
J
H
E
P
0
3
(
2
0
1
5
)
1
2
8

Published for SISSA by Springer

Received: February 3, 2015

Accepted: February 28, 2015

Published: March 24, 2015

Anatomy of the amplituhedron

Sebastián Franco,a Daniele Galloni,a Alberto Mariottia and Jaroslav Trnkab

aInstitute for Particle Physics Phenomenology, Department of Physics, Durham University,

Durham DH1 3LE, U.K.
bWalter Burke Institute for Theoretical Physics, California Institute of Technology,

Pasadena, CA 91125, U.S.A.

E-mail: sebastian.franco@durham.ac.uk, daniele.galloni@durham.ac.uk,

alberto.mariotti@durham.ac.uk, trnka@caltech.edu

Abstract: We initiate a comprehensive investigation of the geometry of the amplituhe-

dron, a recently found geometric object whose volume calculates the integrand of scattering

amplitudes in planar N = 4 SYM theory. We do so by introducing and studying its strat-

ification, focusing on four-point amplitudes. The new stratification exhibits interesting

combinatorial properties and positivity is neatly captured by permutations. As explicit

examples, we find all boundaries for the two and three loop amplitudes and related geome-

tries. We recover the stratifications of some of these geometries from the singularities of

the corresponding integrands, providing a non-trivial test of the amplituhedron/scattering

amplitude correspondence. We finally introduce a deformation of the stratification with

remarkably simple topological properties.

Keywords: Supersymmetric gauge theory, Scattering Amplitudes

ArXiv ePrint: 1408.3410

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP03(2015)128

mailto:sebastian.franco@durham.ac.uk
mailto:daniele.galloni@durham.ac.uk
mailto:alberto.mariotti@durham.ac.uk
mailto:trnka@caltech.edu
http://arxiv.org/abs/1408.3410
http://dx.doi.org/10.1007/JHEP03(2015)128


J
H
E
P
0
3
(
2
0
1
5
)
1
2
8

Contents

1 Introduction 1

2 The amplituhedron 2

2.1 Tree-level amplituhedron 2

2.2 Loop geometry 3

2.3 The full amplituhedron 4

2.4 The scattering amplitude 4

3 Stratification of the amplituhedron: loop geometry 5

3.1 The degrees of freedom of C 5

3.2 Extended positivity and boundaries 6

3.3 Mini stratification 8

3.4 Full stratification 8

3.5 Summary of the method and structure of the stratification 10

4 Simple examples: basic properties 13

4.1 Stratification of G+(0, n; 1) = G+(2, n) 13

4.2 Non-minimal minors 15

5 Combinatorial stratification 16

5.1 Perfect matchings and the stratification of G+(k, n) 16

5.2 Multi-loop geometry and hyper perfect matchings 18

6 The combinatorics of extended positivity 21

6.1 Further thoughts on extended positivity 21

6.2 Hyper perfect matchings: good, bad and neutral 22

6.3 Extended positivity and the return of permutations 23

7 Two loops 25

7.1 Mini stratification 25

7.1.1 The amplituhedron 25

7.1.2 The log of the amplitude 27

7.1.3 Gluing the amplitude to its Log 28

7.2 Full stratification 30

8 Three loops 35

8.1 Mini stratification 35

9 An alternative path to stratification: integrand poles 38

9.1 The amplitude 39

9.2 The log of the amplitude 41

– i –



J
H
E
P
0
3
(
2
0
1
5
)
1
2
8

10 The deformed G+(0, n;L) 41

10.1 Examples 43

10.1.1 1-loop 44

10.1.2 2-loops 44

10.1.3 3-loops 45

10.1.4 4-loops 45

11 Conclusions and outlook 47

A Two-loop boundaries before extended positivity 49

B Geometric versus integrand stratification: explicit examples 51

1 Introduction

Formidable progress in our understanding of scattering amplitudes in gauge theory has

been achieved in the last two decades (see e.g. [1–7] and reviews [8–11]). The progress is

especially impressive for amplitudes in planarN = 4 super Yang-Mills theory where explicit

results have been obtained up to high loop order [12–19], and many interesting connec-

tions and dualities have been found including twistor strings [20], the amplitude/Wilson

loop correspondence [21–23] and many others. Amazingly, this theory enjoys an infinite-

dimensional Yangian symmetry [24], which results from the combination of superconformal

and dual superconformal invariance [25, 26] making an interesting connection to the inte-

grability of the theory [27, 28]. This infinite symmetry is obscured in the standard Feynman

diagram approach while it is completely manifest in the dual formulation of amplitudes

in this theory using the positive Grassmannian [29] (see also [15, 30–33] and recent work

on a deformed version of the story [34–38]) and the amplituhedron [39, 40]. This is a new

algebraic geometric object which generalizes the positive Grassmannian and encodes scat-

tering amplitudes in a maximally geometric way: they are simply given by its volume. The

amplituhedron is the missing link explaining how to combine Yangian invariant building

blocks to give rise to the amplitude. Different representations of the same amplitude are

beautifully translated into different triangulations of the amplituhedron. In this approach

the standard pillars of quantum field theory like locality or unitarity are derived properties

from the geometry of the amplituhedron. The existence of such a structure in planar N = 4

SYM suggests that there might be a very different formulation of the field theory which

does not use the standard Lagrangian description of physics.

The correspondence between scattering amplitudes and the amplituhedron has passed

numerous tests [39, 40], although it still remains conjectural and its study is at its in-

fancy. In this article, we introduce new tools analyzing the amplituhedron and initiate

the most comprehensive investigation of its geometry to date. A clear goal is to achieve a

systematic understanding similar to the one available for cells in the positive Grassman-

nian [41]. Among other things, we expect our ideas to be instrumental for triangulating
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the amplituhedron, and hence contribute to its practical use in constructing scattering am-

plitudes. A beautiful interplay between experimental exploration of examples, discovery of

new structures and theoretical new ideas has been a constant driving force for progress in

the understanding of scattering amplitudes. It is reasonable to expect that the examples

we study in this paper, and the ones which will be studied in the future with the help of

the tools we introduce, will nicely fit into this trend.

This paper is organized as follows. Section 2 provides a quick review of the basics

of the amplituhedron. In section 3, we introduce a stratification for it, which captures

all detailed structures of the corresponding differential form and allows us to explore its

geometry in depth. We also introduce a reduced version of the stratification, which we call

mini stratification, which captures broader features of the geometry and is amenable to a

combinatorial implementation. Section 4 contains a first encounter with the stratification

through simple examples. Section 5 introduces a powerful combinatorial implementation

of the mini stratification in terms of graphs and a new class of objects we denote hyper

perfect matchings. The combinatorics of extended positivity is the subject of section 6.

Interestingly, we find that positivity can be neatly discussed in terms of permutations.

Section 7 puts our techniques at work and investigates various geometries at 2 and 3-loops.

In section 9 we study an alternative approach to stratification, based on the singularities of

the integrand. For four particles, we find exact agreement with the geometric stratification

of the amplitude and its log, providing new and significant evidence for the amplituhedron

conjecture. In section 10 we introduce and investigate the deformed amplituhedron, which

seems to exhibit an outstandingly simple geometry. We conclude and present a vision for

future work in section 11. We also include two appendices with supporting material.

2 The amplituhedron

In this section we provide a brief introduction to the amplituhedron. We refer the reader

to [39, 40] for further details.

2.1 Tree-level amplituhedron

The amplituhedron is a generalization of the positive Grassmannian conjectured to give

all scattering amplitudes in planar N = 4 SYM theory when integrated over with an

appropriate volume form. The amplituhedron can be regarded as a generalization of the

interior of a set of n vertices ZI of dimension (k + 4), where (k + 2) is the number of

negative-helicity gluons, I = 1, 2, . . . , k + 4, and n is the total number of external gluons.

In this notation, k = 0 corresponds to MHV amplitudes. These vertices can be combined

into matrix ZIa , where a = 1, 2, . . . , n. In order to have a notion of interior we need vertices

to be ordered in a specific way. In the familiar 2-dimensional case of polygons, vertices must

be cyclically ordered to avoid the crossing of external edges connecting consecutive vertices.

The generalization of this cyclicity constraint takes the form of a positivity condition on

the matrix ZIa : all maximal minors of ZIa must be positive, i.e. ZIa ∈ M+(4 + k, n) where

M+(4 + k, n) is the space of positive (4 + k)× n matrices.

– 2 –



J
H
E
P
0
3
(
2
0
1
5
)
1
2
8

External vertices form a polytope. For k = 1 we consider a point in the interior of this

polytope, which corresponds to a linear combination of the external vertices, where the

coefficients must be positive. Each of these points will be considered projectively, and can

thus be seen as 1-planes (or lines) in k+4 dimensions. For general k, we consider a k-plane

and impose positivity conditions on the matrix of coefficients of its expansion in terms of

external points. Explicitly, a k-plane Y in the interior of the tree-level amplituhedron is

given by

Y = C · Z , (2.1)

where Z is the (k + 4) × n matrix of external vertices, C is a k × n matrix in G+(k, n),

and Y is the tree-level amplituhedron interior, given by a k× (k+ 4) matrix.1 We are not

imposing positivity on each of the k rows of the matrix C, but a condition on how the rows

of C interact with each other such that minors are positive. As a result, the amplituhedron

is not simply given by k copies of “the interior of the vertices”, but it is a more complicated

geometric object. We can also think of the amplituhedron as a map:

G+(k, n)
Z−→ G(k, k + 4) . (2.2)

The GL(k) degree of freedom of the Grassmannian, which acts on C, must also apply to

Y , thus implying the matrix Y ∈ G(k, k + 4).

2.2 Loop geometry

Each point of the tree-level amplituhedron spans a k-plane in (k + 4) dimensions; the

full amplituhedron spans all possible k-planes in (k + 4) dimensions. For each point, the

transverse space is 4-dimensional and this is where the loop-level part of the amplituhedron

lives. The degrees of freedom of each loop span a 2-plane in this transverse space. Let us

start our discussion with the k = 0 case, which at tree-level is given by the empty projective

space P3, since Y is 0-dimensional. At loop level, it corresponds to what we call the pure

loop geometry. In this case, every loop L(i) is a different linear combination of the external

vertices, which lies in P3:

L(i) = D(i) · Z , (2.3)

where the Z’s are 4-dimensional vectors, D(i) ∈ G+(2, n) maps the vertices in Z to the

transverse space, and so L(i) ∈ G(2, 4). Multiple loops are implemented by increasing the

number of matrices D(i): 
L(1)

L(2)
...

L(L)

 =


D(1)

D(2)
...

D(L)

 · Z . (2.4)

1A warning to the reader: whenever we refer to the positive Grassmannian G+(k, n), we mean the totally

non-negative Grassmannian. The boundaries of this space arise when the positive degrees of freedom become

zero. Similarly, we will use positive as a synonym of non-negative and emphasize when a given quantity is

not zero. This slight abuse of terminology will persist throughout; we hope it will not cause any confusion.
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The matrices D(i) satisfy extended positivity conditions, i.e. for any subset of them we

define

D(ij) =

(
D(i)

D(j)

)
, D(ijk) =

 D(i)

D(j)

D(k)

 , etc. (2.5)

and demand all maximal minors of each of these extended matrices to be positive, namely

D(ij) ∈ M+(4, n), D(ijk) ∈ M+(6, n), etc. In general, D(a1...am) ∈ M+(2m,n). These

conditions apply only for m ≤ n/2. In the special case of n = 4 and arbitrary L, the only

surviving conditions are mutual positivities: D(ij) ∈M+(4, n) for all pairs of i and j.

2.3 The full amplituhedron

To obtain the full amplituhedron for any n, k, L, we combine the tree-level space and the

loop space into a larger matrix 
L(1)

L(2)
...

L(L)

Y

 =


D(1)

D(2)
...

D(L)

C

 · Z (2.6)

or more neatly

Y = C · Z , (2.7)

where C is the (k+2L)×n matrix specifying the set of (k+2L) different linear combinations

of external vertices, and Y is the full amplituhedron interior. Here the positivity condition

for C is not the same as the one for C: C 6∈ G+(k+ 2L, n) (in fact, k+ 2L maybe be much

larger than n). As for the pure loop geometry, the positivity condition is now an extended

positivity. The requirements are that the combination of C with any subset of the D(i)

matrices is positive, i.e. all their maximal minors are positive, as long as the matrix has at

least as many columns as rows, i.e. that

(
C
)
,

(
D(1)

C

)
, · · · ,

(
D(L)

C

)
,

D(1)

D(2)

C

 , · · · (2.8)

are all positive, where we stop stacking D(i)’s onto C when the resulting matrix has more

rows than columns.2 Note that there is no condition that only relates the various D(i)’s

to each other, except in the absence of C, i.e. for k = 0. This novel space inhabited by C,
characterized by the extended positivity, is denoted G+(k, n;L).

2.4 The scattering amplitude

The scattering amplitude is obtained by integrating over all of the degrees of freedom of

the amplituhedron, with a specific form constrained to have logarithmic singularities on

2It is possible to stack more matrices but the maximal minors would be insensitive to this.
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the boundaries of the space. This form is the amplitude integrand, and can in principle be

constructed using methods such as Feynman diagrams, unitary cuts or BCFW recursion

relations. For arbitrary numbers of particles and loops such methods become very labo-

rious, and it would be desirable to construct the integrand directly from the definition of

the amplituhedron. There are several strategies for doing this: the first one is to try to

triangulate the amplituhedron in terms of smaller elementary spaces which have trivial dlog

forms. Recursion relations via on-shell diagrams provide examples of such triangulations,

where the rules for triangulating are dictated by the physics rather than the amplituhedron

geometry.3 Another strategy is to nail down the integrand directly, by requiring that all

spurious singularities (which do not correspond to amplituhedron boundaries) cancel. In

either approach, an understanding of the boundary structure of the space will be crucial

for systematically constructing the integrand form.

3 Stratification of the amplituhedron: loop geometry

In this section we develop tools for stratifying the amplituhedron, by which we mean finding

its boundary structure.

In this paper, we focus our attention on the k = 0 case, i.e. on the pure loop geometry,

and also restrict to n = 4. For k = 0, the matrix C disappears, and we are only left with

the D(i) matrices:

C =


D(1)

D(1)
...

D(L)

 . (3.1)

The structure at loop level is rather non-trivial due to the extended positivity condition

imposed on matrices. Note that C is not an element of the positive Grassmannian, except

for L = 1.

For n = k + 4, the positivity of external data, encoded in the matrix Z, is trivial

and the stratification of the amplituhedron corresponds to the stratification of C.4 Even

in this simplified situation, the geometry of the amplituhedron will exhibit extraordinary

richness. For general n, the process we will discuss can be regarded as the stratification

of G+(0, n;L) rather than the stratification of the amplituhedron. Independently of its

relation to the amplituhedron, the stratification of G+(0, n;L) is an interesting geometric

question in its own right.

3.1 The degrees of freedom of C

Each D(i) ∈ G+(2, n) has 2(n − 2) degrees of freedom, best parametrized by its 2 × 2

minors, known as Plücker coordinates. There are
(
n
2

)
different Plücker coordinates ∆

(i)
I ,

3See [42] for alternative diagrammatic tools for addressing this problem and [43] for interesting new ideas

on the computation of volumes of polytopes associated to scattering amplitudes.
4This follows directly from the fact that when Z is a square matrix we may choose a basis for which Z

equals the unit matrix. Then from (2.7) we see that Y = C · Z = C.

– 5 –



J
H
E
P
0
3
(
2
0
1
5
)
1
2
8

with I = {a, b} specifying which two columns a and b are involved in the minor. The ∆
(i)
I ’s

are not all independent but are subject to relations, known as Plücker relations. C gets a

contribution from each D(i), giving a total of 2L(n− 2) degrees of freedom.

Note that extended positivity, despite imposing a condition on the degrees of freedom

of different D(i), does not decrease the dimension, for the simple reason that it is just an

inequality and cannot determine any Plücker coordinate in terms of the others. This is

akin to the fact that the restriction to the positive Grassmannian, i.e. that ∆
(i)
I > 0, does

not create new relations between the coordinates ∆
(i)
I , but simply constrains them to be

positive.

However, extended positivity can restrict the allowed domain of the ∆
(i)
I further than

the simple ∆
(i)
I > 0 condition. This additional restriction can in certain cases be quite

non-trivial, and may even split the domain into disjoint regions. Later in this section,

we will introduce a mini stratification of C which is insensitive to this subtlety, and a

full stratification which refines the mini stratification and fully accounts for it. The full

stratification in effect counts all domain regions of the amplituhedron.

Regardless of which stratification we are interested in, for the purposes of counting

dimensions we only count the number of independent equalities between various ∆
(i)
I ’s.

For example, when C is top-dimensional the only relations come from the Plücker relations

which are independently present in each D(i), e.g. for i = 1 there is a Plücker relation

between various ∆
(1)
I ’s, for i = 2 there is a separate Plücker relation between the ∆

(2)
I ’s,

but we cannot write any ∆
(1)
I in terms of ∆

(2)
J ’s.

3.2 Extended positivity and boundaries

For k = 0, extended positivity enforces the condition that all D(i) are positive, as well as

all subsets of them when stacked onto each other (as long as the number of rows does not

exceed the number of columns; these larger matrices produce no additional conditions),

i.e. that (
D(i)

)
,

(
D(i)

D(j)

)
, · · · (3.2)

are all positive. This translates into various conditions on the Plücker coordinates. To

unify the conditions it is convenient to define 2m × 2m minors ∆
(i1,...,im)
I , m = 1, . . . , L,

which are all the maximal minors when stacking the matrices Di1 , . . . Dim .5 First, all ∆
(i)
I

must be positive. Extended positivity also requires the ∆
(i1,...,ım)
I ’s, which are polynomials

of order m in the ∆
(i)
I ’s, to be positive. In order to emphasize the contrast with Plücker

coordinates ∆
(i)
I , we will often refer to the m > 1 minors as non-minimal minors.

For a given number of loops L, there are
(
L
m

)
ways of choosing m matrices D(i) to

form a ∆
(i1,...,im)
J . For each of these choices, there are

(
n

2m

)
ways of choosing the set J of

2m columns out of all the n external nodes. Hence, the number of non-minimal minors

5This notation includes the 2 × 2 Plücker coordinates. In order to maintain an economic notation, we

use a single subindex I to indicate the set of columns in the larger minors.

– 6 –



J
H
E
P
0
3
(
2
0
1
5
)
1
2
8

becomes
m≤n/2∑
m=2

(
L

m

)(
n

2m

)
. (3.3)

These larger minors are not all independent, there are Plücker-like relations among them.

Boundaries of C are reached by killing degrees of freedom in it by setting minors to

zero. In other words, ∆
(i1,...,im)
I ≥ 0 has its boundary when ∆

(i1,...,im)
I = 0. The more

complicated inequalities arising from minors with m > 1 give rise to relations between

∆
(i)
I ’s. Each independent relation of this form reduces the degrees of freedom by 1. A more

precision characterization of boundaries is given below, when we discuss the stratification.

Labels. To every boundary we can associate the corresponding list of vanishing ∆
(i1,...,im)
I .

In each list, all ∆
(i1,...,im)
I , i.e. for both m = 1 and m > 1, are treated democratically. We

will refer to such lists of minors as labels. The minors which are not in the label are not

vanishing. Labels are very useful for characterizing boundaries and other configurations of

minors, although they do not fully specify them.

These labels will form the basis of the mini stratification described in section 3.3, which

will only distinguish elements in the stratification by them. However, motivated by the

physical problem of using the amplituhedron to identify all possible singularities of the

integrand, we will refine this counting in section 3.4 by noticing that there are several inde-

pendent domain regions for each label, or equivalently by identifying independent solutions

consistent with a given label.6 It is thus important to emphasize that, generically, labels

do not fully specify boundaries.

However, labels are still subject to interesting restrictions, since not every arbitrary

set of minors can be set to zero. There are two sources of hindrance:

• Plücker relations relate different ∆
(i)
I ’s and hence it is sometimes impossible to kill

a given Plücker coordinate without some other coordinate also becoming zero. The

same is in fact true for all ∆
(i1,...,im)
I ’s: they are not all independent, since there are

Plücker-like relations between them. As a result, it is not possible to exclusively set

any arbitrary combination of ∆
(i1,...,im)
I ’s to zero.

• Relations belonging to different levels of minors may be incompatible, i.e. the full

extended positivity can become impossible to satisfy, despite only being given in

terms of inequalities. This is because the relations arising from non-minimal minors

typically contain positive and negative terms, and the sum must be non-negative.

When all the Plücker coordinates are turned on, extended positivity is easily satisfied.

On the contrary if, for example, we kill a subset such that only the negative terms

survive, we can no longer satisfy positivity. Similarly, setting a ∆
(i1,...,im)
I to zero

becomes impossible if only positive terms in it are turned on. We shall later see

explicit examples of both of these occurrences.

6As it will become clearer in section 3.4, and exemplified in section 7.2, the definition automatically

accounts for the information about the sequence or path in which minors are turned off to reach a given

boundary.
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From the above discussion we conclude that while Plücker relations and their gener-

alizations for m > 1 may invalidate boundaries in an automatic way, extended positivity

does so more aggressively: it imposes by hand an ulterior check to determine whether a

given boundary exists or not. This is analogous to what happens when imposing positivity

on the Grassmannian: G(k, n)→ G+(k, n) kills “by hand” a subset of boundaries. In our

case, we go from G(k, n;L)→ G+(k, n;L). For the tree-level case G+(k, n; 0) ≡ G+(k, n),

it is a beautiful result that certain potential boundaries7 are removed in such a way so as

to generate an Eulerian poset [44].

3.3 Mini stratification

As mentioned above, the full stratification of the amplituhedron counts all independent

solutions for a given positivity-preserving label. At this point in our discussion, it is

natural to define an unrefined counting, which we call mini stratification, and serves as

a close proxy of the full stratification introduced in next section. The mini stratification

corresponds to only considering the labels of the boundaries. This counting can be used

to generate a “poor man’s” label stratification, in which multiple solutions for a given

label are collapsed into a single point, which is assigned the highest dimension of all these

solutions. In other words, the mini stratification combines boundaries into equivalence

classes determined by the labels. For brevity, we will simply refer to these equivalence

classes as the boundaries of the mini stratification.

While the mini stratification does not capture the full singularity structure of the am-

plitude, it is valuable for various reasons. First, it provides a rather complete geometric

characterization of the amplituhedron. More importantly, as we discuss in section 5 and

section 6, its value follows from the fact that it admits a very efficient combinatorial imple-

mentation. We will present examples of the mini stratification in section 7 and section 8.

3.4 Full stratification

As already discussed above, labels only include information on which minors are vanishing

and which are non-vanishing. Their level of refinement is identical to that of the matroid

strata for G+(k, n). It is often possible, however, that there are disjoint regions of domain

for the minimal minors ∆
(i)
I which satisfy the equalities of a given label, i.e. that there are

multiple solutions to the set of equalities described by the label.

We are thus naturally led to the definition of a region, which is a set of equalities and

inequalities for the ∆
(i1,...,im)
I , m = 1, . . . , L, which has a unique solution. In general, the

equalities and inequalities needed to describe a region are more than those specifying a

label: given the label, we must also specify which of the solutions the region refers to. In

the future, when we refer to a boundary of G+(k, n;L) we will mean a region as defined

here. The full stratification is defined as the stratification which distinguishes all such

regions. This suggests a natural extension of the labels introduced in the last section, to

which we refer as extended labels. Extended labels correspond to specifying not only the

vanishing ∆
(i1,...,im)
I ’s but also all other relations between minors. Such an extended label

7By this we mean configurations in which some minors vanish.
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then fully specifies a given boundary. While the mini stratification is based on labels, the

full stratification uses extended labels.

For concreteness, let us focus on n = 4, for which all non-minimal minors are 4 × 4.

Consider one such minor which, without loss of generality, we can assume to be ∆
(1,2)
1234 .8

When all ∆
(i)
I are turned on, ∆

(1,2)
1234 can be expressed in terms of Plücker coordinates as

follows:

∆
(1,2)
1234 = ∆

(1)
12 ∆

(2)
34 + ∆

(1)
23 ∆

(2)
14 + ∆

(1)
34 ∆

(2)
12 + ∆

(1)
14 ∆

(2)
23 −∆

(1)
13 ∆

(2)
24 −∆

(1)
24 ∆

(2)
13 . (3.4)

After using the Plücker relations ∆
(i)
12 ∆

(i)
34 + ∆

(i)
23 ∆

(i)
14 = ∆

(i)
13 ∆

(i)
24 for i = 1, 2, this can be

turned into the convenient form

∆
(1,2)
1234 =

(
∆

(1)
12 ∆

(2)
13 −∆

(1)
13 ∆

(2)
12

)(
∆

(1)
13 ∆

(2)
34 −∆

(1)
34 ∆

(2)
13

)
∆

(1)
13 ∆

(2)
13

+

(
∆

(1)
23 ∆

(2)
13 −∆

(1)
13 ∆

(2)
23

)(
∆

(1)
13 ∆

(2)
14 −∆

(1)
14 ∆

(2)
13

)
∆

(1)
13 ∆

(2)
13

. (3.5)

If we now turn off ∆
(1)
23 = ∆

(1)
14 = 0, we obtain

∆
(1,2)
1234 =

(
∆

(1)
12 ∆

(2)
13 −∆

(1)
13 ∆

(2)
12

)(
∆

(1)
13 ∆

(2)
34 −∆

(1)
34 ∆

(2)
13

)
∆

(1)
13 ∆

(2)
13

− ∆
(1)
13 ∆

(2)
23 ∆

(2)
14

∆
(2)
13

(3.6)

The mini stratification label for this is simply {∆(1)
14 ,∆

(1)
23 }, which is the full set of

vanishing minors. All other ∆
(i)
I ’s are strictly positive. However, we notice that there are

two regions in which we may satisfy ∆
(1,2)
1234 > 0:

• Region 1:
(

∆
(1)
12 ∆

(2)
13 −∆

(1)
13 ∆

(2)
12

)
> 0 and

(
∆

(1)
13 ∆

(2)
34 −∆

(1)
34 ∆

(2)
13

)
> 0

• Region 2:
(

∆
(1)
12 ∆

(2)
13 −∆

(1)
13 ∆

(2)
12

)
< 0 and

(
∆

(1)
13 ∆

(2)
34 −∆

(1)
34 ∆

(2)
13

)
< 0

These two regions are very easy to understand: denoting x ≡
(
∆

(1)
12 ∆

(2)
13 − ∆

(1)
13 ∆

(2)
12

)
,

y ≡
(
∆

(1)
13 ∆

(2)
34 −∆

(1)
34 ∆

(2)
13

)
and k ≡ ∆

(1)
13 ∆

(2)
23 ∆

(2)
14

∆
(2)
13

, we have the simple condition that

∆
(1,2)
1234 ≥ 0 ⇔ xy ≥ k (k > 0) (3.7)

which on the x−y plane simply corresponds to two regions whose boundary is the hyperbolic

curve xy = k. Here we see that to specify the regions within this label, all we need to do

is additionally specify the sign of x and y. The relations specifying regions 1 and 2 are

explicit examples of the type of relations included in extended labels.

In this example, if we go to a different label where we have also shut off ∆
(1,2)
1234 , i.e.

{∆(1)
14 ,∆

(1)
23 ,∆

(1,2)
1234}, we again have two regions: xy = k with x, y > 0, and xy = k with

x, y < 0.

8The simplest situation in which such a minor arises is for 2-loops, i.e. G+(0, 4; 2). In this case, this is

the only non-minimal minor.
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The full stratification contains all possible poles of the integrand. In fact, it is even

more refined than the integrand: while there are several different integrand poles that

correspond to the same label in the mini stratification, here it sometimes happens that

there are several regions contained within the same integrand pole. The example above

is an instance where this happens: as will be clear in subsequent sections, the pole of the

integrand when we set ∆
(1)
23 = ∆

(1)
14 = 0 is

〈AB34〉〈CD12〉+ 〈AB12〉〈CD34〉
〈ABCD〉〈AB12〉〈AB34〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉

. (3.8)

We have just shown that this object is composed of two disjoint regions. Provided the

amplituhedron proposal holds, identifying those regions in the full stratification which cor-

respond to the same integrand pole exactly reproduces the pole structure of the integrand.

3.5 Summary of the method and structure of the stratification

In this section we summarize the general procedure for stratifying C ∈ G+(0, n;L). As

stated earlier, in this article we will almost exclusively focus on the case of k = 0, n = 4

and arbitrary L. This case is particularly simple owing the fact that for n = 4 the ZI
matrix can be chosen to be diagonal, and hence trivial, thus positivity of external data

becomes unimportant and the stratification of G+(0, 4;L) actually coincides with the one

for the loop amplituhedron.9

As previously mentioned, every boundary of G+(0, n;L) has an associated label, i.e.

a list of vanishing minors. For any given label, there is one boundary (or region) for each

independent solution giving rise to it, in general specified by some additional inequalities.

All minors should be treated democratically. When implementing the stratification,

however, it is natural to give the Plücker coordinates ∆
(i)
I a special treatment. The reasons

for this choice include the facts that every minor ∆
(i1,...,im)
I is an order m polynomial in

∆
(i)
I ’s and, as we will discuss in section 5, the ∆

(i)
I ’s are related to certain collections

of edges, denoted perfect matchings, of simply connected graphs. Moreover, the Plücker

coordinates for each D(i) scale with a common factor under the GL(2) acting on D(i). The

dimension of each boundary is given by the number of degrees of freedom in the ∆
(i)
I ’s:

d = N∆I
−Nrel − L , (3.9)

where N∆I
is the number of non-vanishing ∆

(i)
I on the boundary and Nrel is the number

of independent equations relating the ∆
(i)
I .10 These equations may be Plücker relations

or follow from non-minimal minors that have been independently set to zero on a given

boundary. In the mini stratification, each label is assigned the dimension of the top-

dimensional region associated to it.

9The case of k > 0 is further complicated by the fact that the minors of the D(i) matrices do not have

a definite sign, and tuning these to zero does not constitute a boundary of the amplituhedron. Boundaries

are only obtained by shutting off degrees of freedom that have a definite sign.
10The subtraction of L degrees of freedom follows from the fact that Plücker coordinates are projectively

defined.
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In this way we split the positivity constraint on the matrix C in two:

• ∆
(i)
I ≥ 0.

• Larger minors ∆
(i1,...,im)
I , expressed as sums of products of ∆

(i)
I , also satisfy

∆
(i1,...,im)
I ≥ 0.

The aforementioned distinction between Plücker coordinates and non-minimal minors

reflects into a natural separation of the stratification of G+(0, n;L) into two stages. First,

we obtain all possible sets of vanishing Plücker coordinates ∆
(i)
I , subject to extended posi-

tivity conditions. At this step larger minors are not set to zero, unless they trivially vanish

as a result of the vanishing Plücker coordinates. If we are considering the full stratifica-

tion, some of these configurations can be further divided in different regions, specified by

inequalities among the non-vanishing Plücker coordinates. Next, we introduce for each

of these elements a further structure corresponding to the vanishing of non-minimal mi-

nors. This second stage reduces the dimension of boundaries by imposing constraints on

the non-vanishing ∆
(i)
I ’s. Depending on whether we are interested in the mini or the full

stratification, it is implemented slightly differently.

The first stage in the stratification thus corresponds to the following two steps:

1. Classify potential boundaries according only to the vanishing Plücker coordinates.

This corresponds to independently performing the positroid stratification of each

D(i), i.e. of each G+(2, n).

2. Some of these collections violate the extended positivity of the larger minors

∆
(i1,...,im)
I ≥ 0 and are thus removed. The surviving collections of ∆

(i)
I represent

all the labels of G+(0, n;L) for which non-minimal minors can be non-negative.

Step 1 produces the Lth power of the positroid stratification of G+(2, n) and is inde-

pendent of what type of stratification we are considering. We will denote the numbers of

potential boundaries with dimension d obtained at this first step as N(d), where d is deter-

mined using (3.9). Step 2 represents a further refinement of this decomposition, removing

some of the potential boundaries obtained at step 1 by demanding extended positivity.

We refer to the number of remaining boundaries as N (d). These boundaries can be orga-

nized in a poset that we denote Γ0, where at the top element corresponds to all minors

non-vanishing. Every element in Γ0 is associated to a set of vanishing ∆
(i)
I ’s. In the case

of the full stratification, this information might not uniquely fix the element of Γ0, due

to the multiplicity of regions. A combinatorial approach for constructing Γ0 in the mini

stratification will be introduced in section 5.

Independently of whether we are constructing the mini or the full stratification, for

each element in Γ0 there are, generally, multiple boundaries, which arise from setting to

zero non-minimal minors which are not automatically vanishing due to vanishing Plücker

coordinates. The procedure for systematically constructing these boundaries is:

3. For each element of Γ0 and its collections of surviving ∆
(i)
I , we first classify non-

minimal minors ∆
(i1,...,im)
I ≥ 0, m > 1, into three categories:

– 11 –
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d0 d1 

Figure 1. A natural decomposition of the poset associated to the stratification. Γ0 corresponds to

2× 2 minors and Γ1 corresponds to non-minimal ones.

(i) Those that are trivially zero given the list of vanishing ∆
(i)
I .

(ii) Those that are manifestly positive, because only positive terms are turned on

by the given collection of non-zero ∆
(i)
I .

(iii) Those that have both positive and negative terms turned on.

4. Given the previous classification, for each element of Γ0 the additional boundary

structure is obtained by turning off combinations of type (iii) ∆
(i1,...,im)
I . Additionally,

for the full stratification we may sometimes obtain additional boundaries from type

(i) non-minimal minors. The mini and the full stratifications differ in the structure

arising from this step.

This new set of boundaries can be nicely captured by additional posets Γ1 emanating

from every point in Γ0. It is important to emphasize that, in general, each point in Γ0 can

have a different Γ1. In addition, the explicit form of Γ0 and the Γ1’s generically depends

on whether we are considering the mini or full stratification. The top element of each

Γ1 is characterized by having all non-minimal minors of types (ii) and (iii) non-vanishing.

Figure 1 shows a cartoon of the structure of the full stratification poset.

Note that the construction of the Γ1’s requires caution. First, not all type (iii) minors

can always be set to zero. Non-minimal minors are in general not independent and it

is necessary to explicitly check whether it is possible to shut them off while preserving

the positivity of the type (ii) and type (iii) larger minors and of the Plücker coordinates

∆
(i)
I . This becomes particularly important when trying to turn off combinations of them.

Moreover, if considering the full stratification, for every label we should consider all separate

regions. Finally, the computation of the dimension of the boundaries via equation (3.9)

can be subtle. The vanishing of the larger minors should be taken into account as extra

relations among Plücker coordinates, and hence contribute to Nrel in (3.9), only if they are

independent from the other conditions, i.e. Plücker relations plus the possible vanishing of

other larger minors. Explicit examples of all these issues are given in section 7.
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4 Simple examples: basic properties

This section further illustrates some of the basic properties of positivity in terms of simple

examples.

4.1 Stratification of G+(0, n; 1) = G+(2, n)

Let us first consider the 1-loop geometry. A top-dimensional cell of G+(0, n, 1) ≡ G+(2, n)

has all
(
n
2

)
= 1

2n(n − 1) Plücker coordinates turned on. There are
(
n2

2 −
n
2 − 2n+ 3

)
independent Plücker relations; together with the GL(2) invariance which removes one extra

degree of freedom by rescaling the coordinates, we get

1

2
n(n− 1)−

(
n2

2
− n

2
− 2n+ 3

)
− 1 = 2(n− 2) (4.1)

degrees of freedom. Boundaries are obtained by setting some ∆I ’s to zero in a way that

is compatible with the Plücker relations and ∆J > 0. Since in this case there are no

non-minimal minors, there is no distinction between mini and full stratification. From

each boundary it is then possible to further set more ∆I to zero in a way compatible

with the Plücker relations and ∆J > 0 to obtain all of the sub-boundaries. Iterating this

procedure until reaching the zero-dimensional boundaries produces the stratification of

G+(2, n). There are efficient combinatorial techniques that can be employed for doing this

in a quick and systematic way [45], which will be briefly reviewed in section 5.1.

The boundaries can be conveniently organized into levels according to their dimensions.

Connecting with arrows each boundary to its sub-boundaries creates a poset. An example

is provided in figure 2, where we illustrate the stratification of G+(2, 4).11 In this example

there are 6 Plücker coordinates: ∆12, ∆13, ∆14, ∆23, ∆24, ∆34 and one Plücker relation:

∆12∆34 + ∆23∆14 = ∆13∆24 . (4.2)

Some remarks are already in order:

• At the first step, going to the 3-dimensional boundaries, we only turn off one Plücker

coordinate. Since there are six Plücker coordinates that can be turned off, we would

naively expect six different 3-dimensional boundaries. Instead, as shown in figure 2,

there are only four of them. This is because once we restrict the ∆I ’s to be positive,

two of these would-be boundaries are inconsistent with the Plücker relations. For

example, killing ∆13 gives

∆12∆34 + ∆23∆14 = 0 , (4.3)

which can only be satisfied if we do not restrict ourselves to the strictly positive

domain. This is the first example of positivity killing boundaries “by hand”. This

phenomenon was already studied in [45] and emerged naturally from the methods

therein. We note that this is not imposing extended positivity yet, which imposes

compatibility of relations from different loops; this is positivity at a single loop level.

11This poset has already appeared in the literature, see e.g. [29, 45].
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(14) (23) (24)(13) (34) (12)

(12,23) (24,34) (12,24) (14,24) (23,24)(13,34) (13,14) (12,13) (13,23) (14,34) (23,34) (12,14)

(12,14,24) (12,23,24)(13,14,34) (13,23,34) (12,13,14) (12,13,23) (12,13,24,34) (13,14,23,24) (14,24,34) (23,24,34)

(12,13,14,23,24)(12,13,14,24,34) (12,13,23,24,34) (13,14,23,24,34)

(12,13,14,23,24,34)

Figure 2. Boundaries of G+(2, 4). The parentheses indicate which Plücker coordinates are turned

on. The top level has all 6 coordinates turned on and has dimension 4, the bottom level has only

one coordinate turned on and has dimension 0.

• For several 2-dimensional boundaries some extra ∆I had to be set to zero in order

to satisfy the Plücker relation. For example, starting from the boundary with non-

vanishing (12, 13, 14, 24, 34), i.e. where we have turned off ∆23, it is not possible to

only kill ∆12, because the Plücker relation would then become

∆13∆24 = 0 , (4.4)

which is not possible on any non-zero domain. Note here that positivity is not the

issue, it is the violation of the Plücker relation.

• As mentioned, the boundaries constructed in this way form a poset. Moreover, this

poset is Eulerian, i.e.

4∑
d=0

(−1)dN(d) = 1 , (4.5)

where N(d) is the number of boundaries of dimension d. We note that for this simple

example there is no distinction between mini and full stratification.

• The full extent of extended positivity never comes into play in this example. Having

only one matrix, we never need to consider whether minors of different matrices are

compatible. This will however not be the case for the example of G+(0, n;L = 2).
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4.2 Non-minimal minors

Before developing a practical implementation for it in the coming section, it is illuminating

to consider a few explicit examples of the classification of non-minimal minors introduced

in section 3.5.

Let us consider the simple case of G+(0, 4; 2), which has 12 Plücker coordinates. From

figure 2, we see that G+(0, 4; 1) has 33 boundaries. The square of this positroid stratifi-

cation then has 332 = 1 089 configurations, the top-dimensional one being that with all

12 ∆
(i)
I ’s turned on, giving dimension 8. All these configurations automatically satisfy the

two Plücker relations, both of the form (4.2), as well as the non-negativity of all Plücker

coordinates.

Some of these configurations, however, do not satisfy the extended positivity ∆
(1,2)
1234 ≥

0, with ∆
(1,2)
1234 given in terms of Plücker coordinates in (3.4). One such configurations

corresponds to the set of vanishing Plücker coordinates, i.e. label, {∆(2)
12 ,∆

(2)
23 ,∆

(2)
14 ,∆

(2)
34 ,

∆
(2)
24 }. In this case, we have

∆
(1,2)
1234 = 0 + 0 + 0 + 0 + 0−∆

(1)
24 ∆

(2)
13 , (4.6)

which is explicitly negative. We hence conclude that this label does not correspond to a

boundary.

Let us now present examples of the three different types of behaviors identified in

section 3.5.

• Type (i): for the label {∆(1)
12 ,∆

(2)
12 ,∆

(1)
14 ,∆

(2)
14 ,∆

(1)
13 ,∆

(2)
13 }, we automatically have

∆
(1,2)
1234 = 0 . (4.7)

• Type (ii): for the label {∆(2)
12 ,∆

(2)
23 ,∆

(2)
14 ,∆

(2)
13 ,∆

(2)
24 }, we have

∆
(1,2)
1234 = ∆

(1)
12 ∆

(2)
34 + 0 + 0 + 0− 0− 0 , (4.8)

which is strictly positive. We then cannot reach new boundaries by only turning off

∆
(1,2)
1234 .

• Type (iii): for the label {∆(1)
12 ,∆

(1)
34 }, we obtain

∆
(1,2)
1234 = 0 + 0 + ∆

(1)
23 ∆

(2)
14 + ∆

(1)
14 ∆

(2)
23 −∆

(1)
13 ∆

(2)
24 −∆

(1)
24 ∆

(2)
13 , (4.9)

which has both positive and negative contributions. This type of non-minimal minor

can in principle be turned off without turning off Plücker coordinates. This is possible

whenever there are no obstructions coming from relations with other non-minimal

minors, which in this particular case do not exist.

In the combinatorial approach we will introduce in the coming sections, the building

blocks naturally correspond to entire terms in the non-minimal minors rather than only

factors within them.
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5 Combinatorial stratification

There is a natural, combinatorial implementation of the mini stratification of the loop

geometry, to which we will refer to as combinatorial stratification, which generalizes the

graphical stratification first introduced by Postnikov for G+(k, n) [41]. This extension in-

cludes the more general cases that appear in G+(0, n;L), for which extended positivity can

be systematically incorporated as explained in section 6. The language of this stratification

is not matroids, positroids, Plücker coordinates, and permutations, but is simply that of

perfect matchings and perfect orientations. The combinatorial structures discussed in this

section only depend on labels and hence correspond to the mini stratification.

5.1 Perfect matchings and the stratification of G+(k, n)

The stratification illustrated in figure 2 can be achieved through a variety of methods,

extensively discussed in [45]. Here we provide a brief summary of its graphical implemen-

tation.

Following [41], every cell of the positive Grassmannian G+(k, n) can be associated

to a planar bicolored graph,12 which in turn determines a specific set of totally positive

Plücker coordinates. Furthermore, it is also possible, as we do in this paper, to restrict to

graphs which are not only bicolored but that are bipartite. Figure 3 shows the graphical

representation of the top-dimensional cell of G+(2, 4) and its lower dimensional boundaries.

Perfect matchings are fundamental objects in the study of bipartite graphs. A perfect

matching is a sub-collection of edges such that every internal node is the endpoint of only

one edge, while external nodes may or may not be contained in the perfect matching.13 As

an example, the top-dimensional cell of G+(2, 4) has 7 perfect matchings, which we present

in figure 4.14

There exists a precise map between perfect matchings and Plücker coordinates. The

map is based on perfect orientations, which are flows over the edges of the graph constructed

according to the following rules:

• White nodes must have one incoming arrow and the rest outgoing.

• Black nodes must have one outgoing arrow and the rest incoming.

Going from a perfect matching to a perfect orientation is a simple matter of drawing an

arrow pointing from black node to white node over those edges that the perfect matching

occupies, i.e. the red edges in figure 4, and the rest of the arrows according to the above

rules. Given a perfect orientation, its source set is the set of external nodes whose edges

point into the graph. The label I of the source set of a perfect orientation corresponds to

12To be precise, it is associated to an equivalence class of graphs, which differ by certain moves and

reductions.
13External nodes are those that lie on the boundary. The objects we have just defined are, more precisely,

denoted almost perfect matchings in the literature. For brevity, we will simply refer to them as perfect

matchings. Similarly, we refer to edges as external or internal depending on whether they terminate on

external nodes or not.
14There are powerful methods for obtaining the perfect matchings of a graph, see e.g. [46].
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(12,13,14,23,24,34)

(12,13,14,23,24)(12,13,14,24,34) (12,13,23,24,34) (13,14,23,24,34)

(12,14,24) (12,23,24)(13,14,34) (13,23,34) (12,13,14) (12,13,23)(12,13,24,34)(13,14,23,24)(14,24,34) (23,24,34)

(12,23) (24,34) (12,24) (14,24) (23,24)(13,34) (13,14) (12,13) (13,23) (14,34) (23,34) (12,14)

(14) (23) (24)(13) (34) (12)

Figure 3. Boundary structure of G+(2, 4) and the graphs associated to each boundary. For each

graph we indicate the set of non-vanishing Plücker coordinates.

1 2 3 4

5 6 7

Figure 4. The seven perfect matchings for the bipartite graph associated to the top-dimensional

cell of G+(2, 4). Edges in the perfect matchings are shown in red. The graph is embedded into a

disk, whose boundary is shown in gray.

– 17 –



J
H
E
P
0
3
(
2
0
1
5
)
1
2
8

{1,3}

1 2

4 3

{3,4} {1,2} {1,4}

{2,3} {2,4} {2,4}

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

1 2

4 3

ǻ13 ǻ34 ǻ12 ǻ14

ǻ23 ǻ24 ǻ24

Figure 5. Perfect orientations corresponding to the perfect matchings shown in figure 4. The

edges of the perfect matchings are shown in red, the source set is labeled underneath each graph

in green and the Plücker coordinate associated to each perfect flow is in blue. The last two perfect

orientations have the same sources and hence contribute to the same Plücker coordinate.

the index of the associated Plücker coordinate ∆I . Multiple perfect matchings can share

the same source set, which indicates that they represent contributions to the same Plücker

coordinate. Such perfect matchings correspond to the same point in the matroid polytope.

The perfect orientations and source sets associated to figure 4 are shown in figure 5.

It is possible to obtain the stratification by using the graph as a starting point. The

way to proceed is to successively remove edges, following the prescription in [45, 47]. This

kills the perfect matchings that occupied those edges. Doing this for the example under

consideration we obtain the lattice shown in figure 6.

The stratification of G+(k, n) is then achieved by identifying those perfect matchings

that only differ by internal edges, equivalently those perfect matchings which contribute to

the same Plücker coordinate. To obtain the stratification of the example at hand, G+(2, 4),

we identify the perfect matchings 6 and 7. This in turn causes the boundaries colored in

green to be identified with other boundaries of the same dimension, and the boundaries

colored in blue with other boundaries of lower dimension. Following [45], we refer to

these processes as horizontal and vertical identifications, respectively. The result of this

identification is illustrated in figure 7, which perfectly coincides with figures 2 and 3.

5.2 Multi-loop geometry and hyper perfect matchings

Based on our previous discussion, the natural approach for treating the k = 0, L-loop

geometry G+(0, n;L) is to introduce one bipartite graph associated to the top dimensional

cell of G+(2, n) per loop, and to regard the union of these L identical disjoint graphs as a

unified object in its own right.

As for G+(k, n), perfect matchings of the multi-component bipartite graph play a

central role. In order to emphasize the disjoint nature of the underlying graphs we will

refer to them as hyper perfect matchings, reserving the term perfect matching for those on
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Figure 6. Stratification of the graph associated with the top-dimensional cell of G+(2, 4). Below

each graph we indicate the surviving perfect matchings. When 6 and 7 are identified, green and

blue nodes in the poset are subject to horizontal and vertical identifications, respectively.

each component. Denoting pi the perfect matchings on the first component, qj the ones on

the second component, etc, an hyper perfect matching takes the form

Pi,j,k,... = piqjrk . . . . (5.1)

The first step, before incorporating the effect of extended positivity, is to produce the

Lth power of the 1-loop stratification, as done in section 4.2. This can be done in two ways:

• Performing the combinatorial stratification introduced in [45, 47] of the L-component

graph, considered as a unified object. This involves constructing the face lattice of

the matching polytope and identifying hyper perfect matchings that correspond to

the same point in the matroid polytope or equivalently, in more practical terms,

those differing only at internal edges. Here matching and matroid polytopes indicate

their obvious generalizations to disjoint graphs. In practice, the matroid polytope

identification corresponds to identifying hyper perfect matchings which only differ on

internal edges. This method is straightforward to implement.

• Taking L copies of the 1-loop stratification in which perfect matchings from different

loops are given a distinct name and multiplying them together. Effectively, this is

equivalent to directly taking the Lth power of the 1-loop result, whilst keeping track

of which graph component perfect matchings belong to.
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Figure 7. Boundary structure of G+(2, 4), obtained through identification of perfect matchings

6↔ 7. Below each graph we indicate the surviving perfect matchings.

The second method is computationally much easier to implement and faster to execute,

and will therefore be adopted from here on. However, it is often conceptually useful to

think in terms of the first one.

Like the positroid stratification of the positive Grassmannian, its Lth power automat-

ically gives rise to a poset with Euler number E = 1. This can be understood in different

ways. First, as we mentioned above, this is in fact the positroid stratification of a graph

made out of L disjoint components. Alternatively, one can understand this by thinking

that there are L nested Eulerian posets. Our explicit results in section 7, section 8 and

section 10 confirm this general result.

Let us see how these ideas work for G+(0, 4; 2). In this case, we need to consider two

graphs for the top-dimensional cell of G+(2, 4) as shown in figure 8. Each of them has
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Figure 8. The starting graph for the stratification of two loops is simply two separate identical

planar graphs for the top-dimensional cell of G+(2, n) (here n = 4), each representing one loop.

7 perfect matchings, which we call pi and qj , i, j = 1, . . . , 7. The combined graph thus

has 72 = 49 hyper perfect matchings Pi,j = piqj . The matroid identification of perfect

matchings on each loop, p6 ↔ p7 and q6 ↔ q7, implies the identification of hyper perfect

matchings P6,j ↔ P7,j and Pi,6 ↔ Pi,7. The identifications arising from p6 ↔ p7 and

q6 ↔ q7 are automatically implemented if we only use the labels in figure 7: hyper perfect

matchings P7,j and Pi,7 simply do not appear.

6 The combinatorics of extended positivity

The procedure explained in the previous section automatically implements the Plücker

relations and the positivity of the ∆
(i)
I ’s, but not yet the full extended positivity. The

next step of the process is to shrink the poset we have just generated by eliminating

those points which violate extended positivity. The purpose of this section is to introduce

efficient combinatorial methods to deal with positivity based on the properties of hyper

perfect matchings.

6.1 Further thoughts on extended positivity

Before introducing a combinatorial approach, it is useful to revisit our discussion of

extended positivity from section 3.2 and the observations made for explicit examples in

section 4.

Boundaries can be associated to labels, i.e. to lists of vanishing minors, generally of

different dimensions, ∆
(i1,...,im)
J , m = 1, . . . , L. Extended positivity demands the non-

vanishing ones to be strictly positive. The ∆
(i1,...,ım)
J ’s, are polynomials in which every

term is an order m product of ∆
(i)
I ’s coming from different loops. For illustration purposes,

consider the single 4× 4 minor that exists for G+(0, 4; 2), which was presented in (3.4). It

is given by

∆
(1,2)
1234 = ∆

(1)
12 ∆

(2)
34 + ∆

(1)
23 ∆

(2)
14 + ∆

(1)
34 ∆

(2)
12 + ∆

(1)
14 ∆

(2)
23 −∆

(1)
13 ∆

(2)
24 −∆

(1)
24 ∆

(2)
13 . (6.1)

This example illustrates the behavior of general minors. From the point of view of a given

2m × 2m minor, there is a rather obvious distinction among those terms which: appear

with a positive sign, appear with a negative sign or do not appear. In the coming section we

will translate the different types of terms into a classification of hyper perfect matchings.
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6.2 Hyper perfect matchings: good, bad and neutral

The different types of contributions to a given minor can be translated into a classification

of hyper perfect matchings.

Following the discussion in section 5.1, for every loop there is a correspondence between

Plücker coordinates ∆
(i)
`a`b

in G+(2, n) and perfect matchings.15 The Plücker coordinate

associated to a given perfect matching is determined by the source set of the corresponding

perfect orientation.

Since every term in a 2m × 2m minor is a product of m Plücker coordinates coming

from different loops, the previous map implies that every such term can be identified with

a hyper perfect matching. Extending what we did for perfect matchings, here we also

discuss hyper perfect matchings after identifications following from the matroid polytope

or, equivalently, distinguishing them only by their external edge content. For m > 1,

however, the sign of terms vary, as e.g. in (6.1).

For every non-minimal minor, we will thus define the following classification of hyper

perfect matchings:

• Good: it corresponds to a positive term in the minor.

• Bad: it corresponds to a negative term in the minor.

• Neutral: it does not appear in the minor.

Let us investigate in more detail how these concepts work for the example in (6.1).

The corresponding graph is shown in figure 8 and the map between perfect matchings for

each loop and Plücker coordinates is given in figure 5. In terms of perfect matchings and

hyper perfect matchings, we have

∆
(1,2)
1234 = ∆

(1)
12 ∆

(2)
34 + ∆

(1)
23 ∆

(2)
14 + ∆

(1)
34 ∆

(2)
12 + ∆

(1)
14 ∆

(2)
23 − ∆

(1)
13 ∆

(2)
24 − ∆

(1)
24 ∆

(2)
13 .

p3 q2 p5 q4 p2 q3 p4 q5 p1 q6 p6 q1

P3,2 P5,4 P2,3 P4,5 P1,6 P6,1

(6.2)

For this minor, we thus have:

• Good: P3,2, P5,4, P2,3, P4,5

• Bad: P1,6, P6,1

while all other hyper perfect matchings are neutral.

Specifying the label completely determines which hyper perfect matchings are present.

The converse is, however, not true.

We now have a powerful technology for incorporating extended positivity into our

stratification. For a given minor to be positive, some of its good hyper perfect matchings

must survive. Conversely, a minor violates positivity if only bad hyper perfect matchings

are present. We can also see how to, in the language of section 3.5, go from Γ0 to Γ1

15As explained in section 5, the map becomes a bijection after the identification of perfect matchings

following the matroid polytope has been implemented.
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by turning off m > 1 minors. Such minors can vanish without sending to zero additional

Plücker coordinates only if both good and bad hyper perfect matchings are simultaneously

present. Note that this condition is necessary but not sufficient.

Practical implementation. In cases with multiple m > 1 minors, a good approach for

implementing extended positivity is as follows:

• For every minor, determine whether a given hyper perfect matching Pi is good, bad

or neutral. For each hyper perfect matching, this information is easily stored in a

vector whose length is the number of non-minimal minors. If Pi is bad for a given

minor, the corresponding entry is set to be the complex number i; if Pi is good, the

entry is set to 1; if Pi is neutral, the entry is 0.

• We then generate a single vector for each boundary, by adding the vectors associated

to all hyper perfect matchings in it.

• If in the final vector the argument of the complex number in any entry is π/2, the

boundary has at least one relation with only negative terms turned on, so it violates

extended positivity and should be removed. If the argument is 0, the corresponding

minor has only positive terms turned on or none at all, and hence cannot be further

turned off to go to a lower dimensional boundary.

It is straightforward to implement this method with any algebraic manipulation software.

We stress that sticking to this method is however not strictly necessary to obtain the

stratification. For it, only knowledge of vanishing minors is necessary and, as we have just

seen, hyper perfect matchings provide a highly efficient language for dealing with them.

6.3 Extended positivity and the return of permutations

Permutations play a central role in the classification of cells in the positive Grassman-

nian. Remarkably, as we explain in this section, extended positivity in G+(0, n;L) is also

beautifully linked to permutations.

Consider a hyper perfect matching Pi,j,k,... = piqjrk . . .. Let us call {sj , tj}, {sk, tk},
{sl, tl}, . . . the pairs of sources for each of the constituent perfect matchings. The columns

identifying the minor that the hyper perfect matching contributes to are given by the

union of these source sets. The classification of the hyper perfect matching is determined

by the parity of the number of crossings in the source set. Let us denote a1, a2 the ordered

source set for the first loop under consideration, b1, b2 the ordered source set for the second

loop, etc. Then, define εa1a2b1b2··· to be the ordinary antisymmetric tensor, with the slight

modification that the ordered indices are not necessarily consecutive, but do need to be

monotonically increasing. For example, ε1256 = ε1234 = 1 and ε5739 = 1 but ε2648 = −1 and

ε4849 = 0. The classification of hyper perfect matchings then reduces to:

εa1a2b1b2··· =

{ 1⇒ good

−1⇒ bad

0⇒ neutral

(6.3)
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1 2

34

Bad

1 2

34

Neutral

616,1 qpP  313,1 qpP 

1p6q
1p

3q

Figure 9. P1,6 is a bad perfect matching. P1,3 is instead neutral, since the crossing does not occur

in the interior of the graph. In fact P1,3 does not occupy all four external nodes, equivalently all

columns in the minor.

1 2

34

Good

1 2

34

Good

545,4 qpP 
323,2 qpP 

4p 5q

2p

3q

Figure 10. P2,3 and P4,5 are two examples of good perfect matchings.

Let us discuss in further detail the graphical implementation of extended positivity.

For doing so, we draw a line connecting the pairs of sources for each perfect matching in a

given hyper perfect matching and superimpose them on a single graph.

Bad hyper perfect matchings. Bad hyper perfect matchings are those for which the

lines between sources intersect an odd number of times in the interior of the graph. Edges

touching at external nodes do not count towards the intersections. Figure 9 shows an

example of a bad perfect matching for the n = 4, 2-loop case, P1,6 = p1q6.16 The sources

for p1 are {1, 3} and the ones for q6 are {2, 4}. Their union occupies all 4 external nodes

and hence all the columns in the minor. The lines between sources cross once.

Good hyper perfect matchings. They are those whose lines intersect an even number

of times in the interior of the graph. Two examples are presented in figure 10.

Neutral hyper perfect matchings. When the lines joining sources touch on external

points, the configuration does not occupy all columns in the minor and hence it does not

contribute to it. An example is shown in figure 9.

16Notice that P1,7 = p1q7 is also a bad perfect matching, but it coincides with P1,6 after the matroid

polytope identification.
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1

mlkjmlkj srqpP ,,,

5
2 4

3

10 6
79

8

jp kq lr

ms

Figure 11. This hyper perfect matching is good with regards to the 4× 4 minor involving loops p

and q and matrix columns 2, 3, 8, 9 and is bad with regards to loops r and s and columns 3, 5, 7, 8.

We would like to emphasize that, generally, a hyper perfect matching can be good with

regards to a non-minimal minor but bad with regards to another one. An example of this

situation is provided in figure 11.

7 Two loops

To illustrate the techniques presented above, we stratify the amplituhedron and the log of

the amplitude in the case of k = 0 for 4 particles at 2-loops. We first present the mini

stratification introduced in section 7.1. As a crosscheck, the results have been derived

both in terms of hyper perfect matchings and directly using Plücker coordinates and the

relations between them. The full stratification, accounting for all solutions arising from

factorization, is presented in section 7.2.

7.1 Mini stratification

Let us begin our analysis by classifying boundaries according to their labels.

7.1.1 The amplituhedron

The starting point is the graph in figure 8, which has 72 = 49 hyper perfect matchings.

The 1-loop stratification is shown in figure 7. To square it, we produce an equivalent set

of boundaries for the second graph; the boundaries of both are summarized in table 1.

Every boundary in the left table must be multiplied by all boundaries in the right table.

This automatically accounts for the Plücker relations and the positivity of all Plücker

coordinates ∆
(i)
I > 0. For amusement, we pictorially show all 332 = 1 089 boundaries in

figure 15. Organizing these boundaries according to their dimension we obtain the results

summarized in the first column of table 2, where we show the number of boundaries N of

each dimension. This corresponds to performing step (1) in section 3.5.
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Dim Boundaries of graph 1

4 {p1, p2, p3, p4, p5, p6}

3
{p1, p2, p3, p4, p6}, {p1, p2, p3, p5, p6},
{p1, p2, p4, p5, p6}, {p1, p3, p4, p5, p6}

2

{p1, p2, p4}, {p1, p2, p5}, {p1, p3, p4},
{p1, p3, p5}, {p1, p2, p3, p6},
{p1, p4, p5, p6}, {p2, p4, p6},

{p2, p5, p6}, {p3, p4, p6}, {p3, p5, p6}

1

{p1, p2}, {p1, p4}, {p1, p3}, {p1, p5},
{p2, p4}, {p2, p5}, {p3, p4}, {p3, p5},
{p2, p6}, {p3, p6}, {p4, p6}, {p5, p6}

0 {p1}, {p2}, {p3}, {p4}, {p5}, {p6}

Dim Boundaries of graph 2

4 {q1, q2, q3, q4, q5, q6}

3
{q1, q2, q3, q4, q6}, {q1, q2, q3, q5, q6},
{q1, q2, q4, q5, q6}, {q1, q3, q4, q5, q6}

2

{q1, q2, q4}, {q1, q2, q5}, {q1, q3, q4},
{q1, q3, q5}, {q1, q2, q3, q6},
{q1, q4, q5, q6}, {q2, q4, q6},

{q2, q5, q6}, {q3, q4, q6}, {q3, q5, q6}

1

{q1, q2}, {q1, q4}, {q1, q3}, {q1, q5},
{q2, q4}, {q2, q5}, {q3, q4}, {q3, q5},
{q2, q6}, {q3, q6}, {q4, q6}, {q5, q6}

0 {q1}, {q2}, {q3}, {q4}, {q5}, {q6}

Table 1. List of boundaries, in terms of perfect matchings, for each component of the graph in

figure 8.

Dim N NM NM

8 1 1 1

7 8 8 9

6 36 36 44

5 104 104 140

4 208 178 274

3 288 224 330

2 264 216 264

1 144 128 136

0 36 34 34

Table 2. Number of boundaries NM of the n = 4, 2-loop amplituhedron, of various dimensions.

N is the number of boundaries before the positivity of ∆
(1,2)
1234 is implemented. NM is the surviving

number of boundaries after this condition is enforced, but before non-trivial vanishing of ∆
(1,2)
1234

is considered. We use a subindex M to emphasize quantities which are computed in the mini

stratification.

In agreement with our general statement in section 5.2, the poset for the square of the

positroid stratification of G+(2, 4) is Eulerian:

8∑
i=0

(−1)iN(i) = 36− 144 + 264− . . .− 8 + 1 = 1 . (7.1)

Extended positivity only imposes one additional condition: that the 4 × 4 minor

∆
(1,2)
1234 ≥ 0. The bad perfect matchings here are quickly found to be the one shown in

figure 9 and the one where p and q are swapped, i.e. P1,6 and P6,1; the good perfect match-

ings are those shown in figure 10 and their p ↔ q counterparts, i.e. P2,3, P4,5, P3,2 and

P5,4, cf. (6.2).

Next, we remove all boundaries containing P1,6 or P6,1, unless they also contain any

of P2,3, P4,5, P3,2 or P5,4. This procedure corresponds to performing step (2) in section 3.5
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and yields the middle column in table 2. It is very interesting to see that this column also

forms an Eulerian poset:

8∑
i=0

(−1)iN (i)
M = 34− 128 + 216− . . .− 8 + 1 = 1 . (7.2)

This is in general not true at higher loops. However, we will later observe in section 10.1.4

that this is also the case at 4-loops.

Finally, we construct new boundaries by further imposing the vanishing of the 4 × 4

minor ∆
(1,2)
1234 on those boundaries on which it is possible and not automatic due to the

vanishing of Plücker coordinates. Its expression in terms of Plücker coordinates is given

in (6.1). This corresponds to steps (3) and (4) in section 3.5. For every boundary in

the NM column of table 2 for which it is possible to impose the equality in (6.2), we get

an additional boundary of one dimension less. The final answer for the total number of

boundaries of the amplituhedron is displayed in the right-hand column in table 2. The

poset is no longer Eulerian:

8∑
i=0

(−1)iN
(i)
M = 34− 136 + 264− . . .− 9 + 1 = 2 . (7.3)

Remarkably, in section 9 we will reproduce the right column of table 2 by studying the

singularities of the integrand.

7.1.2 The log of the amplitude

Let us now investigate the geometric properties of another object related to the amplitude.

While the fundamental object of interest in field theory is the amplitude, in order to make

a connection with the S-matrix we are really interested in its log, S ∼ log(A). Writing the

loop expansion of A as

A = 1 + gA1 + g2A2 + . . . , (7.4)

where AL is the L-loop contribution, and expanding log(A) we find the second-order cor-

rection to the log of the amplitude to be g2
(
A2 −

A2
1

2

)
.

Physically, the log of the amplitude is a very interesting object. All amplitudes are

IR divergent, with the divergence going as 1
ε2L

for the L-loop contribution, in dimensional

regularization. However, the divergence of the log of the amplitude has a fixed order, always

going as 1
ε2

. In the 2-loop case this manifests itself in an exact cancellation of higher order

divergences between the A2 and
A2

1
2 terms.

Let us continue focusing on k = 0, n = 4 and L = 2. The amplitude A2 can be viewed

as two D(i) ∈ G+(2, 4) with the additional condition that the 4 × 4 minor ∆
(1,2)
1234 ≥ 0.

On the other hand, A2
1 is simply the square of the 1-loop amplitude, and corresponds to

two D(i) ∈ G+(2, 4) with no extra condition imposed (the factor of 1
2 corresponds to the

symmetrization of loop variables and is of no geometric importance). Then, the difference

between these two objects is clearly given by two D(i) with ∆
(1,2)
1234 ≤ 0. We thus conclude

that, from a geometric standpoint, the log of the amplitude at 2-loops can be seen as a
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Dim NM,Log

8 1

7 9

6 44

5 132

4 240

3 274

2 220

1 120

0 32

Table 3. Number of boundaries NM,Log of various dimensions of the log of the k = 0, n = 4,

2-loop amplituhedron.

complement of the amplitude. At higher loops the story is more complicated, so we shall

here only focus on understanding the geometric significance of the complement of the 2-loop

amplituhedron.

It is straightforward to modify our combinatorial methods to incorporate the change

from ∆
(1,2)
1234 ≥ 0 to ∆

(1,2)
1234 ≤ 0. The results of the stratification of the log of the amplitude

are summarized in table 3. Very interestingly, E is once again

8∑
i=0

(−1)iN
(i)
M,Log = 32− 120 + 220− . . .− 9 + 1 = 2 . (7.5)

7.1.3 Gluing the amplitude to its Log

The amplitude and its log are characterized by having ∆
(1,2)
1234 ≥ 0 and ∆

(1,2)
1234 ≤ 0, respec-

tively. Their gluing corresponds to the square of the positroid stratification of G+(2, 4),

since it is obtained by not imposing any restriction on ∆
(1,2)
1234 . Here we discuss in detail the

emergence of this simple geometric object from its components.

The 7-dimensional gluing subspace is characterized by ∆
(1,2)
1234 = 0. We can study its

structure by demanding ∆
(1,2)
1234 = 0 and proceeding with our standard stratification. The

numbers of boundaries at different dimensions NM,∆(1,2)=0 are given in table 4. These

boundaries can be divided into two disjoint categories:

• Boundaries on which the condition ∆
(1,2)
1234 = 0 imposes a constraint on 2× 2 minors.

• Boundaries on which the condition ∆
(1,2)
1234 = 0 is trivially satisfied because at least six

of the 2× 2 minors vanish, cf. (6.1).

The first category corresponds to boundaries of both the amplitude and its log, but which

are not present in the square of the positroid stratification ofG+(2, 4). It is given by the first

column on the left of table 4. The second category consists of boundaries of the amplitude,

its log, and the square of the positroid stratification of G+(2, 4). The corresponding number

of boundaries is simply the difference of the two columns in this table. Note that the first
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Dim NM −NM NM,∆(1,2)=0

7 1 1

6 8 8

5 36 36

4 96 104

3 106 162

2 48 164

1 8 104

0 0 30

Dim (NM −NM )(+1)

8 1

7 8

6 36

5 96

4 106

3 48

2 8

1 0

0 0

Table 4. On the left: number of boundaries NM,∆(1,2)=0 for the space with ∆
(1,2)
1234 = 0 in

the n = 4, 2-loop case. The first column NM −NM lists those boundaries where the condition

∆
(1,2)
1234 = 0 imposes a non-trivial constraint among the 2 × 2 minors. On the right: the list of

boundaries NM −NM considered as of one dimension larger, following the explanation in the text.

∆
(1,2)
1234 property Square of G+(2, 4) Amplitude Log Gluing space

N NM NM,Log NM,∆(1,2)=0

6= 0, (+) and (−) terms × × ×
> 0, only (+) terms × ×
< 0, only (−) terms × ×

= 0 trivially × × × ×
= 0 non-trivially × × ×

Table 5. Boundaries of the different geometries, classified in terms of the properties of ∆
(1,2)
1234 :

whether it is vanishing (trivially or not once vanishing Plücker coordinates have been fixed), and if

it contains positive negative or both types of Plücker coordinates, cf. (6.1).

category also represents the difference between the last two columns of table 2, and for this

reason we have denoted it NM −NM .

Let us investigate the interplay among the boundaries of the two components and

the gluing region. One should be particularly careful in not double counting boundaries

which are present in both the amplitude and its log. Moreover, there are boundaries of the

gluing subspace which are not boundaries of the square of the positroid stratification of

G+(2, 4). table 5 presents a useful classification of the boundaries of all the objects under

consideration based on the properties of the 4× 4 minor.

The last row in table 5 corresponds to the (NM − NM ) boundaries of table 4. The

first row in the table specifies those boundaries for which ∆
(1,2)
1234 contains both positive and

negative terms but it is not set to zero. Starting from such configurations, ∆
(1,2)
1234 can be

turned off non-trivially, reducing the dimension by one and producing the boundaries in

the last row of table 5. We thus conclude that the list of the boundaries in the first row is

also equal to (NM −NM ), but where the dimensions of the boundaries is increased by 1.

We denote this set (NM −NM )(+1) and show it on the right of table 4.
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Given the structure shown in table 5, the relation between the number of boundaries

at each dimension is

N = NM + NM,Log −NM,∆(1,2)=0 − (NM −NM )− (NM −NM )(+1) . (7.6)

The validity of this equation can be explicitly checked using tables 2, 3 and 4. For instance,

at dimension 4 we have 274 + 240 − 104 − 96 − 106 = 208. The relation extends to the

Euler numbers of the different objects. E = 2 for NM and NM,Log, the Euler numbers of

(NM − NM ) and (NM − NM )(+1) are opposite by construction and cancel in (7.6), while

E = 3 for NM,∆(1,2)=0. The combination of all these pieces beautifully produces the E = 1

for the square of the positroid stratification of G+(2, 4).

7.2 Full stratification

Let us now consider the full stratification of G+(0, 4; 2). As explained in section 3.4, the full

stratification refines the mini stratification by distinguishing the different regions satisfying

each positivity condition. In the G+(0, 4; 2) case, the positivity condition being satisfied

in different regions is the extended positivity of the 4 × 4 minor ∆
(1,2)
1234 , and the domains

are characterized by additional inequalities imposed on (combinations of) 2 × 2 Plücker

coordinates. In this way, each boundary is specified by a list of minors, and by a set of

inequalities for the 2× 2 minors.

The refinement to obtain the full stratification changes the mini stratification in

two ways:

• The boundaries in Γ0 are now distinguished by the set of vanishing Plücker coordi-

nates and the region. For every set of vanishing Plücker coordinates, the minor ∆
(1,2)
1234

may or may not be trivially zero; if it is not, the separate regions are generated by the

condition ∆
(1,2)
1234 > 0 which can be satisfied on disjoint regions of the ∆

(i)
I parameter

space. If instead ∆
(1,2)
1234 = 0 trivially, there may still be multiple regions: they descend

from higher-dimensional configurations where the 4 × 4 minor is different from zero

and splits into separate regions. Of course, it is also possible that ∆
(1,2)
1234 = 0 trivially

and we only have a single region. We will illustrate explicit examples of each of these

phenomena in the examples below.

• The structure of the Γ1, which is obtained by setting ∆
(1,2)
1234 = 0 non-trivially when it

is possible to do so, changes in general. The new Γ1 takes into account the explicit

form of the regions in Γ0.

For convenience we again reproduce the expression for the only 4 × 4 minor present at

2-loops, expressed in terms of the 2× 2 Plücker coordinates:

∆
(1,2)
1234 = ∆

(1)
12 ∆

(2)
34 + ∆

(1)
34 ∆

(2)
12 + ∆

(1)
23 ∆

(2)
14 + ∆

(1)
14 ∆

(2)
23 −∆

(1)
13 ∆

(2)
24 −∆

(1)
24 ∆

(2)
13 . (7.7)

By using the Plücker relations this may be turned into the convenient form

∆
(1,2)
1234 =

1

∆
(1)
24 ∆

(2)
24

[
(∆

(1)
23 ∆

(2)
24 −∆

(1)
24 ∆

(2)
23 )(∆

(2)
14 ∆

(1)
24 −∆

(2)
24 ∆

(1)
14 ) +

(∆
(1)
12 ∆

(2)
24 −∆

(1)
24 ∆

(2)
12 )(∆

(2)
34 ∆

(1)
24 −∆

(2)
24 ∆

(1)
34 )
]
. (7.8)
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An equivalent expression exists where all {24} indices are replaced by {13} indices; this

simply amounts to solving for the Plücker relations in terms of ∆
(i)
13 instead of ∆

(i)
24 . To

avoid ambiguity, when the Plücker relations are non-trivial we shall always explicitly solve

for them, and plug the answer into ∆
(1,2)
1234 , in a form similar to (7.8).

The inequalities that characterize the full stratification only involve the factors in the

expression for ∆
(1,2)
1234 shown in (7.8). Explicitly, the inequalities specifying the regions can

only be one or more of the following:

(∆
(1)
23 ∆

(2)
24 −∆

(1)
24 ∆

(2)
23 ) ≷ 0 , (∆

(2)
14 ∆

(1)
24 −∆

(2)
24 ∆

(1)
14 ) ≷ 0

(∆
(1)
12 ∆

(2)
24 −∆

(1)
24 ∆

(2)
12 ) ≷ 0 , (∆

(2)
34 ∆

(1)
24 −∆

(2)
24 ∆

(1)
34 ) ≷ 0 (7.9)

or their equivalent counterparts where ∆
(i)
24 is replaced by ∆

(i)
13 . The choice of whether we

need to consider the expressions with ∆
(i)
13 or ∆

(i)
24 is determined by which ones are equal

to zero: if any ∆
(i)
13 = 0 we need to use the expression with ∆

(i)
24 ’s, and vice-versa. If both

∆
(i)
13 = ∆

(j)
24 = 0 are zero (where i = 1, 2 and j = 1, 2), there are no non-trivial inequalities

which we may consider. When there are no non-trivial inequalities, we only have a single

region for the label in question.

Given a set of vanishing Plücker coordinates, the full list of cases for which there cannot

be any non-trivial inequalities is the following:

• Configurations where the expression (7.7) for ∆
(1,2)
1234 only has positive terms.

• Configurations where ∆
(i)
13 = ∆

(j)
24 = 0, where i and j are individually free to be 1 or 2.

• Configurations where the following combination of 2× 2 minors is vanishing: ∆
(i)
12 =

∆
(j)
14 = ∆

(k)
23 = ∆

(l)
34 = 0, where i, j, k, l are individually free to be 1 or 2. These

configurations ruin all 4 inequalities in (7.9).

For these cases, the construction of Γ1 is identical to that of the mini stratification.

For the remaining cases we now identify eight prototypical configurations, which ex-

haust all possibilities which may arise at 2-loops. In each separate case, we specify the Γ1

structure, and in this way construct the full stratification. We indicate with (. . .) the fac-

tors in the 4×4 determinant which are “non-trivial”, e.g. (∆
(1)
23 ∆

(2)
24 −∆

(1)
24 ∆

(2)
23 ), and which

may thus define a region through the inequalities (7.9). We indicate with ki a positive

quantity made up of a product of 2× 2 Plücker coordinates, e.g. k = (∆
(1)
24 ∆

(2)
24 ).

The eight possible configurations are the following:

1. Cases where the 4× 4 is different from zero and has the expression17

∆(1,2) =
1

k

[
(. . .) (. . .) + (. . .) (. . .)

]
.

At 2-loops there is in fact only one such case in Γ0, which is the 8-dimensional element.

Here ∆(1,2) > 0 specifies a single region, with a single boundary at ∆(1,2) = 0. Thus,

Γ1 only gives rise to one additional boundary of dimension 7, precisely as in the mini

stratification.
17For notational convenience we suppress the subindex of the 4× 4 minor, since for four particles it can

only be {1234}.
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2. Cases where the 4× 4 is different from zero and has the expression

∆(1,2) =
1

k1

[
(. . .) (. . .) + k2 (. . .)

]
.

All 7-dimensional elements in Γ0 are of this type, e.g. the configuration with ∆
(1)
23 = 0.

∆(1,2) > 0 specifies a single region, with a single 6-dimensional boundary at ∆(1,2) = 0,

similarly to the case above.

3. Cases where the 4× 4 is different from zero and has the expression

∆(1,2) =
1

k1

[
(. . .) (. . .)− k2

]
.

Here ∆(1,2) > 0 is divided into two regions, each bounded by a hyperbolic curve,

as explained in section 3.4. The regions are specified by the parentheses being both

positive or both negative. The condition ∆(1,2) = 0 gives rise to two boundaries of

one dimension less, because we can solve ∆(1,2) = 0 on these two different regions,

each region being one of the two hyperbolic curves. An example of this type is

∆
(1)
23 = ∆

(1)
14 = 0.

4. Cases where the 4× 4 is different from zero and has the expression

∆(1,2) =
1

k1

[
(. . .) (. . .) + k2

]
.

This is a single connected region, bounded by two hyperbolic curves. Hence, the

condition ∆(1,2) = 0 gives rise to two extra boundaries of one dimension less. As an

example for this category, consider the case

∆
(1)
12 = ∆

(2)
34 = 0 .

Using (7.8), the region with ∆(1,2) > 0 is defined by the inequality

(∆
(1)
23 ∆

(2)
24 −∆

(1)
24 ∆

(2)
23 )(∆

(2)
14 ∆

(1)
24 −∆

(2)
24 ∆

(1)
14 ) > −(∆

(1)
24 ∆

(2)
12 )(∆

(2)
24 ∆

(1)
34 ) .

Parameterizing x = (∆
(1)
23 ∆

(2)
24 − ∆

(1)
24 ∆

(2)
23 ), y = (∆

(2)
14 ∆

(1)
24 − ∆

(2)
24 ∆

(1)
14 ) and k =

(∆
(1)
24 ∆

(2)
12 )(∆

(2)
24 ∆

(1)
34 ), this is the connected region in the xy plane inside the hyper-

bola xy = −k. The two extra boundaries of one dimension less are the two branches

of the hyperbola.

5. Cases where the 4× 4 is different from zero and factorizes as

∆(1,2) =
1

k

[
(. . .) (. . .)

]
.

This type of configuration is a bit more subtle, as it is the limit of the hyperbolic cases

above where the two branches of the hyperbola meet at the origin. Parametrizing the

first (. . .) as x and the second one as y, the ∆(1,2) > 0 condition is satisfied in the first

and third quadrant of the xy plane, thus giving rise to two regions. Here there are four
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boundaries of one dimension less, where ∆(1,2) = 0, corresponding to the positive and

negative x and y axes. The origin corresponds to a single boundary of two dimensions

less. These boundaries may be seen as setting x = 0 while remembering that y 6= 0

was composed of two separate regions, or setting y = 0 and x 6= 0, and finally setting

x = y = 0. An example for this category is

∆
(1)
12 = ∆

(2)
12 = 0 .

6. Cases where the 4 × 4 is different from zero and does not contain parentheses (. . .)

that are multiplied together, i.e.

∆(1,2) =
1

k1

[
(. . .) k2 + (. . .) k3

]
or ∆(1,2) =

1

k1

[
(. . .) k2 ± k3

]
or ∆(1,2) = (. . .) k .

Each of these cases consist of a single region and the condition ∆(1,2) = 0 gives rise to

a single boundary of one dimension less. This can most clearly be seen by studying

the xy plane as done above. An example of this category is

∆
(1)
12 = ∆

(2)
23 = 0 .

7. Cases where the 4 × 4 trivially vanishes but two of the four inequalities in (7.9)

(or their {13} ↔ {24} counterparts) remain untouched. This is most transparently

written as

∆(1,2) =
1

k

[
0× (. . .) + 0× (. . .)

]
.

These cases are the most subtle of all. Although the 4×4 minor vanishes, we still have

four separate regions, specified by the two possible inequalities which are still present

in each (. . .). To see why this is the case, we need to know how these configurations

arose from higher dimensional ones: here the path taken to reach this configuration

will specify the region.

To this end, let us denote the first bracket as x and the second one as y. A detailed

investigation shows that all these cases arise from Type 5 cases described above,

where additionally one of the brackets is trivially shut off by turning off some ∆
(i)
I ’s.

Here, the remaining bracket is still split into two regions, while the brackets that do

not appear in Type 5 are completely free.

Thus, the only possibilities are as follows: either x is split into two regions while y is

free, or y is split into two regions while x is free. In total we then have four regions.

From these four regions descend two extra boundaries of one dimension less: either

x = 0 and y is free, or y = 0 and x is free. From here there are no further boundaries,

as we may not set a free variable to zero.

An example for this category is given by the following set of vanishing Plücker coor-

dinates

∆
(1)
12 = ∆

(1)
23 = ∆

(1)
13 = ∆

(2)
12 = ∆

(2)
23 = ∆

(2)
13 = 0 .
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Here the four 4-dimensional regions are

Regions 1 and 2: (∆
(2)
14 ∆

(1)
24 −∆

(2)
24 ∆

(1)
14 ) ≷ 0

Regions 3 and 4: (∆
(2)
34 ∆

(1)
24 −∆

(2)
24 ∆

(1)
34 ) ≷ 0

while the two extra lower dimensional boundaries of dimension 3 are characterized

by the conditions

Region A: (∆
(2)
14 ∆

(1)
24 −∆

(2)
24 ∆

(1)
14 ) = 0

Region B: (∆
(2)
34 ∆

(1)
24 −∆

(2)
24 ∆

(1)
34 ) = 0

8. Cases where the 4× 4 trivially vanishes but one of the four inequalities in (7.9) can

be imposed. These are most transparently written as

∆(1,2) =
1

k1

[
0× (. . .) + k2 × 0

]
or ∆(1,2) =

1

k1

[
0× (. . .)

]
and can be obtained from the Type 7, above. These cases consist of two regions,

determined by the sign of the non-vanishing parenthesis. They give rise to one extra

boundary of one dimension less, when we saturate the inequality.

The results of the full stratification are summarized in table 6. To give an example of

how these numbers are obtained, let us discuss in detail the 6-dimensional boundaries of

NF . At dimension 6, there are four possible sets of vanishing Plücker coordinates which are

cases of Type 3, four cases of Type 4, four cases of Type 5, and 24 cases of Type 6. On top

of that, there are other 8 boundaries descending from eight 7-dimensional configurations

of Type 2, where we have imposed ∆(1,2) = 0. In total this gives the entry at dimension 6

in table 6, i.e. 4× 2 + 4 + 4× 2 + 24 + 8 = 52.

We can then adopt the same strategy to obtain the full stratification of the log of the

amplitude; the only difference is that we have to impose ∆(1,2) ≤ 0 to identify the different

regions. This modification takes a very simple form on the classification described here:

we only need to interchange Types 3 and 4. Table 6 also shows the results for the log of

the amplitude, as well as the gluing region defined by ∆(1,2) = 0, which is obtained in a

very similar way.

We note that for the full stratification, the relation (7.6) which connects the amplitude,

the log and the gluing region is no longer valid.

The Euler numbers for the full stratification of the different spaces can be easily com-

puted to be:

• NF : E = 8,

• NF,Log: E = 8,

• NF,∆(1,2)=0: E = 7

Interestingly, the Euler number of the amplitude and of the log of the amplitude coincide;

the reason for this is that there is an equal number of cases of Types 3 and 4.

– 34 –



J
H
E
P
0
3
(
2
0
1
5
)
1
2
8

Dim NF NF,Log NF,∆(1,2)=0

8 1 1 0

7 9 9 1

6 52 52 8

5 168 160 56

4 328 294 156

3 392 336 224

2 306 262 206

1 144 128 112

0 34 32 30

Table 6. Full stratification of the n = 4, 2-loop amplituhedron. NF gives the number of bound-

aries for the amplitude. NF,Log gives the number of boundaries for the log of the amplitude, and

NF,∆(1,2)=0 describes the full stratification of the gluing space.

8 Three loops

In this section we initiate the investigation of L = 3, for which we construct the mini

stratification. Our results should be valuable for any future study of this geometry.

8.1 Mini stratification

The matrix C takes the form

C =

D(1)

D(2)

D(3)

 . (8.1)

Its largest minors are 4×4 and we have three of them. C has 3×4 = 12 degrees of freedom.

Taking three identical copies of the graph in figure 7 and doing the decomposition

followed by identification as done in section 5.1, we obtain the left-hand column of table 7.

This is the same as taking the 3rd power of the 1-loop stratification, which could be pic-

torially illustrated by replacing each of the 1 089 sites in figure 15 with the decomposition

given in figure 7, representing the fact that for each of the 1 089 sites there is a full de-

composition of the third graph. In total we get 333 = 35 937 different boundaries. At this

stage extended positivity has not yet been fully implemented; we have only performed step

(1) in section 3.5. Again, we note in agreement with the general discussion in section 5.2,

we obtain an Eulerian poset:

12∑
i=0

(−1)iN(i) = 216− 1296 + . . .− 12 + 1 = 1 . (8.2)

Next, we need to impose three additional conditions from extended positivity: ∆
(1,2)
I ≥

0, ∆
(1,3)
I ≥ 0 and ∆

(2,3)
I ≥ 0, where I = 1234 as in the rest of this section. This can be

done either by checking them individually or employing the method expounded in section 5.

Deleting the boundaries that violate extended positivity gives the second column in table 7.

– 35 –



J
H
E
P
0
3
(
2
0
1
5
)
1
2
8

Dim N NM NM

12 1 1 1

11 12 12 15

10 78 78 117

9 340 340 611

8 1 086 1 002 2 244

7 2 640 2 160 5 908

6 4 960 3 490 10 996

5 7 200 4 440 13 956

4 7 956 4 656 12 044

3 6 480 3 960 7 488

2 3 672 2 520 3 504

1 1 296 1 008 1 128

0 216 186 186

Table 7. Number of boundaries NM of G+(0, 4; 3), of various dimensions. N is the number of

boundaries before the extended positivity conditions on the larger minors are implemented, and

NM is the surviving number of boundaries after these conditions are enforced, but before taking

into account the boundaries arising from the ∆
(i,j)
I ≥ 0.

We note that this column does not correspond to an Eulerian poset:

12∑
i=0

(−1)iN (i)
M = 186− 1008 + . . .− 12 + 1 = 13 . (8.3)

Let us now perform a complete classification of the possible Γ1 sub-posets in the mini

stratification of G+(0, 4; 3), i.e. the new structure arising from turning off 4 × 4 minor.

Points in Γ0 can be discriminated according to the number of ∆
(i,j)
I ’s with both positive

and negative terms, i.e. of type (iii) in the discussion of section 3.5. We denote the three

possibilities as N∆
(i,j)
I , where N = 1, 2, 3.

Figure 12 shows the possible Γ1’s emanating from 1∆
(i,j)
I and 2∆

(i,j)
I points. This

is a result of careful analysis which shows that in both cases, all type (iii) ∆
(i,j)
I can be

independently turned off.

The possible structures become far richer for 3∆
(i,j)
I points. In general the determi-

nation of Γ1’s is challenging, because it requires solving equations in which variables and

certain combinations of them are restricted to the positive domain. To illustrate the sub-

tleties involved, let us consider a 3∆
(i,j)
I example, i.e. one in which it naively seems possible

that any of the three 4× 4 minors can be turned off, but this is not the case once relations

are properly taken into account. For example, if we have a relation like

∆
(1,3)
I = a∆

(1,2)
I − b∆

(2,3)
I , a, b > 0 , (8.4)

we see that it is not possible to turn off ∆
(1,2)
I while keeping both ∆

(1,3)
I and ∆

(2,3)
I positive.

In this expression, a and b are functions of non-vanishing Plücker coordinates. We also see

that it is not possible to turn off only two of the three ∆
(i,j)
I . From any boundary that
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),(),( kiji 

),( ji ),( ki

),( ji

(a)

(b)

Figure 12. The general structure of Γ1’s emanating from: a) 1∆
(i,j)
I and b) 2∆

(i,j)
I points.

has a reduced set of Plücker coordinates from the maximum possible, such that the larger

minors ∆
(i,j)
I satisfy the relation above, we expect a Γ1 as in figure 13 Type A.

Other structures in figure 13 result from relations of the following general forms

Type B: ∆
(i,j)
I = a∆

(j,k)
I − b∆

(i,k)
I − c , a, b, c > 0

Type C: ∆
(i,k)
I = k

(
a∆

(i,j)
I − b∆

(j,k)
I

)
, a, b > 0, k free

Type D: ∆
(i,k)
I = k

(
a∆

(i,j)
I − b∆

(j,k)
I

)
− c , a, b, c > 0, k free

(8.5)

and so on. Here a, b, c and k represent functions of non-vanishing Plücker coordinates.

For Type H structures, all the ∆
(i,j)
I ’s may be turned off completely independently. In

section 10 we consider an explicit example of these relations and discuss it in more detail.

Figure 13 provides a comprehensive treatment of 3∆
(i,j)
I boundaries. We stress that

all the boundaries in a given Γ1 have the same set of non-vanishing Plücker coordinates;

different sites only differ by ∆(i,j)’s that have been set to zero.

Table 8 shows the number of boundaries of each dimension with the structures in

figure 13, and the added contribution to the total number of boundaries. This contribution

must be added to those boundaries in column NM of table 7, to yield the total NM , also

quoted in table 7. This procedure implements step (4) in section 3.5.

We can use these results to compute an Euler number, which is

E =

12∑
i=0

(−1)iN
(i)
M = 186− 1128 + . . .− 15 + 1 = −14 . (8.6)

This, however, should only be interpreted as a possible characterization of the space based

on the mini stratification. It should not be assigned much geometric significance beyond

this. In fact, as we have seen for L = 2, the value of E associated to the full stratification

will most likely be different.
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Type A Type B Type C

Type D Type E Type F

Type G Type H

),(),( kiji  ),(),( kjji  ),(),( kjki  )3,2()3,1()2,1( 

)3,2()3,1()2,1(  ),(),( kiji  ),(),( kiji  ),(),( kjki )3,2()3,1()2,1( 

),(),( kiji  ),(),( kjki  ),(),( kiji  ),(),( kjki ),(),( kjji 

)3,2()3,1()2,1(  )3,2()3,1()2,1( 

),(),( kiji  ),(),( kjki  ),(),( kiji  ),(),( kjki ),(),( kjji 

),( ji ),( ki ),( kj ),( ji ),( ki ),( kj

),( ji ),( ki ),( ji ),( ki ),( ji ),( ki ),( kj

),( ji ),( ki ),( kj ),( ji ),( ki ),( kj ),( ji ),( ki ),( kj

Figure 13. Full classification of possible Γ1’s emanating from 3∆
(i,j)
I points in Γ0 in the mini

stratification of G+(0, 4; 3). In each green box we indicate which 4 × 4 minors have been set to

zero. Interestingly, for Type A it is not possible to turn off only two of them due to positivity.

Furthermore, for types B, D and E it is also impossible to turn off the three 4× 4 minors.

9 An alternative path to stratification: integrand poles

The amplituhedron was introduced as a geometric object whose properties replicate those

of the amplitude integrand. In particular, boundaries of the amplituhedron directly cor-

respond to singularities of the integrand. The same holds for the log of the amplitude.

This implies that the corresponding integrands provide an alternative way of obtaining the

stratification of these spaces.

In this section we will focus on n = 4 and L = 2 and discuss how the stratification of

the amplitude and its log can be derived from the corresponding integrands. In particular,
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3 ∆
(i,j)
I 2 ∆

(i,j)
I 1 ∆

(i,j)
I

Total

Dim A B C D E F G H contribution

12 0 0 0 0 0 0 0 1 0 0 +0

11 0 0 0 0 0 0 0 12 0 0 +3

10 0 0 0 0 0 0 0 78 0 0 +39

9 0 0 0 0 0 4 0 324 0 12 +271

8 0 12 48 0 0 12 0 726 96 108 +1 242

7 48 96 144 96 48 12 12 600 576 528 +3 748

6 144 120 144 96 0 2 0 144 1 080 1 584 +7 506

5 144 0 24 0 0 0 0 0 792 2 424 +9 516

4 24 0 0 0 0 0 0 0 240 1 848 +7 388

3 0 0 0 0 0 0 0 0 24 672 +3 528

2 0 0 0 0 0 0 0 0 0 96 +984

1 0 0 0 0 0 0 0 0 0 0 +120

0 0 0 0 0 0 0 0 0 0 0 +0

Table 8. Number of boundaries with N = 1, 2, 3 number of 4× 4 minors which have both positive

and negative terms, and may hence be set to zero non-trivially. The cases with 3 ∆
(i,j)
I are refined

according to which type they are, cf. figure 13. The final column contains the added contribution

to the total number of boundaries.

we will manage to obtain the entire mini stratifications for the two objects. The full

agreement with the ones attained via the amplituhedron constitutes substantial non-trivial

evidence for the amplituhedron conjecture. It should be straightforward to extend our

analysis to the full stratification. It may be possible that agreement at the level of the

mini stratifications implies agreement of the full stratifications. While very interesting,

investigating this claim is beyond the scope of this article.

We stress that looking for poles of the integrand is a substantially different approach

to the one adopted in previous sections involving minors and positivity, and it is very

satisfactory to see that the two methods agree beautifully. From the integrand perspective,

positivity is not an ingredient that is introduced by hand; the integrand accounts for

positivity in an automatic way, and positivity emerges as a result.

9.1 The amplitude

For the amplitude, the integrand in question is

〈AB34〉〈CD12〉+ 〈AB23〉〈CD14〉+ 〈AB14〉〈CD23〉+ 〈AB12〉〈CD34〉
〈ABCD〉〈AB12〉〈AB14〉〈AB23〉〈AB34〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉

. (9.1)

The stratification results from looking for poles of this integrand.

We have seen in previous sections that positivity eliminates many of the potential

boundaries which one might naively expect from just taking square of the positroid strat-

ification of G+(2, 4). The integrand achieves this through the presence of a nontrivial

numerator, which for certain would-be boundaries cancels with factors in the denominator,
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to eliminate those poles which would violate positivity. Conversely, positivity eliminates

configurations for which the integrand is non-singular.

It is useful to highlight that for n = 4 at arbitrary L there is a very simple map between

brackets and minors, as shown in [40]. For L = 2 it is

〈AB12〉 = ∆
(1)
34 〈AB13〉 = ∆

(1)
24 〈CD12〉 = ∆

(2)
34 〈CD13〉 = ∆

(2)
24

〈AB14〉 = ∆
(1)
23 〈AB23〉 = ∆

(1)
14 〈CD14〉 = ∆

(2)
23 〈CD23〉 = ∆

(2)
14

〈AB24〉 = ∆
(1)
13 〈AB34〉 = ∆

(1)
12 〈CD24〉 = ∆

(2)
13 〈CD34〉 = ∆

(2)
12

〈ABCD〉 = ∆
(1,2)
1234 (9.2)

This map generalizes in the obvious way for higher loops. In this language, (3.4) translates

into an expression for 〈ABCD〉 in terms of 〈ABij〉 and 〈CDij〉 brackets:

〈ABCD〉 = 〈AB34〉〈CD12〉 − 〈AB24〉〈CD13〉+ 〈AB23〉〈CD14〉
+〈AB14〉〈CD23〉 − 〈AB13〉〈CD24〉+ 〈AB12〉〈CD34〉 . (9.3)

Similarly,(3.5), which was obtained by using Plücker relations, becomes

〈ABCD〉 =

(
〈AB24〉〈CD34〉 − 〈AB34〉〈CD24〉

)(
〈AB12〉〈CD24〉 − 〈AB24〉〈CD12〉

)
〈AB24〉〈CD24〉

+

(
〈AB24〉〈CD23〉 − 〈AB23〉〈CD24〉

)(
〈AB14〉〈CD24〉 − 〈AB24〉〈CD14〉

)
〈AB24〉〈CD24〉

.

(9.4)

It is possible to use the integrand to construct both the mini and the full stratifications.

As usual, for the latter it is necessary to properly account for the possible factorization of

〈ABCD〉. This can be done exactly as explained in section 7.2.

When going to poles by shutting off brackets, it is necessary to take into account the

Plücker relations associated to each of the 2-loops. In bracket language, they become

〈AB14〉〈AB23〉 + 〈AB12〉〈AB34〉 = 〈AB13〉〈AB24〉
〈CD14〉〈CD23〉 + 〈CD12〉〈CD34〉 = 〈CD13〉〈CD24〉

(9.5)

We do not substitute these relations explicitly, but account for them implicitly, by only

shutting off allowed combinations of brackets. For example, when shutting off 〈AB12〉 = 0

and 〈AB14〉 = 0 we see that we are forced to also shut off 〈AB13〉 = 0 and/or 〈AB24〉 = 0.

The main result of this section is that we have implemented the procedure described

above and, focusing on labels, reproduced the entire mini stratification of G+(0, 4; 2) given

by the third column of table 2 starting from (9.1). It is important to emphasize that we

have not only reproduced the counting of boundaries obtained with amplituhedron, but

have managed to establish a one-to-one map between all boundaries constructed with both

methods. In order to illustrate this, in appendix B we present representative subsets of

of the boundaries at each dimension. The examples have been chosen to showcase the

conceptually different scenarios that might arise. Each of them is presented in geometric

and integrand language.
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The procedures for deriving the mini stratification based on the integrand and the

amplituhedron are path-independent: the order in which minors are turned off to arrive at

a given boundary is irrelevant. However, in a few cases, it is logically simpler to arrive at a

given boundary using one route rather than another. In particular, it is usually preferable

to set 〈ABCD〉 → 0 as late as possible.

9.2 The log of the amplitude

Let us now investigate the log of the amplitude in terms of the integrand. Using the

integrand for A2 given in (9.1) and the square of the 1-loop

1

〈AB12〉〈AB14〉〈AB23〉〈AB34〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉
, (9.6)

the integrand for the 2-loop log of the amplitude becomes

〈AB34〉〈CD12〉+ 〈AB23〉〈CD14〉+ 〈AB14〉〈CD23〉+ 〈AB12〉〈CD34〉 − 〈ABCD〉〈1234〉
〈ABCD〉〈AB12〉〈AB14〉〈AB23〉〈AB34〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉

=
〈AB13〉〈CD24〉+ 〈AB24〉〈CD13〉

〈ABCD〉〈AB12〉〈AB14〉〈AB23〉〈AB34〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉
. (9.7)

We still have the two Plücker relations (9.5). For convenience, we shall usually use the

form in (9.7); this makes it explicit that once 〈ABCD〉 is zero, the singularities of the log

integrand are the same as those of the ordinary integrand.

As in the previous section, we obtain the singularities by setting to zero brackets which

explicitly appear in the denominator of the integrand. Due to Plücker relations, this may

force other brackets to turn off. Again, we stress that the order in which we turn off minors

to arrive at a given singularity is irrelevant. But as previously done, it is often simpler to

set 〈ABCD〉 → 0 as late as possible.

Using the singularities of (9.7), we have managed to derive the mini stratification of

the log of the amplitude previously obtained by geometric methods and summarized in

table 3. As for the amplitude, we stress that we have not only reproduced the counting

of boundaries, but have managed to establish a one-to-one map between all boundaries

constructed with both methods. This matching provides additional strong support for the

amplituhedron conjecture.

10 The deformed G+(0, n;L)

A remarkable property of cells in the positive Grassmannian is that they are topologically

balls. In other words, it is possible to prove that the posets encoding the positroid strat-

ification of the Grassmannian are Eulerian, i.e. have E = 1 [44]. The same is true for the

Lth power of such positroid stratification, the initial step for the stratification G+(0, n;L).

Given the detailed information of the boundary structure of the amplituhedron (or

more precisely of G+(0, n;L) when discussing general values of n) we have gathered it is

natural to ask whether general statements regarding the topology of the amplituhedron

can be made.
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In this section we would like to report on some striking experimental evidence based

on explicit examples suggesting that there is a simple generalization of G+(0, n;L) which

might exhibit a remarkably simple topology.

Let us introduce the deformed G+(k, n;L). It is convenient to define it through its

stratification as we explain below. For our purposes, it is equivalent to think we are

considering the original G+(k, n;L), but a modified or deformed stratification. All the

discussion in this section will be in the context of the mini stratification.18

Recalling the general discussion in section 3.5, given a point in Γ0, which is defined by

a list of vanishing Plücker coordinates, we can identify non-minimal minors of type (iii).

These are minors that, at least initially, can be turned off. In fact, in general, sometimes

some of these minors cannot be switched off due to relations. For example, turning off

one of them might impose a relation that forces another one to be strictly non-zero, or

might be forbidden because it would force another minor to violate positivity. We have

already encountered this kind of restrictions in section 8.1, when constructing the mini

stratification of G+(0, 4; 3). The deformed G+(0, n;L) corresponds to assuming that all

such minors can be independently switched off at will in the Γ1 that emanates from that

point in Γ0. Of course we know that this is not true for G+(0, n;L): as we turn off non-

minimal minors, relations between them generically become important and determine the

actual structure of Γ1.

An example. Let us demonstrate the difference between the deformed and standard

stratifications with an explicit example from G+(0, 4; 3), for which a general discussion

of all possible relations which can arise between non-minimal minors was presented in

section 8.1. Consider the point in Γ0 corresponding to the vanishing of

∆
(1)
14 ,∆

(1)
23 ,∆

(1)
24 ,∆

(1)
34

∆
(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23

∆
(3)
14 ,∆

(3)
23

(10.1)

with all other Plücker coordinates being non-zero. In this case, only the Plücker relation

associated to the third loop remains non-trivial and reduces to

∆
(3)
12 ∆

(3)
34 = ∆

(3)
13 ∆

(3)
24 . (10.2)

The 4× 4 minors become

∆
(1,2)
1234 = ∆

(1)
12 ∆

(2)
34 −∆

(1)
13 ∆

(2)
24

∆
(1,3)
1234 = ∆

(1)
12 ∆

(3)
34 −∆

(1)
13 ∆

(3)
24

∆
(2,3)
1234 = ∆

(2)
34 ∆

(3)
12 −∆

(2)
24 ∆

(3)
13 (10.3)

The three of them are of type (iii) in the classification of section 3.5, i.e. they contain

both positive and negative contributions and it naively appears that any of them can be

independently set to zero while preserving extending positivity. However, this is not the

18It would be interesting to investigate how the full stratification is affected by the deformation. In order

to do this, however, a more detailed definition of the deformation is necessary.
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case. Imagine we set to zero only ∆
(1,2)
1234 . In this case, the remaining 4 × 4 minors take

the form

∆
(1,3)
1234 =

∆
(1)
13

∆
(2)
34

(
∆

(2)
24 ∆

(3)
34 −∆

(2)
34 ∆

(3)
24

)
∆

(2,3)
1234 =

∆
(3)
12

∆
(3)
24

(
∆

(2)
34 ∆

(3)
24 −∆

(2)
24 ∆

(3)
34

)
(10.4)

We have rewritten the first one using ∆
(1,2)
1234 = 0 and the second one using (10.2). Since

the prefactors are positive, we conclude it is impossible for ∆
(1,3)
1234 and ∆

(2,3)
1234 to be simulta-

neously positive.

An alternative way of reaching the same conclusion is as follows. Using (10.2) to

rewrite ∆
(2,3)
1234 as before, it is possible to prove the following relation

∆
(1,2)
1234 =

∆
(2)
24

∆
(3)
24

∆
(1,3)
1234 +

∆
(1)
12

∆
(2)
12

∆
(2,3)
1234 . (10.5)

This is an explicit realization of the relations of Type C of (8.5). Once again, we see we

cannot turn off ∆
(1,2)
1234 while preserving the positivity of the other two 4 × 4 minors. We

conclude that the Γ1 emanating from this point in the underformed mini stratification does

not contain a point in which only ∆
(1,2)
1234 vanishes. In contrast, the deformed stratification

is precisely defined such that all type (iii) minors can be independently turned off in Γ1.

This example illustrates why we refer to the object defined by the new stratification

as a deformation. The relaxation of the constraint imposed by each relation between non-

minimal minors can be regarded as the introduction of a new degree of freedom, i.e. a

deformation parameter. Very schematically, each relation gets an independent deformation

of the form19

R(∆
(i,j)
I ) = 0 → R(∆

(i,j)
I ) = ε (10.6)

Similar deformations are possible in the presence of higher dimensional minors. In what

follows, we assume all relations between non-minimal minors can be independently relaxed.

Determining how many independent deformation parameters are necessary for achieving

this for each geometry is certainly an interesting problem that we will not pursue here.

As a result of the relaxation of relations in the deformed stratification, the structure

of Γ1’s is considerably simplified. Figure 14 shows the Γ1’s for the cases of 1, 2 and 3 type

(iii) ∆
(i,j)
I s. They coincide with types (a) and (b) of figure 12 and type H of figure 13, from

the mini stratification of the undeformed G+(0, 4, 3). We see the deformation substantially

reduces the number of possible Γ1’s.

10.1 Examples

We will now stratify the deformed G+(0, 4;L) for 1 ≤ L ≤ 4. Taking an experimental

approach, we will observe that the resulting data gives rise to a natural conjecture about

the topology.

19As in (10.5), these relations generally depend on smaller minors, too.
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Figure 14. Γ1’s for the deformed G+(0, n;L) in the cases of 1, 2 and 3 type (iii) ∆ij
I ’s.

Dim NM,deformed

8 1

7 9

6 44

5 140

4 274

3 330

2 264

1 136

0 34

Table 9. Number of boundaries at each dimension for G+(0, 4; 2), which coincides with its defor-

mation.

10.1.1 1-loop

For L = 1, there are no non-minimal minors and hence the deformed G+(0, 4; 1) is equal

to the standard G+(0, 4; 1) ≡ G+(2, 4), which was discussed in detail in section 4.1 and

section 5.1. The resulting poset has E = 1.

10.1.2 2-loops

G+(0, 4; 2) coincides with its deformation, since this example contains a single 4× 4 minor

∆
(1,2)
1234 . Then, the right-hand column of table 2 also gives the boundaries of the deformed

G+(0, 4; 2), which we reproduce in table 9 for easy reference. The total number of bound-

aries is 1232. As noted in (7.3), the Euler number is equal to 2:

E =
8∑
i=0

(−1)iN
(i)
M = 34− 136 + 264− . . .− 9 + 1 = 2 . (10.7)
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Dim 3 ∆
(i,j)
I 2 ∆

(i,j)
I 1 ∆

(i,j)
I Total contribution NM,deformed

12 1 0 0 +0 1

11 12 0 0 +3 15

10 78 0 0 +39 117

9 328 0 12 +271 611

8 798 96 108 +1 242 2 244

7 1 056 576 528 +3 756 5 916

6 650 1 080 1 584 +7 666 11 156

5 168 792 2 424 +10 236 14 676

4 24 240 1 848 +8 598 13 254

3 0 24 672 +4 346 8 306

2 0 0 96 +1 200 3 720

1 0 0 0 +144 1 152

0 0 0 0 +0 186

Table 10. Number of boundaries with N = 1, 2, 3 number of 4×4 minors which have both positive

and negative terms, and the corresponding added contribution to the total number of boundaries,

obtained by assuming these minors to be completely independent and setting them to zero. The

final column shows the number of boundaries NM,deformed of the deformed G+(0, 4; 3).

10.1.3 3-loops

It is straightforward to directly construct the stratification of the deformed G+(0, 4; 3).

However, for illustration, here we take a shortcut and derive it from a detailed analysis of

the undeformed mini stratification presented in section 8.1. In the deformation, we simply

assume that the non-minimal minors ∆
(i,j)
I are completely independent. Thus, we just need

to know how many ∆
(i,j)
I naively appear to be tunable to zero, i.e. the total number of

N∆
(i,j)
I ’s. We can determine this by just collapsing the various types of 3∆

(i,j)
I ’s in table 8

into a single total number. The boundaries in this column are assigned the structure of

Type H in figure 13. The remaining two columns do not change, and give rise to the same

additional contributions as before.

The result of this modification is displayed in table 10. The final column adds up all

of the contributions from the first three columns. Adding these contributions to the NM
column in table 7 will indeed give the number of boundaries NM,deformed of the deformed

G+(0, 4; 3). The total number of boundaries is 61 354 and, once again, the Euler number is

12∑
i=0

(−1)iN
(i)
M,deformed = 186− 1152 + 3720− . . .− 15 + 1 = 2 . (10.8)

10.1.4 4-loops

Let us now consider the deformed G+(0, 4; 4). In this case there are six 4×4 minors ∆
(i,j)
1234.

As usual, the first step is to obtain the 4th power of the positroid stratification of G+(2, 4).

This contains a total of 334 = 1 185 921 potential boundaries, which are stratified as shown

in the first column N of table 11. In agreement with the general result, this has Euler
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Dim N NM NM,deformed

16 1 1 1

15 16 16 22

14 136 136 247

13 784 784 1 860

12 3 376 3 212 10 243

11 11 392 9 856 42 846

10 30 928 23 288 138 421

9 68 512 43 616 346 320

8 124 552 67 626 666 654

7 185 664 88 128 974 212

6 225 312 96 496 1 061 154

5 219 456 90 720 843 992

4 167 616 73 144 480 870

3 96 768 47 744 193 980

2 39 744 22 944 55 362

1 10 368 6 976 10 880

0 1 296 994 1 162

Table 11. Stratification of the deformed G+(0, 4; 4).

number equal to 1:

16∑
i=0

(−1)iN(i) = 1296− 10368 + . . .− 16 + 1 = 1 . (10.9)

Many of these boundaries explicitly violate the positivity of some ∆
(i,j)
I , as can be easily

found using the methods of section 6.3. Keeping only those boundaries which satisfy

extended positivity, we obtain the column labeled NM in table 11. Interestingly, similarly

to the L = 2 case this again has Euler number equal to 1:

16∑
i=0

(−1)iN (i)
M = 994− 6976 + . . .− 16 + 1 = 1 . (10.10)

For each of these boundaries it is then necessary to classify which ∆
(i,j)
I may be turned

off without turning off any 2× 2 minors; this corresponds to step (3) in section 3.5 and is

also easily implemented as in section 6.3. The additional boundaries which stem from the

boundaries in the column NM are added assuming that the ∆
(i,j)
I are completely indepen-

dent. For example, if it is possible to turn off all six ∆
(i,j)
I , we see that a large number

boundaries are added:
(

6
1

)
= 6 boundaries of one dimension lower,

(
6
2

)
= 15 boundaries

of two dimensions lower, and so on; this will add a total of
∑6

i=1

(
6
i

)
= 63 boundaries.

The result of adding the boundaries from the ∆
(i,j)
I is the deformed G+(0, 4; 4), whose

boundaries are shown in the right-hand column of table 11. Remarkably, there is a total

of 4828226 boundaries, but cancellations are such that the Euler number is again

16∑
i=0

(−1)iN
(i)
M,deformed = 1162− 10880 + . . .− 22 + 1 = 2 . (10.11)
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The explicit examples presented in this section hint that the deformed G+(0, n;L)

might have a remarkably simple geometry. Summarizing our findings for G+(0, 4;L), we

obtained E = 1 for L = 1 and E = 2 for 2 ≤ L ≤ 4. If such simplicity is indeed general, it

would be interesting to understand how the complicated geometry of Γ0 that arises after

demanding extended positivity on the Lth power of positroid stratification gets “fixed” by

the deformed Γ1’s. These questions certainly deserve further study.

11 Conclusions and outlook

The amplituhedron is a new geometric formulation of scattering amplitudes in planarN = 4

Super Yang-Mills theory and perhaps it can potentially lead to a completely new, geometric

formulation of quantum field theory. In this article we initiated a systematic investigation

of the geometry of the amplituhedron. To do so, we introduced a stratification for it and

developed a combinatorial implementation based on graphs and hyper perfect matchings.

The combinatorial stratification of the amplituhedron considerably generalizes the positroid

stratification of the positive Grassmannian and its graphical implementation [41, 47]. Ex-

tended positivity plays a central role in the definition of the amplituhedron. Our combi-

natorial stratification efficiently takes care of it. Furthermore, we explained how extended

positivity is beautifully captured by permutations.

We then proceeded to the combinatorial stratification of explicit examples, focusing

on k = 0 and n = 4. We first considered a mini stratification which lists boundaries with

distinct labels — lists of vanishing Plücker coordinates and non-minimal minors (in this case

4×4 determinants). This is an interesting simplification of the structure which follows from

the definition of the amplituhedron. To capture all boundaries we have to consider the full

stratification which uses extended labels — not only listing all vanishing Plücker coordinates

and non-minimal minors but also additional conditions between Plücker coordinates which

come from factorizing non-minimal minors.

We first studied the amplitude at 2-loops. In the mini stratification, it contains 1 232

boundaries which interplay to produce an extremely simple topology with E = 2. We

repeated the analysis for the log of the amplitude at 2-loops, which has 1 072 boundaries

and, once again, just E = 2. We also discussed how these two objects beautifully combine

into the square of the positroid stratification of G+(2, 4). In the full stratification there are

1 434 boundaries in the amplitude and 1 274 boundaries in the log and both have E = 8,

while the gluing region has E = 7. This shows that the topology is substantially different

from the square of G+(2, 4).

We also performed the mini stratification of the L = 3 amplitude. Unlike the 2-loop

result, we obtained a rather large Euler number (in absolute value), E = −14 which also

shows that the topology is much more involved than [G+(2, 4)]3. The fact that a relatively

complicated topology can in general arise from the simple definition of the amplituhedron

is certainly a logical possibility and, perhaps, the most natural expectation. Note that the

available Euler numbers for the mini stratification are even Catalan numbers. It would not

be surprising if this persists at higher loops, as Catalan numbers play an important role

in the positive Grassmannian, so it is tempting to conjecture that for L = 4 we should get
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E = 132. We should of course warn that this conjecture is based on extrapolation from

very limited data.

We rederived the entire mini stratifications of the L = 2 amplitude and its log in

terms of the integrand. It is important to remark that the computations involved in this

approach are completely different from the ones based on the amplituhedron. In particular,

this method is based on looking for singularities of a function and makes no reference

to positivity. We succeeded in not only reproducing the counting of boundaries at each

dimension but also in explicitly verifying that the identities of all boundaries obtained by

the two methods match. This is a very important piece of explicit evidence supporting the

amplituhedron conjecture and supplements the direct triangulation provided in [40].

Finally, we introduced the deformed amplituhedron, which corresponds to deforming

the relations between non-minimal minors in order to make them independent. The strati-

fication of this object is considerably simpler than the one for the ordinary amplituhedron.

We computed several explicit examples and, quite remarkably, they exhibit an extremely

simple topology: E = 1 for L = 1 and E = 2 for 2 ≤ L ≤ 4.

There are several directions worth investigating in the future, among them:

• One of the main questions we expect to address in future work is how to exploit

the combinatorial tools we developed for triangulating the amplituhedron. Different

triangulations should correlate with the different forms the integrand can take.

• Another natural next step is to study how our ideas need to be extended to deal

with k > 0 and n > 4. In this cases, positivity becomes more involved due to the

addition of a tree-level contribution to the matrix C and the importance of external

data, respectively.

• As a mathematical question, it would be interesting to investigate the geometry

of G+(0, n;L) for n > 4. Notice that, contrary to the amplituhedron, G+(0, n;L)

does not have additional positivity constraints involving external data for n > 4.

In fact, the mini stratification and its combinatorial implementation can be applied

without modifications to this geometry for arbitrary n and L and provide a powerful

handle on it.

• The amplituhedron is just one example inside a large list of spaces which are related

to it by relaxing some of the extended positivity conditions [48]. For example, for

k = 0 and n = 4 the parent of all these spaces corresponds to the Lth power of the

positroid stratification of G+(2, 4). Dealing with extended positivity is straightfor-

ward in our combinatorial stratification, so our tools can be readily extended for the

stratification of these spaces. These geometries are relatively simpler than that of

the amplituhedron and it is expected that they can be exploited to constraint or even

infer the structure of the integrand [48]. It would also be interesting to investigate

whether the deformed amplituhedron, which similarly results from the relaxation of

some relations, can likewise be used for determining the integrand.
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• From a purely mathematical standpoint, it would be interesting to investigate

whether the simplicity of the deformed stratification we have observed in explicit

examples holds more generally. If so, it would interesting to understand the under-

lying reason for this. It is important to keep in mind that the general definition of

deformation might turn out to be more sophisticated than the one we considered. On

a related note, it is possible that the deformations of relations cannot be arbitrary

but must obey certain structure in order to preserve a simple geometry. Further

exploration of these questions can potentially uncover a rather rich story. It would

also be interesting to investigate whether the deformed stratification has any physical

significance.

• Intriguingly, hyper perfect matchings have recently also appeared in the combinatorial

interpretation of cluster algebras [49]. Generalizing what happens for usual perfect

matchings, cluster variables obtained by certain sequences of mutations such as the

so-called hexahedron recurrence, are given by partition functions of hyper perfect

matchings. It is interesting to mention that for this application, only hyper perfect

matchings satisfying certain asymptotic conditions, called taut conditions, should be

considered. This is, at least superficially, reminiscent of the conditions imposed by

extended positivity. It would be interesting to investigate whether there is connec-

tion between the amplituhedron and cluster algebras. If it exists, it would be a new

addition to the long list of applications of cluster algebras to scattering [29, 50–56].

Hyper perfect matchings on the disk with certain specified boundary conditions have

also appeared in [57]. It would be interesting to investigate how that work is re-

lated to ours.

• Similarly to the story for 4d N = 4 SYM, a connection between scattering amplitudes

in the planar ABJM theory in 3d [58] and the positive orthogonal Grassmannian has

been established in [59, 60]. It would be interesting to investigate whether something

like the amplituhedron exists for this theory and, if so, how our ideas extend to it.
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A Two-loop boundaries before extended positivity

In figure 15 we present a graphical representation of the square of the positroid stratification

of G+(2, 4).
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Figure 15. Graphical representation of all potential boundaries of the 2-loop n = 4 amplituhedron,

before taking into account extended positivity. Each square corresponds to an element in the the

positroid decomposition of the first graph and contains the positroid decomposition of the second

graph. The small graphs are 1 089 in total.
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B Geometric versus integrand stratification: explicit examples

In section 9.1, we obtained the mini stratification of G+(0, 4; 2) using the integrand. We

have explicitly verified the one-to-one agreement of all boundaries obtained with the strati-

fications based on the integrand and the amplituhedron. In this appendix we collect several

explicit examples of this precise match for illustration purposes. They have been chosen

to provide a good representation of all qualitatively different cases that arise.

Strictly speaking, the language used in this study is the one of labels, i.e. the mini

stratification. As explained in section 3.3, labels really correspond to classes of boundaries.

In particular, for every label in which the 4 × 4 minor vanishes, there can be multiple

boundaries, i.e. different integrands. Furthermore, these boundaries in general have dif-

ferent dimensions. For these cases, the table below provides the integrand corresponding

to the maximal vanishing of the 4 × 4 minor. As in the mini stratification, we list this

configuration at the highest dimension at which the 4 × 4 vanishes. All other integrands

corresponding to the same labels can be easily constructed.

Dimension 8. There is only one 8-dimensional boundary, which is the top-dimensional

one. It is the integrand (9.1), where the lines AB and CD are completely free. In the table

below, we compare the integrand and geometric methods. The same format will be used

for all other examples. The first two rows show the integrand and the restrictions on the

lines. The comparison with our other method is seen in the last two rows, where we specify

the set of Plücker coordinates and hyper perfect matchings present. The hyper perfect

matchings contributing to the 4× 4 minor 〈ABCD〉 are highlighted in color, with the ones

contributing positively (P23, P32, P45, P54) in blue and the ones contributing negatively

(P16, P61) in red. Notice that 〈ABCD〉 can vanish while some of them are present due to

cancellations. However, if none of these perfect matchings are present, 〈ABCD〉 is forced

to automatically vanish.

Integrand 〈AB34〉〈CD12〉+〈AB23〉〈CD14〉+〈AB14〉〈CD23〉+〈AB12〉〈CD34〉
〈ABCD〉〈AB12〉〈AB14〉〈AB23〉〈AB34〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉

Constraints on AB and CD Free

Plücker coordinates ∆
(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24 ,∆

(1)
34 ,

turned on ∆
(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34

P1,1, P1,2, P1,3, P1,4, P1,5,P1,6, P2,1, P2,2,P2,3, P2,4,

Hyper perfect P2,5, P2,6, P3,1,P3,2, P3,3, P3,4, P3,5, P3,6, P4,1, P4,2,

matchings present P4,3, P4,4,P4,5, P4,6, P5,1, P5,2, P5,3,P5,4, P5,5, P5,6,

P6,1, P6,2, P6,3, P6,4, P6,5, P6,6
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Dimension 7. There are 9 integrands corresponding to 7-dimensional boundaries. We

present all of them below.

〈AB34〉〈CD12〉+〈AB23〉〈CD14〉+〈AB14〉〈CD23〉+〈AB12〉〈CD34〉
〈AB12〉〈AB14〉〈AB23〉〈AB34〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉

〈AB34〉〈CD12〉+〈AB23〉〈CD14〉+〈AB14〉〈CD23〉
〈ABCD〉〈AB14〉〈AB23〉〈AB34〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉

〈ABCD〉 → 0 〈AB12〉 → 0

∆
(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24 ,∆

(1)
34 , ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24 ,

∆
(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34 ∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34

P1,1, P1,2, P1,3, P1,4, P1,5,P1,6, P2,1, P2,2,P2,3, P2,4, P1,1, P1,2, P1,3, P1,4, P1,5,P1,6, P3,1,P3,2, P3,3, P3,4,

P2,5, P2,6, P3,1,P3,2, P3,3, P3,4, P3,5, P3,6, P4,1, P4,2, P3,5, P3,6, P4,1, P4,2, P4,3, P4,4,P4,5, P4,6, P5,1, P5,2,

P4,3, P4,4,P4,5, P4,6, P5,1, P5,2, P5,3,P5,4, P5,5, P5,6, P5,3,P5,4, P5,5, P5,6,P6,1, P6,2, P6,3, P6,4, P6,5, P6,6

P6,1, P6,2, P6,3, P6,4, P6,5, P6,6

〈AB34〉〈CD12〉+〈AB23〉〈CD14〉+〈AB12〉〈CD34〉
〈ABCD〉〈AB12〉〈AB23〉〈AB34〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉

〈AB34〉〈CD12〉+〈AB14〉〈CD23〉+〈AB12〉〈CD34〉
〈ABCD〉〈AB12〉〈AB14〉〈AB34〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉

〈AB14〉 → 0 〈AB23〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
24 ,∆

(1)
34 , ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
23 ,∆

(1)
24 ,∆

(1)
34 ,

∆
(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34 ∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34

P1,1, P1,2, P1,3, P1,4, P1,5,P1,6, P2,1, P2,2,P2,3, P2,4, P1,1, P1,2, P1,3, P1,4, P1,5,P1,6, P2,1, P2,2,P2,3, P2,4,

P2,5, P2,6, P3,1,P3,2, P3,3, P3,4, P3,5, P3,6, P4,1, P4,2, P2,5, P2,6, P3,1,P3,2, P3,3, P3,4, P3,5, P3,6, P5,1, P5,2,

P4,3, P4,4,P4,5, P4,6,P6,1, P6,2, P6,3, P6,4, P6,5, P6,6 P5,3,P5,4, P5,5, P5,6,P6,1, P6,2, P6,3, P6,4, P6,5, P6,6

〈AB23〉〈CD14〉+〈AB14〉〈CD23〉+〈AB12〉〈CD34〉
〈ABCD〉〈AB12〉〈AB14〉〈AB23〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉

〈AB23〉〈CD14〉+〈AB14〉〈CD23〉+〈AB12〉〈CD34〉
〈ABCD〉〈AB12〉〈AB14〉〈AB23〉〈AB34〉〈CD14〉〈CD23〉〈CD34〉

〈AB34〉 → 0 〈CD12〉 → 0

∆
(1,2)
1234 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24 ,∆

(1)
34 , ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24 ,∆

(1)
34 ,

∆
(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34 ∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24

P1,1, P1,2, P1,3, P1,4, P1,5,P1,6, P2,1, P2,2,P2,3, P2,4, P1,1, P1,3, P1,4, P1,5,P1,6, P2,1,P2,3, P2,4, P2,5, P2,6,

P2,5, P2,6, P4,1, P4,2, P4,3, P4,4,P4,5, P4,6, P5,1, P5,2, P3,1, P3,3, P3,4, P3,5, P3,6, P4,1, P4,3, P4,4,P4,5, P4,6,

P5,3,P5,4, P5,5, P5,6,P6,1, P6,2, P6,3, P6,4, P6,5, P6,6 P5,1, P5,3,P5,4, P5,5, P5,6,P6,1, P6,3, P6,4, P6,5, P6,6

〈AB34〉〈CD12〉+〈AB14〉〈CD23〉+〈AB12〉〈CD34〉
〈ABCD〉〈AB12〉〈AB14〉〈AB23〉〈AB34〉〈CD12〉〈CD23〉〈CD34〉

〈AB34〉〈CD12〉+〈AB23〉〈CD14〉+〈AB12〉〈CD34〉
〈ABCD〉〈AB12〉〈AB14〉〈AB23〉〈AB34〉〈CD12〉〈CD14〉〈CD34〉

〈CD14〉 → 0 〈CD23〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24 ,∆

(1)
34 , ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24 ,∆

(1)
34 ,

∆
(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
24 ,∆

(2)
34 ∆

(2)
12 ,∆

(2)
13 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34

P1,1, P1,2, P1,3, P1,4,P1,6, P2,1, P2,2,P2,3, P2,4, P2,6, P1,1, P1,2, P1,3, P1,5,P1,6, P2,1, P2,2,P2,3, P2,5, P2,6,

P3,1,P3,2, P3,3, P3,4, P3,6, P4,1, P4,2, P4,3, P4,4, P4,6, P3,1,P3,2, P3,3, P3,5, P3,6, P4,1, P4,2, P4,3,P4,5, P4,6,

P5,1, P5,2, P5,3,P5,4, P5,6,P6,1, P6,2, P6,3, P6,4, P6,6 P5,1, P5,2, P5,3, P5,5, P5,6,P6,1, P6,2, P6,3, P6,5, P6,6

〈AB34〉〈CD12〉+〈AB23〉〈CD14〉+〈AB14〉〈CD23〉
〈ABCD〉〈AB12〉〈AB14〉〈AB23〉〈AB34〉〈CD12〉〈CD14〉〈CD23〉

〈CD34〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24 ,∆

(1)
34 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34

P1,1, P1,2, P1,4, P1,5,P1,6, P2,1, P2,2, P2,4, P2,5, P2,6, P3,1,P3,2, P3,4, P3,5, P3,6,

P4,1, P4,2, P4,4,P4,5, P4,6, P5,1, P5,2,P5,4, P5,5, P5,6,P6,1, P6,2, P6,4, P6,5, P6,6
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Dimension 6. There are 44 integrands corresponding to 6-dimensional boundaries. We

present some examples below.

〈AB34〉〈CD12〉+〈AB23〉〈CD14〉+〈AB14〉〈CD23〉
〈AB14〉〈AB23〉〈AB34〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉

〈AB23〉〈CD14〉+〈AB14〉〈CD23〉
〈AB14〉〈AB23〉〈ABCD〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉

〈ABCD〉 → 0, 〈AB12〉 → 0 〈AB12〉 → 0, 〈AB34〉 → 0

∆
(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24 ∆

(1,2)
1234 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24

∆
(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34 ∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34

P1,1, P1,2, P1,3, P1,4, P1,5,P1,6, P3,1,P3,2, P3,3, P3,4, P1,1, P1,2, P1,3, P1,4, P1,5,P1,6, P4,1, P4,2, P4,3, P4,4,

P3,5, P3,6, P4,1, P4,2, P4,3, P4,4,P4,5, P4,6, P5,1, P5,2, P4,5, P4,6, P5,1, P5,2, P5,3,P5,4, P5,5, P5,6,P6,1, P6,2,

P5,3,P5,4, P5,5, P5,6,P6,1, P6,2, P6,3, P6,4, P6,5, P6,6 P6,3, P6,4, P6,5, P6,6

〈AB23〉〈CD14〉+〈AB14〉〈CD23〉
〈AB14〉〈AB23〉〈AB34〉〈ABCD〉〈CD14〉〈CD23〉〈CD34〉

〈AB14〉〈CD23〉+〈AB23〉〈CD14〉+〈AB34〉〈CD12〉
〈AB14〉〈AB23〉〈AB34〉〈ABCD〉〈CD12〉〈CD14〉〈CD23〉

〈AB12〉 → 0, 〈CD12〉 → 0 〈AB12〉 → 0, 〈CD34〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24 ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24

∆
(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34

P1,1, P1,3, P1,4, P1,5,P1,6, P3,1, P3,3, P3,4, P3,5, P3,6, P1,1, P1,2, P1,4, P1,5,P1,6, P3,1,P3,2, P3,4, P3,5, P3,6,

P4,1, P4,3, P4,4,P4,5, P4,6, P5,1, P5,3,P5,4, P5,5, P5,6, P4,1, P4,2, P4,4,P4,5, P4,6, P5,1, P5,2,P5,4, P5,5, P5,6,

P6,1, P6,3, P6,4, P6,5, P6,6 P6,1, P6,2, P6,4, P6,5, P6,6

〈AB34〉〈CD12〉+〈AB23〉〈CD14〉
〈AB23〉〈AB34〉〈ABCD〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉

〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34

P1,1, P1,2, P1,3, P1,4, P1,5,P1,6, P3,1,P3,2, P3,3, P3,4, P3,5, P3,6, P4,1, P4,2, P4,3, P4,4,P4,5, P4,6

Dimension 5. There are 140 integrands corresponding to 5-dimensional boundaries. We

present some examples below.

〈AB23〉〈CD14〉+〈AB14〉〈CD23〉
〈AB14〉〈AB23〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉

〈AB23〉〈CD14〉+〈AB14〉〈CD23〉
〈AB14〉〈AB23〉〈AB34〉〈CD14〉〈CD23〉〈CD34〉

〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB34〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈CD12〉 → 0

∆
(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24 ∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24

∆
(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34 ∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24

P1,1, P1,2, P1,3, P1,4, P1,5,P1,6, P4,1, P4,2, P4,3, P4,4, P1,1, P1,3, P1,4, P1,5,P1,6, P3,1, P3,3, P3,4, P3,5, P3,6,

P4,5, P4,6, P5,1, P5,2, P5,3,P5,4, P5,5, P5,6,P6,1, P6,2, P4,1, P4,3, P4,4,P4,5, P4,6, P5,1, P5,3,P5,4, P5,5, P5,6,

P6,3, P6,4, P6,5, P6,6 P6,1, P6,3, P6,4, P6,5, P6,6

〈AB14〉〈CD23〉+〈AB23〉〈CD14〉+〈AB34〉〈CD12〉
〈AB14〉〈AB23〉〈AB34〉〈CD12〉〈CD14〉〈CD23〉

〈AB23〉〈CD14〉+〈AB14〉〈CD23〉
〈AB14〉〈AB23〉〈ABCD〉〈CD14〉〈CD23〉〈CD34〉

〈ABCD〉 → 0, 〈AB12〉 → 0, 〈CD34〉 → 0 〈AB12〉 → 0, 〈AB34〉 → 0, 〈CD12〉 → 0

∆
(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24 ∆

(1,2)
1234 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24

∆
(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34 ∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24

P1,1, P1,2, P1,4, P1,5,P1,6, P3,1,P3,2, P3,4, P3,5, P3,6, P1,1, P1,3, P1,4, P1,5,P1,6, P4,1, P4,3, P4,4,P4,5, P4,6,

P4,1, P4,2, P4,4,P4,5, P4,6, P5,1, P5,2,P5,4, P5,5, P5,6, P5,1, P5,3,P5,4, P5,5, P5,6,P6,1, P6,3, P6,4, P6,5, P6,6

P6,1, P6,2, P6,4, P6,5, P6,6

1
〈AB23〉〈ABCD〉〈CD12〉〈CD34〉

〈AB34〉〈CD12〉+〈AB23〉〈CD14〉
〈AB23〉〈AB34〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉

〈AB12〉 → 0, 〈AB34〉 → 0, 〈CD14〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0

∆
(1,2)
1234 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24 ∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14

∆
(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
24 ,∆

(2)
34 ∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34

P1,1, P1,2, P1,3, P1,4,P1,6, P4,1, P4,2, P4,3, P4,4, P4,6, P1,1, P1,2, P1,3, P1,4, P1,5,P1,6, P3,1,P3,2, P3,3, P3,4,

P5,1, P5,2, P5,3,P5,4, P5,6,P6,1, P6,2, P6,3, P6,4, P6,6 P3,5, P3,6, P4,1, P4,2, P4,3, P4,4,P4,5, P4,6

– 53 –



J
H
E
P
0
3
(
2
0
1
5
)
1
2
8

1
〈AB23〉〈AB34〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉

1
〈ABCD〉〈CD12〉〈CD23〉〈CD34〉

〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB24〉 → 0 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB34〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(1)
14 ∆

(1,2)
1234 ,∆

(1)
13 ,∆

(1)
14

∆
(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34 ∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34

P3,1,P3,2, P3,3, P3,4, P3,5, P3,6, P4,1, P4,2, P4,3, P4,4, P1,1, P1,2, P1,3, P1,4, P1,5,P1,6, P4,1, P4,2, P4,3, P4,4,

P4,5, P4,6 P4,5, P4,6

1
〈AB34〉〈ABCD〉〈CD23〉〈CD34〉

〈AB23〉〈CD14〉+〈AB34〉〈CD12〉
〈AB23〉〈AB34〉〈ABCD〉〈CD12〉〈CD14〉〈CD34〉

〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈CD12〉 → 0 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈CD23〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14 ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14

∆
(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ∆

(2)
12 ,∆

(2)
13 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34

P1,1, P1,3, P1,4, P1,5,P1,6, P3,1, P3,3, P3,4, P3,5, P3,6, P1,1, P1,2, P1,3, P1,5,P1,6, P3,1,P3,2, P3,3, P3,5, P3,6,

P4,1, P4,3, P4,4,P4,5, P4,6 P4,1, P4,2, P4,3,P4,5, P4,6

Dimension 4. There are 274 integrands corresponding to 4-dimensional boundaries. We

present some examples below.

〈AB23〉〈CD14〉+〈AB14〉〈CD23〉
〈AB14〉〈AB23〉〈CD14〉〈CD23〉〈CD34〉

1
〈AB23〉〈CD12〉〈CD34〉

〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB34〉 → 0, 〈CD12〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB34〉 → 0, 〈CD14〉 → 0

∆
(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24 ∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24

∆
(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
24 ,∆

(2)
34

P1,1, P1,3, P1,4, P1,5,P1,6, P4,1, P4,3, P4,4,P4,5, P4,6, P1,1, P1,2, P1,3, P1,4,P1,6, P4,1, P4,2, P4,3, P4,4, P4,6,

P5,1, P5,3,P5,4, P5,5, P5,6,P6,1, P6,3, P6,4, P6,5, P6,6 P5,1, P5,2, P5,3,P5,4, P5,6,P6,1, P6,2, P6,3, P6,4, P6,6

〈AB23〉〈CD14〉+〈AB14〉〈CD23〉
〈AB14〉〈AB23〉〈ABCD〉〈CD14〉〈CD23〉

1
〈CD14〉〈CD23〉〈CD34〉

〈AB12〉 → 0, 〈AB34〉 → 0, 〈CD12〉 → 0, 〈CD34〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0

〈AB23〉 → 0

∆
(1,2)
1234 ,∆

(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24 ∆

(1)
12 ,∆

(1)
13

∆
(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34

P1,1, P1,4, P1,5,P1,6, P4,1, P4,4,P4,5, P4,6, P5,1,P5,4, P1,1, P1,2, P1,3, P1,4, P1,5,P1,6, P3,1,P3,2, P3,3, P3,4,

P5,5, P5,6,P6,1, P6,4, P6,5, P6,6 P3,5, P3,6

1
〈AB34〉〈CD23〉〈CD34〉

〈AB34〉〈CD12〉+〈AB23〉〈CD14〉
〈AB23〉〈AB34〉〈CD12〉〈CD14〉〈CD34〉

〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0

〈CD12〉 → 0 〈CD23〉 → 0

∆
(1)
12 ,∆

(1)
13 ,∆

(1)
14 ∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14

∆
(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ∆

(2)
12 ,∆

(2)
13 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34

P1,1, P1,3, P1,4, P1,5,P1,6, P3,1, P3,3, P3,4, P3,5, P3,6, P1,1, P1,2, P1,3, P1,5,P1,6, P3,1,P3,2, P3,3, P3,5, P3,6,

P4,1, P4,3, P4,4,P4,5, P4,6 P4,1, P4,2, P4,3,P4,5, P4,6

1
〈AB34〉〈CD12〉〈CD14〉〈CD23〉〈CD34〉

1
〈ABCD〉〈CD23〉〈CD34〉

〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB23〉 → 0 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB23〉 → 0

〈AB24〉 → 0 〈CD14〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13

∆
(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34 ∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
24 ,∆

(2)
34

P3,1,P3,2, P3,3, P3,4, P3,5, P3,6 P1,1, P1,2, P1,3, P1,4,P1,6, P3,1,P3,2, P3,3, P3,4, P3,6
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1
〈AB23〉〈AB34〉〈CD14〉〈CD23〉〈CD34〉

1
〈AB34〉〈ABCD〉〈CD23〉

〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB24〉 → 0 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈CD12〉 → 0

〈CD12〉 → 0 〈CD34〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(1)
14 ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14

∆
(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24

P3,1, P3,3, P3,4, P3,5, P3,6, P4,1, P4,3, P4,4,P4,5, P4,6 P1,1, P1,4, P1,5,P1,6, P3,1, P3,4, P3,5, P3,6, P4,1, P4,4,

P4,5, P4,6

1
〈AB23〉〈AB34〉〈CD14〉〈CD34〉

1
〈AB34〉〈ABCD〉〈CD34〉

〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈CD12〉 → 0 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈CD12〉 → 0

〈CD13〉 → 0, 〈CD23〉 → 0 〈CD23〉 → 0, 〈CD24〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14 ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14

∆
(2)
12 ,∆

(2)
13 ,∆

(2)
23 ∆

(2)
12 ,∆

(2)
23 ,∆

(2)
24

P1,1, P1,3, P1,5, P3,1, P3,3, P3,5, P4,1, P4,3,P4,5 P1,3, P1,5,P1,6, P3,3, P3,5, P3,6, P4,3,P4,5, P4,6

〈AB34〉〈CD12〉+〈AB23〉〈CD14〉
〈AB23〉〈AB34〉〈ABCD〉〈CD12〉〈CD14〉

1
〈AB23〉〈AB34〉〈CD23〉〈CD34〉

〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈CD23〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0

〈CD24〉 → 0, 〈CD34〉 → 0 〈CD12〉 → 0, 〈CD13〉 → 0, 〈CD14〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14 ∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14

∆
(2)
23 ,∆

(2)
24 ,∆

(2)
34 ∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14

P1,2, P1,5,P1,6,P3,2, P3,5, P3,6, P4,2,P4,5, P4,6 P1,1, P1,3, P1,4, P3,1, P3,3, P3,4, P4,1, P4,3, P4,4

Dimension 3. There are 330 integrands corresponding to 3-dimensional boundaries. We

present some examples below.

〈AB23〉〈CD14〉+〈AB14〉〈CD23〉
〈AB14〉〈AB23〉〈CD14〉〈CD23〉

1
〈CD23〉〈CD34〉

〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB34〉 → 0, 〈CD12〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0

〈CD34〉 → 0 〈AB23〉 → 0, 〈CD14〉 → 0

∆
(1)
13 ,∆

(1)
14 ,∆

(1)
23 ,∆

(1)
24 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ∆

(1)
12 ,∆

(1)
13 ,∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
24 ,∆

(2)
34

P1,1, P1,4, P1,5,P1,6, P4,1, P4,4,P4,5, P4,6, P5,1,P5,4, P1,1, P1,2, P1,3, P1,4,P1,6, P3,1,P3,2, P3,3, P3,4, P3,6

P5,5, P5,6,P6,1, P6,4, P6,5, P6,6

1
〈AB34〉〈CD23〉

1
〈AB34〉〈CD12〉〈CD23〉〈CD34〉

〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB23〉 → 0

〈CD12〉 → 0, 〈CD34〉 → 0 〈AB24〉 → 0, 〈CD14〉 → 0

∆
(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
24 ,∆

(2)
34

P1,1, P1,4, P1,5,P1,6, P3,1, P3,4, P3,5, P3,6, P4,1, P4,4, P3,1,P3,2, P3,3, P3,4, P3,6

P4,5, P4,6

1
〈ABCD〉〈CD34〉

1
〈AB23〉〈AB34〉〈CD14〉〈CD23〉

〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB23〉 → 0 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB24〉 → 0

〈CD14〉 → 0, 〈CD23〉 → 0 〈CD12〉 → 0, 〈CD34〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(2)
12 ,∆

(2)
13 ,∆

(2)
24 ,∆

(2)
34 ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(1)
14 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24

P1,1, P1,2, P1,3,P1,6, P3,1,P3,2, P3,3, P3,6 P3,1, P3,4, P3,5, P3,6, P4,1, P4,4,P4,5, P4,6
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1
〈AB34〉〈CD14〉〈CD23〉〈CD34〉

1
〈AB34〉〈CD34〉

〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0

〈AB23〉 → 0, 〈AB24〉 → 0, 〈CD12〉 → 0 〈CD12〉 → 0, 〈CD23〉 → 0, 〈CD24〉 → 0

∆
(1)
12 ,∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ∆

(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(2)
12 ,∆

(2)
23 ,∆

(2)
24

P3,1, P3,3, P3,4, P3,5, P3,6 P1,3, P1,5,P1,6, P3,3, P3,5, P3,6, P4,3,P4,5, P4,6

〈AB34〉〈CD12〉+〈AB23〉〈CD14〉
〈AB23〉〈AB34〉〈CD12〉〈CD14〉

1
〈AB34〉〈CD12〉〈CD23〉

〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB23〉 → 0

〈CD23〉 → 0, 〈CD24〉 → 0, 〈CD34〉 → 0 〈CD13〉 → 0, 〈CD14〉 → 0, 〈CD34〉 → 0

∆
(1)
12 ,∆

(1)
13 ,∆

(1)
14 ,∆

(2)
23 ,∆

(2)
24 ,∆

(2)
34 ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
34

P1,2, P1,5,P1,6,P3,2, P3,5, P3,6, P4,2,P4,5, P4,6 P1,1, P1,2, P1,4, P3,1,P3,2, P3,4

1
〈ABCD〉〈CD23〉

1
〈AB23〉〈AB34〉〈CD14〉〈CD34〉

〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB23〉 → 0 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB24〉 → 0

〈CD14〉 → 0, 〈CD24〉 → 0, 〈CD34〉 → 0 〈CD12〉 → 0, 〈CD13〉 → 0, 〈CD23〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(2)
14 ,∆

(2)
24 ,∆

(2)
34 ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(1)
14 ,∆

(2)
12 ,∆

(2)
13 ,∆

(2)
23

P1,2, P1,4,P1,6,P3,2, P3,4, P3,6 P3,1, P3,3, P3,5, P4,1, P4,3,P4,5

1
〈AB34〉〈CD23〉〈CD34〉

1
〈AB23〉〈AB34〉〈CD23〉〈CD34〉

〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0

〈AB23〉 → 0, 〈CD12〉 → 0, 〈CD13〉 → 0, 〈CD14〉 → 0 〈AB24〉 → 0, 〈CD12〉 → 0, 〈CD13〉 → 0, 〈CD14〉 → 0

∆
(1)
12 ,∆

(1)
13 ,∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ∆

(1)
12 ,∆

(1)
14 ,∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14

P1,1, P1,3, P1,4, P3,1, P3,3, P3,4 P3,1, P3,3, P3,4, P4,1, P4,3, P4,4

Dimension 2. There are 264 integrands corresponding to 2-dimensional boundaries. We

present some examples below.

1
〈CD34〉

1
〈AB34〉〈CD12〉〈CD34〉

〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB23〉 → 0

〈AB23〉 → 0, 〈CD14〉 → 0, 〈CD23〉 → 0 〈AB24〉 → 0, 〈CD14〉 → 0, 〈CD23〉 → 0

∆
(1)
12 ,∆

(1)
13 ,∆

(2)
12 ,∆

(2)
13 ,∆

(2)
24 ,∆

(2)
34 ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(2)
12 ,∆

(2)
13 ,∆

(2)
24 ,∆

(2)
34

P1,1, P1,2, P1,3,P1,6, P3,1,P3,2, P3,3, P3,6 P3,1,P3,2, P3,3, P3,6

1
〈AB34〉〈CD14〉〈CD23〉

1
〈CD23〉

〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0

〈AB23〉 → 0, 〈AB24〉 → 0, 〈CD12〉 → 0, 〈CD34〉 → 0 〈AB23〉 → 0, 〈CD14〉 → 0, 〈CD24〉 → 0, 〈CD34〉 → 0

∆
(1)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
23 ,∆

(2)
24 ∆

(1)
12 ,∆

(1)
13 ,∆

(2)
14 ,∆

(2)
24 ,∆

(2)
34

P3,1, P3,4, P3,5, P3,6 P1,2, P1,4,P1,6,P3,2, P3,4, P3,6

1
〈AB34〉〈CD12〉〈CD23〉

1
〈AB34〉〈CD12〉

〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB23〉 → 0 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB23〉 → 0

〈AB24〉 → 0, 〈CD13〉 → 0, 〈CD14〉 → 0, 〈CD34〉 → 0 〈CD13〉 → 0, 〈CD14〉 → 0, 〈CD23〉 → 0, 〈CD34〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(2)
13 ,∆

(2)
14 ,∆

(2)
34 ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(2)
13 ,∆

(2)
34

P3,1,P3,2, P3,4 P1,1, P1,2, P3,1,P3,2

1
〈AB34〉〈CD12〉〈CD23〉

1
〈ABCD〉

〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB23〉 → 0 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB23〉 → 0

〈CD13〉 → 0, 〈CD14〉 → 0, 〈CD24〉 → 0, 〈CD34〉 → 0 〈CD14〉 → 0, 〈CD23〉 → 0, 〈CD24〉 → 0, 〈CD34〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(2)
14 ,∆

(2)
34 ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(1)
13 ,∆

(2)
24 ,∆

(2)
34

P1,2, P1,4,P3,2, P3,4 P1,2,P1,6,P3,2, P3,6
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1
〈AB23〉〈AB34〉〈CD14〉〈CD34〉

1
〈AB34〉〈CD23〉〈CD34〉

〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB24〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0

〈CD12〉 → 0, 〈CD13〉 → 0, 〈CD23〉 → 0, 〈CD24〉 → 0 〈AB23〉 → 0, 〈AB24〉 → 0, 〈CD12〉 → 0, 〈CD13〉 → 0

〈CD14〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(1)
14 ,∆

(2)
12 ,∆

(2)
23 ∆

(1)
12 ,∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14

P3,3, P3,5, P4,3,P4,5 P3,1, P3,3, P3,4

1
〈CD23〉〈CD34〉

1
〈AB34〉〈CD34〉

〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0

〈AB23〉 → 0, 〈AB34〉 → 0, 〈CD12〉 → 0, 〈CD13〉 → 0 〈AB23〉 → 0, 〈CD12〉 → 0, 〈CD13〉 → 0, 〈CD14〉 → 0

〈CD14〉 → 0 〈CD23〉 → 0

∆
(1)
13 ,∆

(2)
12 ,∆

(2)
13 ,∆

(2)
14 ∆

(1)
12 ,∆

(1)
13 ,∆

(2)
12 ,∆

(2)
13

P1,1, P1,3, P1,4 P1,1, P1,3, P3,1, P3,3

1
〈AB34〉〈CD23〉〈CD34〉

1
〈AB23〉〈AB34〉〈CD23〉〈CD34〉

〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0

〈AB23〉 → 0, 〈CD12〉 → 0, 〈CD13〉 → 0, 〈CD14〉 → 0 〈AB24〉 → 0, 〈CD12〉 → 0, 〈CD13〉 → 0, 〈CD14〉 → 0

〈CD24〉 → 0 〈CD24〉 → 0

∆
(1)
12 ,∆

(1)
13 ,∆

(2)
12 ,∆

(2)
14 ∆

(1)
12 ,∆

(1)
14 ,∆

(2)
12 ,∆

(2)
14

P1,3, P1,4, P3,3, P3,4 P3,3, P3,4, P4,3, P4,4

Dimension 1. There are 136 integrands corresponding to 1-dimensional boundaries. We

present some examples below.

1 1
〈AB34〉〈CD12〉

〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB23〉 → 0

〈AB23〉 → 0, 〈CD14〉 → 0, 〈CD23〉 → 0, 〈CD24〉 → 0 〈AB24〉 → 0, 〈CD13〉 → 0, 〈CD14〉 → 0, 〈CD23〉 → 0

〈CD34〉 → 0 〈CD34〉 → 0

∆
(1)
12 ,∆

(1)
13 ,∆

(2)
24 ,∆

(2)
34 ∆

(1,2)
1234 ,∆

(1)
12 ,∆

(2)
13 ,∆

(2)
34

P1,2,P1,6,P3,2, P3,6 P3,1,P3,2

1
〈AB34〉〈CD12〉〈CD23〉

1
〈AB34〉〈CD34〉

〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB23〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0

〈AB24〉 → 0, 〈CD13〉 → 0, 〈CD14〉 → 0, 〈CD24〉 → 0 〈AB23〉 → 0, 〈AB24〉 → 0, 〈CD12〉 → 0, 〈CD13〉 → 0

〈CD34〉 → 0 〈CD14〉 → 0, 〈CD23〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(2)
14 ,∆

(2)
34 ∆

(1)
12 ,∆

(2)
12 ,∆

(2)
13

P3,2, P3,4 P3,1, P3,3

1
〈AB34〉〈CD23〉〈CD34〉

1
〈CD34〉

〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0

〈AB23〉 → 0, 〈AB24〉 → 0, 〈CD12〉 → 0, 〈CD13〉 → 0 〈AB23〉 → 0, 〈AB34〉 → 0, 〈CD12〉 → 0, 〈CD13〉 → 0

〈CD14〉 → 0, 〈CD24〉 → 0 〈CD14〉 → 0, 〈CD23〉 → 0

∆
(1)
12 ,∆

(2)
12 ,∆

(2)
14 ∆

(1)
13 ,∆

(2)
12 ,∆

(2)
13

P3,3, P3,4 P1,1, P1,3
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Dimension 0. There are 34 integrands corresponding to 0-dimensional boundaries. We

present some examples below.

1
〈AB34〉〈CD12〉

1
〈AB34〉〈CD34〉

〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0, 〈AB23〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0

〈AB24〉 → 0, 〈CD13〉 → 0, 〈CD14〉 → 0, 〈CD23〉 → 0 〈AB23〉 → 0, 〈AB24〉 → 0, 〈CD12〉 → 0, 〈CD13〉 → 0

〈CD24〉 → 0, 〈CD34〉 → 0 〈CD14〉 → 0, 〈CD23〉 → 0, 〈CD24〉 → 0

∆
(1,2)
1234 ,∆

(1)
12 ,∆

(2)
34 ∆

(1)
12 ,∆

(2)
12

P3,2 P3,3

1
〈AB34〉 1

〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0 〈ABCD〉 → 0, 〈AB12〉 → 0, 〈AB13〉 → 0, 〈AB14〉 → 0

〈AB23〉 → 0, 〈AB24〉 → 0, 〈CD12〉 → 0, 〈CD13〉 → 0 〈AB23〉 → 0, 〈AB34〉 → 0, 〈CD12〉 → 0, 〈CD13〉 → 0

〈CD14〉 → 0, 〈CD23〉 → 0, 〈CD34〉 → 0 〈CD14〉 → 0, 〈CD23〉 → 0, 〈CD34〉 → 0

∆
(1)
12 ,∆

(2)
13 ∆

(1)
13 ,∆

(2)
13

P3,1 P1,1

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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