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1 Introduction

Entanglement entropy is an interesting probe in a holographic setup: it is a boundary

observable that directly probes the local geometrical data of the bulk gravitational theory.

Holographic entanglement entropy might describe how geometry emerges in a classical

theory of gravity from a quantum theory.

There are, however, many gravitational theories where the notion of local geometrical

quantities is rather unnatural. Higher spin theories, as originally formulated by Vasiliev,

are such a class of gravitational theories with non-local interactions among a generically

infinite tower of fields. The enlarged gauge redundancies of the fields act nontrivially and
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unfamiliarly on the metric; the usual Riemannian definitions fall short for these theories.

Nevertheless, these theories do have a seemingly healthy dual description in terms of a

CFT. In this case, entropy (either thermal or from entanglement) in the dual theory will

provide guidance: the object that captures holographic entanglement entropy in higher spin

theories can give a generalized definition of geometry. One of the goals of this program is

to quantify this new definition and its possible repercussions.

Progress has been made towards this direction. For a simple class of higher spin

theories based on three dimensional SL(N,R) Chern-Simons theory, there are two proposals

for what is the appropriate object that captures entanglement entropy [1, 2]. Both of these

proposals consider a Wilson line as the correct object that replaces the notion of geodesic

length. In [2] one of the key ingredients was to search for a composite line operator that

was invariant under local Lorentz transformations. In [1] the goal was to design a Wilson

line that captured the dynamics of a massive particle. The details of each proposal are

rather different, but there was some evidence that both were equivalent since the reported

results for SL(3) higher spin gravity are the same at leading order in the coupling. Here

we will prove why and how they agree.

In order to construct our proof, the first step will be to generalize the proposal of [1] to

SL(N,R) Chern-Simons.1 This is done in section 3. We will give an explicit construction of

the Wilson line, and in this process we will discuss how to evaluate the saddle point value

of the operator. These methods depend on the representation used for the background

connections. It turns out, that the composite operator constructed in [2] is a clever way to

get the final answer. The authors in [2] were only guided by symmetries and consistency

conditions, which shows that, in this particular case, simple physical requirements on the

observable are enough to capture the dynamics.

In section 4, we develop as well two methods to explicitly evaluate the Wilson line

as a function of the background SL(N,R) fields. The first method uses the fundamental

representation of the algebra. It has the advantage that it gives an exact answer for any

range of the parameters, but it is somewhat tedious to extract certain features from the

answer. The second method relies on a small interval expansion of the composite Wilson

line defined in [2]. This small interval expansion captures first correction to the relative

entropy of a pure state with respect to the vacuum. The result is well known to be universal

in a CFT2 [3], and our results match up perfectly with this universality for any value of

N . We end our discussion with some open questions in section 5.

2 The shortest introduction to AdS3 higher spin gravity

The simplest way to craft a higher spin theory follows from the famous observation that

three dimensional Einstein gravity with a negative cosmological constant can be reformu-

lated as a SL(2,R) × SL(2,R) Chern-Simons theory [4, 5]. By simply taking instead the

gauge group to be SL(N,R)×SL(N,R), we will produce a non-trivial theory for symmetric

tensors of spin s = 2, 3, . . . , N [6].

1Our generalization will not only include a massive representation, but a large class of unitary represen-
tations that carry higher spin charges.
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The action of the SL(N,R)× SL(N,R) Chern-Simons theory is given by

S = SCS [A]− SCS [Ā] , SCS [A] =
k

4π

∫

M
tr
(

A ∧ dA+
2

3
A ∧A ∧A

)

. (2.1)

Here M is the 3-manifold that supports the sl(N,R) algebra valued connections A and

Ā, and the trace ‘tr’ denotes the invariant quadratic form of the Lie algebra as defined in

appendix A. The equations of motion following from (2.1) are

dA+A ∧A = 0 , dĀ+ Ā ∧ Ā = 0 . (2.2)

The metric and higher spin fields are obtained from the Chern-Simons connection as

symmetric, traceless tensors that transform in the spin s representation of SL(2,R). For

example, the metric and the spin three field can be expressed as follows

gµν ∼ tr
(
eµeν

)
, φµνρ ∼ tr

(
e(µeνeρ)

)
, (2.3)

where, in line with the pure gravity case, one defines

e =
ℓ

2

(
A− Ā

)
, (2.4)

and we introduced the AdS radius ℓ. The metric and higher spin fields can then be

expressed in terms of trace invariants of the vielbein [7, 8], with the total number of

inequivalent invariants being N − 1 for sl(N,R). This definition for metric-like fields is

appropriate for the principal embedding of sl(2,R) in sl(N,R).2

The relation between the Chern-Simons level and the gravitational couplings is

k =
ℓ

8G3ǫN
, ǫN ≡ trf (L0L0) =

1

12
N(N2 − 1) , (2.5)

in accordance with the pure gravity limit. The notation trf denotes a trace in the fun-

damental representation of sl(N,R), and L0 is given in (A.8). The central charge of the

asymptotic symmetry group is [7, 9]

c = 12kǫN =
3ℓ

2G
. (2.6)

For the immediate purpose of this work this is all we need to know about AdS3 higher

spin gravity. For a more complete discussion see for example [10–12].

3 Wilson lines in SL(N,R) Chern-Simons

There are currently two seemingly different proposals to compute holographic entangle-

ment entropy in AdS3 higher spin theories. The proposal of the authors in [1] states that

2Non-principal embeddings of sl(2,R) in sl(N,R) give a different gravitational interpretation of the
Chern-Simons theory. Each inequivalent embedding generates a different spectrum of the theory.
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entanglement of the dual theory is captured by a massive Wilson line

SEE = − log (WR(C)) , (3.1)

where WR(C) is a bulk Wilson line defined as:

WR(C) = TrR

(

P exp

∫

C
(A+ Ā)

)

. (3.2)

Here A and Ā are the connections representing a higher spin background in SL(N,R)

Chern-Simons theory. The representation R is the infinite-dimensional highest-weight rep-

resentation of sl(N,R), and C is a curve in the bulk that connects the end points of the

interval of width ∆x in the boundary.

The other proposal in the market to compute entanglement entropy is given by the

following object [2]:

SEE = k log

[

lim
ρ0→∞

W comp
RN

(C)

]

ρ0=ρf=ρi

, (3.3)

where the quantity inside the logarithm is a composite Wilson line defined as

W comp
RN

(C) = TrRN

[

P exp

(∫

C
Ā

)

P exp

(

−
∫

C
A

)]

, (3.4)

where C is the same curve as in (3.2). The trace is taken in a finite-dimensional represen-

tation, denoted RN , which is different for every N .

It was noted in [1, 2] that for explicit backgrounds in SL(3,R) (3.3) reported the

same answer as the saddle point approximation of (3.1). However, the proposals look very

different! In this section we will show that, in the semiclassical limit, they are equivalent

for an open boundary interval. To do so, we will first generalise the proposal of [1] to

SL(N,R). In the process of finding an efficient and systematic way to evaluate (3.2), we

will show how the composite Wilson line (3.4) makes its appearance.

In this section we will only focus on higher spin theories based on the principal em-

bedding of SL(2,R) in SL(N,R). See appendix D for the generalization to non-principal

embeddings.

3.1 Wilson line and massive particles

As anticipated, we would like the Wilson line (3.2) to give information about the entangle-

ment entropy of an open interval ∆x in the CFT. In 3d Einstein gravity, the calculation of

the entanglement entropy is equivalent to computing the length of a geodesic connecting

the endpoints of ∆x [13–15]. A geodesic can be understood as the trajectory followed by a

massive point particle. Our Wilson line should mimic the dynamics of this massive particle,

and hence as a minimal requirement it should be able to carry the data of this particle.

A point particle in the classical limit is characterized by at least one continuous param-

eter: the mass m. This data is stored in the representation R that defines the Wilson line.

An infinite-dimensional representation of sl(N,R) ⊕ sl(N,R) will do the trick: it allows
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for continuous parameters which we can identify with a mass.3 In particular, we will work

with the so-called highest-weight representation. Consider the sl(N,R) algebra in (A.1),

and we define the highest-weight state of the representation as |hw〉 ≡ |h,w3, . . . , wN 〉 with
the following properties:

L0|hw〉 = h|hw〉 , L1|hw〉 = 0 ,

W
(s)
0 |hw〉 = ws|hw〉 , W

(s)
j |hw〉 = 0 , j = 1, . . . , s− 1 .

(3.5)

The constants h and ws with s = 3, . . . , N are the parameters defining the representation.

|hw〉 is annihilated by the lowering operators; a descendant state is created by acting with

the raising operators: W
(s)
−j and L−1. With this, the Wilson line in the infinite-dimensional

highest-weight representation of sl(N,R)× sl(N,R) is labelled by two towers of quantum

numbers: (h,ws) and (h̄, w̄s). In particular the mass m̂ and orbital spin ŝ are given by

ℓm̂ = h+ h̄ , ŝ = h̄− h . (3.6)

For the purpose of computing entanglement entropy we would like for the representation

to only carry mass and no other quantum numbers. Hence we will set

h = h̄ , ws = w̄s = 0 , ∀s . (3.7)

We have to fix as well the value of m̂ in order to make contact with entanglement; this will

be done in section 3.3. Of course this choice of representation can be modified, but this

will change the interpretation of the Wilson line in terms of the dual theory. For instance

one could design probes that carry higher spin charge or orbital spin; the interpretation

of this object in the dual CFT interpretation will be different, but still rather interesting.

See [16] for the case when w3 = w̄3 6= 0 in SL(3,R) higher spin theory, and see [17] for a

discussion when ŝ 6= 0.

3.2 Path integral representation of the Wilson line

The more complex step is to actually evaluate the trace in (3.1). Following [1], we will

interpret R as the Hilbert space of an auxiliary quantum mechanical system that lives on

the Wilson line, and replace the trace over R by a path integral. This auxiliary system is

described by some field U , and we will pick the dynamics of U so that upon quantization the

Hilbert space of the system will be precisely the desired representation R. More concretely,

WR(C) =

∫

DUe−S(U,A,Ā)C , (3.8)

3Moreover, these infinite dimensional representations can be unitary. It can be proven that all finite-
dimensional representations of sl(N,R) are non-unitary.
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where the action S(U,A, Ā)C has SL(N,R)×SL(N,R) as a local symmetry. The auxiliary

system is appropriately described by the following action:4

S(U,A, Ā)C=

∫

C
dy
(
Tr
(
PU−1DyU

)
+λ2(y)

(
Tr(P 2)−c2

)
+. . .+λN (y)

(
Tr(PN )− cN

))
.

(3.9)

Here P is the canonical momentum conjugate to U that lives in the Lie algebra sl(N,R).

The variable y parametrizes the curve C, and we pick y ∈ [yi, yf ]. The trace Tr(. . .) is a

short-cut notation for the contraction using the Killing forms in (A.11):

Tr(Pm) = ha1...amP
a1 . . . P am , m = 2, . . . , N , (3.10)

where P = P aTa and Ta is a generator of sl(N,R). The functions λm(y) represent Lagrange

multipliers which enforce constraints on P . The elements cm are the Casimir invariants

Cm (A.13) applied to the highest weight state, and contain the information of the highest-

weight quantum numbers h and ws. Note that in this action we already implemented that

h = h̄ and ws = w̄s, since there is only one momenta variable P . This will suffice for the

discussion here, but the generalization is worthwhile studying [17].

The covariant derivative is defined as

DyU ≡ d

dy
U +AyU − UĀy , Ay ≡ Aµ

dxµ

dy
, Āy ≡ Āµ

dxµ

dy
, (3.11)

where A and Ā are the connections that determine the background. With these definitions

we have achieved our first goal: the system is invariant under the local symmetries along

the curve. The transformation properties of the fields are

Aµ → L(xµ(y))(Aµ + ∂µ)L
−1(xµ(y)) , Āµ → R−1(xµ(y))(Āµ + ∂µ)R(xµ(y)) , (3.12)

and

U(s) → L(xµ(y))U(s)R(xµ(y)) , P (y) → R−1(xµ(y))P (y)R(xµ(y)) , (3.13)

with L and R being element of the group SL(N,R).

The equations of motion are:

DyP ≡ d

dy
P + [Āy, P ] = 0 ,

U−1DyU + 2λ2(y)P + 3λ3(y)P × P + . . .+NλN (y)P × . . .× P
︸ ︷︷ ︸

N−1

= 0 , (3.14)

4As discussed in [1], the choice of the action S(U,A, Ā)C is not unique, it is just a useful trick. There are
many auxiliary systems that will recover the trace over the representation in (3.2), giving the same result
for the Wilson line only depending on R and C.

– 6 –



J
H
E
P
0
3
(
2
0
1
5
)
1
2
4

plus the Casimirs constraints Tr(Pm) = cm. The cross product is a short-cut notation for:

P × . . .× P
︸ ︷︷ ︸

m

≡ hi1...im+1P
i1 . . . P imT im+1 . (3.15)

For an open curve C we need to choose boundary conditions for U(y) at the endpoints of

the curve. In the pure gravity case, it is natural to ask that the answer is invariant under

Lorentz transformations (since the geodesic length shares this property). In SL(2,R) ×
SL(2,R), the group elements R and L that parametrize the local Lorentz subgroup is:

R = L−1 . (3.16)

A natural condition is to impose that U(yi) and U(yf ) are invariant under a gauge transfor-

mation of the form (3.16); this will assure that SEE is insensitive to Lorentz transformations.

From (3.13), we see that the only boundary conditions that satisfy this condition are:

U(yi) = U(yf ) = 1 . (3.17)

For higher spin gravity, the symmetry group is SL(N,R) × SL(N,R) and we cannot say

that the Lorentz subgroup is described by (3.16); the condition (3.16) is much bigger in this

case! Still, we will impose (3.17) in the higher spin case since it is the natural generalization

of the gravitational case.

3.2.1 On-shell action

In this subsection we will evaluate WR(C) in saddle point approximation. To capture this

piece, we will find a practical way to compute the classical action (3.9) for any background

connection. The derivations will be applicable for both open and closed curves, and we

will keep ws 6= 0 in this subsection.

To evaluate (3.9), we start by eliminating the dependence of U using equation (3.14):

Son−shell =

∫

C
dyTr(PU−1DyU)

= −
∫

C
dy (2λ2(y)Tr(P

2) + 3λ3(y)Tr(P
3) + . . .+NλN (y)Tr(PN ))

= −
∫

C
dy (2 c2λ2(y) + 3 c3λ3(y) + . . .+N cNλN (y)) (3.18)

where in the last line we used the Casimirs constraints to eliminate P . Recall that the

curve C is running from y ∈ [yi, yf ]. It will be useful for us to define:

∆αm = αm(yf )− αm(yi) =

∫ yf

yi

dy λm(y) , (3.19)

and with this simplified notation, the action becomes:

Son−shell = −2 c2∆α2 − 3 c3∆α3 + . . .−N cN∆αN . (3.20)

– 7 –
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We need to determine ∆αm as a function of the connections A and Ā; we will follow

the method used in [1]. We start by building a solution when A = Ā = 0: this defines for

us U0(y) and P0(y) which from (3.14) read

U0(y) = u0e
−2α2(y)P0−3α3(y)P0×P0+...−N αN (y)P0×...×P0 , P0(y) = P0 , (3.21)

where u0 is a constant matrix, and αm(y) is defined in (3.19). From here, building a solution

with A 6= 0 and Ā 6= 0 is rather simple. As consequence of the flatness condition (2.2),

every connection can be expressed locally as a gauge transformation

Aµ = L(x)∂µL
−1(x) , Āµ = R−1(x)∂µR(x) , (3.22)

where the group elelemnts L and R will reproduce different background connections. This

means that we can build any solution to (3.14) for connections (3.22) by simply acting with

L and R on (3.21). This gives

U(y) = L(x(y))U0(y)R(x(y)) , P (y) = R−1(x(y))P0(y)R(x(y)) . (3.23)

Next, we impose the boundary condition (3.17); enforcing this condition on (3.23) gives

1 = U(yi) = L(yi)
(

u0e
−2α2(yi)P0−3α3(yi)P0×P0+...−N αN (yi)P0×...×P0

)

R(yi) ,

1 = U(yf ) = L(yf )
(

u0e
−2α2(yf )P0−3α3(yf )P0×P0+...−N αN (yf )P0×...×P0

)

R(yf ) . (3.24)

If we combine both previous equations to eliminate u0 we obtain

eP = M , M ≡ R(yi)L(yi)L
−1(yf )R

−1(yf ) , (3.25)

where we define

P ≡ −2∆α2P0 − 3∆α3P0 × P0 + . . .−N∆αNP0 × . . .× P0 . (3.26)

For a given P0, (3.25) determines ∆αm as a function of the background A and Ā. Solv-

ing (3.25) is the most difficult task we have ahead of us.

To determine the on-shell action we note that Tr(PP0) = Son−shell. Hence using (3.25)

we find

− logWR(C) = Son−shell = Tr(log(M)P0) . (3.27)

This gives a very general expression for the on-shell value of the effective action for both

open and closed curves C. The specific choice of P0 will determine the representation R.

For instance if we wanted to evaluate the Wilson line for a representation like (3.7) we

would use

P0 = hL0 =

√
c2

trf (L0L0)
L0 , (3.28)

– 8 –
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and for a general representation with (h,ws) = (h̄, w̄s) we would have

P0 = hL0 +
m∑

s=2

wsW
(s)
0 . (3.29)

At this stage it useful to note that M , as defined in (3.25), can also be written as

M = P exp

(∫

C
Ā

)

P exp

(

−
∫

C
A

)

, (3.30)

and hence W comp
RN

(C) = TrRN
M . However, (3.27) is still not casted in the appropriate way

to show that (3.1) is equivalent to (3.3).

3.3 Lines: entanglement entropy

As advertised, we are interested in using WR(C) to evaluate entanglement entropy. With

this application in mind, we will focus our attention to open intervals that are anchored

at the boundary. Furthermore, as argued in [1], we have to choose the massive represen-

tation (3.7). This implies that P0 ∈ sl(2,R). Without loss of generality, it is convenient

to set

P0 =

√
c2

trf (L0L0)
L0 . (3.31)

With this choice several of simplifications occur. In particular, the Casimirs cm = 0 for

m ≥ 3 due to our choice of Killing forms in (A.14), and hence he on-shell action (3.20)

reduces to

Son−shell = −2 c2∆α2 . (3.32)

To solve for ∆α2 we just need to decode P in (3.26). Since (3.25) and (3.32) are

independent of the representation, for simplicity, we will first focus in the fundamental

representation. Using (3.31) and the identities listed in appendix A, we can rewrite P as

P = ∆α̃2L0 +∆α̃3H
3 + . . .+∆α̃NHN , (3.33)

where all the sums of the series belong to the Cartan subalgebra, and we defined

∆α̃2 ≡ −2∆α2

√
c2

trf (L0L0)
, (3.34)

and

∆α̃m ≡ −m∆αm

(
c2

trf (L0L0)

)m−1
2

trf (L0 . . . L0
︸ ︷︷ ︸

m−1

Hm), for m > 2 . (3.35)

Since the Cartan elements are diagonal in the fundamental representation, P is a

diagonal matrix. In order to solve (3.25), we should put both sides in the same basis. So,

we will diagonalize M :

exp(λP) = λM , (3.36)

– 9 –
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where λP and λM , are the eigenvalue matrices for P and M . In principle one could

evaluate the eigenvalues and match both sides, and solve for ∆α2. Instead, noting that

trf (HmHm′) = 0 if m 6= m′, the trace of (3.36) with L0 gives

∆α2 = − 1

2
√
c2 · trf (L0L0)

trf (log(λM )L0) . (3.37)

and hence, in the saddle point approximation, we have

logWR(C) = −Son−shell = −
√

c2
trf (L0L0)

trf (log(λM )L0) . (3.38)

This result assumes an ordering of the eigenvalues of M ; we will discuss about the impli-

cations of the ordering in the following subsection.

Our goal is to compute entanglement entropy and, for that to be the case, the massive

particle described by (3.31) needs to implement the correct type of singularity in the

background solution [18]. This requirement determines uniquely c2, and this can be done

by analyzing the backreaction of WR on (A, Ā). We will skip the details here since it

follows in a straight forward manner from either the arguments in [1] or [16] applied for

SL(N,R) theory. We find

√
c2

trf (L0L0)
= k(n− 1) +O(n− 1)2 , (3.39)

with n being the number of replicas that define Renyi entropies, and k is the Chern-Simons

level. Holographic entanglement entropy is then given by

SEE = lim
n→1

1

1− n
log Trρn = lim

n→1

1

1− n
log(WR(C)) = k trf (log(λM )L0) . (3.40)

Operationally, we may then simply write the entanglement entropy as

SEE = − log (WR(C)) , (3.41)

and substitute √
c2

trf (L0L0)
→ k , (3.42)

in the final answer. This automatically takes care of the n-dependence, but it should be

kept in mind that the motivation is actually the reasoning in (3.40).

3.3.1 Primary ordering

In evaluating (3.38) there is an implicit choice of the ordering for the eigenvalues of M . In

this subsection we want to make this choice explicit.

P0 was fixed according to (3.31), but this information is washed away in (3.38). The

problem arises because potentially there are many choices of P0 that give (3.37) as a valid

solution of (3.25). Actually, the different orders of λM correspond to different momenta

configurations with c2 6= 0 and cm = 0, but not necessarily compatible with (3.31). Since

– 10 –
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we need to assure that the Wilson line does no carry higher spin charges, we will fix the

order of λM which is compatible with P0 ∈ sl(2,R).

To fix the ordering, lets study first (3.36) when the background is in the gravitational

sector: A, Ā ∈ sl(2,R). In this case we have that M ∈ SL(2,R). Any diagonal matrix

belonging to SL(2,R) must be conjugated to eL0 , therefore the eigenvalues of M have

the form:

{λ(j)
M } =

{

z
(N−1)

2 , z
(N−3)

2 , . . . , z−
(N−3)

2 , z−
(N−1)

2

}

, (3.43)

in the fundamental representation of SL(N,R)(see appendix A), and z is a function of the

parameters of the background connections.

Since M ∈ SL(2,R), from (3.25) we have that P ∈ sl(2,R). But this is not enough:

we need as well that P0 ∈ sl(2,R), and from (3.33) and (3.25) it sets ∆α̃m = 0 for m > 2.

The eigenvalues of exp(P) are then

{eλ
(j)
P } =

{

e
(N−1)

2
∆α̃2 , e

(N−3)
2

∆α̃2 , . . . , e−
(N−3)

2
∆α̃2 , e−

(N−1)
2

∆α̃2

}

, . (3.44)

Now lets compare (3.44) with (3.43). Since these equations are invariant under ∆α̃2 →
−∆α̃2, and z → z−1, there are two possible orders to match the eigenvalues: e∆α̃2 = z±1.

By construction, one of the orders gives ∆α̃2 positive, and the other negative. Since

SEE ∼ ∆α̃2 and the entropy must be positive, we will pick the order in which ∆α̃2 > 0.

This determines the ordering uniquely in the SL(2,R) limit.

When we turn on higher spin vevs in the background connections, the eigenvalues of

M will change giving raise to non zero ∆α̃m in P. However, the matching of the eigenvalues

will be determined by continuity with the SL(2,R) limit. Provided a solution to ∆α̃m was

found from (3.36), this solution must satisfy

lim
M→SL(2,R)

∆α̃2 > 0 , lim
M→SL(2,R)

∆α̃m = 0 , m > 2 . (3.45)

This determines the ordering of eigenvalues in λM which is compatible with P0 ∈ sl(2,R),

and it will be referred to as primary order. This prescription will assure that the Wilson

line indeed carries the quantum numbers (3.7).

3.3.2 The proof

Finding the eigenvalues λM is a tedious task. However, we just need the leading divergent

pieces as the endpoints of C asymptote to the boundary. The goal of this section is to find

a different way to solve for ∆α2 when C ends on an open interval at the boundary.5 In

this process we will be able to prove that (3.1) is equivalent to (3.3).

Our task will be divided in two steps:

1. To first understand the divergent properties of M as C approaches the boundary.

2. Find a representation that easily projects out ∆α2 from M .

5Closed curves will be discussed in section 3.4.
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To achieve our first task, we need to spell out more what it is assumed about the

background connections A and Ā. We have that

M = R(yi)L(yi)L
−1(yf )R

−1(yf ) . (3.46)

Since we are only interested in traces of M , i.e. its eigenvalues, we will conjugate M by

R(yi) to get

M → M = L(yi)L
−1(yf )R

−1(yf )R(yi) . (3.47)

We are interested in connections (3.22) of the form

R(xµ) = exp

(∫ x

0
ā

)

b−1(ρ) , L(xµ) = b−1(ρ) exp

(

−
∫ x

0
a

)

, (3.48)

where b(ρ) ≡ exp(ρL0), a = atdt + axdx and ā = ātdt + āxdx. The limit ρ → ∞ defines

the boundary of the space. All the connections will as well satisfy

Ax = eρL1 +O(1) , Āx = e−ρL−1 +O(1) , (3.49)

which means that the backgrounds are asymptotically AdS3 in accordance with e.g. [19, 20].

This guarantees that all backgrounds have a well defined SL(2,R) × SL(2,R) limit. Our

curve satisfies boundary conditions

ρ(yf ) = ρ(yi) ≡ ρ0 , x(yf )− x(yi) ≡ ∆x , t(y) = constant , (3.50)

and we take ρ0 → ∞. From (3.46) and (3.48) we have

M = e−2L0ρ0e∆axe2L0ρ0e−∆āx , (3.51)

where ∆ax is the integral of ax with boundary conditions (3.50), and an analogous definition

for ∆āx. It is rather clear here that divergent piece as ρ0 → ∞ is governed by L0. If we

solve for (3.36) while enforcing the primary ordering of eigenvalues, we find that the leading

order solution in eρ0 is

e∆α̃2 ∼ e4ρ0 , and e∆α̃m ∼ 1, m > 2 . (3.52)

In this expression we are highlighting the divergent piece: the symbol “∼” denotes equal-

ity up to a non-zero function of (∆ax,∆āx). The derivation of (3.52) is presented in

appendix C.

Now we move on to our second task. We consider again equation (3.36) but this time

we will take its trace:

TrR(e
P) = TrR(M) , (3.53)

where R is a representation that we have not fixed yet. Actually, the goal is to find a

representation for which it is easy to read off ∆α̃2 from equation (3.53).

In a general representation, P is not diagonal anymore. However, since all its elements
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are Cartans, we can write:

TrR(e
P) =

∑

j

(
e∆α̃2

)n
(j)
R
(
e∆α̃3

)m
(j)
R . . .

(
e∆α̃N

)k
(j)
R , (3.54)

where the index j = 1, . . . , dim(R), and the powers (n
(j)
R , m

(j)
R , . . . , k

(j)
R ) are the eigenvalues

of the Cartan elements in P, which depend on the representation R.

We want to take ρ0 → ∞ in (3.54); from (3.52) the dominant term is the one with

the biggest power of e∆α̃2 . In the following we will find a representation R for which the

dominant term has as well null powers of e∆α̃m for m > 2. For this representation, the

limit ρ0 → ∞ of TrR(M) will depend only on ∆α̃2.

In order to find the suitable representation we need a way to generally characterize the

powers in (3.54). Since P is an element of the Cartan subalgebra h, we define ~p as its dual

element in the root space h∗. From equation (3.33), the explicit form of ~p:

~p = ∆α̃2
~l0 +∆α̃3

~h3 + . . .+∆α̃N
~hN , (3.55)

where ~l0, ~hs are the dual elements of the Cartans L0, Hs. We can write each diagonal

element of P for a general representation R using its defining weights
−→
Λ

(j)
R :

λ
(j)
P

= 〈~p,−→Λ (j)
R 〉 , (3.56)

where 〈. . . , . . .〉 is the inner product on the root space h∗, defined in appendix B. Using

this notation, (3.54) reads

TrR(e
P) =

∑

j

e〈~p,
−→
Λ

(j)
R

〉 =
∑

j

e∆α̃2〈~l0,
−→
Λ

(j)
R

〉+∆α̃3〈~h3,
−→
Λ

(j)
R

〉+...+∆α̃N 〈~hN ,
−→
Λ

(j)
R

〉 , (3.57)

where the sum runs for all the weights
−→
Λ

(j)
R of the representation R. As ρ0 → ∞, the

leading term is the one with the weight that maximizes 〈~l0,
−→
Λ

(j)
R 〉.

In the principal embedding ~l0 is a dominant weight, which means that ~l0 has positive

and integer Dynkyn labels. Moreover,

〈~l0, ~αi〉 > 0 , i = 1, . . . , N − 1 , (3.58)

where ~αi are the simple roots of the algebra. There exists as well a unique highest

weight,
−→
Λ hw

R , which has the biggest coefficients in the basis of the simple roots, i.e., all

other weights are calculated subtracting simple roots to the highest weight:

−→
Λ

(j)
R =

−→
Λ hw

R −
∑

i

n
(j)
i ~αi , (3.59)

where n
(j)
i are positive integers that can be found for every weight

−→
Λ

(j)
R . With (3.58)

and (3.59), we see that the maximum value of the inner product 〈~l0,
−→
Λ

(j)
R 〉 arises when
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−→
Λ

(j)
R =

−→
Λ hw

R . Consequently, the dominant term in (3.57) is

lim
ρ0→∞

TrR(e
P) = e〈~p,

−→
Λ hw

R
〉 = e∆α̃2〈~l0,

−→
Λ hw

R
〉+∆α̃3〈~h3,

−→
Λ hw

R
〉+...+∆α̃N 〈~hN ,

−→
Λ hw

R
〉 . (3.60)

Now, we are ready to pick a representation that extracts just the information of the

parameter ∆α̃2. It is obvious that we have to choose a representation RN whose highest

weight is
−→
Λ hw

RN
= ~l0. If we do so, the expression for ∆α̃2 is

∆α̃2 =
1

trf (L0L0)
log

[

lim
ρ0→∞

TrRN
(M)

]

, (3.61)

where we have used 〈~l0,~l0〉 = trf (L0L0). Using equations (3.32) and (3.34) we finally find

SEE = k log

[

lim
ρ0→∞

TrRN
(M)

]

. (3.62)

The dimension of RN is given by the Weyl formula:

dim(RN ) =
∏

~α>0

〈−→Λ hw
R + ~ρ, ~α〉
〈~ρ, ~α〉 , (3.63)

with ~ρ the Weyl vector and ~α > 0 are positive roots. For the principal embedding ~l0 = ~ρ and

that the number of positive roots of SL(N,R) is N(N − 1)/2. Consequently the dimension

of the representation that calculates the entanglement entropy in (3.62) is

dim(RN ) = 2
N(N−1)

2 . (3.64)

With formula (3.62), we find the leading term in eρ0 (the UV cutoff) of the entan-

glement entropy for higher spin theory with less computational effort than using (3.38).

The difficult portion is to write M in the representation RN . Furthermore, formula (3.62)

allows us to do identify proposals in [1] and [2]. As noted in (3.30) we have

TrRN
(M) = W comp

RN
(f, i) . (3.65)

Moreover, the representation RN is exactly the same that in (3.3). As a consequence,

we have proven that formula (3.3) captures the most divergent piece of (3.1), and hence

both proposals capture holographic entanglement for AdS3 higher spin gravity. We con-

sider (3.62) our most important result.

3.4 Loops: thermal entropy

In this subsection, we will show how to find the thermal entropy for a higher spin black

hole using a Wilson loop. In this case, we consider periodic boundary conditions

ρ(yi) = ρ(yf ) , t = 0 , ∆x = x(yf )− x(yi) = 2πℓ , (3.66)
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where x is the spatial coordinate with periodicity x ∼ x + 2πℓ. In SL(2,R) × SL(2,R),

the Wilson loop in the infinite dimensional representation computes the length around the

horizon, which is the thermal entropy of the black hole [1]. Analogously as we did for

the entanglement entropy, we will show that for the representation (3.7), the Wilson loop

in SL(N,R) × SL(N,R) will recover the thermal entropy for higher spin black holes in

agreement with [21].

From section 3.2.1 we found a general expression for the on-shell value; however this

expression simplifies greatly for a closed path. We start by noticing that the auxiliary

variables of the Wilson line require

U(yf ) = U(yi) , P (yf ) = P (yi) . (3.67)

Imposing these periodic conditions for U in (3.23), and we get

eP = u−1
0

(
L−1(yf )L(yi)

)
u0
(
R(yi)R

−1(yf )
)
. (3.68)

Using (3.48), we rewrite the previous equation as:

eP = u−1
0 exp (2πℓax)u0exp (−2πℓāx) . (3.69)

Here we are assuming that (ax, āx) are constant connections. Demanding periodicity in

P (y) in equation (3.23) we obtain the following condition:

[
P0, R

−1(yf )R(yi)
]
= 0 . (3.70)

which says that P0 and āx simultaneously diagonalize, and, therefore, the same do P and

āx. If we denote V as the matrix of eigenvectors, and λx and λP represent the eigenvalues,

equation (3.69) reduces to

exp(λP) = (u0V )−1exp (2πℓax) (u0V )exp
(
−2πℓλ̄x

)
. (3.71)

Since the left-hand-side is diagonal, consistency of the previous equation requires to choose

u0 such that u0V is the matrix which diagonalizes ax, and the right-hand-side of (3.71) is

diagonal as well. With this choice:

exp(λP) = e2πℓ(λx−λ̄x) . (3.72)

Analogously to section 3.2.1, we use Tr(PP0) = Son-shell to find:

− logWR(C) = Son-shell = trf
(
2πℓ(λx − λ̄x)P0

)
. (3.73)

To compute thermal entropy we choose again P0 as (3.31), and use (3.42). In this case,

the Wilson line computes gives

Sth = 2πktrf
(
(λx − λ̄x)L0

)
. (3.74)
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This is the generalization to SL(N,R) for the thermal entropy found in reference [1] for

SL(3,R). With this result we have reproduced by means of our formalism the thermal

entropy for higher spin black hole, proposed originally in [21]. If we choose P0 ∼ W
(3)
0 we

would reproduce the thermal results for spin-3 entropy defined in [16].

4 Entanglement entropy on finite charge backgrounds

In this section we will evaluate our Wilson line and obtain SEE for any background con-

nection that satisfies Drinfeld-Sokolov boundary conditions. The backgrounds represent

finite charge solutions, and the results in this section are valid for either higher spin black

holes [19, 20, 22] or a conical defect [23].

More explicitly, we will consider connections of the form (3.48)–(3.49), and we will

implement these boundary conditions by writing

A = b−1a b+ b−1db , Ā = b ā b−1 + b db−1 , (4.1)

where b(ρ) ≡ exp(ρL0), a = atdt+ axdx and ā = ātdt+ āxdx, and

ax = L1 +
N∑

s=2

q(s)W
(s)
−s+1 , āx = L−1 +

N∑

s=2

q̄(s)W
(s)
s−1 . (4.2)

In this decomposition, (ax, āx) contain the information about the higher spin charges of

the solutions, which up to some normalization are (q(s), q̄(s)). In particular the conformal

weights are given by

h = ktrf (L−1L1)q(2) , h̄ = ktrf (L−1L1)q̄(2) . (4.3)

The components (at, āt), which are constrained by the equation of motions, contain the

conjugate potentials to the charges.6 This decomposition of the connection follows from

the discussion in [19, 20, 24]; note that this is different from the holomorphic decomposition

used in [22].

In the following we will develop two different methods explicitly evaluate SEE as func-

tion of q(s) and the length of the interval ∆x. The first method will elaborate on solving

for the eigenvalues of M and evaluating (3.40). This method gives an exact answer for any

range of ∆x, but it is somewhat tedious to extract certain features from the answer. The

second method relies on a small interval expansion of (3.62). The main appeal of this limit

is that the first correction relative to the vacuum is universal [3] which gives a direct check

of the proposals in [1, 2] for any N .

4.1 Method I

Our goal is to characterize the leading divergent behavior of the eigenvalues of the matrix

M in (3.25) so we can evaluate (3.40). Working in the fundamental representation of

6Since we will only compute SEE on a spatial interval, the temporal component of the connections is not
relevant in the present discussion. See [19, 20, 24] for the full expressions.
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sl(N,R), the characteristic polynomial is given by

λN
M + c1λ

N−1
M + c2λ

N−2
M + . . . ciλ

N−i
M . . .+ cN−1λM + cN = 0 . (4.4)

The coefficients ci can be written in terms of traces of powers of the matrix M , see e.g. [25].

The coefficient ci is the result of the following determinant:

ci =
(−1)i

i!

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

M1 1 0 0 · · · 0

M2 M1 2 0 · · · 0

M3 M2 M1 3 · · · 0
...

. . .
. . . 0

Mi−1 Mi−2 · · · M1 i− 1

Mi Mi−1 · · · M2 M1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, (4.5)

where Mi ≡ trf (M
i).

Since we are interested in the behavior of the eigenvalues when ρ0 → ∞, it will be

useful to find the leading order term of the coefficients ci. To do so, we will first determine

ci as a function of the eigenvalues λ
(j)
M . The first coefficient is explicitly:

c1 = −M1 = −(λ
(1)
M + λ

(2)
M + . . .+ λ

(N)
M ) . (4.6)

Using (C.6), we see that only the first eigenvalue contributes to the leading order of c1:

c1 ∼ λ
(1)
M ∼ ε−2(N−1) , (4.7)

where ε = e−ρ0 is the UV cutoff. The second coefficient can be written as:

c2 =
1

2

[
(M1)

2 −M2

]
= λ

(1)
M λ

(2)
M + . . .+ λ

(N)
M λ

(1)
M + λ

(N)
M λ

(2)
M , (4.8)

whose leading term is:

c2 ∼ λ
(1)
M λ

(2)
M ∼ ε−2(N−1)−2(N−3) . (4.9)

If we keep analyzing (4.5) for different values of i, we will see that the coefficient ci will

always be a sum of terms of the type:

ci ∝
∑

j 6=k 6=...6=l

λ
(j)
M λ

(k)
M . . . λ

(l)
M

︸ ︷︷ ︸

i−terms

, (4.10)

where each term in the series is a multiplication of i eigenvalues, and the sum runs over all

possible combinations of the j, k, l . . ., which do not repeat an eigenvalue more than once.

The symbol ∝ means that both sides are equivalent up to a numerical factor. Using (C.6),

the leading divergence in ρ0 of ci is the term that contains the first i-th eigenvalues:

ci ∼ λ
(1)
M λ

(2)
M . . . λ

(i)
M . (4.11)
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This determines the leading power in ε. Defining mi as the factor which multiplies the

leading ε-power in ci, and using (C.2), we have

ci = (−1)imiε
−2i(N−i) + . . . (4.12)

where the dots stand for subleading order terms when ρ0 → ∞. It is useful to notice that

cN = (−1)Ndet(M) = (−1)N , and hence mN = 1. In this regime, we can rewrite (4.4) as:

λN
M − m1

ε2(N−1)
λN−1
M + . . .+ (−1)i

mi

ε2i(N−i)
λN−i
M + . . .+ (−1)N−1 mN−1

ε2(N−1)
λM + (−1)N = 0 .

(4.13)

We can find the eigenvalues as a function of mi solving the previous equation. We

just need to substitute in (4.13) the leading term of one eigenvalue found in (C.6), and

we will see that only two terms are dominant in the equation. Not considering the rest

of the terms, we can solve for each eigenvalue, and find its expression as a function of

mi’s. However, we have actually already found the solution through the reasoning above.

From (4.11), we see that we can write an eigenvalue in terms of the coefficients ci, and

with (4.12), we write it in terms of mi:

λ
(i)
M ∼ − ci

ci−1
∼ mi

mi−1
ε−2(N−(2i−1)) , (4.14)

where i = 1, . . . N , and we have defined c0 ≡ 1 and m0 ≡ 1. Now, we are ready to write

the entanglement entropy as a function of the factors mi, which are easier to compute than

the exact eigenvalues. First, we write (3.40) in the following form:

SEE = k trf (log(λM )L0) = k log
(

(λ
(1)
M )

N−1
2 . . . (λ

(i)
M )

N−(2i−1)
2 . . . (λ

(N)
M )−

N−1
2

)

. (4.15)

Substituting (4.14) in the previous formula, we obtain the leading term of the entanglement

entropy in the UV cutoff:

SEE = k log

(
m1m2 . . . .mN−1

ε4trf (L0L0)

)

. (4.16)

To evaluate mi, as a function of the background and the boundary interval, we use (4.12).

That is, we first evaluate ci using (4.5) as a function of the traces Mi to leading order in

ε, and from there we read off mi using (4.12).

4.1.1 Example: SL(3) excited states

As an example, we evaluate (4.16) for excited states in SL(3) Chern-Simons theory. The

connections are given by

ax = L1 + q(2)L−1 + q(3)W
(3)
−2 , āx = L−1 + q̄(2)L1 + q̄(3)W

(3)
2 , (4.17)

with

q(2) = −C2(λ)

t
(2)
1

, q(3) =
C3(λ)

t
(3)
2

, (4.18)
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and the Casimirs are given by

Cs(λ) ≡
1

s

N∑

i=1

(λi)
s , (4.19)

where λi are the eigenvalues of ax, t
(s)
j are the traces in (A.10), and the definitions for āx

are analogous. In this notation, a higher spin black hole corresponds to a solution with

λi ∈ R (real eigenvalues), while a conical defect is a solution with λi ∈ iZ3 (imaginary

eigenvalues that exponentiate to the center of SL(3,C)). In this notation the conformal

dimensions and spin-3 charge of the background solution (for general N) are

h =
c

N(N2 − 1)
C2(λ) , h̄ =

c

N(N2 − 1)
C2(λ̄) ,

w3 =

(
c

N(N2 − 1)

)3/2

C3(λ) , w̄3 =

(
c

N(N2 − 1)

)3/2

C3(λ̄) , (4.20)

which follow the conventions in [23].

The relevant traces to evaluate the Wilson line are

c1 = −trf (M) = −m1

ε4
+O(ε−2) , 2c2 = trf (M)2 − trf (M

2) =
2m2

ε4
+O(ε−2) . (4.21)

From (4.16), and setting N = 3, we have

SEE = 2k log

(√
m1m2

ε4

)

, c = 24k . (4.22)

The values of m1,2 for a connection of the form (4.17), as a function of its eigenvalues, are

m1 =
4
∏

[

(λ1 − λ2)e
λ3∆x + (λ2 − λ3)e

λ1∆x + (λ3 − λ1)e
λ2∆x

]

×
[

(λ̄2 − λ̄1)e
−λ̄3∆x + (λ̄3 − λ̄2)e

−λ̄1∆x + (λ̄1 − λ̄3)e
−λ̄2∆x

]

,

m2 =
4
∏

[

(λ2 − λ1)e
−λ3∆x + (λ3 − λ2)e

−λ1∆x + (λ1 − λ3)e
−λ2∆x

]

×
[

(λ̄1 − λ̄2)e
λ̄3∆x + (λ̄2 − λ̄3)e

λ̄1∆x + (λ̄3 − λ̄1)e
λ̄2∆x

]

, (4.23)

where
∑

i λi = 0, and
∏

≡
∏

i>j

(λi − λj)(λ̄i − λ̄j) . (4.24)

We would like to emphasize that (4.23) is a different function of the background charges

for the spin-3 black hole relative to those reported in [1, 2]. The reason is simple: here we

used (4.2), where the spatial (ax, āx) contain the information about the spin charges [19,

20, 24], while in [1, 2] the holomorphic version of the connection was used [22]. What is

interesting to note is that our results for entanglement entropy will reproduce the same

answer as the holomorphic proposal in section 5 of [2]. The holomorphic proposal was

designed such that the Wilson line was only influenced by the portion of the connection

that contained the charges explicitly (with the weakness that the composite line was not
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gauge covariant); we achieved the same result using (4.2) with the advantage that gauge

covariance is restored.

It is interesting to evaluate the small interval expansion of (4.22). We get

SEE =
c

3
log

(
∆x

ε

)

+
k

12

(
∑

i

λ2
i +

∑

i

λ̄2
i

)

∆x2 +O(∆x4)

=
c

3
log

(
∆x

ε

)

+
c

(12)2
(
C2(λ) + C2(λ̄)

)
∆x2 +O(∆x4) . (4.25)

This correction to the vacuum entanglement is universal for a CFT2 and it was com-

puted [3]: the reported result there was

SEE,excited state − SEE,vacuum =
h+ h̄

6
(∆x)2 +O((∆x)4) , (4.26)

which agrees perfectly with (4.25), since (4.20) implies

h+ h̄

6
=

c

(12)2
(
C2(λ̄) + C2(λ)

)
. (4.27)

There is another comparison that one could make. There has been progress in evalu-

ating entanglement entropy in CFT2 with W3 symmetry at finite spin-3 chemical poten-

tial [26, 27]. Our results for EE are casted as function of the charges of the background,

i.e. the eigenvalues of (ax, āx), and in order to make the comparison, we need to cast the

charges as function of the potentials. This was done in [2, 26, 27] using holomorphic vari-

ables, but those results apply here as well. The agreement between the bulk and boundary

computation was already noted in [26].

4.2 Method II

Our second method starts from (3.62) which reads

SEE = k log

[

lim
ρ0→∞

TrRN
(M)

]

, (4.28)

and from (3.46) we have

TrRN
(M) = TrRN

([
e−L0ρ0e∆axeL0ρ0

] [
eL0ρ0e−∆āxe−L0ρ0

])
, (4.29)

where we used (3.48) and (4.1). The simplicity in this formula is that we only need to

evaluate one trace; the difficulty is that the representation RN can be rather horrible. In

any case, our objective is to extract the most divergent piece in ρ0 and simultaneously

make a small interval expansion.

To understand the divergent structure we first consider the vacuum configuration, i.e.

ax → avac = L1 , āx → āvac = L−1 , (4.30)
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which is simply AdS3 in Poincare coordinates. Then it is rather simple to show that

e−L0ρ0e∆avaceL0ρ0 = 1+ eρ0∆xL1 +
1

2
e2ρ0(∆x)2L2

1 + . . .

eL0ρ0e−∆āvace−L0ρ0 = 1− eρ0∆xL−1 +
1

2
e2ρ0(∆x)2L2

−1 + . . . (4.31)

However this series terminates at some finite power of L±1, and the reason being that

the matrices e±L0ρ0 will not give an arbitrarily divergent power of eρ0 as we showed in

appendix C. The largest power of eρ0 is determined by the largest eigenvalue of L0 which

in this case is trf (L0L0); this follows from the definition of RN which sets
−→
Λ hw

RN
= ~l0.

Furthermore, this implies that L±1 are nilpotent matrices of degree n̂+ 17:

(L1)
n̂+1 = 0 = (L−1)

n̂+1 , n̂ ≡ 2trf (L0L0) =
N(N2 − 1)

6
. (4.32)

Therefore, for the vacuum we find

lim
ρ0→∞

TrRN
(Mvac) =

1

(n̂!)2
TrRN

[

(L1)
n̂(L−1)

n̂
]

(∆x)2n̂e2n̂ρ0 , (4.33)

where we used (4.31) and (4.32). Hence

SEE,vac = k log

[

lim
ρ0→∞

TrRN
(Mvac)

]

=
c

3
log(

∆x

ε
) , (4.34)

which is the well known universal result for the vacuum entanglement entropy in a CFT2.

Recall that c is given by (2.6) and ε = e−ρ0 .8

For the general connections of the form (4.2), the logic is rather similar. Since

e−L0ρ0W
(s)
−s+1e

L0ρ0 = e−(s−1)ρ0W
(s)
−s+1 , eL0ρ0W

(s)
s−1e

−L0ρ0 = e−(s−1)ρ0W
(s)
s−1 , (4.35)

adding background charges does not affect the most leading power of eρ0 , but it will affect

the coefficient in front of en̂ρ0 . If we Taylor expand as in (4.31), schematically we will have

e−L0ρ0e∆axeL0ρ0 ∼ 1+∆x(eρ0L1 + e−(s−1)ρ0q(s)W
(s)
−s+1)

+
1

2
(∆x)2(eρ0L1 + e−(s−1)ρ0q(s)W

(s)
−s+1)

2 + . . . (4.36)

We are still interested solely on the terms which grow like en̂ρ0 in (4.36). The complication

now is that this can be achieved, for example, by having additional n powers of L1 interlaced

7Note that n̂ is an even integer number, since the product (N)(N +1)(N − 1) is always a multiple of 12
for N ≥ 2.

8It is interesting to note that this derivation complements nicely the choice of representation in [2]:
another condition that determines RN is asking that the most divergent piece in the composite Wilson line

scale like (∆x)4trf (L2

0
) as in (4.33). This power of ∆x depends on the representation and gives the correct

coefficient for the log piece in SEE.
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with n′ powers of W
(s)
−s+1 such that n− (s−1)n′ = n̂. But say we are only interested in the

first correction in ∆x away from the vacuum. Then, by inspection of (4.36), we get that

the relevant term comes from terms involving L1 and L−1 solely:

e−L0ρ0e∆axeL0ρ0 =
1

n̂!
(L1)

n̂(∆x)n̂en̂ρ0+
1

(n̂+ 2)!
(∆x)n̂+2q(2)Tn̂+2+O(e(n̂−1)ρ0 , (∆x)n̂+4) ,

(4.37)

where

Tn̂+2 ≡ L1L−1(L1)
n̂ + L1L1L−1(L1)

n̂−1 + · · ·+ (L1)
n̂L−1L1 . (4.38)

Basically the first correction in ∆x comes from a term in (4.36) that has n̂ + 1 powers of

L1 and one power of L−1, with the condition that L−1 cannot sit at the edge of the string.

It is useful to notice that (4.38) can be rewritten as:

Tn̂+2 = −(n̂/6)(n̂+ 2)(n̂+ 1)(L1)
n̂ . (4.39)

(See appendix A.1 for details). Analogously, for the barred sector we have

e−L0ρ0e∆āxeL0ρ0 =
1

n̂!
(L−1)

n̂(∆x)n̂en̂ρ0 +
1

(n̂+ 2)!
(∆x)n̂+2q̄(2)T̄n̂+2+O(e(n̂−1)ρ0 , (∆x)n̂+4) ,

(4.40)

where

T̄n̂+2 ≡ L−1L1(L−1)
n̂ + L−1L−1L1(L−1)

n̂−1 + · · ·+ (L−1)
n̂L1L−1 , (4.41)

which can be as well rewritten as T̄n̂+2 = −(n̂/6)(n̂+ 2)(n̂+ 1)(L−1)
n̂.

Using (4.37) and (4.40) in (4.29) we find that9

SEE = k log

[

lim
ρ0→∞

TrRN
(M)

]

=
c

3
log

(
∆x

ε

)

− k
n̂

6
(q(2) + q̄(2))(∆x)2 +O((∆x)4)

=
c

3
log

(
∆x

ε

)

+
h+ h̄

6
(∆x)2 +O((∆x)4) , (4.42)

We can compare as well with the universal correction of the entanglement entropy for the

vacuum state due to the insertion of a single primary field of weight (h, h̄) [3]. The results

perfectly agree. This provides a non-trivial check of our method to compute holographic

entanglement entropy.

5 Discussion

We have explicitly constructed and evaluated a Wilson line in SL(N,R) Chern-Simons

theory with the purpose of computing holographic entanglement entropy in higher spin

9It is interesting to note that there is no linear correction in ∆x to (4.42). In the Chern-Simons language
this comes from the Drinfeld-Sokolov decomposition, and the fact that we have no low fractional spin
generators in the Lie algebra.
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theories. We showed that the two proposals [1, 2] are consistent with each other. Further-

more, we checked that our results are in perfect agreement with the universal corrections

computed in [3] using CFT2 techniques. This is a non-trivial test that WR(C) is an ob-

servable that can generalize the notion of geometry in this class of theories. Our results,

applied to SL(3) higher spin gravity, are as well in agreement with the perturbative results

reported in [26, 27] for CFT2 with W3 symmetry.

We would like to end this work with some open questions and future directions:

1. Despite our very general results, our derivations fall short in describing entanglement

when infinitely many higher spin fields are present. The simplest example of such

a theory would be hs[λ] × hs[λ] Chern-Simons theory. WR(C) should still capture

both thermal and entanglement entropy in this case. The obstruction is that both

methods developed in section 4 use heavily finite dimensional representations of the

algebra in order to analyze (3.25). Evaluating a Wilson line with gauge group hs[λ]

is not impossible, but some tricks might be needed to apply our results to the more

general case.

2. It was noticed both in [1, 2] that the entanglement entropy on a higher spin black

hole violated strong sub-additivity. In both papers, the holomorphic formulation of

the black hole was used. Here we used canonical description of the higher spin black

hole, along the lines of [19, 20]. What is rather interesting is that for N = 3 our re-

sults in (4.23)–(4.22) behave accordingly to the strong subadditivity bounds, i.e. EE

is a monotonic function in the black hole regime.10 It is not clear under which con-

ditions holographic entanglement entropy should obey strong sub-additivity: higher

derivative corrections or deviations from the null energy conditions could violate these

inequalities [28, 29]. It is not obvious how non-local interactions tamper our expec-

tations and why our results are so sensitive to boundary conditions. Still it would

be interesting to study if the decomposition (4.2) would give the desired behavior

for SEE.

3. In [16] a new “spin” to the Wilson line was given by adding higher spin charges to

the representation R. This is not only a novel definition in the bulk, but a new

and rather mysterious observable in the CFT. The discussion presented here easily

accommodates for this new observable, with one caveat: what is the generalization of

the composite Wilson line (3.4)? W comp
RN

(C) is designed to only capture entanglement

entropy. Perhaps the proof in section 3.3.2 can be adjusted to instead find a composite

Wilson line that gives spin-3 entanglement [16].

4. One aspect that has been not studied properly in this context is entanglement entropy

for multiple intervals. Homology conditions, and analogous properties of the HRT

formula [15] should be tested in this context as well. Understanding the effect of

junctions when several Wilson lines are present in the bulk might provide better

insight to global properties of these operators and their interpretation in the CFT.

10This was noted by Jochem Knuttel for a higher spin black hole in the principal embedding theory of
SL(3), and we are grateful of his observation.

– 23 –



J
H
E
P
0
3
(
2
0
1
5
)
1
2
4

5. It will be rather useful to have further independent derivations of entanglement in a

CFT2 that could corroborate our results. This could be made either by considering

the large central charge limit of theories with WN symmetry (along the lines of [30–

32]), by using modular properties of the CFT2, or by exploiting conformal perturba-

tion theory. Some progress has been made in conformal perturbation by [26, 27, 33].

We hope to report on related topics soon [34].

6. Our discussion here is strictly classical. Quantum corrections to entanglement entropy

in AdS3/CFT2 have been discussed in [35–38]. It would be interesting to see if the

expectation value of the Wilson line has anything to add to this topic.
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A Conventions for sl(N,R) algebra

We follow the same conventions as in [23]. A convenient basis for the sl(N,R) algebra is

represented by {L0, L±1}, the generators in the sl(2,R) subalgebra, and W
(s)
j , the higher

spin generators with j = −(s− 1), . . . (s− 1). Their commutation relations are:

[Li, Li′ ] = (i− i′)Li+i′ , (A.1)

[Li,W
(s)
j ] = (i(s− 1)− j)W

(s)
i+j . (A.2)

In this notation, L0 and W
(s)
0 are elements of the Cartan subalgebra, and the rest of

generators are raising and lowering operators. These commutation relations represent the

principal embedding of sl(N,R). We will often use the notation

Hm ≡ W
(m)
0 , m = 2, . . . , N , (A.3)

where H2 = L0.

An explicit representation for the other sl(N,R) generators, which is independent of

the representation, is as follows:

W
(s)
j = (−1)s−j−1 (s+ j − 1)!

(2s− 2)!
[L−1, [L−1, . . . , [L−1
︸ ︷︷ ︸

s−j−1 terms

, Ls−1
1 ] . . .]] . (A.4)

With this definition we have

uW
(s)
s−1 = (L1)

s−1 , W
(s)
−s+1 = (L−1)

s−1 . (A.5)
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We write the fundamental representation of sl(N,R) as follows. The {L0, L±1} gener-

ators for the principal embedding of sl(2,R) are

L1 = −
















0 · · · 0√
N − 1 0 · · ·
0

√

2(N − 2) 0
...

. . .
. . .

√

|i(N − i)| 0
. . .

. . .

0 . . .
√

(N − 1) 0
















, (A.6)

L−1 =

















0
√
N − 1 · · · 0

... 0
√

2(N − 2)
...

. . .
. . .

0
√

|i(N − i)|
. . .

. . .

0
√

(N − 1)

0 · · · 0

















, (A.7)

and

L0 = diag

(
N − 1

2
,
N − 3

2
, . . .

N + 1− 2i

2
, . . . − N − 3

2
, −N − 1

2

)

. (A.8)

The Cartan-Killing form on sl(N,R) is given by

trfW
(s)
j W

(r)
j′ = t

(s)
j δr,sδj,−j′ , (A.9)

and

t
(s)
j = (−1)j

(s− 1)!2(s+ j − 1)!(s− j − 1)!

(2s− 1)!(2s− 2)!
N

s−1∏

i=1

(N2 − i2) . (A.10)

We always use the symbol “trf” to denote the trace in the fundamental representation.

The Killing form and the Casimir invariants of sl(N,R) are defined as follows. We can

construct N − 1 symmetric tensors which are regarded as the Killing forms of the algebra.

The m-th order tensor is:

ha1...am = trf (T(a1 . . . Tam)) , (A.11)

where m = 2, . . . , N , and Ta are all the generators of the algebra. The second order Killing

form, given by (A.9), is the metric of the Lie algebra:

ηab = trf (TaTb) . (A.12)

The Lie algebra metric acts lowering and raising indexes T a = ηabTb. We can define as well

N − 1 invariant Casimirs, which compute with all the elements of the algebra. The m-th

– 25 –



J
H
E
P
0
3
(
2
0
1
5
)
1
2
4

order Casimir element is:

Cm = ha1...amTa1 . . . Tam . (A.13)

It will be useful, however, to re-define Casimirs such that the following condition is met:

the Casimir for Ta ∈ sl(2,R) vanishes for m > 2. In particular if we pick Ta = L0, this can

achieved by re-defining the Killing forms such that

h L0...L0
︸ ︷︷ ︸

m

= 0 , if m > 2 . (A.14)

This choice will assure that when we set P ∼ L0, i.e. we have just a massive particle

with (3.7), then c2 6= 0 while cm = 0 otherwise.

For j 6= 0, we built the generators W
(s)
j in (A.4) such that they are ladder opera-

tors, and hence do not have diagonal elements in the fundamental representation. On the

contrary, L0 is a diagonal matrix. As a consequence:

h
L0...L0W

(s)
j

= trf
(
L(0 . . . L0W

(s)
j)

)
= 0 . (A.15)

Furthermore, one can show that the only non-null Killing forms that involve L0 are

hL0...L0Hs = trf
(
L0 . . . L0
︸ ︷︷ ︸

s−1

Hs

)
. (A.16)

where Hs is given by (A.3).

A.1 Further identities

In this appendix we will use the above definitions of sl(N,R) to simplify

Tn̂+2 ≡ L1L−1(L1)
n̂ + L1L1L−1(L1)

n̂−1 + · · ·+ (L1)
n̂L−1L1 , (A.17)

as defined in (4.38). We start by considering the first and last term in Tn̂+2:

T1 ≡ L1L−1(L1)
n̂ + (L1)

n̂L−1L1 = 2L0(L1)
n̂ − 2(L1)

n̂L0

= 2[L0, (L1)
n̂]

= −2n̂(L1)
n̂ . (A.18)

In the first equality we used [L1, L−1] = 2L0 to swap L−1 with L1, and (L1)
n̂+1 = 0. From

second to third line we used (A.5) and (A.1) to infer what [L0, (L1)
n̂] is. We consider now

the second and the next-to-last term in (A.17):

T2≡L2
1L−1(L1)

n̂−1+(L1)
n̂−1L−1L

2
1 = 2(L1L0(L1)

n̂−1−(L1)
n̂−1L0L1)+T1

= 2((L0L1 + L1)(L1)
n̂−1 − (L1)

n̂−1(L1L0 − L1)) + T1

= −2 · 2n̂(L1)
n̂ + 4(L1)

n̂ . (A.19)

In the first equality, we interchanged L−1 with L1, and identify two of the terms with T1.

From second to third, we swap L0 with L1. We use again [L0, (L1)
n̂] to get the fourth line.
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We repeat a similar procedure for T3:

T3 ≡ L3
1L−1(L1)

n̂−2 + (L1)
n̂−2L−1L

3
1 = 2(L2

1L0(L1)
ˆn−2 − (L1)

ˆn−2L0L
2
1) + T2

= −3 · 2n̂(L1)
n̂ + 3 · 4(L1)

n̂ (A.20)

In Tn̂+2 there are n̂/2 pair of terms of this type (n̂ is always an even number as defined

in (4.32)). We can repeat the previous trick for every term Tr, where r = 1, . . . , n̂/2. We

first swap L−1 with L1 and identify Tr−1. In the rest of the terms we exchange L0 with

L1, to obtain only elements proportional to (L1)
n̂. We will easily notice that Tr will be of

the form:

Tr = −2rn̂(L1)
n̂ + 4(1 + 2 + . . .+ (r/2− 1))(L1)

n̂ . (A.21)

To find Tn̂+2, we need to sum over all Tr. Using little bit of algebra, we arrive to:

Tn̂+2 =

n̂uu/2
∑

r=1

Tr = − n̂

6
(n̂+ 2)(n̂+ 1)(L1)

n̂ (A.22)

An analogous procedure can be repeated for (4.41) to find:

T̄n̂+2 = − n̂

6
(n̂+ 2)(n̂+ 1)(L−1)

n̂ . (A.23)

B Representation theory of simple Lie algebras

All definitions and useful properties of representation theory utilized in this work can be

found in general text books (we particularly used [39] and [40]). However, we would like

to make a special comment about the normalization chosen for the scalar product in the

Lie algebra.

We consider a general simple Lie algebra g with dimension g, prepared in the Cartan-

Weyl basis:

[Hi, Hj ] = 0 , (B.1)

[Hi, Eα] = α(i)Eα , (B.2)

where the indexes run as i, j = 1, . . . h, and α = 1, . . . g−h. The generators Hi are elements

of the Cartan subalgebra h, and Eα are ladder operators. We can associate a h-dimensional

vector ~α = (α(1) . . . α(h)) to every element Eα. These vectors ~α are called roots, and they

belong to the dual space of the Cartan subalgebra, denoted by h∗.

We can define a scalar product in g through the Killing form. In the basis (B.1), the

Killing forms will always follow:

(Hi, Hj) = δij , (Hi, Eβ) = 0 , (Eα, Eβ) = δα+β,0 , (B.3)

where δij is a Kronecker delta. Moreover, we can define a bilinear form in h∗, denoted by
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〈. . . , . . .〉, which is directly related to the Killing form in g:

〈~α , ~β〉 = (Hα, Hβ) =
∑

i

α(i)β(i) . (B.4)

We would like to remark that in this work we have used the following convention for

the Killing forms in g:

(Hi, Hj) = trf (Hi, Hj) , (Hi, Eβ) = trf (Hi, Eβ) , (Eα, Eβ) = trf (Eα, Eβ) , (B.5)

which obviously follows (B.3), but with an overall normalization constant.

C Details on section 3.3.2

In this appendix we provide the details of deriving (3.52) in section 3.3.2.

We will find what is the growth of ∆α̃m with ρ0 given in (3.52). Following the logic

used in section 3.3.1, we first look at the limit case M ∈ SL(2,R) and make use of the

fundamental representation. From (3.46) and (3.48) we have

M = e−2L0ρ0e∆axe2L0ρ0e−∆āx , (C.1)

where for now ∆ax and ∆āx live in sl(2,R). In the limit ρ0 → ∞, the eigenvalues M can

be approximated by its leading order term in ε ≡ e−ρ0 :

λ
(j)
M ∼ fj(∆x)ε−4nj . (C.2)

The index j runs from 1 to N . The numbers nj are integers whose value depends only

on the b(ρ), and fj are continuous functions of ∆x whose behavior depends on ∆ax and

∆āx. Considering L0 in the fundamental representation (A.8), we see from (C.1) that the

maximum power of eρ0 in M will be 2(N − 1), and then {nj}max = (N − 1)/2.

We know that the eigenvalues of M ∈ SL(2,R) follow (3.43). Consequently, the same

relation will hold for their leading terms. Using the freedom to z → z−1, we pick λ
(1)
M to

retain the most negative power of ε. Then, n1 will be the highest eigenvalue of L0. For

simplicity, we redefine f1(∆x) ≡ κ−2(N−1). Then, we find that the leading term of the

eigenvalues of M ∈ SL(2,R) follows

{λ(j)
M } = {(κ ε)−2(N−1), (κ ε)−2(N−3), . . . , (κ ε)−2(N−(2j−1)), . . . , (κ ε)2(N−3), (κ ε)2(N−1)} .

(C.3)

We have ∆α2 > 0 according to (3.45), and comparing (C.3) with (3.44) gives

e
N−1

2
∆α̃2 = λ

(1)
M ∼ f1(∆x)ε−2(N−1) , (C.4)

This is the leading divergent behavior of ∆α2 when the background connections approach

the SL(2,R) limit.

We now turn on the vevs for the higher spin charges in the connection. M is still of the

form (C.1), with the only difference that the elements to ∆ax and ∆āx belong to sl(N,R),

– 28 –



J
H
E
P
0
3
(
2
0
1
5
)
1
2
4

while preserving the boundary condition (3.49). Because we assume continuity with the

SL(2,R) limit, when the background has higher spin particles, we can characterize (λM )i
as follows:11

(λM )j ∼ gj(∆x)ε−4nj . (C.5)

Since b(ρ) does not change in the presence of higher spin charges, each eigenvalue remains

with the same leading power of ε: nj is the same that in (C.2). However, adding new

elements to ax and āx does change fj into a different function gj . Consequently, connecting

continuously the higher spin charges to (C.3), we can characterize the leading term of the

eigenvalues of M as:

{λ(j)
M } = {g1ε−2(N−1), g2ε

−2(N−3), . . . , gjε
−2(N−(2j−1)), . . . , gN−1ε

2(N−3), gNε2(N−1)} .
(C.6)

We assume continuity in ∆α̃i, and we know that the leading ρ0-dependence in the

eigenvalues is always the same. Therefore, we infer that when we connect the higher

spin elements, ∆α̃2 has the same ρ0 power that in (C.4) while ∆α̃i, i > 2 remains ρ0-

independent:

e∆α̃2 ∼ e4ρ0 , and e∆α̃i ∼ 1, i > 2 . (C.7)

Although the analysis has been done for the fundamental representation, a solution to (3.36)

must be independent of the representation. Consequently, for any representation in the

principal embedding, the leading term of ∆α̃m, m > 2 does not depend on ρ0.

D Non-principal embedding

The discussion in the main sections focused on the principal embedding of SL(2,R) in

SL(N,R). In this appendix we will extend the results of section 3 to other embeddings.

Actually the discussion in subsections 3.1–3.2 is basically embedding independent (any

modification is trivial); only portions of subsection 3.3 need to be revisited.

The first modification is L0: the Cartan element in the sl(2,R) subalgebra is not (A.8)

for non-principal embeddings. This fact affects our reasoning in subsection 3.3.1. Equa-

tions (3.43) and (3.44) must be replaced by:

{λ(j)
M } = {zn1 , zn2 , . . . , znN−1 , znN } , (D.1)

and

{eλ
(j)
P } = {en1∆α̃2 , en2∆α̃2 , . . . , enN−1∆α̃2 , enN∆α̃2} , (D.2)

where nj with j = 1, . . . , N are the eigenvalues of L0 in the embedding of interest. These

eigenvalues will always have as a symmetry: nj = −nN−(j−1). This implies that the

relation e∆α̃2 = z±1 still holds, and a solution with ∆α̃2 > 0 can be found for every

embedding. But we should notice that, for non-principal embeddings, L0 might have

11For high values of the higher spin charges the eigenvalues might cross and suffer a discontinuous change.
However, there must be a vicinity where the eigenvalues change continuously when we connect the higher
spin particles. In the rest of our analysis we will consider this region.
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degenerated eigenvalues. This means that when we connect the higher spin vevs, the

ordering is not uniquely determined by the SL(2,R) limit. However, all possible matchings

following condition (3.45), will give the same solution for ∆α̃2 from equation (3.38). This is

because with equation (3.38) we extract from λM only the information about the SL(2,R)

subgroup, which does not depend on how we connect the higher spin vevs. Therefore,

the conclusion of the subsection 3.3.1 generalized to every embedding is: all orders of λM

that accomplish the condition (3.45), give a unique solution for ∆α̃2 from (3.38) that is

compatible with P0 ∈ sl(2,R).

For subsection 3.3.2 the discussion is embedding independent until (3.57). However

we would like to comment on equation (3.52), which holds for any embedding, but it was

deduced in appendix C specifically for the principal. To prove that this equation is true in

general, we must notice that λM can be as well characterized by (C.2) for any embedding.

However, {nj}max is now the maximum eigenvalue of L0 in the embedding we are interested

in. We choose {nj}max ≡ n1. Using (D.2), and imposing ∆α̃2 > 0, we find the analogous

to (C.4) for non-principal embeddings:

en1∆α̃2 = λ
(1)
M ∼ f1(∆x)ε−4n1 , (D.3)

Turning on the higher spin vevs, and assuming continuity in λM and ∆α̃i, we see conclude

that equation (3.52) holds for any embedding.

Following with the analysis of subsection 3.3.2, equation (3.58) does not hold for non-

principal embeddings since ~l0 is not dominant. In this case, the maximum value of 〈~l0,
−→
Λ

(j)
R 〉

is not given when
−→
Λ hw

R = ~l0, because now ~l0 has negoative coefficients. To solve this

problem, we transform ~l0 to a basis of simple roots where its coefficients are positive. Any

weight can be brought to the fundamental chamber by a unique operation of the Weyl

group: we define ω as the Weyl reflection that brings ~l0 to the basis of simple roots where

it is dominant:

〈ω(~l0), ~αi〉 ≥ 0 i = 1, . . . , N − 1 . (D.4)

We are ready to infer which term will be leading in equation (3.57) when ρ0 → ∞. First,

we will perform the Weyl reflection ω in −→p : 12

TrR(e
P) =

∑

j

e〈ω(~p), ω(
−→
Λ

(j)
R

)〉 =
∑

k

e〈ω(~p),
−→
Λ

(k)
R

〉 . (D.6)

In the limit ρ0 → ∞ we only need the maximum value of the inner product. With (D.4)

and (3.59), we find that 〈ω(~l0),
−→
Λ

(k)
R 〉 is maximized when

−→
Λ

(k)
R =

−→
Λ hw

R , only if ~l0 is in the

fundamental chamber. Using (D.3), we know that the leading term of the sum has the

12Note that, the inner product is invariant under the Weyl group:

〈~l0,
−→
Λ

(j)
R

〉 = 〈ω(~l0), ω(
−→
Λ

(j)
R

)〉 = 〈ω(~l0),
−→
Λ

(k)
R

〉 . (D.5)

In the last equality we used that the Weyl group reshuffles the weights, and we are allowed to relabel

ω(
−→
Λ

(j)
R

) =
−→
Λ

(k)
R

(the index k is not necessarily equal to j).
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inner product 〈ω(~l0),
−→
Λ hw

R 〉:

lim
ρ0→∞

TrR(e
P) = e〈ω(~p),

−→
Λ hw

R
〉 = e∆α̃2〈ω(~l0),

−→
Λ hw

R
〉+∆α̃3〈ω(~w0),

−→
Λ hw

R
〉+...+∆α̃N 〈ω(~ha),

−→
Λ hw

R
〉 . (D.7)

With an analogous reasoning to the one after equation (3.60), we choose the representation

whose highest weight is
−→
Λ hw

R ∝ w(~l0) to extract the parameter ∆α2 from equation (D.7).

However, we have to notice that all weights of a representation have integer Dynkyn labels,

and the same does not holds in general for ~l0. Actually, it can be shown that only when

the spectrum of particles contains semi-integer spins, ~l0 will have semi-integer Dynkyn

labels [2]. We can easily solve this problem picking the highest weight as
−→
Λ hw

R = σ1/2w(~l0),

where σ1/2 = 2 when we have semi-integer spins in the spectrum, and σ1/2 = 1 otherwise.

Then, choosing a representation R with
−→
Λ hw

R = σ1/2w(~l0) we find:

∆α̃2 =
1

σ1/2trf (L0L0)
log

[

lim
ρ0→∞

TrR(M)

]

, (D.8)

where we have used 〈ω(~l0), ω(~l0)〉 = trf (L0L0). With (3.32) and (3.34) we arrive to the

equation for the entanglement entropy:

SEE =
k

σ1/2
log

[

lim
ρ0→∞

TrR(M)

]

, (D.9)

where R, as explained before, must be the representation whose highest weight satisfies−→
Λ hw

R = σ1/2w(~l0). We must notice that this equation includes as well the result (3.62) for

the principal embedding, where σ1/2 = 1 and ~l0 is already dominant. Remembering (3.65),

we can see that equation (D.9) is equivalent to the entanglement entropy for a general

embedding proposed in [2]. As a conclusion of the generalization of subsection 3.3.2, we

have proven that formula (3.1) captures both proposals for the entanglement entropy in

higher spin gravity for any embedding.

As a final comment, we would like to add that subsection 3.4 is embedding independent.

Moreover, the method to find the leading divergence of the entanglement entropy developed

in subsection 4.2 is easily generalizable from the logic presented in the main text.
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