost complex

structure is integrable, and hence M is a complex manifold. Furthermore, note that the

complex structure is metric-compatible, i.e. gµνJ
µ
ρJν

σ = gρσ, so M is hermitian.

To simplify some of our later analysis, we introduce holomorphic coordinates zi, z̄i

(i = 1, 2), such that

J i
j = iδij , J ī

j̄ = −iδīj̄ . (4.6)

One can check that Ωīj̄ = 0, and Ω12 is nonvanishing everywhere. Hence Ω defines a

nowhere vanishing section of the canonical line bundle K of (2,0)-forms. To summarize,

the supersymmetric backgroundsM we are considering are hermitian manifolds with SU(2)

structure and trivial canonical line bundle K. The only compact 4-manifolds that satisfy

those criteria are tori, K3 and primary Kodaira surfaces [13, 36].

– 20 –



J
H
E
P
0
3
(
2
0
1
5
)
1
3
2

4.1 General invariants

In section 3.1, we saw that imposing constraints on the number of preserved supercharges

can lead to a much richer set of invariants. In this section, we will demonstrate that

the same is true when imposing the condition that the supercharges are chiral, i.e. for

backgrounds with SU(2) structure.

Setting ǫR = 0, the SUSY variations simplify to

δC = −ǫcLψL, (4.7)

δψL = −ǫLF, (4.8)

δψR =
1

2
γµ(Aµ +∇µC)ǫL, (4.9)

δF = 0, (4.10)

δF = ∇µ (ǫcLγµψR)− ǫcLλL, (4.11)

δAµ = −ǫcLγµλR +∇µ (ǫ
c
LψL) , (4.12)

δλL =
1

2
γµνǫL∇µAν −

1

2
ǫLD, (4.13)

δλR = 0, (4.14)

δD = ∇µ (ǫcLγµλR) +
2i

3
bµ (ǫ

c
Lγ

µλR) . (4.15)

The crucial difference to the case of trivial structure discussed earlier is that the supercharge

δ is nilpotent: δ2 = 0. One fact we can immediately note is that any exact term δV will

be δ-closed. In particular, localization seems straightforward. We will further comment on

aspects of localization in section 4.3.

To find all bosonic SUSY invariants, we again make the ansatz

E = α1D + α2F + α3F + α4C + βµAµ, (4.16)

with in general nonconstant αi and β
µ. Demanding that δE is a total derivative, we find

the conditions

∇iα1 −
2

3
iα1b

i + βi = 0, (4.17)

α4 +∇µβµ = 0, (4.18)

α3 = 0. (4.19)

Here i = 1, 2 denote holomorphic coordinates, and we have used the fact that γīǫL = 0,

which follows from Fierz identities. We do not attempt to find the complete set of solutions,

but instead give three examples of invariants:
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• From (4.10), we immediately see that F -terms are invariant. Using (4.8), we can

show that these terms are also δ-exact:

α2F = −δ
(
α2
ǫ†LψL

fL

)
. (4.20)

In principle, we can allow α2 to be an arbitrary function.

• A second type of solution can be obtained by setting α2 = 0, and restricting α1 to

be a constant. Since α1 = 0 only leads to a trivial solution, we can set α1 = 1. Then

βi =
2i

3
bi,

α4 = −∇µβµ. (4.21)

There are two linearly independent solutions, characterized by the choice of β ī. We

choose the following linearly independent solutions:

βµ1 =
2i

3
bµ,

βµ2 = i∇νJ
µν . (4.22)

Note that with this choice, βi1 = βi2 = 2i
3 b

i and β ī1 = 2i
3 b

ī, but β ī2 = 2i
3 b

ī⋆. The

corresponding invariants are

E1 = D +
2i

3
bµAµ − 1

3

(
R+

2

3
b2
)
C,

E2 = D + i∇νJ
µνAµ. (4.23)

It will be convenient to perform a change of basis by letting

E− ≡ E1 − E2 = −4

3
ImbiAi −

1

2
(R+

2

3
b2)C. (4.24)

Using (4.9) and integration by parts, we find that

E− = δ

[
−4

3
Imbµ

ǫ†Lγ
µψR

fL

]
,

E2 = δ

[
−2

ǫ†LλL
fL

]
. (4.25)

We conclude that all three invariants are SUSY-exact, and the partition function does not

depend on the corresponding coupling constants.

In general, α1 can be a nontrivial function of the background. In this more general

case, we find that

E = α1D +

(
2i

3
α1b

µ −∇µα1

)
Aµ −∇µ

(
2i

3
α1bµ −∇µα1

)
C

= δ

[
−2α1

ǫ†LλL
fL

− 4

3
(α1Imbµ +∇µα1)

ǫ†Lγ
µψR

fL

]
+

2

3
(∆bα1)C, (4.26)
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where

∆b = −∇µ∇µ − i∇µJ
µν∇ν . (4.27)

E is exact if and only if ∆bα1 = 0, which is clearly satisfied for α1 = constant.

4.2 Chiral invariants

As in the trivial structure case, there are additional chiral and antichiral invariants.

These are

F, F , φ, (4.28)

evaluated on chiral/antichiral fields. The first two invariants can be thought of as the

special case M = M = 0 of (3.23), while φ is an additional invariant, due to the form of

the SUSY algebra for SU(2) structure. We find that F-terms are exact (see (4.20)) while

F and φ are not.

4.3 Lagrangians and localization

It is instructive to compare and contrast the SU(2) structure case with the case of trivial

structure discussed in section 3. We will do this by analyzing a simple toy-model: consider

a pair of chiral and antichiral multiplets (Φ,Φ), with charges (1, 1) and (−1,−1) under

the global U(1) × U(1)R symmetry. As we saw, on backgrounds with SU(2) structure

there is a bigger arsenal of invariants than for the trivial structure case, so there is more

freedom in building Lagrangians. Supersymmetric Lagrangians are built by combining

superfields into products and taking the corresponding invariants. For SU(2) structure,

there is an additional antisymmetric product S1∧S2 (see appendix A), which gives us even

more freedom in constructing Lagrangians. To be concrete, we can consider the following

quadratic Lagrangian:

e−1L = λ1Φ× Φ

∣∣∣∣
E

−

+ λ2Φ× Φ

∣∣∣∣
E2

+ λ3Φ× Φ

∣∣∣∣
F

+ λ4Φ ∧ Φ

∣∣∣∣
E

−

+λ5Φ ∧ Φ

∣∣∣∣
E2

+ λFΦ× Φ

∣∣∣∣
F

+ λFΦ× Φ

∣∣∣∣
F

. (4.29)

The λi are various coupling constants. We have omitted φ-terms, which would break

R-symmetry explicitly (see section 4.5 for a discussion of these terms).

It turns out that not all of the terms in (4.29) are linearly independent. Using the

multiplication rules (A.2) and (A.5), we can write the Lagrangian in component form as

e−1L = t1δV1 + t2δV2 + tMδVM + tbδVb + λF δVF

+λF (2φF + ψc
RψR), (4.30)
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where

V1 =
1

fL
ǫ†LψLF ,

V2 =
1

fL
ǫ†Lγ

µψR∇µφ,

VM = − 1

3fL
ǫ†LψLφ,

Vb =
2

3fL
ǫ†Lγ

µψRImbµ,

VF = − 2

fL
ǫ†LψLφ, (4.31)

and we have chosen a more convenient basis of couplings:

t1 = −2λ5,

t2 = 2(λ2 − λ5),

tM =
3

2
(λ2 + λ3),

tb = −2(λ1 + λ4). (4.32)

If we set ti = 1, λF = −m and λF = −m, the Lagrangian reduces to (3.27), with K = ΦΦ

and W = mΦ2.

The decomposition of (4.30) in terms of SUSY-exact terms makes it manifest that the

partition function is independent of all couplings except λF . In particular, we are free to

take certain linear combinations of couplings to infinity to perform localization. We now

show that taking t ≡ t1 + t2 → ∞ accomplishes just that.

Evaluating the bosonic part of the corresponding “localization term”

t(δV1 + δV2)
∣∣
bos.

= t
(
−FF + (gµν + iJµν) ∂µφ∂νφ

)
, (4.33)

we see that it can be made positive semi-definite by choosing the integration contour Φ = Φ‡

for the bosonic fields, where ‡ is the involution

(φ, φ, F, F )‡ = (φ, φ,−F ,−F ). (4.34)

In the limit t → ∞, the path integral then localizes to bosonic field configurations with

(δV1+δV2)
∣∣
bos.

= 0. In our case, the locus is F = 0 and φ = φ0 = constant.5 The partition

function is given by a 1-loop integral around the classical locus:6

Z =

∫
DφDφDψLDψR exp

[
−
∫
d4x

√
g
(
φ∆bφ+ ψc

L∆fψR

)]
. (4.35)

5A priori, φ is allowed to be an anti-holomorphic function. However, on a compact complex manifold

this implies that φ is a constant [37] .
6We neglect the infinite prefactor due to

∫
dφ0dφ0

.
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Here we defined

∆b = −∇µ∇µ − i∇µJ
µν∇ν ,

∆f = γµ
(
−γ5∇µ +

i

2
bµ +

i

2
∇νJ

ν
µ

)
. (4.36)

4.4 Ambiguities of the partition function

The mere existence of an explicit prescription (4.35) for calculating the partition function

on backgrounds with SU(2) structure is not sufficient to conclude that Z is a physical

observable. In general, the one-loop determinants that appear need to be regularized,

so it is crucial to ask if the final result is regularization scheme independent and thus

physical. As we saw, for SU(2) structure the partition function depends nontrivially only

on antichiral couplings λF . Following our logic in section 3.4, we should then ask what

possible finite counterterms could render the partition function ambiguous. The F -terms

in (4.29) can be viewed as a special case of interactions that arise from

e−1Lint =
[
ΣmΦ

2
+ΣλΦ

3]∣∣
F
. (4.37)

Here Σm is a spurion that contains a relevant coupling m as its lowest component, while

Σλ contains a marginal coupling λ. Since the non-interacting theory is invariant under

U(1)R, we can assign R-charges 0 and +1 to Σm and Σλ to restore R-symmetry. The only

nonzero counterterm consistent with R-symmetry is

e−1Lct = Σ
4
m

∣∣
φ
, (4.38)

In particular, there are no mixed matter-curvature counterterms, since the expectation

value of the curvature superfield (3.44) vanishes identically for SU(2) structure, provided

that we consider the R-symmetric case M = 0 (see (2.5)). We conclude that there is a

quartic ambiguity in the free energy:

logZ ∼ logZ + b(mr)4. (4.39)

Any terms in logZ that depend on terms of order m5 or higher are free from ambiguities,

or in other words,
∂5

∂(mr)5
logZ (4.40)

is non-ambiguous.

For certain matter contents, additional symmetries may protect the theory entirely

from ambiguities. In fact, this is the case for the toy model discussed in the previous section.

To preserve the global U(1) symmetry, we need to assign nonzero U(1)-charges to the

spurions. Provided there are no anomalies, the counterterm (4.38) is simply forbidden, as

it would break U(1). Therefore, in the particular case at hand, our localization result (4.35)

is completely safe from ambiguities, and thus physical.

More generally, the problem of ambiguities is resolved if we consider backgrounds that

allow for two chiral supercharges, (ǫL, 0) and (0, ǫR). The problematic F -terms are now
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exact with respect to the additional right-handed supercharge δR. As a result, the partition

function is completely independent of couplings, and thus physical. Since the Killing spinor

equations (2.3) are linear and homogeneous, a pair of non vanishing supercharges (ǫL, 0)

and (0, ǫR) can be combined into a single supercharge (ǫL, ǫR), with the condition that

M = M = 0. Such backgrounds are T 2-fibrations over a Riemann surface, which we

encountered in section 3. These backgrounds are therefore ideal candidates to perform

localization (see e.g. [38]).

4.5 Breaking R-symmetry

We can explicitly break R-symmetry by adding φ-type deformations to our Lagrangian.

This corresponds to adding an antiholomorphic potential

L → L+ V (φ). (4.41)

In complete analogy to the standard non-renormalization theorems in flat space [39], one

can show that this does not introduce any additional finite counterterms involving the

couplings λφ within V . Notice that this result relies crucially on the fact that even

though (4.41) breaks R-symmetry, the background itself is R-symmetric. For example,

this would not be the case for theories on S4.

Since old-minimal supergravity allows for backgrounds with and without R-symmetry,

we can also study the explicit breaking of U(1)R from a supergravity point of view. Looking

at (2.3), we can associate theM andM -terms with the violation of R-symmetry. In the case

of SU(2) structure with supercharge (ǫL, 0), we have M = 0. The function M however is

unconstrained and does not appear in the SUSY variations or invariants derived above, yet

it is still responsible for breaking R-symmetry: Consider the curved superspace interaction

∫
d2Θ

2
2ǫW (Φ). (4.42)

ForM 6= 0, the antichiral density is 2ǫ = e
(
1−Θ

2
M

)
. Alternatively, we can recast (4.42)

as a superspace integral in a background with M = 0, and treat 2e−1ǫ as a spurious

antichiral field. Either way, we find

e−1

∫
d2Θ

2
2ǫW (Φ) =W (Φ)

∣∣
F
−MW (Φ)

∣∣
φ
. (4.43)

We see that M plays the role of the coupling to the R-violating φ-invariant, which we

identify as the antiholomorphic potential V in (4.41). It is allowed to be an arbitrary

function because δφ vanishes identically, not just up to total derivatives. Thus turning on

a nonzero M corresponds to breaking R-symmetry explicitly.

5 Discussion

In this paper, we have highlighted two unusual features of N = 1 supersymmetry on Eu-

clidean manifolds with S3-isometry (e.g. the round and squashed S4); namely, the failure
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of localization, and regularization scheme dependent ambiguities of the partition function.

Ultimately, both of these features can be traced back to the structure of off-shell super-

gravity in the old minimal formalism. The Killing spinor equation (2.3) mixes left- and

right-handed spinors through the M - and M -terms. This has the consequence that there

are backgrounds that admit only Killing spinors of the form (ǫL, ǫR), where the left- and

right-handed components cannot be “disentangled”. This is manifest in the fact that the

supercharge squares to a complex generator δ2 ∼ LK , with Kµ = ǫcRγ
µǫL being a complex

Killing vector that mixes left and right chiralities. Since δ does not square to an obvious

symmetry of the theory, it appears that SUSY-exact terms are in general not SUSY-closed.

In this paper, we have proven an equivalent statement, namely that there are no super-

symmetric invariants (SUSY-closed terms) that can be written as SUSY-exact terms. We

have explicitly identified the obstruction to exactness in terms of the non-vanishing Killing

vector L = [K,K⋆], which generates part of the isometry group SU(2)× SU(2) of S3.

While the above obstruction might not appear to be very deep at first, it has the

important consequence that the partition function must depend nontrivially on the values

of all coupling constants. We have discussed two important corollaries: first, since there

is no freedom in tuning any of the couplings, the partition function cannot be calculated

using localization. A crucial point in arriving at this result was the fact that the usual

“deformations” one utilizes to perform localization can equally be thought of as already

being part of the complete set of SUSY invariants for a given theory. Since we showed that

none of these invariants is exact, the partition function simply does not localize.

Second, we have shown that there are finite supergravity counterterms that introduce

scheme-dependent ambiguities into the partition function. Our results extend beyond the

previously studied case of SCFTs on S4 [24] to any four-dimensional supersymmetric back-

ground with S3-isometry. While in the conformal case it was shown that the finite part of

the partition function is completely unphysical, our analysis demonstrates that logZ de-

pends on relevant couplings in such a way that ambiguities are under control: if we expand

the free energy in powers of relevant couplings, we find

logZ(m,λ) = logZ(0, λ) +
3∑

i=1

(mr)iai(λ) + F̃ (mr, λ), (5.1)

where the ai are functions of the marginal couplings, and F̃ may contain all powers of mr

except n = 0, 1, 2, 3 . On S4, the logZ(0, λ)-term can be interpreted as the free energy of

the CFT, which is subject to ambiguities, and thus unphysical. As we have shown, the

terms up to cubic order in m are ambiguous as well. However, the higher-order part F̃ is

free from ambiguities and thus physical.

A similar feature has been observed for N = 2⋆ theories on S4, where the partition

function can been computed using either localization [1] or holographic techniques [40]. It

would be interesting to calculate the unambiguous part F̃ of the free energy for the N = 1

case as well, and explicitly confirm some of the results of this paper.

An obvious way to avoid the complications present in the S3-isometry case is to consider

only backgrounds for which the chirality-mixing terms in (2.3) vanish identically. This has
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led us to analyze backgrounds with U(1)R R-symmetry, which possess at least one nilpotent

supercharge, δ2 = 0. In this case, many simplifications occur: with one exception (anti-

chiral F -terms), the partition function does not depend on the values of couplings in our

Lagrangian (4.30), and localization is straightforward. However, the fact that we have

found a procedure for calculating the partition function does not necessarily mean that

the result will be sensible. As we demonstrated in section 4.4, the partition function is in

general subject to antiholomorphic ambiguities. Interestingly, the only ambiguity appears

at quartic order in relevant couplings, and thus renormalizes the cosmological constant.

This is a special feature of the BRST-like symmetry δ, which provides a trivial extension

of the isometry algebra of the background. Some of the standard arguments in Lorentzian

supersymmetry, such as the proof of non-renormalization of the vacuum energy, therefore

do not apply.

Finally, for backgrounds that preserve two supercharges of opposite chirality, Z is com-

pletely independent of all couplings, and there are no ambiguities. Within the framework of

old-minimal supergravity, the only manifolds with this property are torus-fibrations over

two-dimensional Riemann surfaces. It would be interesting to carry out localization for

explicit cases of such backgrounds, presumably paralleling the analysis in [38, 41].

There are two caveats to our analysis of ambiguities of partition functions in sections 3.4

and 4.4, which point towards interesting future directions: first, our classification of pos-

sible finite counterterms necessarily requires the existence of a regularization scheme that

preserves the symmetries of the theory. As far as we know, there is not yet a satisfactory

answer to the question when such a scheme does or does not exist for a supersymmetric

theory. If for a given theory there is no supersymmetric regularization scheme, conclusions

about the partition function, such as independence of couplings and the physical content,

would need to be reexamined. Second, we have only analyzed finite counterterms that

involve both matter couplings and curvature invariants at the same time. It would be

interesting to also analyze purely gravitational counterterms, which arise as F -type and

D-type terms evaluated on the various curvature multiplets of supergravity [30].
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A Supersymmetric tensor calculus

In order to construct supersymmetric Lagrangians, we need to know the rules for combining

superfields [17–19]. Given two multiplets S1 and S2, we can form a new multiplet

S1 × S2 ≡
(
C12, ψ12L, ψ12R, F12, F 12, A12µ, λ12L, λ12R, D12

)
. (A.1)
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Demanding that C12 = C1C2, we can work out the multiplication rules using (2.8):

C12 = C1C2,

ψ12L = C1ψ2L + C2ψ1L,

ψ12R = C1ψ2R + C2ψ1R,

F12 = C1F2 + C2F1 − ψc
1Lψ2L,

F 12 = C1F 2 + C2F 1 + ψc
1Rψ2R,

A12µ = C1A2µ + ψc
1Lγµψ2R + (1 ↔ 2),

λ12L = C1λ2L + F 1ψ2L − 1

2
γµ(A1µ −∇µC1)ψ2R + (1 ↔ 2),

λ12R = C1λ2R + F1ψ2R +
1

2
γµ(A1µ +∇µC1)ψ2L + (1 ↔ 2),

D12 = C1D2 + 2F1F 2 + 2ψc
1Rλ2R − 2ψc

1Lλ2L + ψc
1Lγ

µ

(
∇µ − i

2
bµ

)
ψ2R

− ψc
1Rγ

µ(∇µ +
i

2
bµ)ψ2L +

1

2
(Aµ

1A2µ −∇µC1∇µC2) + (1 ↔ 2). (A.2)

It is easy to see that the product operator × is symmetric, i.e. S1 × S2 = S2 × S1. This

is a result of demanding C12 = C1C2. A natural question is whether there also exists an

antisymmetric product ∧, such that C12 = 0. We can attempt to derive the multiplication

rules in a similar fashion, starting with

0 = δC12 = −ǫcLψ12L − ǫcRψ12R. (A.3)

A quick check reveals that for the trivial structure case, all the components of the product

multiplet have to be set to zero, i.e. there is no nontrivial antisymmetric product. In the

SU(2) structure case, however, we have more freedom: setting ǫR = 0, we see that eq. (A.3)

is solved by ψ12L = 0, but nonzero ψ12R. In fact, we find that there exists an antisymmetric

product

S1 ∧ S2 ≡
(
C12, ψ12L, ψ12R, F12, F 12, A12µ, λ12L, λ12R, D12

)
, (A.4)

with the following multiplication rules:

C12 = 0,

ψ12L = 0,

ψ12R = C1ψ2R − C2ψ1R,

F12 = 0,

F 12 = C1F 2 − C2F 1,
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A12µ = C1(A2µ +∇µC2) + ψc
1Lγµψ2R − (1 ↔ 2),

λ12L = C1λ2L − F 1ψ2L + γµ∇µC1ψ2R − (1 ↔ 2),

λ12R = C1λ2R + F1ψ2R − 1

2
γµ(A1µ +∇µC1)ψ2L − (1 ↔ 2),

D12 = C1D2 + 2F1F 2 − 2ψc
1Lλ2L + ψc

1Lγ
µ

(
∇µ − i

2
bµ

)
ψ2R

+ ψc
1Rγ

µ

(
∇µ +

i

2
bµ

)
ψ2L +Aµ

1∇µC2 − (1 ↔ 2). (A.5)

Similar expressions can be derived for the case ǫL = 0.
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