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1 Introduction

During the last few years the study of the dynamics of fluids of chiral fermions has received

considerable attention. Apart from purely theoretical interest the theory of chiral fluids

might find application in very different physical systems, such as the quark gluon plasma [1,

2], advanced materials such as Weyl semi-metals [3] or Proto-Neutron stars [4].

Probably the most striking property of chiral fermions is the breaking of a classical

symmetry via the chiral anomaly [5, 6]. Although the notion of fluid is an intrinsically

macroscopic notion it does inherit the anomaly from its microscopic origin [7]. It is by now

well understood that the chiral anomaly gives rise to a variety of parity odd and dissipation-

less transport phenomena, such as the chiral magnetic and the chiral vortical effects [8–18].

Besides these new dissipationless and parity odd transport, the anomaly also has a

profound impact on the electric DC conductivity. More precisely, in a magnetic background

field the (longitudinal) electric DC conductivity is strongly enhanced by the magnetic field

due to the anomaly. This has been pointed out first in [19] and more recent studies [20,

21] have confirmed this idea. This phenomenon is called negative magnetoresistivity and

should be realized in condensed matter systems such as Dirac- or Weyl (semi-)metals.1 In

holography this has also been found in the context of the Sakai-Sugimoto for the baryon

1For normal metals without anomaly the magnetoconductivity is monotonically non-increasing with the

magnetic field [22].
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DC conductivity model in [23].2 As we will show, this phenomenon can be derived from

the form of anomalous hydrodynamics using linear response theory.

A recent experiment [27] in which a magnetic field was applied to BixSb1−x at x ∼
0.3 found indeed a negative magnetoresistivity behavior in an intermediate regime of the

magnetic field B. The negative magnetoresistivity behavior could be calculated in the

large B limit using weakly coupled theoretical methods [19, 20], which decreases as 1/B.

In the experiment, at small B, there is an increase in the magnetoresistivity as a function

of B, which has a different origin from the negative magnetoresistivity in an intermediate

regime of B. The dependence of the magnetoconductivity on the magnetic field in the

whole range of B is not easy to calculate theoretically even in the weak coupling limit

and the small B behavior from weakly coupled field theoretical calculations does not fit

the experimental data well. In [27–29], the authors tried to explain this behavior by the

weak anti-localization effect, which is a phenomenological model incorporating weak anti-

localization quantum corrections. All these are weakly coupled results, and in this paper

we would like to use AdS/CFT correspondence to study the longitudinal magnetoresistivity

of a strongly coupled chiral fluid, especially its dependence on the background magnetic

field. As AdS/CFT is a tool to use weakly coupled gravity to study the strongly coupled

field theory, our results will be related to strongly coupled physics, and this will produce

similar small B behavior as in experiments but with a different origin.

Before starting the holographic calculations of the magnetoconductivity of a chiral

fluid, recall that in a translationally invariant system and in the absence of any mechanism

of momentum dissipation, there will be an infinite DC conductivity as the charge carriers

can accelerate to infinite momentum under an external electric field at zero frequency. For

a charged chiral fluid things are more complicated due to chiral anomaly. Without chiral

anomaly the handedness of the Weyl fermions is conserved. The chiral anomaly will how-

ever induce a transfer of charge density between the left- and right-handed Weyl fermions

and this in turn will result in an anomaly related infinite longitudinal DC magnetoconduc-

tivity. For the case of ordinary metals, the infinite DC conductivity caused by translational

invariance can be relaxed by momentum dissipation terms. For the case of longitudinal

magnetoconductivity we will study the dissipation effects in the transport behavior of a

chiral anomalous system to see if this is still the case. We will employ the linear response

method in the hydrodynamic limit and turn on all the possible dissipation terms, i.e. charge

relaxation, momentum relaxation and energy relaxation. Our result shows that in general

all the dissipation terms are needed to get a finite longitudinal DC magnetoconductivity.

In certain limits, only one or two of them are needed, such as the zero density limit, where

only charge dissipation is needed [30]. In the context of Weyl metals the origin of charge

dissipation can be traced back to the finite inter-valley scattering time. Indeed the chiral

(or better axial) symmetry is only an emergent or accidental one and is broken by tree

level coupling akin to a mass term in the Dirac equation. Momentum dissipation due to

disorder is of course a generic property of the electron gas in a metal, our result suggests

however that also inelastic processes leading to energy relaxation play an important role.

2We also remark that in QCD in the confined phase a strong magnetic enhancement of the electric

conductivity has been found in [24, 25] In fact for large enough magnetic field the QCD vacuum becomes

even an anisotropic superconductor [26].
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Using the linear response method we get a formula for the longitudinal magnetocon-

ductivity in the hydrodynamical limit, whose form does not rely on the microscopic details.

Applying this formula to the system dual to AdS Schwarzschild black hole, we will find

that the result in the hydrodynamic regime is exactly the same as the result obtained from

holographic calculations via Kubo formula. In the holographic result, we will be able to

reproduce the negative magnetoresistivity, and the strongly coupled result from holography

coincides with the weakly coupled results in [19–21], as well as the experimental data in an

intermediate regime of B, which exhibits a 1/B negative magnetoresistivity behavior. In

the small magnetic field limit, direct calculations from holography give a new explanation

for the small B positive magnetoresistivity behavior found in experiment.

The rest of the paper is organized as follows. We will first calculate the electric

conductivity of a chiral anomalous fluid with a background magnetic field in the hydro-

dynamic limit using the linear response method in section 2 with all possible dissipation

terms turned on and obtain a formula for the longitudinal conductivity. In section 2.2, we

apply this formula to the chiral anomalous system dual to the AdS Schwarzschild black

hole in the probe limit of the gauge field. In section 3 we will directly calculate the same

magnetoconductivity for the holographic chiral anomalous system in the probe limit via

Kubo formula and show that the result matches the hydrodynamic formula in this limit.

The behavior of the magnetoconductivity as a function of B can also be obtained after

assuming an appropriate value of the charge relaxation time. Then we will generalize these

calculations to the U(1)V × U(1)A case in section 4 which is a more natural case with a

conserved electric current besides the anomalous axial current. Discussion of these results

and open questions will be presented in section 5.

2 Magnetoconductivity from chiral anomalous hydrodynamics

Due to the chiral anomaly

∂µJ
µ = cEµBµ (2.1)

a background magnetic field will induce a large longitudinal DC conductivity [19–21]. In

particular the axial anomaly turns left (right) handed fermions into right (left) handed

ones and after infinite time (and in the absence of tree level breaking of axial charge) there

will be an infinite (axial) chemical potential due to the chiral anomaly. This results in

an infinite DC conductivity in the direction along the background magnetic field. The

mechanism can be understood in more detail as follows.

Let us consider a system of Weyl fermions with positive charge for both the right

handed and left handed fermions. When there is a background magnetic field pointing in

the z direction the spectrum will organize into Landau Levels. Only the lowest Landau

level is relevant for our discussion. The spins of the Weyl fermions in the lowest Landau

level all point in the z direction. For the right handed particles, their momentum will also

point in the z direction while for the left handed ones the momentum will point in the

−z direction. Now if we add a small external electric field in the same direction as the

magnetic field, the Weyl fermions will accelerate in this direction and left handed fermions

will turn into right handed ones. This mechanism is effective even in the zero density limit.
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Figure 1. The picture shows the charge transfer under parallel external magnetic and electric

fields for Weyl fermions with positive electric charge. Weyl fermions transfer from the left handed

band to the right handed one, which is caused due to the chiral anomaly.

At zero density, i.e. in the vacuum, when we add an extra external electric field pointing in

the same z direction, the antiparticle of the right handed fermions, which are left handed

with negative electric charge will point to the z direction, and they will accelerate in the

−z direction under the external electric field which will soon turn them into right handed

Weyl fermions with negative electric charge. This means that we now excited a positive

chemical potential for the right handed positive charges and a negative chemical potential

for the left handed positive charge (which corresponds to a positive chemical potential of

right handed negative charges). One can also say that starting from the vacuum and a

magnetic field an additional electric field will induce an axial chemical potential via the

anomaly. This in turn will trigger the chiral magnetic effect. Since (without dissipation)

the axial charge will grow without bound the DC conductivity will end up being infinite.

This can be easily understood in the following picture figure 1.

2.1 Linear response

Here our motivation is to consider the effects of different dissipation terms in the longitu-

dinal DC conductivity. We start from a more universal setup and directly calculate the

longitudinal DC conductivity in the hydrodynamic limit in four dimensions with a back-

ground magnetic field at the linear response level. Using the linear response method in

hydrodynamics developed in [31], we can get a result which does not rely on the underlying

microscopic details and from our results we will see that without any dissipation terms,

there will be several infinite contributions to the longitudinal DC conductivity and different

dissipation terms are needed to make it finite.

The linear response method was also used in [32] to obtain the magnetoconductivity

in 2+1 dimensions. The procedure is to first perturb a hydrodynamic system in a given
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equilibrium state and solve the system with initial values of the perturbations, then various

transport coefficients can be obtained from the response of the electric or thermal current

to the initial values of corresponding perturbations.

To perform this procedure and obtain the electric conductivity we will first write out

the hydrodynamic equations for the four dimensional chiral anomalous fluid. In this section

we focus on the simplest case of only one U(1) current with a triangle anomaly. The conser-

vation equations for the energy momentum and current of a chiral anomalous fluid are [7]

∂µT
µν = F ναJα , (2.2)

∂µJ
µ = cEµBµ , (2.3)

where c is the anomaly constant and Eµ, Bµ are background electric and magnetic fields.

The corresponding constitutive equations for Tµν and Jµ are

Tµν = (ε+ p)uµuν + pgµν + τµν , (2.4)

Jµ = ρuµ + νµ , (2.5)

where τµν and νµ are first order corrections in the derivative of hydrodynamic variables,

ρ is the charge density and uµ is the local fluid velocity which satisfies uµuµ = −1. In

Landau frame the most general forms of τµν and νµ are [7, 10]3

τµν = −ηPµαP νβ(∂αuβ + ∂βuα)−
(
ζ − 2

3
η

)
Pµν∂αu

α , (2.6)

νµ = −σETPµν∂ν
(
µ

T

)
+ σEE

µ + σV ω
µ + σBB

µ , (2.7)

where Pµν = gµν + uµuν ,

Eµ = Fµνuν , Bµ =
1

2
εµναβuνFαβ, ωµ =

1

2
εµναβuν∂αuβ (2.8)

and

σB = cµ− 1

2

ρ

ε+ p
(cµ2 + cgT

2) ,

σV = cµ2 + cgT
2 − 2ρ

ε+ p

(
cµ3

3
+ cgµT

2

)
(2.9)

with cg related to the gravitational anomaly. σB is the chiral magnetic conductivity and

σV is the chiral vortical conductivity. These two terms arise due to the effects of the chiral

anomaly. For lack of a better name we call σE the quantum critical conductivity follow-

ing [32]. It may also depend on the chemical potential or temperature, but its explicit

form is not universal and therefore cannot be uniquely fixed from hydrodynamics. In the

hydrodynamic regime, we assume that T ≥ µ and E,B � T 2 so that the first deriva-

tive expansions are the leading contributions in νµ and we can ignore higher derivative

expansion terms,4 and to be careful enough we also assume that |cB| � T 2 as in the first

3Our convention is gµν = diag(−1, 1, 1, 1) and ε0123 = −1.
4For hydrodynamic of larger B case, see e.g. [33, 34] for 2+1 dimensional case.
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derivative expansion in Jµ, B enters in the combination of cB where c is a dimensionless

number that can be either large or small.

We assume that the system is in an equilibrium state in the grand canonical ensemble

with chemical potential µ, temperature T and the local velocity ut = 1. Other thermody-

namic variables are determined by these variables and satisfy

ε+ p = Ts+ µρ , dp = sdT + ρdµ . (2.10)

The nonzero components of Tµν and Jµ are

T 00 = ε , T ii = p , J t = ρ , Jz = σBB . (2.11)

To calculate the electric conductivity of this system with anomalous effect turned on,

we assume that there is a background magnetic field in the z direction which without loss

of generality we take to be F12 = −F21 = B, Eµ = 0. We now consider the response of the

current to the perturbations of the electric field δEµ. From the anomaly term we can see

that the anomalous effect only arises when the magnetic field is parallel to the electric field,

so we will focus on the longitudinal electric conductivity in the following, i.e. we consider

the perturbation δEz.

For the hydrodynamic system, besides the perturbations of the thermodynamic vari-

ables

µ(~x, t) = µ+ δµ(~x, t) , (2.12)

T (~x, t) = T + δT (~x, t) , (2.13)

uµ(~x, t) = (1, δui(~x, t)) , (2.14)

we also need to consider the following perturbations of the external fields: δEz = δF 0z =

−δF z0, δEx = δF 0x+Bδuy and δEy = δF 0y−Bδux for the use of calculating electric con-

ductivities. In this system, the variables µ, T and uµ will respond to external perturbations

and other thermodynamic variables follow according to the equation of state.

With these perturbations of the hydrodynamic variables, to linear order the perturba-

tions of the conserved quantities can be determined as follows

δT 00 = δε , (2.15)

δT 0i = (ε+ p)δui , (2.16)

δT ij = δpgij − η
(
∂iδuj + ∂jδui −

2

3
gij∂kδuk

)
− ζgij∂kδuk , (2.17)

δJ t = δρ+ σBBδuz , (2.18)

δJx = ρδux + σE
(
δF 0x +Bδuy

)
− σET∂x

(
δ
µ

T

)
, (2.19)

δJy = ρδuy + σE
(
δF 0y −Bδux

)
− σET∂y

(
δ
µ

T

)
, (2.20)

δJz = ρδuz + σEδEz − σET∂z
(
δ
µ

T

)
+ δσBB , (2.21)
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where δp and δε are fully determined by δµ and δT and we ignored the chiral vortical

effects as they do not affect the result. σE may also depend on the chemical potential or

temperature, which does not need to be the same as the zero density value. When there

is no background electric field, the exact expression of σE does not affect our result. In

hydrodynamics the evolution of these perturbations can be determined from the conserva-

tion equations. To take into account the effect of dissipations we introduce the following

dissipation terms in the perturbation of the conservation equations of δJµ and δTµν :

∂µδT
µ0 = δF 0zJz +

1

τe
δTµ0uµ ,

∂µδT
µi = ρδF 0i + F iλδJλ +

1

τm
δTµiuµ , (2.22)

∂µδJ
µ = cδEµBµ +

1

τc
δJµuµ ,

where τe is the energy relaxation time, τm denotes the momentum relaxation time and τc
is the charge relaxation time. In principle, for anisotropic systems τm can be different in

different directions and here for simplicity we choose it to be isotropic. We also emphasize

that the relaxation terms act only on the deviations from equilibrium. The equilibrium

state can be one with non-vanishing energy or charge.

Substituting the perturbations into the conservation equations (2.22) we get the fol-

lowing equations for the perturbations δµ, δT and δui(
∂t +

1

τe

)
δε+ ∂i

[
(ε+ p)δui

]
− σBBδEz = 0 ; (2.23)(

∂t +
1

τm

)[
(ε+ p)δux

]
+ ∂xδp− η

(
∂2j δux +

1

3
∂x∂jδuj

)
− ζ∂x∂jδuj =

ρδF 0x +B

[
ρδuy + σE

(
δF 0y −Bδux

)
− σET∂y

(
δ
µ

T

)]
;(

∂t +
1

τm

)[
(ε+ p)δuy

]
+ ∂yδp− η

(
∂2j δuy +

1

3
∂y∂jδuj

)
− ζ∂y∂jδuj =

ρδF 0y −B
[
ρδux + σE

(
δF 0x +Bδuy

)
− σET∂x

(
δ
µ

T

)]
;(

∂t +
1

τm

)[
(ε+ p)δuz

]
+ ∂zδp− η

(
∂2j δuz +

1

3
∂z∂jδuj

)
− ζ∂z∂jδuj − ρδEz = 0 ;(

∂t +
1

τc

)[
δρ+ σBBδuz

]
+ ∂i(ρδui + σEδEi)− σET∂2i

(
δ
µ

T

)
+σEB(∂xδuy − ∂yδux) + ∂zδσBB − cBδEz = 0 .

Though δEx,y is not equal to δF 0x,y, the responses of the currents to the two quantities

are the same. Note that before introducing the anomaly terms, the coefficient in front of

−∂iδµ is the same as the coefficient of δEi in the equations using the fact that δp =

sδT + ρδµ, i.e. the coefficients in front of −∂iδµ and δEi are only different in the anomaly

related terms of the first and last equations in (2.23). After introducing σB there is an

extra term in front of δEz. If we also keep the chiral vortical anomaly terms σV , there will

also be extra terms in front of −∂iδµ in the equations above.

– 7 –
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By Laplace transforming the equations above in the time direction, we get

ωeδε− iδε(0) + i(ε+ p)∂iδui − iδEzσBB = 0 ,

(ε+p)(ωmδux−iδu(0)x )+i∂xδp−iη
(
∂2j δux+

1

3
∂x∂jδuj

)
−iζ∂x∂jδuj−iBδJy−iρδF 0x = 0 ,

(ε+p)(ωmδuy−iδu(0)y )+i∂yδp−iη
(
∂2j δuy+

1

3
∂y∂jδuj

)
−iζ∂y∂jδuj+iBδJx−iρδF 0y = 0 ,

(ε+ p)(ωmδuz − iδu(0)z ) + i∂zδp− iη
(
∂2j δuz +

1

3
∂z∂jδuj

)
− iζ∂z∂jδuj − iρδEz = 0 ,

(
ωcδρ− iδρ(0)

)
+ σBB

(
ωcδuz − iδu(0)z

)
+ i∂i(ρδui + σEδEi)− iσET∂2i

(
δ
µ

T

)
+iσEB(∂xδuy − ∂yδux) + i∂zδσBB − icBδEz = 0 ,

where

ωe ≡ ω +
i

τe
, ωm ≡ ω +

i

τm
, ωc ≡ ω +

i

τc
.

As δFµν is an external field, we can choose it to be δF 0µ(t, xi) = δF 0µe−iωt+ikix
i
. After

a Laplace transformation in the time direction and a Fourier transformation in the spatial

direction, we have δEz = δE
(0)
z . Performing a Fourier transform in spatial directions and

taking the limit k → 0, we have

ωeδε− iδε(0) − iδEzσBB = 0 , (2.24)

(ε+ p)(ωmδux − iδu(0)x )− iρδF 0x − iB
(
ρδuy + σE(δF 0y −Bδux)

)
= 0 , (2.25)

(ε+ p)(ωmδuy − iδu(0)y )− iρδF 0y + iB
(
ρδux + σE(δF 0x +Bδuy

)
= 0 , (2.26)

(ε+ p)(ωmδuz − iδu(0)z )− iρδEz = 0 , (2.27)

ωcδρ− iδρ(0) + σBB
(
ωcδuz − iδu(0)z

)
− icBδEz = 0 . (2.28)

Before proceeding we have the dependence of δε, δρ and δp on δµ and δT as

δε ≡ e1δµ+ e2δT =

(
∂ε

∂µ

)∣∣∣∣
T

δµ+

(
∂ε

∂T

)∣∣∣∣
µ

δT , (2.29)

δρ ≡ f1δµ+ f2δT =

(
∂ρ

∂µ

)∣∣∣∣
T

δµ+

(
∂ρ

∂T

)∣∣∣∣
µ

δT , (2.30)

δp = ρδµ+ sδT , (2.31)

where the coefficients e1, e2, f1 and f2 are thermodynamic coefficients which depend on

the details of different systems. For the longitudinal direction, solving δµ, δρ, δuz in terms

of δµ(0), δρ(0), δu
(0)
z , δE

(0)
z from (2.24) to (2.28), we have

δuz =
ρ

ε+ p

i

ωm
δE(0)

z + . . . (2.32)

δµ =
B

(e2f1 − e1f2)

(
− f2σB

i

ωe
− ρσBe2

ε+ p

i

ωm
+ ce2

i

ωc

)
δE(0)

z + . . . (2.33)

δT =
B

(e2f1 − e1f2)

(
f1σB

i

ωe
+
ρσBe1
ε+ p

i

ωm
− ce1

i

ωc

)
δE(0)

z + . . . (2.34)
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with “. . . ” denoting terms unrelated to δE
(0)
z which will vanish after we choose the initial

values of other perturbations to be zero.

Substituting these evolutions into

δJz = ρδuz + σEδEz − σET∂z
(
δ
µ

T

)
+

1

2
σV
(
∂xδuy − ∂yδux

)
+ δσBB , (2.35)

we get (in the k → 0 limit)

δJz = ρδuz + σEδEz +B

(
c− 2cµρ+ (cµ2 + cgT

2)f1
2(ε+ p)

+
ρ(cµ2 + cgT

2)(e1 + ρ)

2(ε+ p)2

)
δµ

+B

(
−(cµ2 + cgT

2)f2 + 2cgρT

2(ε+ p)
+
ρ(cµ2 + cgT

2)(e2 + s)

2(ε+ p)2

)
δT (2.36)

= σδE(0)
z + . . . (2.37)

with

σ = σE −
i

ω + i
τe

B2cσB
2(e2f1 − e1f2)

Y0 +
i

ω + i
τm

ρ

ε+ p

[
ρ− B2cσB

2(e2f1 − e1f2)
Y1

]
(2.38)

+
i

ω + i
τc

B2c2

2(e2f1 − e1f2)
Y1

where

Y0 =
1

ε+ p

[
2f2Ts−

(e2f1 − e1f2) + (f1s− f2ρ)

ε+ p
µ2ρ

]
+

cg
c(ε+ p)

[
2f1Tρ−

(e2f1 − e1f2) + (f1s− f2ρ)

ε+ p
T 2ρ

]
, (2.39)

Y1 =
1

ε+ p

[
2e2Ts− (e2f1 − e1f2)µ2 −

e1s− e2ρ
ε+ p

µ2ρ

]
+

cg
c(ε+ p)

[
2e1Tρ− (e2f1 − e1f2)T 2 − e1s− e2ρ

ε+ p
T 2ρ

]
. (2.40)

Eq. (2.38) is our final result for longitudinal electric conductivity of a chiral anomalous

fluid with background magnetic field. This is a universal hydrodynamic result which applies

in the hydrodynamic limit regardless of the microscopic details. When B = 0 or c = cg = 0,

the result reduces to

σ = σE +
i

ωm

ρ2

ε+ p
, (2.41)

which is the result for the usual electric conductivity without background magnetic field.

For the electric conductivity in the transverse directions, the effect of magnetic field is

similar to that in 2+1 dimensions and the results for σxx, σyy as well as σxy in this case

are exactly the same as in [32]. For future reference, we list the results here:

σxx = σyy = σE
ωm(ωm + iγ + iω2

cy/γ)

(ωm + iγ)2 − ω2
cy

, σxy = − ρ
B

γ2 + ω2
cy − 2iγωm

(ωm + iγ)2 − ω2
cy

, (2.42)

where ωcy = Bρ
ε+p is the cyclotron frequency and γ = σEB

2

ε+p .

There is a lot of information in the longitudinal result (2.38):
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• We can see that the final result is related to all the three relaxation times τe, τm
and τc, i.e. energy relaxation, momentum relaxation and charge relaxation all enter

the final result. This means that all of these three kinds of dissipations are needed

to have a finite longitudinal DC conductivity for the chiral anomalous systems. The

conductivity instead of the resistivity is a sum of various contributions, which means

that here the conductivity satisfies the inverse Matthiesen rule.

• The energy dissipation and momentum dissipation terms are always associated with

the finite charge density.

• The explicit value of (2.38) depends on the thermal state that the system is in.

The thermodynamic quantities also may depend on B so the dependence of this

conductivity on B may differ for different systems or in different limits.

• We can take the τe → ∞, τm → ∞ and τc → ∞ limit to get the result without any

relaxation terms. Then we have the following longitudinal conductivity

σzz = σE +
i

w

[
ρ2

ε+ P
− B2cσB

2(e2f1 − e1f2)
Y0 +

B2c2Y1
2(e2f1 − e1f2)

(
1− µρ

ε+ P
+

µ2ρ2

2(ε+ P )2

)]
,

which has a pole in the imaginary part at ω = 0 and accordingly there will be a δ(ω)

in the real part of the conductivity.

There are several component parts for this infinite DC conductivity and the different

origins of these parts are more easily seen in the relaxed form (2.38). The first is

the usual infinite DC conductivity coming from the acceleration of the charge carriers

with a charge density ρ. As can be seen from the expression of δJz, this term is related

to δuz, which means that it comes from the infinite momentum increase under an

external perturbation of the electric field. The second part is i
ω

B2c2

2(e2f1−e1f2)Y1, the

third part is − i
ω

ρ
ε+p

B2cσB
2(e2f1−e1f2)Y1 and the fourth term is − B2cσB

2(e2f1−e1f2)Y0. From the

calculations we can see that these three terms all come from the response of the

chiral magnetic current σBB to an external electric field and only exist at nonzero

values of c. They are related to the infinite increase of the chemical potential and

the temperature of the system under an external longitudinal electric field.

• Without the anomaly terms, δµ would not respond to δEz which means that there will

be no increase of chemical potential or charge density in an anomalous free system.

The second part can only be dissipated by the momentum relaxation while the third

part can only be dissipated by the charge dissipation and the last term can only be

dissipated by energy dissipation. This means that the infinite increase of chemical

potential or temperature is also related to the increase of momentum or energy under

the external electric field.

• Note that

e2f1 − e1f2 = det

(
∂ε
∂T

∂ε
∂µ

∂ρ
∂T

∂ρ
∂T

)
, (2.43)
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is positive definite. Though the signs of Y0 or Y1 are not easy to tell and may depend

on different systems, there is an interesting sign difference in these two parts related

to Y1 and though the sign in the momentum relaxation related term looks dependent

on the sign of charge, in fact due to the dependence of σB on the chemical potential,

the sign difference does not depend on the sign of the charge. Also it is easy to check

that the absolute value of the second part as defined above is always larger than the

absolute value of the third part. Because the sign of Y1 cannot be determined, it may

happen that the signs of the two terms in the momentum dissipation related part

can either be the same or opposite.

• Here another interesting point is that there exists the possibility that there might be a

state of a certain system at which the divergent term will vanish due to cancellations

if the signs and values of the quantities can be fine tuned to appropriate values.

• Note that even at zero density there can still be an infinite DC conductivity [30]5

σ = σE +
i

ω

B2c2

(∂ρ/∂µ)|T
, (2.44)

and this term can only be dissipated by the charge dissipation. The mechanism of

an infinite DC conductivity even at zero density has already been explained at the

beginning of this section.

• We can compare this result with the dissipation terms that were used in literature

within the weakly coupled kinetic framework. The longitudinal magnetoconductivity

for Weyl metal and Weyl semi-metals have been studied in [19–21, 28] using weakly

coupled kinetic theories, Boltzmann equation approach and Kubo formulae. In these

calculations, dissipation effects from intra valley and inter valley scatterings have

been included so that the final DC conductivity is finite. Comparing their results

with the formula obtained in this paper, we can see that the intra valley scattering

inside one Weyl cone leads to momentum relaxation while the inter valley scattering

which happens between Weyl cones relaxes the charge, momentum and also energy.

We will comment on the energy dissipation in section 5.

In the next section we will apply the formula for the anomalous magnetoconductivity

to a simple holographic model. Then we will check its validity by computing it directly via

the Kubo formula in the same model.

2.2 Applying the formula to the holographic probe system

In this subsection, we apply the formula (2.38) to the simplest holographic system: the

Schwarzschild black hole with a nontrivial gauge field in the probe limit, which corresponds

to the small density limit as the density of charge carriers is extremely small compared to

the density of neutral degrees of freedom. In the probe limit, we are in the high temperature

5We set cg = 0 and we consider the system with ρ(µ = 0, T ) = 0, i.e. f2 = 0.
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regime6 as when the temperature gets lower backreaction onto the geometry becomes more

important. We will first calculate the background of a chiral anomalous system with only

one U(1) current and obtain the thermodynamic quantities of this system. Then we can

substitute them into the formula (2.38) to get the prediction of the hydrodynamic result

to the holographic systems.

The bulk action which corresponds to a chiral anomalous fluid is the AdS Einstein-

Maxwell-Chern-Simons

S =

∫
d5x
√
−g
[

1

2κ2

(
R+

12

L2

)
− 1

4
F 2 +

α

3
εµνρστAµFνρFστ

]
(2.45)

where εµνρστ =
√
−gεµνρστ with ε0123r = 1. For simplicity we choose the gravitational

anomaly term to be zero. In the probe limit, which corresponds to a small density system,

the background is the AdS Schwarzschild black hole

ds2 = r2
(
− f(r)dt2 + dx2 + dy2 + dz2

)
+

dr2

r2f(r)
(2.46)

with f(r) = 1− r40
r4

and we set L = 1. The known thermodynamical quantities are

ε = 3r40 , s = 4πr30 , T =
r0
π
. (2.47)

The equation of motion for the gauge field is

∇νF νµ + αεµνρστFνρFστ = 0 . (2.48)

For a background with a magnetic field, we choose F12 = −F21 = B. We consider a nonzero

At component and an Az component which couple to each other. This is because with a

magnetic field in the z direction and the Chern-Simons term, a current will be excited in the

z direction. We will assume At = At(r), Ay = Bx, Az = Az(r) and impose the boundary

condition for Az: Az(r → ∞) = A
(1)
z
r2

+ · · · .7 Note that we will still have a nontrivial

solution of At here which means that we are not at the strict zero density while almost

zero density where the charge density is at 1/N2 order compared to neutral degrees of

freedom of the system. The equations of motion for these two background gauge fields are

A′′t +
3

r
A′t +

8Bα

r3
A′z = 0 (2.49)

and

A′′z +
3r4 + r40
r
(
r4 − r40

)A′z +
8Bαr

r4 − r40
A′t = 0 . (2.50)

6By probe limit we mean the backreaction of the gauge field is totally unimportant for the gravity

background. Thus the high temperature limit means T � e
κ
µ with e = 1 in our setup and in this case

the contribution of the charged d.o.f is totally unimportant to the energy momentum tensor in the whole

spacetime at leading order.
7This means that we have set an arbitrary integration constant A

(0)
z to zero.
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These two equations can be simplified to

(
r3A′t + 8BαAz

)′
= 0 , r3

(
1− r40

r4

)
A′z + 8BαAt = 0 . (2.51)

Note that in the second equation above, we have used At(r0) = 0.

We can solve for At from these equations analytically and read the corresponding

charge density and chemical potential. In the new coordinate u = r20/r
2, we have

A′′t −
(8Bα̃)2

4(1− u2)
At = 0 . (2.52)

We have defined α̃ = α/(π2T 2) and the anomalous coefficient is related to the Chern-

Simons coupling by c = 8α.8 Note that α is dimensionless and α̃ is of the dimension

mass−2. The analytic solution with the near horizon boundary condition At(u = 1) = 0 is

At = 2F1

[
−

1 +
√

1− (8Bα̃)2

4
,−

1−
√

1− (8Bα̃)2

4
,
1

2
, u2
]

−2u
Γ
[5−√1−(8Bα̃)2

4

]
Γ
[5+√1−(8Bα̃)2

4

]
Γ
[3−√1−(8Bα̃)2

4

]
Γ
[3+√1−(8Bα̃)2

4

] 2F1

[
1−

√
1− (8Bα̃)2

4
,
1 +

√
1− (8Bα̃)2

4
,
3

2
, u2
]
.

Near the boundary u = 0 this solution should behave as At = µ− ρ
2r20
u+ . . . , thus we can

expand the solution (2.53) at the boundary u = 0 and obtain the value of the dual charge

density as

ρ = 4µr20
Γ
[5−√1−(8Bα̃)2

4

]
Γ
[5+√1−(8Bα̃)2

4

]
Γ
[3−√1−(8Bα̃)2

4

]
Γ
[3+√1−(8Bα̃)2

4

] . (2.53)

Up to now we have at hand all the thermodynamic quantities that are needed in (2.38)

for this probe case without any dissipation effects, except for σE , which we will give in the

next section as it involves perturbative analysis. Substituting (2.53) into (2.44) we get

σzz = σE +
i

ω

B2c2

(∂ρ/∂µ)|T

= σE +
i

ω

B2c2

4π2T 2

Γ
[3−√1−(8Bα̃)2

4

]
Γ
[3+√1−(8Bα̃)2

4

]
Γ
[5−√1−(8Bα̃)2

4

]
Γ
[5+√1−(8Bα̃)2

4

] . (2.54)

Eq. (2.54) is the explicit result for the formula (2.38) applied in the holographic system in

the zero density limit with the number density of the charge carriers nc � nneutral.

The B dependence of this result involves a lot of Γ-functions. Note that the hydro-

dynamic formula eq. (2.38) is only valid for B � T 2, so eq. (2.54) is also in the regime

B � T 2. We can see that in the expression (2.54) the B dependence is always encoded in

the combination of Bα/T 2, and as α typically is of the order of Nc [37] for fermions in the

8We are using covariant current [35], i.e. our dual current is identified as the subleading term of Aµ near

the boundary.
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fundamental representation,9 i.e. α� 1 in the large Nc limit, we have another scale here:

T 2/α, which is much smaller compared to T 2. In the hydrodynamic regime, we assume

both B � T 2 and αB � T 2. In this limit, i.e. for αB/T 2 � 1, we have

ρ = 2µr20

(
1 +O

(
α2B2

T 4

))
, (2.55)

and

σ = σE +
i

ω

(
B2c2

2π2T 2
+ . . .

)
. (2.56)

Note that σE may also depend on B in a nontrivial way, so we will only get the full

dependence of the magnetoconductivity on B in the next section.

3 Holographic magnetoconductivity for chiral anomalous fluid in the

probe limit via Kubo formula

In this section, we will focus on the direct holographic calculation of the infinite DC mag-

netoconductivity for a chiral anomalous fluid in the probe limit.10 We will calculate the

conductivity in this holographic background and check that it is the same as the hydro-

dynamic prediction of the last section. In particular we will consider small perturbations

on top of the background and compute the longitudinal conductivity directly from the

perturbations. At the end we will show that the result of this subsection exactly matches

the result in the last subsection from the application of the formula (2.38) to the same

holographic system. We will also get the exact expression for σEz which is crucial for the

full behavior of the longitudinal magnetoconductivity. Note that in the holographic model

we can go beyond the hydrodynamic approximation and therefore allow for anisotropic

quantum critical conductivities, singling out σEz as the longitudinal one.

To compute the longitudinal conductivity, we turn on the fluctuations δAt(r)e
−iωt,

δAz(r)e
−iωt. This is because δAz(r) will also source δAt(r) due to the anomaly related

terms. This is consistent with the calculations in (2.33) that δµ can be sourced by δEz.

The equations of motion for the perturbations are

8αB

r3
δAz + δA′t = 0 , (3.1)

δA′′z +
(3r4 + r40)

r(r4 − r40)
δA′z +

r4ω2

(r4 − r40)2
δAz +

8αBr

r4 − r40
δA′t = 0 . (3.2)

We can eliminate At in the equations and we have

δA′′z +
3 +

r40
r4

r
(
1− r40

r4

)δA′z +

(
− 64α2B2

r6
(
1− r40

r4

) +
ω2

r4
(
1− r40

r4

)2
)
δAz = 0 . (3.3)

Note that the equations for δAt, δAz do not depend on the background At or Az.

9In holography, we can add fermions in the fundamental representation by adding Nf spacetime filling

probe branes in the background of Nc D3 branes and as Nf � Nc, the backreaction can be ignored.
10The holographic magnetoconductivity for 2+1D strange metals has also been studied in e.g. [32, 36].
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In the new coordinate u =
r20
r2

, we have

δA′′z −
2u

1− u2
δA′z +

(
− 16α2B2

r40(1− u2)
+

ω2

4r20u(1− u2)2

)
δAz = 0 . (3.4)

We can first solve it in the near horizon region with ingoing boundary conditions and then

match it to a far region solution. In the near horizon region 1− u� 1, the equation (3.4)

becomes

δA(n)′′
z − 1

1− u
δA(n)′

z +

(
− 8α2B2

r40(1− u)
+

ω2

16r20(1− u)2

)
δA(n)

z = 0 . (3.5)

The solution to this equation is the modified Bessel function of the first kind

δA(n)
z = c1(−1)

− iω
4r0 I

[
− iω

2r0
,
4
√

2αB(1− u)1/2

r20

]
+ c2(−1)

iω
4r0 I

[
iω

2r0
,
4
√

2αB(1− u)1/2

r20

]
,

(3.6)

with two integration constants c1 and c2. Here we impose the infalling boundary condition

for u→ 1 which corresponds to c2 = 0.

In the far region 1− u� ω/r0, the equation becomes

δA(f)
z

′′ − 2u

1− u2
δA(f)

z

′
+

(
− 16α2B2

r40(1− u2)

)
δA(f)

z = 0 . (3.7)

The corresponding solution is the Legendre functions of first and second kind

δA(f)
z = c3P

[
− 1

2
+

1

2

√
1− 64

α2B2

r40
, u

]
+ c4Q

[
− 1

2
+

1

2

√
1− 64

α2B2

r40
, u

]
. (3.8)

To determine the integration constants, we need to match this solution to the near

horizon solution. In the matching region ω/r0 � 1 − u � 1 the near horizon solution

becomes

δA(n)
z = c1

[(
1 +O(ω)

)
− iω

4r0
log(1− u)

(
1 +O(ω)

)
+O(1− u)

]
, (3.9)

where the ratio of the coefficients of the two linearly independent solutions 1 and log(1−u)

of the matching region is − iω
4r0

, which is only accurate up to leading order in ω and higher

order corrections in ω require higher order expansions in the equations of motion of the

near region, which we do not consider here.

The far region solution becomes

δA(f)
z = c3 + c4

[
− 1

2
log(1− u) +

1

2
C

]
+O(1− u) (3.10)

in the matching region with

C = − log 2− cos2
(
π(1 +

√
1− a0)

4

)(
H

[
− 3

4
− 1

4

√
1− a0

]
+H

[
− 3

4
+

1

4

√
1− a0

])
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− sin2

(
π(1 +

√
1− a0)

4

)(
H

[
− 1

4
− 1

4

√
1− a0

]
+H

[
− 1

4
+

1

4

√
1− a0

])
(3.11)

where a0 ≡ 64α2B2/r40 and H is the harmonic number.

Matching these two solutions (3.9) and (3.10), we get

c3 = c1
(
1 +O(ω)

)
, c4 =

iω

2r0
c1
(
1 +O(ω)

)
. (3.12)

Then we get the far region solution which corresponds to the infalling one by sub-

stituting these coefficients into the far region solution and the ratio of the two linearly

independent solutions is c4/c3 = iω/(2r0) at leading order in ω. At the boundary u → 0,

the two linearly independent far region solutions (3.8) can be expanded to give

P

[
− 1

2
+

1

2

√
1− 64

α2B2

r40
, u

]
= p1 + p2u+O(u2) , (3.13)

where11

p1 =

√
π

Γ
[3−√1−(8Bα̃)2

4

]
Γ
[3+√1−(8Bα̃)2

4

] , p2 = − 8
√
πα̃2B2

Γ
[3−√1−(8Bα̃)2

4

]
Γ
[3+√1−(8Bα̃)2

4

]
and

Q

[
− 1

2
+

1

2

√
1− 64

α2B2

r40
, u

]
= q1 + q2u+O(u2) , (3.14)

where

q1=

√
π cos

[π(1+√1−(8Bα̃)
4

]
Γ
[1+√1−(8Bα̃)2

4

]
2Γ
[3+√1−(8Bα̃)2

4

] , q2=

√
π sin

[π(1+√1−(8Bα̃)
4

]
Γ
[3+√1−(8Bα̃)2

4

]
Γ
[1+√1−(8Bα̃)2

4

] .

Thus at the boundary, the solution which satisfies the near horizon ingoing boundary

condition behaves as

δAz = a+ bu+ · · · = c3p1 + c4q1 + u(c3p2 + c4q2) + · · · , (3.15)

where c3 and c4 have already been fixed from (3.12) by the ingoing boundary condition at

the horizon.

At the boundary, ω2 term will introduce ω2 correction in b and also a u lnu term

in (3.15). After substituting the divergence term, the definition of conductivity12 is

σ =
2r20b

iωa
+
iω

2
, (3.16)

11Note that we have defined α̃ = α/r20.
12The definition of the current depends on the different formalism that we are in. For the consistent

current, i.e. Jµ =
√
−gFµr + 4

3
αεµνρλAνFρλ, which follows from the dictionary due to the bulk Chern-

Simons term [37]. Here we stay in the covariant definition so the second term is not included. An extra

iω/2 term arises because of removing the logarithmic term in the asymptotic series of δAz by adding the

counterterm [38].
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and it is now

σ =
2r20(c3p2 + c4q2)

iω(c3p1 + c4q1)
+
iω

2
. (3.17)

In general p1, p2, q1 and q2 are order 1 quantities compared to ω, so we can ex-

pand (3.17) in c4/c3 ∼ ω as

σ =
2r20
iω

[
p2
p1

+
c4
c3

q2p1 − q1p2
p21

+O
(
c24
c23

)]
. (3.18)

Substituting (3.13) and (3.14) into the formula above and we get

σ =

[
8πα2B2

r30
sec
(π

2

√
1− (8Bα̃)2

)
+
i

ω

16B2α2

π2T 2

]
Γ
[3−√1−(8Bα̃)2

4

]
Γ
[3+√1−(8Bα̃)2

4

]
Γ
[5−√1−(8Bα̃)2

4

]
Γ
[5+√1−(8Bα̃)2

4

] (3.19)

at leading orders in ω. Note that as our c4/c3 is correct at leading order in ω, the result for

σ will be correct in order 1/ω and O(1), while at order ω there should be corrections in σ.

The residue of the pole at ω = 0 is the same as in (2.54) and the finite part defines σEz.

Note that in the probe limit there is no dependence on the chemical potential µ. It is inter-

esting to note that the i/ω term matches exactly the result from our hydrodynamic linear

response computations (2.54) although this formula (2.54) holds only in the hydrodynamic

regime13 B � T 2 as well as αB � T 2. In the holographic case the result holds in a more

general regime of B, and we can have two interesting regimes in the range B � T 2: one

is the small B limit B � T 2/α and the other is an intermediate regime T 2/α� B � T 2.

The behavior of the conductivity is very different in these two regimes and we can extract

the B dependence for the small and intermediate B limit analytically by expanding (3.19)

in terms of αB/T 2. Note that α = c/8 and α̃ = α/r20. For small αB/T 2 � 1, we have

σ = σEz +
i

ω

c2B2

2π2T 2
+O(α4B4) , σEz = πT

(
1− c2B2 log 2

2π4T 4
+O(α4B4)

)
. (3.20)

The leading term in σEz agrees with previous results without background magnetic field

(e.g. [39]). Note also that in the hydrodynamic limit the dependence on the magnetic field

of σEz is subleading compared to the frequency dependent term in σ. Only for frequencies

of the order ω ∼ T both terms would be comparable, these are however outside the validity

of the hydrodynamic approximation.

When αB/T 2 � 1, we have

σ = σEz +
i

ω
cB +O

(
1

cB

)
, σEz = Te−

cB
2πT2

(
cB

T 2
+O

(
1

cB

))
. (3.21)

Here σEz also gets nontrivial corrections with B. As pointed out in [40, 41], because σEz
exists even at zero density, we can interpret it as coming from the vacuum pair production.

As we already mentioned in the previous section, the expression of σEz is important

for the whole dependence of the longitudinal magnetoconductivity on the magnetic field B.

13For simplicity we assume from now on c, α,B > 0.
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Figure 2. Anomaly related magneto-quenching of the quantum critical conductivity σEz

from (3.19) as a function of αB/π2T 2.
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Figure 3. The plot of the dependence of the rescaled coefficient in front of i/ω in the imaginary

part of the conductivity (2.54) as a function of αB/π2T 2. At small αB/T 2 it is quadratic in B and

at large αB/T 2 (intermediate regime) it is linear in B.

Figure 2 shows the behavior of σEz as a function of B. Notice that the anomaly and the

magnetic field quench the quantum critical conductivity for αB > T 2. In figure 3 we plot

the dependence of the residue of the DC conductivity at ω = 0 on αB/T 2. We can see from

the picture that at small B it is quadratic in B and at large αB/T 2, i.e. the intermediate

regime, it is linear in B.
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We can introduce a charge relaxation time τc in (3.19) by replacing ω with ω + i
τc
.14

Then the longitudinal DC magnetoconductivity becomes

σ = σEz + τc
c2B2

2π2T 2
+O(α4B4) , σEz = πT − c2B2 log 2

2π3T 3
+O(α4B4) (3.22)

in the small B limit and

σ = σEz + τccB +O
(

1

cB

)
, σEz = e−

cB
2πT2

(
cB

T
+O

(
1

cB

))
(3.23)

in the intermediate B limit. The relaxation time τc can depend on the temperature in

a nontrivial way. For a fixed nonzero temperature, we can see from (3.22) that at small

B, the DC conductivity is dominated by the quantum critical conductivity σEz while at

intermediate B σEz → 0 and the DC conductivity is dominate by the τc term. More

precisely at small B the magneto-quenching effect in the quantum critical conductivity

dominates if the relaxation time obeys

πTτc < log(2) . (3.24)

At intermediate B regime, σ ∼ B which grows linearly in B and this is exactly the

negative magnetoresistivity, or equivalently positive magnetoconductivity. At small B for

small value of τc σ will first decrease with the increase of B and then connect to the negative

magnetoresistivity behavior in an intermediate regime of B. Figure 4 shows the dependence

of σ on B at a fixed nonzero temperature where we assumed an appropriate value of τc
(Tτc = 0.01) which behaves as 1/T and does not depend on B. We can see from the picture

that this shows qualitatively the same features as seen in the experimental result of figure 3

in [27], namely a negative magnetoresistivity at intermediate regime of B and a decrease of

magnetoconductivity as a function of B at small B. The holographic result does however

not show a cusp-like behavior near B = 0 as the derivative of the conductivity at B = 0 is 0.

Now we can compare this strongly coupled holographic result with the weak-coupling

kinetic result for a Weyl metal in [19, 20]. In the limit µ, T �
√
B, they got the linear

in B behavior in the DC conductivity. In the hydrodynamics calculations of section 2 we

have to stay in the regime B � T 2. In the holographic calculations we can go to the limit

B � T 2, µ2 and the result is the same as found in [19] and [20] for large B. In [20], the

authors considered the limit T,
√
B � µ, and they got a B2/µ2 behavior, which is different

from our small B behavior here (3.22) as in the probe limit, we cannot go to the zero

temperature limit. It would be interesting to also work in the T � µ limit holographically

to check the B dependence of the DC conductivity in that limit by considering backreaction

of the gauge field, which also will introduce a nontrivial term related to the charge density

as can be seen in (2.38). In [20], the limit µ,
√
B � T was also considered and the result

is the same as our holographic result in the small B limit αB � T 2.

In experiments, the negative magnetoresistivity behavior caused by chiral anomaly

matches well with the weakly coupled field theoretical approach, however, at small B

14Note that this replacing is not necessarily related to hydrodynamics. Here we use this replacement as

a phenomenological attempt to parametric the finite Drude peak.
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Figure 4. The longitudinal DC magnetoconductivity as a function of the background magnetic

field B at a fixed temperature. We have assumed a charge relaxation time of Tτc = 0.01. At

small B the decreasing of the conductivity with B is caused by the effect of the chiral anomaly

in the quantum critical conductivity. In the intermediate regime of B σEz → 0 and the negative

magnetoresistivity is caused by the generation of charge density due to the chiral anomaly effect in

the second term of (3.23). Qualitatively this is the same behavior as seen in experiments [27].

the experimental data does not fit well with theoretical predictions. In [27] the authors

proposed to also add the quantum effect of the weak anti-localization, which can fit the

experimental results well but is not caused by the chiral anomaly. Here, our holographic

results give another possible explanation of the small B behavior, which comes from the

quantum critical conductivity being affected by the chiral anomalous term and does not

depend on the charge density. However, there is no cusp-like behavior at B = 0 as those

found in weak anti-localization effects.

Let us now have a look at the behavior of the transverse magnetoconductivity. For the

holographic system in the probe limit σE in the x, y directions is not affected by the chiral

anomalous term, i.e. σE = πT (see appendix). Thus there is no negative magnetoresistivity

as for the longitudinal direction. We note that going beyond the probe limit also the

transverse conductivities might pick up some non-trivial B (and µ) dependence.

Let us now briefly discuss the Hall effect.15 In the holographic probe limit and on the

absence of the Chern-Simons term, though ρ and B should be of the same order, we still

cannot see the normal Hall conductivity of (2.42) because backreaction on the gravity need

to be considered to couple the two modes of δAx and δAy. However with Chern-Simons

term we do have a coupling between δAx and δAy due to the chiral anomalous term at

order c2B, meanwhile, this is still consistent with the result of (2.42) because this encodes

the correction of the chiral anomalous term to the charge density ρ at order c2B2 resulting

15Note that if one choses the integration constant for A
(0)
z 6= 0 the consistent current Jµ =

√
−gFµr +

4
3
αεµνρλAνFρλ would also show an anomalous (i.e. B-field independent) Hall effect proportional to A

(0)
z .

For the Hall effect in the Saki-Sugimoto model see also [23].
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in an order c2B correction in the Hall conductivity. We find

σxy = −ρ− ρh
B

(3.25)

where ρh is the charge density carried by the horizon. Note that the Hall conductivity

is higher order in αB/T 2 and therefore can not be seen in the hydrodynamic theory of

section 2. More details on the calculation can be found in the appendix. We take this dy-

namically induced Hall effect as a signature of the the so-called chiral shift shown to exists at

weak coupling in [42]. More precisely a magnetic field induces an interaction driven relative

displacement of the longitudinal momenta of the dispersion relations of fermions of oppo-

site chirality. In [43] it has been argued that due to this chiral shift a dynamical Hall effect

is induced in a magnetic field in a Dirac metal which qualitatively is consitent with (3.25).

Finally there is one observation about the momentum and energy dissipations in the

background of an AdS Schwarzschild black hole. As we already know, the DC conductivity

dual to the Schwarzschild black hole is finite, which can be thought to be the result of

zero density as can be seen from the c = 0 limit in (2.38) that at zero density ρ → 0, the

DC conductivity for a translationally invariant system automatically becomes finite as the

divergence term is proportional to the density and vanishes at zero density. Another way

to understand this is that there is in fact a large amount of neutral degrees of freedom

which dissipate the momentum of the charge carriers. Analogous to this, we can see that

in (2.38) the energy dissipation related term also vanishes at zero density, and with the

same logic, this can be understood in another way, i.e. the energy of the charge carriers

can be dissipated to the large amount of neutral degrees of freedom. This implies that the

field theory dual to the AdS Schwarzschild black hole automatically has both energy and

momentum dissipations for the charge carriers.

4 A more realistic model: U(1)V × U(1)A

In section 2 and section 3, we calculated the longitudinal electric conductivity for a chiral

anomalous fluid with only one U(1) current which in fact corresponds to the axial current.

To be more realistic with the real electric current included, in this section we consider the

case of two U(1) currents, i.e. U(1)V ×U(1)A.

4.1 Linear response

Now we have two currents: Jµ which corresponds to U(1)V and Jµ5 which corresponds to

U(1)A. The conservation equations are now

∂µT
µν = F ναJα , (4.1)

∂µJ
µ = 0 , (4.2)

∂µJ
µ
5 = cEµBµ , (4.3)

when there are no dissipation terms.
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The constituent equations are [19, 44]16

Tµν = εuµuν + pPµν + τµν , (4.4)

Jµ = ρuν + νµ , (4.5)

Jµ5 = ρ5u
ν + νµ5 (4.6)

where in Landau frame

τµν = −ηPµαP νβ(∂αuβ + ∂βuα)−
(
ζ − 2

3
η

)
Pµν∂αu

α , (4.7)

νµ = −σTPµν∂ν
(
µ

T

)
− σ5TPµν∂ν

(
µ5
T

)
+ σ(E)Eµ + σ(V )ωµ + σ(B)Bµ , (4.8)

νµ5 = −σ5TPµν∂ν
(
µ

T

)
− σTPµν∂ν

(
µ5
T

)
+ σ

(E)
5 Eµ + σ

(V )
5 ωµ + σ

(B)
5 Bµ , (4.9)

and

Eµ = Fµνuν , Bµ =
1

2
εµναβuνFαβ , ωµ =

1

2
εµναβuν∂αuβ . (4.10)

The coefficients are [44, 45]17

σ(E) = σ(µ, µ5, T ) , σ(B) = cµ5

(
1− µρ

ε+ p

)
, σ

(B)
5 = cµ

(
1− µ5ρ5

ε+ p

)
σ
(E)
5 = σ5(µ, µ5, T ) , σ(V ) = 2cµµ5

(
1− µρ

ε+ p

)
, σ

(V )
5 = cµ2

(
1− 2µ5ρ5

ε+ p

)
. (4.11)

With two chemical potentials and two charges we now have the thermodynamic relations as

ε+ p = Ts+ µρ+ µ5ρ5 , dp = sdT + ρdµ+ ρ5dµ5 . (4.12)

The nonzero quantities of the energy momentum tensor and currents are

T 00 = ε , T ii = p , J t = ρ , Jz = Bσ(B) , J t5 = ρ5 , Jz5 = Bσ
(B)
5 . (4.13)

We perform the same linear response calculations as in the one U(1) current case.

We assume that the system is in an equilibrium state characterized by µ, µ5 and the

temperature T . We perturb the system by

µ(~x, t) = µ+ δµ(~x, t) , (4.14)

µ5(~x, t) = µ5 + δµ5(~x, t) , (4.15)

T (~x, t) = T + δT (~x, t) , (4.16)

uµ(~x, t) = (1, δui(~x, t)) , (4.17)

and δF 0i = −δF i0 in the U(1)V sector. We also have a background magnetic field in the

U(1)V sector F12 = −F21 = B, and Eµ = 0.

16Note that µ = 1
2
(µR + µL), µ5 = 1

2
(µR − µL); ρ = ρR + ρL, ρ5 = ρR − ρL. In this section, we use σ to

parametrize the quantum critical conductivity and Σ for the total conductivity.
17For simplicity, we assume the gravitational anomaly constant cg = 0, thus we ignored the T 2 terms in

these coefficients.
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To linear order we have

δT 00 = δε ,

δT 0i = (ε+ p)δui ,

δT ij = δpgij − η
(
∂iδuj + ∂jδui − 2

3
gij∂kδuk

)
− ζgij∂kδuk ,

δJ t = δρ+ σ(B)Bδuz ,

δJx = ρδux + σ(E)
(
δF 0x +Bδuy

)
− σT∂x

(
δ
µ

T

)
− σ5T∂x

(
δ
µ5

T

)
+

1

2
σ(V )

(
∂yδuz − ∂zδuy

)
,

δJy = ρδuy + σ(E)
(
δF 0y −Bδux

)
− σT∂y

(
δ
µ

T

)
− σ5T∂y

(
δ
µ5

T

)
− 1

2
σ(V )

(
∂xδuz − ∂zδux

)
,

δJz = ρδuz + σ(E)δEz − σT∂z
(
δ
µ

T

)
− σ5T∂z

(
δ
µ5

T

)
+

1

2
σ(V )

(
∂xδuy − ∂yδux

)
+ δσ(B)B ,

δJ t
5 = δρ5 + σ

(B)
5 Bδuz ,

δJx
5 = ρ5δux + σ

(E)
5

(
δF 0x +Bδuy

)
− σT∂x

(
δ
µ5

T

)
− σ5T∂x

(
δ
µ

T

)
+

1

2
σ
(V )
5

(
∂yδuz − ∂zδuy

)
,

δJy
5 = ρ5δuy + σ

(E)
5

(
δF 0y −Bδux

)
− σT∂y

(
δ
µ5

T

)
− σ5T∂x

(
δ
µ

T

)
− 1

2
σ
(V )
5

(
∂xδuz − ∂zδux

)
,

δJz
5 = ρ5δuz + σ

(E)
5 δEz − σT∂z

(
δ
µ5

T

)
− σ5T∂x

(
δ
µ

T

)
+

1

2
σ
(V )
5

(
∂xδuy − ∂yδux

)
+ δσ

(B)
5 B .

We consider the following conservation equations at linear order in δJµ, δJµ5 , δTµν [32]

again with all the possible dissipation terms except for the U(1)V current which remains

conserved

∂µδT
µ0 = δF 0µJµ +

1

τe
δTµ0uµ , (4.18)

∂µδT
µi = ρδEi + F iλδJλ +

1

τm
δTµiuµ , (4.19)

∂µδJ
µ = 0 , (4.20)

∂µδJ
µ
5 = cδEµBµ +

1

τc
δJµ5 uµ . (4.21)

After substituting the currents and stress energy tensor at the linear level into the

equations above, we get the following conservation equations(
∂t +

1

τe

)
δε+ ∂i

[
(ε+ p)δui

]
− σ(B)BδEz = 0 ;(

∂t +
1

τm

)[
(ε+ p)δux

]
+ ∂xδp− η

(
∂2j δux +

1

3
∂x∂jδuj

)
− ζ∂x∂jδuj = ρδF 0x

+B

[
ρδuy+σ(E)

(
δF 0y−Bδux

)
−σT∂y

(
δ
µ

T

)
−σ5T∂y

(
δ
µ5

T

)
− 1

2
σ(V )

(
∂xδuz−∂zδux

)]
;(

∂t +
1

τm

)[
(ε+ p)δuy

]
+ ∂yδp− η

(
∂2j δuy +

1

3
∂y∂jδuj

)
− ζ∂y∂jδuj = ρδF 0y

−B
[
ρδux+σ(E)

(
δF 0x+Bδuy

)
−σT∂x

(
δ
µ

T

)
−σ5T∂x

(
δ
µ5

T

)
+

1

2
σ(V )

(
∂yδuz−∂zδuy

)]
;(

∂t +
1

τm

)[
(ε+ p)δuz

]
+ ∂zδp− η

(
∂2j δuz +

1

3
∂z∂jδuj

)
− ζ∂z∂jδuj − ρδEz = 0 ;
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∂t
[
δρ+ σBBδuz

]
+ ∂i(ρδui + σ(E)δEi)− σT∂2i

(
δ
µ

T

)
− σ5T∂2i

(
δ
µ5

T

)
+σ(E)B(∂xδuy − ∂yδux) + ∂zδσ

(B)B = 0 ;(
∂t +

1

τc

)[
δρ5 + σ

(B)
5 Bδuz

]
+ ∂i(ρ5δui + σ

(E)
5 δEi)− σT∂2i

(
δ
µ5

T

)
− σ5T∂2i

(
δ
µ

T

)
+σ

(E)
5 B(∂xδuy − ∂yδux) + ∂zδσ

(B)
5 B − cBδEz = 0 .

Laplace transform in the time direction and we get

ωeδε− iδε(0) + i(ε+ p)∂iδui − iσ(B)BδEz = 0 ,

(ε+ p)(ωmδux − iδu(0)x ) + i∂xδp− iη
(
∂2j δux +

1

3
∂x∂jδuj

)
− iζ∂x∂jδuj − iBδJy − iρδF 0x = 0 ,

(ε+ p)(ωmδuy − iδu(0)y ) + i∂yδp− iη
(
∂2j δuy +

1

3
∂y∂jδuj

)
− iζ∂y∂jδuj + iBδJx − iρδF 0y = 0 ,

(ε+ p)(ωmδuz − iδu(0)z ) + i∂zδp− iη
(
∂2j δuz +

1

3
∂z∂jδuj

)
− iζ∂z∂jδuj − iρδEz = 0 ,

ω
(
δρ+ σ(B)Bδuz

)
+ i∂i(ρδui + σ(E)δEi)− iσT∂2i

(
δ
µ

T

)
− iσ5T∂2i

(
δ
µ5

T

)
+iσ(E)B(∂xδuy − ∂yδux) + i∂zδσBB = 0 ,(

ωcδρ5 − iδρ(0)5

)
+ σ

(B)
5 B

(
ωcδuz − iδu(0)z

)
+ i∂i(ρ5δui + σ

(E)
5 δEi)− iσT∂2i

(
δ
µ5

T

)
−iσ5T∂2i

(
δ
µ

T

)
+ iσ

(E)
5 B(∂xδuy − ∂yδux) + i∂zδσ

(B)
5 B − icBδEz = 0 ,

where

ωe ≡ ω +
i

τe
, ωm ≡ ω +

i

τm
, ωc ≡ ω +

i

τc
.

As δF 0µ is an external field, we can choose it to be δF 0µ(t, xi) = δF 0µe−iωt+ikix
i
. After

a Laplace transformation in the time direction and a Fourier transformation in the spatial

direction and taking the limit k → 0 we have δEz = δE
(0)
z . The equations become

ωeδε− iδε(0) − iσ(B)BδEz = 0 , (4.22)

(ε+ p)(ωmδux − iδu(0)x )− iρδF 0x − iB
(
ρδuy + σ(E)(δF 0y −Bδux)

)
= 0 , (4.23)

(ε+ p)(ωmδuy − iδu(0)y )− iρδF 0y + iB
(
ρδux + σ(E)(δF 0x +Bδuy)

)
= 0 , (4.24)

(ε+ p)(ωmδuz − iδu(0)z )− iρδEz = 0 , (4.25)

ω
(
δρ+ σ(B)Bδuz

)
= 0 , (4.26)

ωcδρ5 − iδρ(0)5 + σ
(B)
5 B

(
ωcδuz − iδu(0)z

)
− icBδEz = 0 . (4.27)

Solving δµ, δρ, δuz in terms of δµ(0), δρ(0), δu
(0)
z , δE

(0)
z and using

δε ≡ e5δµ5 + e1δµ+ e2δT =

(
∂ε

∂µ5

)∣∣∣∣
T,µ

δµ5 +

(
∂ε

∂µ

)∣∣∣∣
T,µ5

δµ+

(
∂ε

∂T

)∣∣∣∣
µ,µ5

δT , (4.28)

δρ ≡ f5δµ5 + f1δµ+ f2δT =

(
∂ρ

∂µ5

)∣∣∣∣
T,µ

δµ5 +

(
∂ρ

∂µ

)∣∣∣∣
T,µ5

δµ+

(
∂ρ

∂T

)∣∣∣∣
µ,µ5

δT , (4.29)
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δρ5 ≡ s5δµ5 + s1δµ+ s2δT =

(
∂ρ5
∂µ5

)∣∣∣∣
T,µ

δµ5 +

(
∂ρ5
∂µ

)∣∣∣∣
T,µ5

δµ+

(
∂ρ5
∂T

)∣∣∣∣
µ,µ5

δT ,(4.30)

δp = ρ5δµ5 + ρδµ+ sδT , (4.31)

we have

δuz =
ρ

ε+ p

i

ωm
δE(0)

z + . . .

δµ =
B

D

[
σ(B)(f5s2 − f2s5)

i

ωe
+
ρ[σ(B)(e5s2 − e2s5)− σ(B)

5 (e5f2 − e2f5)]
ε+ p

i

ωm

+ c(e5f2 − e2f5)
i

ωc

]
δE(0)

z + . . .

δµ5 =
B

D

[
σ(B)(f2s1 − f1s2)

i

ωe
+
ρ[σ(B)(e2s1 − e1s2)− σ(B)

5 (e2f1 − e2f1)]
ε+ p

i

ωm

+ c(e2f1 − e1f2)
i

ωc

]
δE(0)

z + . . .

δT = −B
D

[
σ(B)(f5s1 − f1s5)

i

ωe
+
ρ[σ(B)(e5s1 − e1s5)− σ(B)

5 (e5f1 − e1f5)]
ε+ p

i

ωm

+ c(e5f1 − e1f5)
i

ωc

]
δE(0)

z + . . .

with

D ≡ det

e5 e2 e1f5 f2 f1
s5 s2 s1

 , (4.32)

where “. . . ” denote terms unrelated to δE
(0)
z . Here we only focus on the longitudinal

conductivity with vanishing initial values for all the other perturbations except δE
(0)
z .

From

δJz = ρδuz + σ(E)δEz − σT∂z
(
δ
µ

T

)
+

1

2
σ(V )

(
∂xδuy − ∂yδux

)
+ δσ(B)B , (4.33)

we get (in the k → 0 limit)

δJz = ρδuz + σ(E)δEz +Bc

(
1− µρ+ µµ5f5

(ε+ p)
+
ρµµ5(e5 + ρ5)

(ε+ p)2

)
δµ5

+Bc

(
− µ5ρ+ µµ5f1

(ε+ p)
+
ρµµ5(e1 + ρ)

(ε+ p)2

)
δµ

+Bc

(
− µµ5f2

(ε+ p)
+
ρµµ5(e2 + s)

(ε+ p)2

)
δT (4.34)

= ΣδE(0)
z + . . . (4.35)

with

Σ = σ(E) +
i

ω + i
τe

B2cσ(B)

D
K0 +

i

ω + i
τm

ρ

ε+ p

[
ρ− B2c

D
K1

]
+

i

ω + i
τc

B2c2

D
K2 , (4.36)
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where

K0 = (f2s1 − f1s2)−
ρ

(ε+ p)

[
(f2s1 − f1s2)µ+ (f5s2 − f2s5)µ5

]
+

µµ5ρ

(ε+ p)2
[
D − s(f5s1 − f1s5) + ρ(f5s2 − f2s5) + ρ5(f2s1 − f1s2)

]
(4.37)

K1 = σ(B)

[
(e1s2 − e2s1)−

1

(ε+ p)

[
µµ5D − µ5ρ(e5s2 − e2s5)

− µρ(e2s1 − e1s2)
]
− µµ5ρ

(ε+ p)2
[
− s(e5s1 − e1s5) + ρ(e5s2 − e2s5)

+ρ5(e2s1 − e1s2)
]]

+ σ
(B)
5 K2 (4.38)

K2 = (e2f1 − e1f2)−
ρ

(ε+ p)
[µ(e2f1 − e1f2) + µ5(e5f2 − e2f5)]

+
µµ5ρ

(ε+ p)2
[−s(e5f1 − e1f5) + ρ(e5f2 − e2f5) + ρ5(e2f1 − e1f2)] . (4.39)

The result is very complicated with lots of thermodynamic quantities that are not

universal. In certain limits, the result can be simplified to very simple forms.

• case I: ρ5 = µ5 = 0. In this case we have s1 = s2 = 0, and

Σ = σ(E) +
i

ω + i
τm

ρ

ε+ p

[
ρ− B2c2µTs

s5(ε+ p)

]
+

i

ω + i
τc

Ts

ε+ p

B2c2

s5
. (4.40)

In this case, energy dissipations are not necessary for a finite result while momentum

and charge dissipations are still required. This is a very interesting limit. It is clear

from (4.36) that energy dissipations are only needed when there is a non vanishing

axial chemical potential. In this limit, the anomaly related dissipations are the charge

and momentum dissipations, which means that in this limit, the inter-valley scattering

would have the effect of only dissipating charge and momentum, while not energy.

• case II: ρ = µ = 0. We have f5 = f2 = 0, and

Σ = σ(E) − i

ω + i
τe

B2c2µ5s2
(ε+ p)(e2s5 − e5s2)

− i

ω + i
τc

B2c2e2
e5s2 − e2s5

. (4.41)

In this case, momentum dissipation is not necessary while energy and charge dissipa-

tions are needed for a finite result. This is because momentum dissipation is always

associated with finite charge density.

• case III: ρ = ρ5 = 0, µ = µ5 = 0. Using the fact f5 = f2 = s1 = s2 = 0, we have

Σ = σ(E) +
i

ω + i
τc

B2c2

s5
. (4.42)

In this double zero density limit, only charge dissipations are needed for a finite

result.
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Another interesting quantity is the axial longitudinal conductivity Σ5 which is defined

as the response of JAz to the electric field Ez. In the k → 0 limit we have

δJz5 = ρ5δuz + σ
(E)
5 δEz + δσ

(B)
5 B , (4.43)

then we get

δJz5 = ρ5δuz + σ
(E)
5 δEz +Bc

(
− µρ5 + µµ5s5

(ε+ p)
+
ρ5µµ5(e5 + ρ5)

(ε+ p)2

)
δµ5

+Bc

(
1− µ5ρ5 + µµ5s1

(ε+ p)
+
ρ5µµ5(e1 + ρ)

(ε+ p)2

)
δµ

+Bc

(
− µµ5s2

(ε+ p)
+
ρ5µµ5(e2 + s)

(ε+ p)2

)
δT (4.44)

= Σ5δE
(0)
z + . . . (4.45)

with

Σ5 = σ
(E)
5 +

i

ω + i
τe

B2cσ(B)

D
W0 +

i

ω + i
τm

ρ

ε+ p

[
ρ5 −

B2c

D
W1

]
+

i

ω + i
τc

B2c2

D
W2 , (4.46)

where

W0 = (f5s2 − f2s5)−
ρ5

(ε+ p)

[
(f2s1 − f1s2)µ+ (f5s2 − f2s5)µ5

]
+
µµ5ρ5

(ε+ p)2
[
D − s(f5s1 − f1s5) + ρ(f5s2 − f2s5) + ρ5(f2s1 − f1s2)

]
, (4.47)

W1 = σ(B)

[
(e2s5 − e5s2) +

ρ5
(ε+ p)

[
µ(e2s1 − e1s2) + µ5(e5s2 − e2s5)

]
− µµ5ρ5

(ε+ p)2
[
− s(e5s1 − e1s5) + ρ(e5s2 − e2s5) + ρ5(e2s1 − e1s2)

]]
+σ

(B)
5 W2 , (4.48)

W2 = (e5f2 − e2f5)−
1

(ε+ p)
[µµ5D + µρ5(e2f1 − e1f2) + µ5ρ5(e5f2 − e2f5)]

+
µµ5ρ5

(ε+ p)2
[−s(e5f1 − e1f5) + ρ(e5f2 − e2f5) + ρ5(e2f1 − e1f2)] . (4.49)

We can also simplify the results above in certain limits:

• In the limit B = 0, it reduces to a simple result

Σ5 = σ
(E)
5 +

i

ω + i
τm

ρρ5
ε+ p

. (4.50)

• In the limit ρ5 = µ5 = 0. In this case we have

Σ5 = σ
(E)
5 +

i

ω + i
τm

ρ

ε+ p

[
− B2c2µ(e5f2 − e2f5)

s5(e2f1 − e1f2)

]
+

i

ω + i
τc

B2c2(e5f2 − e2f5)
s5(e2f1 − e1f2)

,

(4.51)

where only momentum and charge dissipations are needed.
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• In the limit ρ = µ = 0. We have Σ5 = σ
(E)
5 and is automatically finite without any

dissipation terms.

• When ρ = ρ5 = 0, µ = µ5 = 0, we have Σ5 = σ
(E)
5 .

4.2 Holographic calculations

Now we apply this formula to the holographic system in the probe limit. The holographic

U(1)V ×U(1)A model was proposed in [37] with the action

S =

∫
d5x
√
−g
[
−1

4
F 2
A −

1

4
F 2
V +

α

3
εµνρστAµ

(
FAνρF

A
στ + 3F VνρF

V
στ

)]
, (4.52)

where subscript V denotes the vector sector and A denotes the axial sector. The equations

of motion for the two gauge fields are

∇νF νµA + αεµαβρσ
(
FAαβF

A
ρσ + F VαβF

V
ρσ

)
= 0 , (4.53)

∇νF νµV + 2αεµαβρσFAαβF
V
ρσ = 0 . (4.54)

To have a magnetic field in the background of the U(1)V sector, we assume AAµ =(
a(r), 0, 0, c(r), 0

)
, AVµ =

(
a2(r), By, 0, c2(r), 0

)
and it is easy to check that a, c2 and a2, c

satisfy exactly the same equations as (2.51). Thus we have

f1 = s5 = 4r20
Γ
[5−√1−(8Bα̃)2

4

]
Γ
[5+√1−(8Bα̃)2

4

]
Γ
[3−√1−(8Bα̃)2

4

]
Γ
[3+√1−(8Bα̃)2

4

] , f5 = s1 = 0 . (4.55)

Substituting these into the formulas and we get

Σ = σE +
i

ωc

B2c2

4π2T 2

Γ
[3−√1−(8Bα̃)2

4

]
Γ
[3+√1−(8Bα̃)2

4

]
Γ
[5−√1−(8Bα̃)2

4

]
Γ
[5+√1−(8Bα̃)2

4

] . (4.56)

This is the prediction for the probe holographic system from the hydrodynamic linear

response theory. We can compare this with the results directly from holography.

The conductivity of U(1)V × U(1)A can be computed from Kubo formula via holo-

graphic approach. It turns out the fluctuations of (δAVt , δA
A
z ) and (δAAt , δA

V
z ) form the

same equations as a single U(1) case, thus it is easy to check that the holographic result for

Σ matches exactly our result from hydrodynamics. This means that in the U(1)V ×U(1)A
case we get the same behavior of the DC longitudinal magnetoconductivity as in previous

section though with different physical meaning. The result in this U(1)V × U(1)A case is

the real magnetoconductivity which should be compared with the experiments. As the

result for Σ is exactly the same as that found in section 3, all the discussions in section 3

are still valid, i.e. holography can naturally realize the negative magnetoresistivity in an

intermediate regime of B and provides a new explanation of the decrease of the magneto-

conductivity as a function of B at small B as found in experiments. For Σ5 as δAVz and

δAAz are not coupled, we have Σ5 = 0 in the probe limit of the holographic system.
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5 Conclusion and discussion

In this paper we have considered the behavior of the longitudinal electric conductivity with

a background magnetic field in a chiral fluid. When there is an electric field parallel to the

magnetic field, an anomaly related infinite DC longitudinal conductivity will arise due to

infinite increase of the chemical potential and temperature under the external electric field,

which is caused by the chiral anomaly. We calculated the longitudinal conductivity in the

hydrodynamic limit at the linear response level for both the cases with one U(1) current

and U(1)V × U(1)A currents. The results show that the infinite conductivity can only

become finite by including all the three kinds of possible dissipation terms: momentum

dissipation, energy dissipation and charge dissipation. Even at zero density, there is still

one infinite term left which can only be dissipated by the charge dissipation term.

We applied the formula of the magnetoconductivity which we got from hydrodynamic

calculations to a simple holographic system in the probe limit and confirmed that it

matches with the result from the Kubo formula in the holographic side. The holographic

result has a nontrivial dependence on the background magnetic field. In an intermediate

regime of B, it grows linearly in B which corresponds to the behavior of negative

magnetoresistivity and agrees both with the results obtained previously in [19, 20] using

the weakly coupled kinetic theory and those found in experiments. Our holographic result

provides also a possible new explanation for the decrease in the magnetoconductivity

observed in experiment at small B. Indeed the quantum critical conductivity σEz along

the direction of the magnetic field is strongly quenched by B. Combined with the chiral

magnetic effect and a small enough charge relaxation time this leads to a dip in the

magnetoconductivity, qualitatively similar to what has been observed in [27]. In contrast

the transverse DC conductivity is not affected by the magnetic field in the probe limit.

This conclusion will change once the system is at finite density with backreaction, and our

next step is to study the chiral anomalous system holographically at finite density and see

what would be the behavior of both the longitudinal and transverse magnetoconductivities,

especially if there will be a cusp-like behavior at small B.

In our holographic calculations, we have not included dissipation effects. It would be

very interesting to test the dissipation effects holographically. Recently there has been a

lot of work in including momentum dissipation in holography. These include the lattice

construction which breaks the translational symmetry explicitly (e.g. [46–50]) and massive

gravity which breaks the diffeomorphism symmetry in the bulk (e.g. [51–53]). Besides

momentum dissipations, we also need to include energy and charge dissipations.

In [30], a bulk massive gauge theory was studied in the chiral anomalous fluid (see

also [54]). The massive gauge theory breaks the U(1) gauge symmetry in the bulk and

leads to charge dissipation for the boundary theory. In a follow up paper, we plan to study

the fluid/gravity analysis of this theory (similar to [8, 9]) to get the charge relaxation time

from the hydrodynamic modes.

The holographic energy dissipation effects have not been considered so far. As we

argued in the paper, the holographic zero density system is automatically a system with

energy not conserved for the charge carriers. To encode energy dissipations at finite den-
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Figure 5. Schematic depiction of an inter valley scattering event. Such an event will lead to

axial charge relaxation. But if the two Weyl cones are at different chemical potentials (as they

are in parallel external electric and magnetic fields) inter valley scattering will also lead to energy

relaxation since δε ≈ µ5δρ5.

sity, we can as well mimic the way that momentum dissipations are introduced, such as

the Q lattice [49] or massive gravity constructions [51]. It is possible to combine all the

momentum, energy and charge dissipations holographically to test the formula in this work

and we would like to consider this in future work.

Finally we would like to point out that in the context of Weyl metals inter-valley

scattering does indeed lead to energy relaxation. A schematic picture of an intervalley

scattering event is shown in figure 5. In such an event an electron from the Fermi surface

of the left-handed Weyl cone is scattered into the right-handed Weyl cone. In the presence

of parallel electric and magnetic fields the local Fermi energies in the two Weyl cones will

be shifted due to the injection of axial charge via the axial anomaly dρ5/dt = 1/(2π2) ~E. ~B.

The difference in the local Fermi energies can be encoded in an axial chemical potential.

Since an intervalley scattering event changes the axial charge ρ5 = ρL − ρR this is accom-

panied by a cost in energy of the form δε = µ5δρ5. This explains qualitatively why the

energy dissipation is present in our hydrodynamic considerations. It would be interesting

to include this effect also in the kinetic theory based on a simply collision term of axial

charge relaxation along the lines in [20].
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A Holographic Hall conductivity in the probe limit

In this appendix we compute the transverse magnetoconductivity and Hall conductivity

in the holographic probe limit for one U(1) case. We consider the fluctuations δAx =
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axe
−iωt, δAy = aye

−iωt. The equations of motion are

a′′x −
2u

1− u2
a′x +

[
ω2

4r20u(1− u2)2
ax −

4iωα(8αB)At
2r40(1− u2)2

ay

]
= 0 ,

a′′y −
2u

1− u2
a′y +

[
ω2

4r20u(1− u2)2
ay +

4iωα(8αB)At
2r40(1− u2)2

ax

]
= 0 . (A.1)

Define a± = ax ± iay, we have

a′′± −
2u

1− u2
a′± +

[
ω2

4r20u(1− u2)2
∓ 4ωα(8αB)At

2r40(1− u2)2

]
a± = 0 . (A.2)

Following [55], redefine a± = (1−u2)−
iω
4r0

(
a
(0)
± +ωa

(1)
± + . . .

)
where a

(0)
± , a

(1)
± are regular at

the horizon. Expanding the equation (A.2) according to ω, at the zeroth order we have

(a
(0)
± )′′ − 2u

1− u2
(a

(0)
± )′ = 0. (A.3)

Thus a
(0)
± (u) = c±0 . At the first order we have

[
(1− u2)(a(1)± )′

]′
+

(
i

2r0
∓ 16α2BAt
r40(1− u2)

)
c0± = 0. (A.4)

We obtain

(
a
(1)
±
)′

= −
c0±

1− u2

∫ u

1
dx

(
i

2r0
∓ 16α2BAt
r40(1− x2)

)
=

c0±
1− u2

(
i(1− u)

2r0
± 1

B

[
A′t[u]−A′t[1]

])
. (A.5)

Following [56], the DC conductivity can be computed

∓ iσxy + σxx = lim
ω→0

2r20ω
(
a
(1)
±
)′

(0)

iωa±(0)
. (A.6)

We have

σxx = πT, σxy = − ρ
B
− 2r20A

′
t[1]

B
= −ρ− ρh

B
(A.7)

where ρh is the charge density carried by the horizon.
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