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1 Introduction

Work [1] showed that Λ 6= 0 General Relativity (GR) can be described in the ”pure con-

nection” formulation, in which the only dynamical field of the theory is a (complexified)

SO(3) ∼ SU(2) connection rather than the metric.1 Paper [4] made the first steps towards

setting up the perturbation theory in this formalism. In particular, the usual propagating

degrees of freedom of GR (gravitons) were exhibited, and the propagator obtained. It was

also shown that the same formalism is applicable to a very large class of (modified) gravity

theories describing, as GR, just two propagating polarizations of the graviton.

Here we develop this pure connection formalism for gravity further. This is the first

in a series of papers aimed at studying how perturbative gravity can be described in this

language. The principal aim of the present paper is to treat the linearized theory in the

1Work [1] gave a gauge-theoretic description of a non-zero cosmological constant GR. Earlier works of

Capovilla, Dell and Jacobson, see [2] and [3], provide a similar description of the Λ = 0 case. However,

the action principle proposed in these works contains an additional auxiliary field on top of the connection.

There is no need for such a field when Λ 6= 0, which results in literally a ”pure connection” formulation.
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amount sufficient for later computations of e.g. graviton scattering amplitudes. However,

interactions are considered only in the second paper of the series.

In our treatment of the linearized theory particular attention is paid to the issues of

the hermiticity of the arising quadratic Lagrangian. Indeed, as already mentioned, in the

gauge-theoretic description of metric of Lorentzian signature one works with complexified

SU(2), and thus SL(2,C), connections. The Lagrangian then depends on the connection

meromorphically, i.e. the complex conjugate of the connection field never enters. Such

a description is only viable if some reality conditions are additionally imposed, and we

discuss these in details in the present paper. Thus, our main results are the treatment

of the hermiticity issues, as well as the related decomposition of the connection field into

the modes. We also discuss the delicate issues of discrete C, P, T symmetries. The mode

decomposition obtained in this paper gives everything that is needed for computations

(performed in the second paper from the series) of graviton scattering amplitudes from the

connection field correlation functions.

Some aspects of our gauge-theoretic description of gravitons are quite unusual, and are

therefore worth explaining already in the Introduction. To understand what is going on,

it turns out to be particularly useful to use the language of (2-component) spinors. Before

we explain how spinors appear in the pure connection description of gravity, let us remind

the reader some very basic facts about them.

1.1 Spinors

We will necessarily be brief here, and send the reader to e.g. [5] for more details. We recall

that a tetrad e is a map, at each spacetime point p, from the tangent space TpM to a copy

of Minkowski space M1,3:

e : TpM → M1,3. (1.1)

The pull-back of the Minkowski metric η on M1,3 gives the spacetime metric. Using the

index notation we can write gµν = eIµe
J
ν ηIJ , where µ, . . . are the spacetime and I, . . . are

”internal” indices, i.e. those referring to the Minkowski space M1,3 quantities. The object

ηIJ is the Minkowski metric, for which we choose the signature (−,+,+,+).

The spinors arise by introducing an identification between Minkowski vectors xI and

2× 2 (anti-) hermitian matrices

x := i

(

x0 + x3 x1 − ix2

x1 + ix2 x0 − x3

)

. (1.2)

The Minkowski norm of xI is then expressed as the determinant of x:

−(x0)2 + (x1)2 + (x2)2 + (x3)2 = det(x). (1.3)

It is then easy to see that the space of anti-hermitian matrices is preserved by the following

action of the group SL(2,C):

x → gxg†, g ∈ SL(2,C). (1.4)

– 2 –
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It is also clear that the above action preserves the determinant of x and thus the Minkowksi

norm of the corresponding xI . This provides an identification between the group SL(2,C)

and the Lorentz group SO(1, 3):

SO(1, 3) ∼ SL(2,C). (1.5)

The 2-component spinors are then objects that realize two inequivalent fundamental repre-

sentations of the group SL(2,C). Objects of one type, to which we shall refer as unprimed

(using the GR terminology), transform simply as length 2 columns on which g ∈ SL(2,C)

acts by multiplication from the left. The objects of the second type (primed spinors) trans-

form in a complex conjugate representation, and can be thought of as rows of length 2,

on which g† ∈ SL(2,C) acts from the right. Let us denote the space of spinors of un-

primed type by S+ and that of the opposite type spinors by S−. Both spaces have an

SL(2,C)-invariant ”metric”, which is however anti-symmetric, so that the norm of every

object is zero.

It is then clear that the matrix x is an object of a mixed type

x ∈ S+ ⊗ S−. (1.6)

Let us formalize this by introducing an index notation xAA′

for the matrix x. Here A,A′ =

1, 2 are the spinor indices, with an object of the type λA ∈ S+ referred to as an unprimed

spinor, and λA′ ∈ S− as primed. Note that we can always identify the spinor spaces S±

with their duals using the SL(2,C)-invariant metric. One must, however, be careful with

the operation of raising and lowering of spinor indices, as this now introduces a minus

sign (since the metric is anti-symmetric). We now write xAA′

:= i
√
2 θAA′

I xI , where we

have introduced a matrix θAA′

I which is the object that fixes the identification between

Minkowski vectors xI and anti-hermitian 2× 2 matrices x. The factor of
√
2 is introduced

for future convenience (so that the expression for θAA′

I in terms of the so-called doubly null

tetrad is simple). The objects θAA′

I are hermitian: (θAA′

A )∗ = θAA′

I , where one also should

take into account the fact that under the operation of complex conjugation the space of

unprimed spinors goes into that of primed ones and vice-versa:

(S+)
∗ = S−. (1.7)

We can finally combine the tetrad eIµ with the object θAA′

I just introduced to form a new

object θAA′

µ = eIµθ
AA′

I that is referred to as the soldering form. This object provides an

identification between the space S+ ⊗S− of mixed rank two spinors and the tangent space

to our spacetime manifold M

θ : TM → S+ ⊗ S−. (1.8)

As e that is used in its construction, it also carries information about the spacetime metric.

The soldering form can be used to construct the Dirac operator ∇AA′

:=
√
2 θAA′

µ ∇µ, where

∇µ is the metric-compatible derivative operator, and we have raised the spacetime index

on ∇ using the metric. The Dirac operator, with its spinor indices raised or lowered

– 3 –
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appropriately using the SL(2,C)-invariant metrics on S± becomes a map sending spinors

of one type into those of opposite type, e.g.:

∇ : S+ → S−. (1.9)

We are now ready to discuss the spinorial interpretation of the objects that appear in our

gauge-theoretic formulation of gravity.

1.2 SL(2,C) connections

The main dynamical field of our theory is a complexified SO(3) ∼ SU(2) and thus SL(2,C)

connection. Locally its is a one-form on M taking values in the Lie algebra g ∼ sl(2) of

the gauge group. We will always think about the Lie algebra as a complex vector space

of dimension 3. In index notations the connection is denoted by Ai
µ, where i = 1, 2, 3 is

the Lie algebra index. As we shall see in details below, when the action of the theory

is linearized around a suitable background connection, the background field allows for a

certain metric to be defined. So, the linearized theory is about infinitesimal connections

that we denote by aiµ living on a metric background. The metric allows us to define the

usual notions of tetrad and then the spinors, as discussed above. We will then see that the

structures available in the background field allow us to identify the Lie algebra g with the

space of symmetric rank 2 unprimed spinors

g ∼ S2
+. (1.10)

Indeed, as is well known, the Lie algebra sl(2) of the Lorentz group (viewed as SL(2,C)),

when considered as a complex vector space of dimension 3, is isomorphic to the second

symmetric power of the fundamental representation. The background field then identifies

the Lie algebra g of the gauge group of the theory with the Lie algebra of the Lorentz

group sl(2) acting in each tangent space, and this is why (1.10) becomes possible.

Also, as we have already discussed, the spacetime index of our infinitesimal connection

one-form can be converted into a pair of spinor indices using the soldering form θAA′

µ .

Thus, overall, mapping all the indices of the infinitesimal connection into spinor ones we

get an object

aAA′ BC ∈ S2
+ ⊗ S+ ⊗ S−. (1.11)

Thus, our linearized theory is about fields living in the above spinor representation. This

should be contrasted with the usual metric description where the metric perturbation field

hµν , when converted into the spinor form becomes

hAA′BB′ ∈ (S+ ⊗ S−)⊗s (S+ ⊗ S−), (1.12)

where ⊗s means the symmetric part of the tensor product. Both fields (1.11) and (1.12)

are capable of describing a spin 2 particle (this follows just by counting the number of the

fundamental spinor representations appearing, and multiplying the result by 1/2, which is

the spin carried by the fundamental representation). However, there is a profound difference

– 4 –



J
H
E
P
0
3
(
2
0
1
5
)
1
1
8

between the two descriptions. The spinor space relevant for the usual metric description

goes into itself under the operation of complex conjugation:

((S+ ⊗ S−)⊗s (S+ ⊗ S−))
∗ = (S+ ⊗ S−)⊗s (S+ ⊗ S−). (1.13)

However, the space in (1.11) under the operation of the complex conjugation gets sent to

a completely different space

(S2
+ ⊗ S+ ⊗ S−)

∗ = S2
− ⊗ S− ⊗ S+. (1.14)

This is why there are real objects in the space in (1.12), but no real objects in the space

in (1.11). In other words, the description of spin 2 particles is possible in terms of real

fields if one uses fields such as hµν , but cannot be possible if one uses the connection

field in (1.11). This is the first conclusion that can be made about our prospective gauge-

theoretic description of gravity even prior to developing it. As a result of this basic fact,

the issues of reality conditions and hermiticity of the Lagrangian will have to be dealt with

in a way significantly more non-trivial than in the metric based description, see more on

this below.

Let us ignore the issues of hermiticity for the moment, and discuss how the diffeo-

morphisms, which are the fundamental gauge symmetries of any theory of gravity, can be

represented in our formalism. In the usual metric language the diffeomorphisms act via

δξhµν = ∇(µξν), (1.15)

where ξµ is the diffeomorphism generator. The important point about this transformation

rule is that it involves the (first) derivatives of the generator. Therefore, the question of

which components of hµν are pure gauge is mode-dependent, and can be answered only after

the metric perturbation is decomposed into modes via an appropriate Fourier transform.

The space (1.12) where metric perturbations live has dimension 10 (per spacetime point).

The Hamiltonian analysis of gravity then tells us that 4 of the components of the metric

perturbation field hµν get the interpretation of Lagrange multipliers imposing 4 constraints.

This removes 4 + 4 = 8 components, leaving only 2 propagating degrees of freedom of the

graviton.

Let us now discuss a similar count of degrees of freedom in our gauge-theoretic de-

scription. The first fundamental difference is, as we shall see in details below, is that the

connection transformation rule under the diffeomorphisms is much simpler than (1.15).

Thus, it turns out that the action of the diffeomorphisms is described by first decomposing

the space in (1.11) into its two irreducible components

S2
+ ⊗ S+ ⊗ S− = S3

+ ⊗ S− ⊕ S+ ⊗ S−, (1.16)

where we have used the elementary representation theory fact that S2
+ ⊗ S+ = S3

+ ⊕ S+.

One then finds that from the two parts of the connection arising this way, the part taking

values in S+ ⊗ S− can be set to zero by an action of a diffeomorphism. In other words,

– 5 –
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S+ ⊗ S− is pure gauge, and we can describe the space of (infinitesimal) connections A
modulo diffeomorphisms in full generality as

A/diffeos = S3
+ ⊗ S−. (1.17)

Importantly, this decomposition into a gauge and non-guage parts is mode-independent,

and is possible already at the level of the Lagrangian, prior to any mode decomposition.

This happens because it turns out to be possible to write the formula for the action of a

diffeomorphism on the connection in a special way. Namely, in a gauge theory one has a

freedom to talk about diffeomorphisms modulo the usual gauge transformations. Then one

can write the formula for the infinitesimal diffeomorphism in such a way that it does not

contain any derivatives of the generating vector field ξ. Explicitly, the action reads

δξa
i
µ = ξνF i

µν , (1.18)

where F i
µν is the background curvature two-form. There are no derivatives of ξ in this

formula, and this is why the decomposition (1.17) becomes possible. Below we shall see

that the way that the decomposition (1.17) is realized at the level of the action is that the

Lagrangian is simply independent of the S+ ⊗ S− components of the connection.

To summarize, in our gauge-theoretic formulation, the diffeomorphisms are much easier

to deal with than in the usual metric description. The components of the connection that

are pure (diffeomorphism) gauge can be projected out already at the level of the Lagrangian

and the action becomes a functional on the 8-dimensional space (1.17). On this space

one still has the usual sl(2) gauge symmetries acting, with 3 of the 8 components of the

projected connection field in (1.17) being Lagrange multipliers for 3 constraints. At the end

one gets the usual 8−3−3 = 2 propagating modes of the graviton, but in a way completely

different from the metric description. As we shall see below, in our description one will only

need to gauge-fix the usual sl(2) gauge symmetry, like one would be doing in Yang-Mills

theory. In contrast, in the metric description one has to gauge-fix the diffeomorhisms,

which leads to an arguably more involved formalism. Also to be emphasized, in our gauge

theoretic description one will be dealing with only 8 components of the field per point,

while in the metric description one has 10. Last but not least, as we shall see below, our

gauge-fixed Lagrangian is actually a convex function in the field space, with all the modes

having the same sign in front of their kinetic terms. This is not at all the case in the metric

description, with one of the modes, namely the trace hµµ, having an opposite sign in front

of its kinetic term as compared to the other modes. This is the infamous conformal mode

problem of the Euclidean approach to quantum gravity. This problem is absent in the

present gauge-theoretic formulation of gravity, with the Euclidean signature Lagrangian

(when all the fields become real) being a non-negative (i.e. convex in non-flat directions)

function in the field space. This fact, as well as other simplifications resulting from the

possibility to project away the diffeomorphisms from the outset, should be viewed as the

main reason for taking the present gauge-theoretic formulation as a serious alternative

to the usual metric-based one. We refer the reader to [6] for a further discussion of the

above points.
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1.3 Fermions

Above we have seen that our infinitesimal connection field cannot be real, as it takes values

in a space that does not go into itself under the complex conjugation. Of course, the full

complex-valued field then describes twice more real modes than is needed (with the extra

half of the modes coming from the complexification badly behaving). Thus, one does need

to impose some reality conditions if one wants to get a satisfactory description of spin 2

particles. The way this happens turns out to be strongly analogous to what happens in

theories of fermions, i.e. spin 1/2 particles. Thus, let us briefly discuss the usual fermions

in Minkowski spacetime first.

A possible (and in fact rather powerful, but not commonly known) approach to

fermions is to describe them by a second-order in derivatives action, treating the origi-

nal Dirac first-order equation as a reality condition for the fermion field. This gives a

completely equivalent description to the usual one, and can also be shown to lead to some

simplifications in the computations of Feynman diagrams, see e.g. [7] for an emphasis of

this fact.

To describe this in some details, let us only discuss here the case of a single Majorana

fermion, which is the simplest (and is also enough for our purposes of drawing an analogy).

In the usual first-order Dirac like formulation this is described by the Lagrangian

LMajorana = i
√
2λ†

A′θ
AA′

µ ∂µλA − (m/2)λAλA − (m/2)λ†
A′λ

†A′

, (1.19)

where λA, λ
†
A′ are two anti-commuting 2-component spinors and λ†

A′ is the hermitian con-

jugate of λA. The above Lagrangian is hermitian modulo a surface term, as can be checked

by an easy computation.

In the second-order description one integrates out the primed spinors λ†
A′ (using the

fact that at the level of the path integral it is legitimate to treat λA, λ
†
A′ as independent

fields. To do this one uses the field equation for λ†
A′ that reads:

λ†A′

=
i
√
2

m
θAA′

µ ∂µλA. (1.20)

One then substitutes this back into (1.19) to obtain (after using some algebra of solder-

ing forms)

LMajorana = − 1

2m
∂µλA∂µλA − m

2
λAλA, (1.21)

which is just the Lagrangian that gives the Klein-Gordon equation for each of the two

components of λA. It can then be shown that the theory (1.21) supplemented with the

reality conditions (1.20) is completely equivalent to the original theory (1.19). Of course,

the Lagrangian (1.21) is not hermitian, but instead depends holomorphically on the spinor

field λA. It only leads to a theory with a hermitian Hamiltonian once the theory is restricted

to live on the space of fields satisfying (1.20). There are some subtle points here about

on-shell versus off-shell correspondence, and this will be further discussed in the main text,

when contrasting with what happens in our gauge-theoretic description.
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It is worth discussing the reality condition (1.20) from a more general viewpoint.

Imagine we would like to start with (1.21), and then find some appropriate reality condition

that would give us a theory with a hermitian Hamiltonian. The spinor field λA that we

work with lives in the space S+, and this space goes into S− under the complex conjugation.

Thus, the field cannot be taken to be real. We then need a more sophisticated real structure

on the complex phase space of our theory, and this is provided by the Dirac operator.

Indeed, the Dirac operator maps spinors of one type into those of the other. Thus, we can

combine the action of the Dirac operator with that of the complex (hermitian) conjugation

to define

R :=
1

im
∂ ◦ †, (1.22)

where ∂ here stands schematically for the Dirac operator as we defined it above. The

R-operator is an anti-linear map sending the space of unprimed spinors into itself. Impor-

tantly, it becomes an involution R2 = Id on the space of solutions of the theory (1.21),

and is thus a real structure on the phase space when the latter is viewed as the space of

solutions of field equations. The reality condition (1.20) is then just the condition selecting

the real section of the phase space with respect to the real structure R. This gives an

equivalent viewpoint on the usual theory of fermions that works with first-order hermi-

tian Lagrangians, but also leads to some important simplifications in computations with

fermions, as is emphasized in [7]. So, this is a valid viewpoint on the fermions. As we now

discuss, gravitons in their gauge-theoretic formulation share many similarities with this

description of fermions.

1.4 Reality for gauge-theoretic gravitons

We now come back to the description of the gravitons as connections taking values in (1.11),

or, after the diffeomorphism components have been projected away, in (1.17). As we shall

see, the resulting linearized Lagrangian on this space is a meromorphic function of the

connection, leading to a second-order in derivatives field equation. Since the connection

takes values in S3
+ ⊗ S−, and this space is not invariant under the operation of complex

conjugation, the connection cannot be real. However, we can now use the above second-

order treatment of fermions as a guide, and device an appropriate reality condition that

will make the Hamiltonian hermitian.

The idea is to cook up an anti-linear map from the space S3
+ ⊗ S− into itself by

combining the operation of the hermitian conjugation of the field with the action of an

appropriate differential operator. The operator that we have at our disposal is the Dirac

operator ∇. Note that we now work in a curved background, and so refer to the Dirac

operator as ∇ in contrast to ∂ above. The importance of the curved background will

be explained below. The Dirac operator converts one spinor index into the index of an

opposite type. Thus, if we take the complex conjugate of an object in S3
+ ⊗ S− we get an

object in S3
− ⊗ S+. To convert this into an object in the original space S3

+ ⊗ S− we need

to flip two of the spaces S− to become S+. Thus, we will have to apply the Dirac operator

twice. In other words, a possible reality condition must be of the form

R ∼ ∇2 ◦ †. (1.23)
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We now note that in the case of the Dirac theory we had the mass parameter that allowed

to make the dimensions match in (1.22), so that R is a dimensionless operator. For the

graviton there is clearly no mass parameter that can be used, as the graviton is massless. It

is for this reason that our description of gravitons only makes sense in a curved background,

where the radius of curvature of the background can provide the missing dimensionful pa-

rameter. This provides yet another explanation of why the gauge-thereotic description of

gravity only works properly when Λ 6= 0. Below we shall see that it is the mass param-

eter associated with the curvature M2 ∼ Λ whose inverse power will be sitting in (1.23)

to make the dimensions match. We will also see that, on solutions of field equations, an

appropriately designed anti-linear operator of the form (1.23) becomes an involution, and

thus defines a real structure on the space of solutions (=phase space). After the corre-

sponding real section is selected, one obtains a theory with a hermitian Hamiltonian. In

fact, as we shall also demonstrate, the corresponding complex description of the phase

space of gravitons is just a (complex) canonical transformation of the usual phase space

in terms of the metric perturbation. So, at the level of the (reduced) phase space the two

descriptions will be shown to be completely equivalent.

We summarize by saying that our gauge-theretic description (to be developed in the

main text) is completely equivalent to the standard description at the level of the fully

symmetry reduced phase space. However, the connection viewpoint on gravitons brings

some important simplifications into the perturbation theory, as could be suspected from

the fact that the theory now depends on less components of the field to start from (8

as compared to 10). A related fact is that in the gauge-theoretic description the field

takes values (after the diffeomorphisms have been dealt with as in (1.17)) in an irreducible

representation S3
+ ⊗ S− of the Lorentz group. This is in contrast to the usual description,

where one must build up the perturbation theory working with all the components of

the metric perturbation. These split into two irreducible components S2
+ ⊗ S2

− and the

trivial representation (functions on spacetime). The two irreducible components behave

very differently, and part of the complexity of the standard perturbation theory consists

in dealing with these two different components. This problem is absent in our treatment,

and will be seen to result in many simplifications in the formalism.

Now that we have explained the main unusual points of our construction, we can start

with our development of the diffeomorphism invariant SO(3) ∼ SU(2) gauge theory, which

will be shown to describe gravity. We start with a formulation of the theory in section 2.

We then discuss the background and obtain the linearized Lagrangian in section 3. The

resulting free theory is described in details in section 4, where also the Hamiltonian analysis

is performed. Section 5 is central for the whole story and discusses the subtle points related

to the reality conditions. It also introduces the metric variable, in terms of which one has

the familiar dynamics. Section 6 shows that the passage to the metric variable is a canonical

transformation on the phase space of the theory. The mode decomposition is obtained in

section 7, and then the discrete symmetries are discussed in section 8. We conclude with

a discussion.
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2 The theory

The contents of this section are not new. Some more details on diffeomorphism invariant

gauge theories described below can be found in [6]. General Relativity (with Λ 6= 0) was

first formulated in this language in [1].

2.1 Diffeomorphism invariant gauge theories

We begin in full generality, and define a large class of what can be called diffeomorphism

invariant gauge theories for an arbitrary gauge group. Thus, let G be a (complex) Lie

group, which we for simplicity assume here to be simple. Consider a G-connection on the

spacetime M . Locally it can be described as a one-form AI
µ with values in the Lie algebra

g of G. Thus, here and in what follows I = 1, . . . , n is the Lie algebra index. The curvature

of the connection is a two-forms with values in g that can be described as

F I = dAI +
1

2
f I

JKAJ ∧AK , (2.1)

where f I
JK are the structure constants.

Now let f be a scalar valued function acting on symmetric matrices in g⊗s g:

f : g⊗s g → C. (2.2)

We require this function to satisfy two properties: (i) It must be gauge invariant f(AdgX) =

f(X), ∀g ∈ G; (ii) It must be homogeneous of degree one f(αX) = αf(X), ∀α 6= 0. Both

conditions are required to hold for any X ∈ g⊗s g.

Having such a function, it is not hard to see that it can be applied to the quantity

F I ∧F J , with the result being a well-defined 4-form. Indeed, F I ∧F J ∈ Λ4 ⊗ g⊗s g, i.e. it

is a 4-form with values in the space of symmetric matrices. We can apply the function f

to it, and the result is gauge-invariant due to the gauge-invariance of f . At the same time,

the 4-form factor can be just ”taken out” from the function due to its homogeneity, and

so one gets a well-defined 4-form. Integrating this over the manifold one gets the action

S[A] = i

∫

M

f(F ∧ F ). (2.3)

Several remarks about this action are in order. First, the factor of i =
√
−1 is introduced

for future convenience. Second, there are no dimensionful coupling constants in our the-

ory. Indeed, there are only dimensionless parameters involved in constructing the function

f . All the dimensions are carried by the fields, so that the connection A has the mass

dimension one, and the curvature has the mass dimension 2. The Lagrangian then has the

required mass dimension 4 by the homogeneity of f . Below we shall see that the dimen-

sionful coupling constants get introduced into this theory when a suitable background is

selected (as combinations of the mass scale of the background with the other dimensionless

parameters present in f).

Another remarks about (2.3) is that its field equations are of the second order in

derivatives. This is easy to see if we write the equations as

dAB
I = 0, where BI :=

∂f

∂XIJ
F J , (2.4)
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and where the matrix XIJ = F I ∧F J . As we shall see below, the matrix of derivatives of f

with respect to XIJ is a well-defined matrix-valued function (not a form) of homogeneity

degree zero acting on Λ4⊗g⊗sg. Thus, the quantity BI is a well-defined 2-form with values

in the Lie algebra. The field equations are then just a statement that BI is covariantly

constant with respect to the connection A. Let us now count the number of the derivatives

appearing in the equation (2.4). The function f , as well as the matrix of its first derivatives,

are (highly non-linear) functions of the first derivatives of A. Then another derivative is

taken in (2.4), which results in second-order field equations.

Our last remark about (2.3) is that for a generic f they are dynamically non-trivial

theories, i.e. describe propagating degrees of freedom. The clause about generic f is im-

portant, for there is one point in the theory space corresponding to f(F ∧F ) = Tr(F ∧F )

which gives a topological theory without any propagating modes. But this is clearly a very

special point in the theory space because, as we shall see below, whenever the Hessian of

the function f is non-degenerate there are propagating modes. For a generic f it can be

shown by a Hamiltonian analysis, see [8] for such an analysis in a different, but related

description, that the theory (2.3) describes 2n− 4 propagating modes.

2.2 Gravity

It turns out [4] (and this will be shown below) that when one takes G = SL(2,C), viewed as

a 3-dimensional complex Lie group (i.e. as a complexification of SU(2)), the above theory

describes, for any choice of the defining function f , interacting massless spin 2 particles.

This statement does not take into account the reality conditions issues, as discussed in the

Introduction. In other words, we do not know if there is a choice of the reality conditions

that render a theory with arbitrary f to have a hermitian Hamiltonian. However, what we

will show in this paper is that, when linearized around an appropriate background (which

is going to be just de Sitter space in the language of connections), all theories (2.3) with

G = SL(2,C) lead to the same linearized dynamics. This dynamics is that of massless

spin 2 particles, and then (linearized) reality conditions can be imposed to yield a positive-

definite hermitian Hamiltonian. Thus, there is a satisfactory treatment of the reality

conditions issue at the linearized level for any f . Whether this can be extended to the

full non-linear level is an open problem, apart from the case of f that corresponds to GR,

where the correspondence to GR implies that there is a satisfactory solution to the reality

conditions problem.

2.3 General Relativity

General Relativity with a non-zero cosmological constant can also be described in this

language, and is just a particular point in the theory space (2.3). In this case the action

reads, see [1]

SGR[A] =
i

16πGΛ

∫

(

Tr
√
F ∧ F

)2
, (2.5)

where G is the usual Newton’s constant, Λ is the cosmological constant, i =
√
−1, and

F i = dAi + (1/2)ǫijkAj ∧ Ak is the curvature of Ai. Due to the presence of the factors
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of imaginary unit in front of the action, and also because of the fact that the connection

is complex (reality conditions will be describe below), it is not obvious that this action

describes a theory with unitary dynamics. Still, as we shall see in particular from the

graviton scattering results (in the second paper from the series), it describes the usual

general relativity. An argument establishing equivalence to the usual metric based GR at

the full non-linear level is given in [1]. Thus, we know for sure that at least for one of the

members of the class (2.3) the issue of reality conditions at the full non-linear level can be

dealt with satisfactorily (by going to the usual metric-based real description).

The square root of a matrix appearing in the action can be understood perturbatively,

as we shall explain (and explore) below. Note that the Newton’s constant appears in front

of the action only in the dimensionless combination GΛ. This is of course also possible in

the usual metric-based formulation if one rescales the metric to absorb Λ into the volume

factor
√−g. The metric then becomes dimensionful and Λ appears in front of the action

exactly as in (2.5). Our final remark about (2.5) is that it gives only an on-shell equivalent

formulation of general relativity, while off-shell the action (2.5) has different convexity

properties from the Einstein-Hilbert one. This is of no importance for the present and the

second paper from the series, where only the tree-level scatting amplitudes are studied,

since these can be expected to be the same as in GR. However, one should be cautious

when comparing the (to be constructed) quantum theory based on (2.5) with the one based

on the Einstein-Hilbert functional. Even though the phase spaces of both theories are the

same (viewed as the spaces of solutions of field equations), there can be subtleties (e.g. in

the measure) when comparing the path-integral based quantum theories. We do not touch

these issues any further in the present work.

3 Perturbative expansion

The treatment of the background below is along the lines of [9]. A more in depth discussion

of the mass scale introduced by the background in available in [6]. The perturbative

expansion of the action is to a large extent new, with only a very preliminary discussion

available in [4].

3.1 The background

We are (eventually) interested in developing Feynman rules for the theories (2.3), and, in

particular, for (2.5). One immediate difference with the case of the metric-based GR is

that we cannot directly expand around a background that corresponds to the Minkowski

spacetime. Indeed, our action (2.5), strictly speaking, only describes the Λ 6= 0 situation,

as it blows up if one sends Λ → 0. Thus, the best we can do (if we are after the Minkowski

spacetime scattering amplitudes) is to expand around a constant curvature background

and take the curvature scalar to zero at the end of the calculation. This is the strategy

that will be followed here (and was previously followed in [4]). As we shall see below,

the presence of the cosmological constant at intermediate stages of the computations will

make to us available constructions that are simply impossible in the usual metric setting

of zero Λ.
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We shall consider perturbations around a fixed constant curvature background connec-

tion. To explain what constant curvature means in our setting let us start by describing

a general homogeneous and isotropic in space SO(3) connection. First, a general homoge-

neous in space connection is of the form

Ai = aij(η)dxj + bi(η)dη, (3.1)

where we have indicated that the components can only be functions of the time coordinate

η. It is obvious that we can kill the bi(η) components by a time-dependent gauge transfor-

mation. This leaves us with the first term only. We now require that the effect of an SO(3)

rotation of the coordinates xi (around an arbitrary center) can be offset by an SO(3) gauge

transformation. This implies that aij must be proportional to δij for all η. Thus, we are

led to consider the following connections:

Ai =
c(η)

i
dxi, (3.2)

where the function c(η) is arbitrary, and we have introduced a factor of 1/i for future

convenience. We now note that the curvature of this connection is given by

F i =
c′

i
dη ∧ dxi − c2

2
ǫijkdxj ∧ dxk, (3.3)

where the prime denotes the derivative with respect to η. This means that we have

F i ∧ F j ∼ δij . (3.4)

Thus, for our chosen background (3.2) the matrix X̃ij is proportional to the identity matrix,

which means that the matrix of first derivatives of the function f(X̃) is also proportional

to the identity. This implies that any connection (3.2) satisfies the field equations following

from (2.3)

DA

(

∂f

∂X̃ij
F j

)

= 0, (3.5)

as these equations reduce to the Bianchi identity DAF
i = 0. This happens for any f , i.e.

for any of the theories in our theory space.

We now note that the curvature (3.3) can be written as

F i = −c2
(

ic′

c2
dη ∧ dxi +

1

2
ǫijkdxj ∧ dxk

)

. (3.6)

We can now choose the time coordinate conveniently, so that

c′

c2
dη = dt, (3.7)

and then write

F i = −c2
(

idt ∧ dxi +
1

2
ǫijkdxj ∧ dxk

)

, (3.8)
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where c should now be thought of as a function of t. In fact, from (3.7) we have dc/dt = c2

and thus

c(t) = − 1

t− t0
, (3.9)

where t0 is the integration constant. All in all, we see that, by an appropriate choice of

the t coordinate, we can rewrite the curvature of (3.2) as

F i = −M2Σi, (3.10)

where

Σi = a2
(

idt ∧ dxi +
1

2
ǫijkdxj ∧ dxk

)

(3.11)

are the self-dual two-forms for the de Sitter metric

ds2 = a2

(

−dt2 +
∑

i

(dxi)2

)

, (3.12)

and

a(t) = − 1

M(t− t0)
(3.13)

is the usual de Sitter scale factor as a function of the (conformal) time t. Note that we have

introduced an arbitrary dimensionful parameter M in (3.10). This parameter is directly

related to the radius of curvature of the de Sitter metric (3.12). It is completely arbitrary,

as we can always rescale both M and Σi in (3.10) without changing the curvature. But

once introduced, it determines the metric, and thus determines how all scales in the theory

are measured. The condition (3.10), which as we saw can be always achieved by choosing

the time coordinate appropriately, is our constant curvature condition for the background

connection. The essence of this condition is that it introduces a (background) metric into

our background-free up to now description, and fixes how all scales are measured.

It is worth discussing the construction that introduced a metric into our so far metric-

free story in more details. This is a geometrical construction known for many years, and

is in particular due to [10]. The idea is that when the triple of curvatures F i of the

connection Ai is linearly independent, the 3-dimensional space that it spans in the space

of all 2-forms can be declared to be the space of self-dual 2-forms for some metric. It

is then known that this determines the metric modulo conformal transformations. This

is precisely how the metric (3.12) appeared from the background connection (3.2). We

have also made a further choice of the conformal factor by so that the connection becomes

one of constant curvature in the sense of equation (3.10). Fixing M in that equation to

be constant eliminates the conformal freedom in the choice of the metric, up to constant

rescalings. A choice of a particular constant M2 in that equation is then equivalent to a

choice of units in which all other quantities in our theory are measured. In this sense M

is not a parameter of the theory, it is rather a scale in terms of which all other scales in

the theory get expressed. Thus, e.g. in the second paper in the series we shall see how the

gravitons’ interaction strength (Newton constant) appears as constructed out of M and

the dimensionless coupling constants present in our theory.
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3.2 Working with functions of matrix-valued 4-forms

We should now explain how a function (e.g. the square root in (2.5)) can be applied to forms.

We do this in a way most convenient for practical compuations. Thus, it is convenient to

use a completely anti-symmetric density ǫ̃µνρσ available without any metric to construct

the following densitiezed matrix:

X̃ij =
1

4
ǫ̃µνρσF i

µνF
j
ρσ. (3.14)

The general action (2.3) for G = SL(2,C) then bomes

S[A] = i

∫

d4x f(X̃ij). (3.15)

One can now see that the integrand is a density weight one scalar, and so the integral is

well-defined. The field equations then take the form

dA

(

∂f

∂X̃ij
F j

)

= 0, (3.16)

where the matrix of first derivatives that appears is now just that of usual derivatives of a

function of a matrix with respect to the matrix components. For GR action (2.5) written

in terms of X̃ij we have:

SGR[A] =
iM2

p

3M2

∫

d4x
(

Tr
√

X̃
)2

. (3.17)

Here we have introduced M2
p := 1/16πG,M2 := Λ/3. What we have now is the square

root of a symmetric 3 × 3 matrix, and this is well-defined (at least for matrices that are

not too far from the identity matrix). The action in the form (3.17) will be our starting

point for developing the GR perturbation theory (in the second paper from the series).

3.3 A convenient way to write the action

Let us now consider the value of X̃ij at the background. We have

X̃ij =̂
M4

4
ǫ̃µνρσ Σi

µνΣ
j
ρσ = 2iM4√−g δij , (3.18)

where our convention is that the hat means ”evaluated at the background”. Here we

made use of the self-duality of Σ’s and the algebra (A.5) of Σ’s. It is very convenient to

rescale the X̃ variable by 2iM4√−g so that the result equals to the Kronecker delta on the

background. Thus, we introduce:

X̂ij :=
X̃ij

2iM4
√−g

=̂ δij . (3.19)

We now rewrite the general gravity action (3.15) in terms of X̂. We have:

S[A] = −2M4

∫

d4x
√−g f(X̂ij). (3.20)

For the GR action (3.17) this becomes:

SGR[A] = −2

3
M2

pM
2

∫

d4x
√−g

(

Tr
√

X̂ij
)2

. (3.21)

It then becomes a simple exercise to compute the variations of the action, see below.
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3.4 Evaluating action at the background

Let also discuss the value of the actions (3.20) and (3.21) when evaluated on the back-

ground. We have, for the general action:

S[A]=̂− 2M4f(δ)

∫

d4x
√−g . (3.22)

For (3.21) this becomes

SGR[A]=̂− 6M2
pM

2

∫

d4x
√−g = − Λ

8πG

∫

d4x
√−g , (3.23)

which is the same as the value of the Einstein-Hilbert action

SEH[g] = − 1

16πG

∫

d4x
√−g (R− 2Λ) (3.24)

evaluated on the de Sitter metric (3.12). We see from (3.22) that for a general theory the

dimensionless quantity f(δ) plays the role of a combination 3M2
p /M

2 in the case of GR.

We emphasize, however, that for a general theory there is no notion of the Planck constant,

at least not until graviton interactions are considered. In the second paper of the series we

compute the graviton interactions strength and will extract an appropriate dimensionful

coupling constant this way. It is however, not guaranteed that the Planck mass obtained

from this Newton constant will be related with the dimensionless parameter f(δ) in front

of the background-evaluated action in exactly the same way as in GR.

3.5 Variations

We start by computing the variations of X̂, as a function of the connection, evaluated at

the background X̂ij =̂ δij . We have:

δX̂ij =̂ − 1

M2
Σ(iµνDµδA

j)
ν , (3.25)

δ2X̂ij =̂
1

iM4
ǫµνρσDµδA

i
νDρδA

j
σ − 1

M2
Σ(iµνǫj)klδAk

µδA
l
ν ,

δ3X̂ij =̂
3

iM4
ǫµνρσDµδA

(i
ν ǫ

j)klδAk
ρδA

l
σ.

Finally, the fourth variation is zero δ4X̂ij = 0 even away from the background. In all

expressions aboveDµ is the covariant derivative with respect to the background connection.

Thus, it is important to keep in mind that D’s do not commute:

2D[µDν]V
i = ǫijkF j

µνV
k, (3.26)

for an arbitrary Lie algebra valued function V i. Here F i
µν is the background curva-

ture (3.10). Thus, the commutator (3.26) is of the order M2. This has to be kept in

mind when (in the limit M → 0) replacing the covariant derivatives D with the usual

partial derivatives.
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3.6 Variations of the general action

We will now explain a procedure that can be used for computing the perturbative expan-

sion of the action (3.20). It is completely algorithmic, and is not hard to implement to

an arbitrary order. In this paper we will only need the second variation, but we decided

to explain the general procedure already here since once the general principle is under-

stood, it is not hard to implement to get the interactions as well. First, let us define a

convenient notation

f
(n)
ijkl... =

∂nf

∂X̂ij∂X̂kl...

∣

∣

∣

∣

δ

,

where the derivatives are all evaluated at the background X̂ij = δij . The variations of the

action are then given by:

δS =̂ −2M4

∫

f
(1)
ij δX̂ij , δ2S =̂ − 2M4

∫

[

f
(2)
ijklδX̂

ijδX̂kl + f
(1)
ij δ2X̂ij

]

, (3.27)

δ3S =̂ −2M4

∫

[

f
(3)
ijklmnδX̂

ijδX̂klδX̂mn + 3f
(2)
ijklδ

2X̂ijδX̂kl + f
(1)
ij δ3X̂ij

]

,

δ4S =̂ −2M4

∫

[

f
(4)
ijklmnpqδX̂

ijδX̂klδX̂mnδX̂pq + 6f
(3)
ijklmnδ

2X̂ijδX̂klδX̂mn

+4f
(2)
ijklδ

3X̂ijδX̂kl + 3f
(2)
ijklδ

2X̂ijδ2X̂kl
]

.

Below we shall explain how the derivative matrices appearing here can be parameterized

conveniently. However, let us first consider the special case of the GR action.

3.7 Variations of the GR action

For the case of GR we have

fGR(X̂) =
M2

p

3M2
Tr
(√

X̂
)2

, (3.28)

The variations are now easily obtained by defining Y =
√

X̂, and writing

SGR[A] = −2

3
M2

pM
2

∫

(TrY )2 , (3.29)

where we have dropped the integration measure d4x
√−g for brevity. The variations are

then easily computed:

δSGR[A] =−2

3
M2

pM
2

∫

2 Tr (Y ) Tr (δY ) , (3.30)

δ2SGR =−2

3
M2

pM
2

∫

2
[

Tr (δY ) Tr (δY ) + Tr (Y ) Tr
(

δ2Y
)]

, (3.31)

δ3SGR =−2

3
M2

pM
2

∫

2
[

3Tr (δY ) Tr
(

δ2Y
)

+Tr (Y ) Tr
(

δ3Y
)]

, (3.32)

δ4SGR =−2

3
M2

pM
2

∫

2
[

3Tr
(

δ2Y
)

Tr
(

δ2Y
)

+4Tr (δY ) Tr
(

δ3Y
)

+Tr (Y ) Tr
(

δ4Y
)]

. (3.33)

It thus remains to obtain a relation between the variations of Y and those of X̂. This

is easily done by varying the relation Y 2 = X̂ (any required number of times), and then
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solving the resulting equations for δkY . We only need these variations on the background,

where we have Y ij=̂δij . This procedure gives:

δY =̂
1

2
δX̂, (3.34)

δ2Y =̂
1

2
δ2X̂ − δY δY =

1

2

(

δ2X̂ − 1

2
δX̂δX̂

)

, (3.35)

δ3Y =
1

2
δ3X̂ − 3

2
δY δ2Y − 3

2
δ2Y δY =

1

2
δ3X̂ − 3

8

(

δ2X̂δX̂ + δX̂δ2X̂ − δX̂δX̂δX̂
)

,

(3.36)

δ4Y = −2δY δ3Y − 2δ3Y δY − 6δ2Y δ2Y. (3.37)

The above results can be put into the general form (3.27) by writing:

(3M2/M2
p )f

(1)
ij = 3δij , (3.38)

(3M2/M2
p )f

(2)
ijkl = −3

2
Pijkl, (3.39)

(3M2/M2
p )f

(3)
ijklmn =

9

4

∑

perm

1

3!
PijabPklbcPmnca+

1

2
(δijPklmn+δklPijmn+δmnPijkl) (3.40)

(3M2/M2
p )f

(4)
ijklmnpq = −45

8

∑

perm

1

4!
PijabPklbcPmncdPpqda +

3

8

∑

perm

1

3
PijklPmnpq + . . . ,

where

Pijkl :=
1

2
(δikδjl + δilδjk)−

1

3
δijδkl (3.41)

is the projector on the symmetric tracefree matrices, and the dots in the last formula

stand for terms containing at least one δij in one of the 4 external ”legs”. The sum over

permutations in the last two formulas is needed to make the result on the right-hand-

side symmetric. Eventually we are going to contract f (3), f (4) with copies of the same

matrix δX̂ij , and this sum over permutations (with the associated combinatorial factor)

will disappear. Also, the reason why we don’t write the remaining terms in the expression

for f (4) is that (in the second paper from the series) we shall see that these terms will not

play any role (in the 4-vertex) as they will be killed on-shell by the external states, or killed

by the symmetries of the propagator when the vertices are used in Feynman graphs.

3.8 Matrices f
(n)
ijkl... for a general f

For the case of a general theory we can to a large extent fix the derivatives of the function f

evaluated at the background X̂ij = δij from the properties of f itself. Thus, we know that f

is an SO(3) invariant function. The background that we work with is also SO(3) invariant.

Thus, the same will be true for the matrices f
(n)
ijkl.... This, in particular, implies that the

matrix of first derivatives must be proportional to δij . The proportionality coefficient can

then be fixed from the homogeneity property of f that implies

∂f

∂X̂ij
X̂ij = f. (3.42)
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Thus, we have

f
(1)
ij =

f(δ)

3
δij . (3.43)

We also know from (3.22) that f(δ) is the analog of the parameter 3M2
p /M

2 in GR for a

general theory.

We can now differentiate the equation (3.42) once with respect to X̂ij to obtain

∂2f

∂X̂ij∂X̂kl
X̂ij = 0. (3.44)

In other words, the background itself is among the flat directions of the Hessian of f . This,

together with the SO(3)-invariance of the matrix f
(2)
ijkl implies that it is of the form

f
(2)
ijkl = −g

2
Pijkl, (3.45)

where g is some parameter and Pijkl is the projector (3.41) introduced above. This must

be true for any f . Note that this is also true for the function f(X̂) ∼ Tr(X̂), i.e. for the

topological theory, but in this case we have g = 0. We shall see that there are propagating

degrees of freedom whenever g 6= 0. Finally, we note that we have put a minus sign in (3.45)

because there is one in the case of GR, see (3.39). It is natural to be interested in theories

that are not too far from GR, and so it is natural to have the same sign in (3.45) as in GR.

For this reason we shall assume g > 0 in what follows.

The higher derivatives f
(n)
ij... can all be determined in a similar fashion. Thus, one takes

higher and higher derivatives of the equation (3.42) and evaluates the result on X̂ij = δij .

One gets

f
(n)
i1j1i2j2...injn

δinjn + (n− 2)f
(n−1)
i1j1i2j2...in−1jn−1

= 0, (3.46)

which is a recursive relation for the matrices of derivatives. We see that the new indepen-

dent term that appears at each order is always of the form of n projectors (3.41) contracted

with each other in a loop, with a symmetrization over index pairs ij later taken to form a

completely symmetric expression. There are also terms where the projectors are contracted

in smaller groups. Thus, we can write

f
(n)
i1j1i2j2...injn

= (−1)n−1g(n)
∑

perm

1

n!
Pi1j1ana1Pi2j2a1a2 . . . Pinjnan−1an + . . . , (3.47)

where the dots denote terms that contain smaller groups of P contractions, as well as terms

that do not vanish when contracted with δij in one of the channels. The coefficients in

front of these latter terms are related to the lower g(n) via (3.46). For example, for f (3)

we have

f
(3)
ijklmn = g(3)

∑

perm

1

3!
PijabPklbcPmnca +

g

6
(δijPklmn + δklPijmn + δmnPijkl) , (3.48)

– 19 –



J
H
E
P
0
3
(
2
0
1
5
)
1
1
8

where g ≡ g(2). For the matrix of fourth derivatives we have

f
(4)
ijklmnpq = −g(4)

∑

perm

1

4!
PijabPklbcPmncdPpqda + g̃(4)

∑

perm

1

3
PijklPmnpq . . . , (3.49)

where the other terms contain at least one factor of δ and are not going to be important for

us. Thus, the above parameterization of the derivatives of f makes it clear that for a general

theory there is an infinite number of independent coupling constants g = g(2), g(3), . . .,

with a number of new couplings appearing at each order of the derivative of the defining

function. In turn, we could have chosen to parametrize f by its independent couplings

g(n). We (again) note that all these couplings are dimensionless.

We would like to emphasize that the procedure used to obtain the action variations is

completely algorithmic and can be continued to arbitrary order without any difficulty.

4 Free theory

The linearized action worked out below first appeared in [4], where also the Hamiltonian

analysis (in the Minkowski limit) is contained. The novelty of this section is in the extension

to the analysis to the more non-trivial de Sitter background. Also, the very compact

form (4.24) of the completely symmetry reduced action is new. The most important new

aspect of this section is in the realization that the connection cannot be taken to be real.

This is invisible in the Minkowski version of the linearized action analysed in the previous

works. Thus, our treatment of the reality conditions corrects and supersedes what appeared

earlier in [4] and [6].

4.1 Linearized Lagrangian

In this paper we only consider the linearized theory. The second order action (obtained as

1/2 of the second variation) reads:

S(2)=

∫
[

g

2
PijklΣ

iµνDµδA
j
νΣ

kρσDρδA
l
σ−

f(δ)

3

(

1

i
ǫµνρσDµδA

i
νDρδA

i
σ−M2ΣiµνǫijkδAj

µδA
k
ν

)]

.

We first note that we can integrate by parts in the second term, with the result canceling the

last term precisely. One uses (3.26) to verify this. The integration by parts is justified on

connection perturbations of compact support (in both space and time directions), and this

is what we assume. Let us also absorb the prefactor −g into the connection perturbation

and define a new (canonically normalized as will be verified later) field

aiµ :=

√
g

i
δAi

µ. (4.1)

The free theory Lagrangian takes the following simple form:

L(2) = −1

2
PijklΣ

iµνDµa
j
νΣ

kρσDρa
l
σ. (4.2)

In this section we study this theory in some details. We start by listing the symmetries of

the theory.
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4.2 Symmetries

The free theory (4.2) is invariant under the following local symmetries:

δφa
i
µ = Dµφ

i (gauge), δξa
i
µ = ξαΣi

µα (diffeo). (4.3)

Note that the action of diffeomorphisms in this language is very simple, and corresponds to

mere shifts of the connection in some directions. The first formula here is the usual action of

the gauge symmetry. The second formula follows by writing the action of diffeomorphisms

(modulo a gauge transformation) on aiµ as (1.18), and then using the equation (3.10) for

the background curvature. The vector field appearing in (4.3) is then an appropriately

rescaled one (by M2) as compared to (1.18).

The invariance under the usual gauge rotations is easy to see using the result for the

commutator of two covariant derivative (3.26) and then the algebra (A.5) of Σ-matrices.

To verify the invariance under diffeomorphisms we use the fact that D[µΣ
i
νρ] = 0 (this

follows from (3.10) and the Bianchi identity for the curvature). Writing this identity as

D[ρΣ
i
σ]α = −1

2
DαΣρσ (4.4)

the variation of the Lagrangian (4.2) becomes:

δξL(2) = −PijklΣ
iµνDµa

j
ν

(

−1

2
Σk ρσξαDαΣ

l
ρσ

)

. (4.5)

Here we have used the fact that in the term where the covariant derivative acts on the

ξ field and the Σ matrix is taken outside of the sign of the derivative, the algebra of the

Σ-matrices gives an expression that is either anti-symmetric in δkl or a pure trace. Both

are killed by the projector Pijkl, and so only the term present in brackets in (4.5) remains.

But now we note that the expression in the brackets can be replaced with

−1

4
ξαDα

(

Σk ρσΣl
ρσ

)

in view of the kl-symmetrization implied by the projector. This expression, however, is

proportional to the covariant derivative of the Kronecker δ in view of the algebra satisfied

by Σ’s, and this is zero. This establishes the invariance under diffeomorphisms as well.

4.3 Hamiltonian analysis

We now follow the textbook procedure of the Hamiltonian analysis of (4.2), to prepare the

theory for the canonical quantization. Unlike what was done in [4] we would like to remain

in de Sitter background and not take the M → 0 limit, at least not at this stage. We shall

see that many subtleties, including those of the reality conditions, can only be understood

for a non-zero value of M . So, we live in the de Sitter space (3.12), with the self-dual

two-forms given by (3.11). We will also need a convenient expression for the background

connection (3.2), and this is given by

Ai
µ =

a′

ia
(dxi)µ ≡ (H/i)(dxi)µ, (4.6)

– 21 –



J
H
E
P
0
3
(
2
0
1
5
)
1
1
8

where the prime denotes the (conformal) time derivative and we have introduced H = a′/a.

The equation (3.10), which is just the Einstein equation(s) in our language, then states

H′ = H2 = M2a2, with the solution being a(t) = −1/M(t − t0), where t0 is an arbitrary

integration constant.

We now compute the quantity Σi µνDµa
j
ν in terms of the temporal aj0 and spatial aji

components of the connection. We get:

a2Σi µνDµa
j
ν = −i∂ta

ij + iDiaj0 + ǫiklDka
j
l , (4.7)

where Di is the covariant derivative with respect to the background connection (4.6).

Explicitly

Dka
i
l = ∂ka

i
l − iHǫikmaml , (4.8)

where we have used (4.6). The convention in (4.7) is that the first index of aij is the

spatial one.

We now decompose the spatial connection in its irreducible components

aij = ãij + ǫijkck + δijc, (4.9)

where ãij is the symmetric tracefree component (i.e. spin 2). We substitute this into (4.7)

and immediately find that the spin zero component c gets projected away by the projector

Pijkl that multiplies this quantity in the Lagrangian. The other parts give

a2PΣi µνDµa
j
ν = −i∂tã

ij + i∂i(aj0 + icj) + ǫikl∂kã
j
l + iHãij . (4.10)

We see that the dependence on the anti-symmetric part ci can be absorbed into a shift of

the temporal part. We therefore see that only the spin 2 part ãij of the spatial connection

is dynamical. We drop the tilde from now on. The conjugate momentum to aij is

πij = ∂ta
ij − P∂i(aj0 + icj) + iBij −Haij , (4.11)

where we have introduced the ”magnetic” field Bij = Pǫ(ikl∂ka
j)
l , where P everywhere is

the symmetric tracefree projector. The action in the Hamiltonian form becomes:

S(2) =

∫

dt

∫

d3x
(

πij∂ta
ij −H

)

, (4.12)

where the Hamiltonian density is

H =
1

2
πijπ

ij − iπijB
ij +Hπija

ij − (ai0 + ici)∂jπij . (4.13)

We have integrated by parts in the Gauss constraint term. Note that all instances of the

conformal factor a have cancelled from the action. Indeed, we had a factor of a4 coming

from the measure
√−g, as well as a factor of a−2 twice coming from Σ’s with the raised

spacetime indices.
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4.4 Gauge-fixing

It is convenient to fix the gauge at an early stage, and work with only the physical propagat-

ing modes. We see that the variation of the action with respect to the Lagrange multiplier

ai0 gives the Gauss constraint

∂iπ
ij = 0. (4.14)

This constraint generates gauge transformations

δaij = P∂(iξj), (4.15)

where the projection is taken onto the tracefree part. This action can be used to set to

zero the transverse part of aij :

∂ia
ij = 0, (4.16)

which is our gauge-fixing condition. Thus, our dynamical fields are a pair (aij , π
ij) of

symmetric traceless transverse tensors, as is appropriate for a spin 2 particle. We now note

that the quantity ǫikl∂ka
j
l is automatically symmetric tracefee and transverse on aij that

are symmetric tracefree and transverse. Thus, the projector in the definition of Bij can be

dropped.

4.5 Convenient notation

The first-order differential operator aij → ǫikl∂ka
j
l acts on the space of symmetric tracefree

transverse tensors. It will appear on many occasions below, and so it is convenient to

introduce a special notation for it

(ǫ∂a)ij := ǫikl∂ka
j
l . (4.17)

It is then not hard to show that

(ǫ∂)2 = −∆. (4.18)

It is also not hard to see that ǫ∂ is self-adjoint with respect to scalar product

(x, y) =

∫

d3xxijyij (4.19)

on the space of symmetric tracefree transverse tensors xij , yij . Then, using the self-

adjointness and (4.18) we can write the Hamiltonian as

H =
1

2
π2 − iπ(ǫ∂a+ iHa), (4.20)

where we omitted the indices for brevity.
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4.6 Evolution equation

Let us introduce two first order differential operators that are going to play an important

role below. We define

D := −i∂t + ǫ∂ + iH, D̄ := i∂t + ǫ∂ + iH, (4.21)

where D̄ is clearly the adjoint of D with respect to scalar product that also involves

the time integration. We note that Da is essentially the projected quantity a2PΣiµνDµa
j
ν ,

with the gauge-fixed spatial connection and its conjugated momentum satisfying the Gauss

equation.

The Hamiltonian (4.20) then results in the following Hamilton equations

−iπ = Da, D̄π = 0, (4.22)

which immediately give

0 = D̄Da = ∂2
t a−∆a+ 2iHǫ∂a− 2H2a (4.23)

as the evolution equation. Because of the term with ǫ∂ that has a factor of i in front,

this equation is complex. It becomes a non-trivial problem to choose a reality condition

that is compatible with the evolution. Indeed, the naive reality condition that aij is real

is not consistent with the evolution, because if one starts with a real aij , the evolution

will generate an imaginary part. Thus, a more sophisticated strategy for dealing with this

problem is needed.

4.7 Second-order formulation

Let us rewrite the original action (4.2) as a functional on the space of symmetric trace-

free transverse tensors aij . This can also be obtained by integrating out the momentum

variable. Using the operators (4.21) the corresponding second-order action can be written

very compactly as

S(2) = −1

2

∫

dt

∫

d3x (Da)2, (4.24)

with (4.23) following immediately as the corresponding Euler-Lagrange equation.

5 Reality conditions

Our treatment of the connection field reality conditions in this section is new. This analysis

constitutes one of the most important new results of this paper.

5.1 Evolution equation as an eigenfunction equation

For our later purposes, it is very convenient to write the evolution equation (4.23) in a

slightly different form. Thus, we use the fact that

{D, D̄} = 2H2, (5.1)
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which easily follows from H′ = H2, and write the evolution equation as an eigenfunction

equation

Ea = a, where E =
1

2H2
DD̄. (5.2)

This is the form that is going to be most useful below.

5.2 An important identity

We now prove an identity that lies at the root of the reality condition that is going to be

imposed. First, we note that

D̄
1

2H2
=

1

2H2
D∗, (5.3)

where D∗ = i∂t + ǫ∂ − iH is the operator complex conjugate to D. The above identity

allows us to pull out a factor of 1/2H2 from the derivative operator D̄, at the expense of

introducing a complex conjugate of D.

We now consider the square of the evolution equation operator E:

E2 =
1

2H2
DD̄

1

2H2
DD̄. (5.4)

We use (5.3) to convert D̄ intoD∗ and then use the fact thatD andD∗ commute {D,D∗} =

0. We then use the complex conjugate of the identity (5.3). Overall, we get the following

sequence of transformations

E2 =
1

2H2
D

1

2H2
D∗DD̄ =

1

2H2
D

1

2H2
DD∗D̄ =

1

2H2
DD̄∗ 1

2H2
D∗D̄ = RR∗, (5.5)

where we have introduced

R :=
1

2H2
DD̄∗. (5.6)

Note that R is a dimensionless operator, since H carries the dimension of mass. The

identity (5.5) in particular implies that E2 is a real operator, which is not at all obvious

because E is not real.

5.3 The reality condition

In the case of the Dirac equation viewed as a reality condition for the spinors satisfying

the Klein-Gordon equation, the Dirac equation appears as a ”square root” of the Klein-

Gordon. In our case we expect a second-order in derivatives reality condition, as follows

from our general discussion in the Introduction. Thus, if it is to appear as a square root,

it must be a square root of some fourth-order differential equation.

Now, as our relation (5.5) demonstrates, in spite of the fact that the evolution equa-

tion (5.2) is complex, we see that its square E2a = a, which is clearly implied by (5.2), is

a real equation. This fourth order equation is not so interesting in itself, but introduces

a new second-order differential operator R, such that E2 = RR∗. In other words, R is
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a ”square root” of the real equation operator E2, similar to the Dirac operator being a

square root of the Klein-Gordon one. It is then clear that if we define

R = R ◦ †, (5.7)

which should be compared with (1.23) in the Introduction, then the reality condition

Ra = a (5.8)

is compatible with the evolution equation Ea = a. Indeed, the compatibility is just a

rephrasal of the statement that on solutions of (5.2) the R anti-linear operator becomes

an involution:

R2 = RR∗ = E2 = Id, (5.9)

where the last equation holds on the space of solutions Ea = a. Thus, R is a real structure

on the space of solutions, and the condition (5.8) is a possible reality condition that can

be imposed. Below we shall see that this is the physically correct condition, in particular

by working out a relation to the metric description. The essence of (5.8) will then be just

a statement that the metric is real.

It is worth emphasizing that all of the above happens in exact analogy with the case of

Dirac equation, except that now the relevant ”Dirac” operator is second order, and appears

as a square root of the fourth-order operator obtained by squaring the evolution operator.

This squaring of the evolution equation procedure is absent in the fermionic case, where

the condition that the square of the R operation is an identity is identical to the evolution

equation. In our case this is not possible because the involution condition is necessarily

fourth-order, and so it must be related to the evolution operator in a more non-trivial

way (5.9).

5.4 Metric

We can now rephrase the condition (5.8) as a statement that a certain quantity is real.

Indeed, we introduce

h =
1√
2M

D̄a, (5.10)

where the prefactor is introduced for convenience and also in order to give h the same

mass dimension as a. Below we will show that h can be viewed as just a possible new

configuration variable on the phase space of the theory, with the Hamiltonian form action

principle in terms of this variable taking an explicitly real form (6.9).

The evolution equation in its form (5.2) can now be rephrased by saying that it gives

the inverse relation

a =
M√
2H2

Dh. (5.11)
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Taking now the hermitian (complex) conjugate of the quantity h in (5.10), requiring it to

be real

h† = h, (5.12)

and then substituting h = D̄a/
√
2M into (5.11) we get precisely the reality condition (5.8).

Thus, the essence of the condition (5.8) imposed on the space of solutions Ea = a of our

theory is indeed in the statement that the quantity (5.10) is real. We note that this

interpretation of the reality condition in terms of some quantity being real is not present in

the case of the Dirac equation. Such an interpretation became possible because our reality

condition is second order in derivatives, unlike the first order Dirac equation (=reality

condition).

5.5 Evolution equation for the metric

As the last result of this section, let us use the identities derived above to obtain an

evolution equation for the variable h. It is not hard to see that this equation is

1

2H2
D∗Dh = h. (5.13)

Indeed, using (5.3) we can rewrite this as

D̄
1

2H2
Dh = h or D̄

1

2H2
DD̄a = D̄a, (5.14)

where to obtain the last equation we have used the relation (5.10). The equation obtained

is just the evolution equation Ea = a with the operator D̄ applied to it. Thus, (5.13) clearly

follows from (4.23). It is also worth noting that it is a real equation, as is appropriate for

a quantity that can consistently be assumed to be real.

6 Canonical transformation to the metric variables

The purpose of this section is to explicitly carry out the field redefinition (5.10) and see

that it can get completed (once the momentum variable is considered) into a canonical

transformation on the phase space of the theory. The content of this section is new.

6.1 Canonical transformation — momentum shift

It is very convenient to eliminate the πa cross-term in (4.20) by shifting the momentum.

Thus, we define

π̃ = π − i(ǫ∂ + iH)a. (6.1)

Because of the last, time dependent (via H) term the transformation of the symplectic

form gives rise to a contribution to the Hamiltonian. In other words, modulo surface terms

we get

π∂ta = π̃∂ta+
H2

2
a2, (6.2)
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where we have used H′ = H2. We now drop the tilde from the momentum variable, and

write the reduced action in the Hamiltonian form as

S(2) =

∫

dt

∫

d3x (π∂ta−H) , (6.3)

with the Hamiltonian given by

H =
1

2
π2 +

1

2
(ǫ∂a+ iHa)2 − H2

2
a2. (6.4)

The convenience of the new momentum variable lies in the fact that

∂ta = π. (6.5)

6.2 Canonical transformation to h variables

From the previous section we know that we should be able to describe the dynamics in

terms of the variable

h =
1√
2M

(iπ + (ǫ∂ + iH)a) , (6.6)

and that this variable can consistently be assumed to be real. The canonically conjugate

momentum p to h is of course only defined modulo a-dependent shifts. However, if we

insist that there is no ph terms in the resulting Hamiltonian, then the momentum variable

can be determined to be given by

p =
M√
2H2

[

(ǫ∂ + iH)π − i
(

(ǫ∂ + iH)2 − 2H2
)

a
]

. (6.7)

We emphasize that this is a linear canonical transformation on the phase space of the

theory.

6.3 Metric Hamiltonian

There are many contributions from the symplectic π∂ta term to the Hamiltonian in terms

of h, p variables. After a rather tedious computation one finds that the action can be

written as

S(2) =

∫

dt

∫

d3x (p∂th−H) , (6.8)

where

H =
H2

2M2
p2 +

M2

2H2

(

(ǫ∂h)2 − 2H2h2
)

. (6.9)

As a check, we note that this Hamiltonian goes into that for a massless field in the limit

M → 0. Indeed, using the explicit expression (7.2) for H one sees that H/M → 1 when

M → 0. This shows that the above Hamiltonian has the correct Minkowski limit. As for

the de Sitter Hamiltonian, the above is the standard Hamiltonian for the de Sitter space

spin 2 part of the metric perturbation hµν rescaled by the conformal factor c(t).
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6.4 Second-order formulation

It is also instructive to write the above action in the second-order form, by integrating p

out. We get

S(2) = −M2

∫

dt

∫

d3x
h

2H2

(

D∗D−2H2
)

h=−M2

∫

dt

∫

d3x

(

1

2H2
(Dh)2−h2

)

, (6.10)

where we have integrated by parts in the (∂th)
2 term to get the first expression for the

action, which is explicitly real, and have used (5.3) to get the second, more symmetric

expression. The first version of the action clearly leads to (5.13) as the corresponding

Euler-Lagrange equation.

It is worth emphasizing that the connection formalism linearized action (4.24) is actu-

ally simpler than the same action (6.10) in the metric description. Here we are comparing

only the completely symmetry reduced actions, but the same holds true also about the

full linearized Lagrangians in the two formulations. The graviton gauge-theoretic La-

grangian (4.2) is much simpler than its metric variant. And, although we do not discuss

it in any length in this paper, the connection Lagrangian (4.2) (in its Euclidean signature

version where all fields are real) is actually a non-negative function in the space of fields,

which is not the case for the Euclidean signature metric Lagrangian because of the con-

formal mode. We will give a more detailed comparison of the off-shell Lagrangians in the

second paper of the series, when we work out the propagator.

7 Canonical quantization and the mode decomposition

We now perform all the usual steps for the canonical quantization of the theory (4.24), with

the reality condition (5.8). Our main aim is to obtain a mode decomposition with correctly

normalized creation and annihilation operators. The content of this section is new.

7.1 Choice of the time coordinate

We first explicitly solve the evolution equation (4.23) for the connection, so that the linearly

independent solutions later become the modes of the field. For this, let us first introduce

a convenient parameterization of the a(t) and H functions. We choose

a(t) =
1

1−Mt
(7.1)

so that a(0) = 1, i.e. we have chosen the origin of the time coordinate in such a way that

t = 0 corresponds to the conformal factor of unity. With this parameterization we get

H =
M

1−Mt
. (7.2)

7.2 Spatial Fourier transform

We now perform the spatial Fourier transform, and choose convenient polarization tensors.

Thus, consider a mode of the form aijk e
i~k~x. The transverse condition ∂ia

ij on the connection
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implies that the corresponding mode aijk is orthogonal to ki. For this reason, it is very

convenient to define

zi(k) := ki/|k|, (7.3)

i.e. a unit vector in the direction of the spatial momentum. We then define two (complex)

vectors mi(k), m̄i(k) that are both orthogonal to zi and whose only non-zero scalar product

is mim̄i = 1. They satisfy

iǫijkzjmk = mi, iǫijkzjm̄k = −m̄i, iǫijkmjm̄k = zi. (7.4)

Here we have omitted the momentum dependence of these vectors for brevity, but it should

all the time be kept in mind that they are ~k dependent. Thus, when we replace ~k → −~k
the vectors mi, m̄i get interchanged:

mi(−k) = m̄i(k), m̄i(−k) = mi(k). (7.5)

It is very important to keep these transformations in mind for the manipulations that

follow.

7.3 Polarization tensors

The fact that aij is symmetric tracefree transverse implies that every mode ei
~k~x comes in

just two polarizations. For the corresponding polarization tensors it is convenient to choose

mi(k)mj(k) and m̄i(k)m̄j(k). We shall refer to the mm mode as the negative helicity

particle, while the m̄m̄ mode will be referred to as the positive one. We will explain a

reason for this choice below.

Let us now consider the action of the operator ǫ∂ on the two polarizations. We have

(ǫ∂)mimja−k e
i~k~x = ωkm

imja−k e
i~k~x, (ǫ∂)m̄im̄ja+k e

i~k~x = −ωkm̄
im̄ja+k e

i~k~x, (7.6)

where we have introduced

ωk := |k|. (7.7)

In other words, the two modes we have introduced are the eigenvectors of the operator ǫ∂

with eigenvalues ±ωk respectively. Our choice of the name for the mm mode as negative

may seem unnatural at the moment (since it is the positive sign eigenvalue of ǫ∂). However,

it becomes more natural if one computes the corresponding Weyl curvatures for the two

modes. One finds that the negative mode has zero self-dual Weyl curvature, and is thus

a purely anti-self-dual object. This is why it makes sense to refer to it as the negative

helicity mode.

7.4 Linearly independent solutions

We now write the evolution equation (4.23) as an equation for the time evolution of the

Fourier coefficients. We get, for each of the modes

∂2
t a

−
k + (ω2

k + 2iHωk − 2H2)a−k = 0, ∂2
t a

+
k + (ω2

k − 2iHωk − 2H2)a+k = 0. (7.8)
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Note that the positive helicity equation is just the complex conjugate of the negative

helicity one.

Each of the above equations is a second order ODE, and thus has a positive and

negative frequency solutions. It is not at all hard to obtain them explicitly, and they read

a−k ∼ He−iωkt, a−k ∼ 1

Heiωkt

(

1− iH
ωk

− H2

2ω2
k

)

, (7.9)

a+k ∼ 1

He−iωkt

(

1 +
iH
ωk

− H2

2ω2
k

)

, a+k ∼ Heiωkt.

It is interesting to note that one of the modes in each case is given by a rather simple ex-

pression, with the time-dependence of the amplitude being just that of H. The other mode

in each case is more involved. For the negative mode it is the positive frequency solution

that is simple, while for the positive mode the positive frequency solution is involved. This

is a manifestation of a general pattern in our formalism, in that the negative helicity mode

is always much easier to deal with than the positive helicity one.

Another point worth emphasizing is that one of the two linearly independent solutions

of the connection evolution equation is actually simpler than the modes in the metric

description, see (7.17) below. This gives yet another illustration of the general statement

that we would like to promote - the connection description is in many aspects simpler than

the metric one.

7.5 Action of the D̄ operator on the modes

It is useful to compute the action of the basic operator D̄ on the modes (7.9). We

will need this when we impose the reality condition (5.8), which can be written as

a = (1/2H2)D(D̄a)†. We have

D̄mimjHe−iωkt+i~k~x = 2ωkm
imjHe−iωkt+i~k~x

(

1 +
iH
ωk

)

, (7.10)

D̄m̄im̄j 1

He−iωkt+i~k~x

(

1 +
iH
ωk

− H2

2ω2
k

)

= −m̄im̄j H
ωk

e−iωkt+i~k~x

(

1 +
iH
ωk

)

,

D̄m̄im̄j 1

Heiωkt−i~k~x

(

1− iH
ωk

− H2

2ω2
k

)

= m̄im̄j H
ωk

eiωkt−i~k~x

(

1− iH
ωk

)

,

D̄mimjHeiωkt−i~k~x = −2ωkm
imjHeiωkt−i~k~x

(

1− iH
ωk

)

.
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Now, to impose the reality condition, we take the complex conjugates of the right-hand-

sides, and then apply the operator D to them. We get

2ωkDm̄im̄jHeiωkt−i~k~x

(

1− iH
ωk

)

= (2ωk)
2m̄im̄jHeiωkt−i~k~x

(

1− iH
ωk

− H2

2ω2
k

)

, (7.11)

−Dmimj H
ωk

eiωkt−i~k~x

(

1− iH
ωk

)

= mimjH3

ω2
k

eiωkt−i~k~x,

Dmimj H
ωk

e−iωkt+i~k~x

(

1 +
iH
ωk

)

= mimjH3

ω2
k

e−iωkt+i~k~x,

−2ωkDm̄im̄jHe−iωkt+i~k~x

(

1 +
iH
ωk

)

= (2ωk)
2m̄im̄jHe−iωkt+i~k~x

(

1 +
iH
ωk

− H2

2ω2
k

)

.

7.6 The mode expansion

Using the above results, we can now write down a mode expansion satisfying the reality

condition (5.8). We get

aij(t, ~x)=

∫

d3k

(2π)32ωk

[

mimja−k
H√
2ωk

e−iωkt+i~k~x+m̄im̄j(a−k )
†

√
2ωk

H eiωkt−i~k~x

(

1− iH
ωk

− H2

2ω2
k

)

−m̄im̄ja+k

√
2ωk

H e−iωkt+i~k~x

(

1 +
iH
ωk

− H2

2ω2
k

)

−mimj(a+k )
† H√

2ωk

eiωkt−i~k~x
]

.

(7.12)

Here all the vectors mi, m̄i are ~k-dependent, but this dependence is suppressed in order to

have a compact expression. We could have chosen to put a plus sign in front of the positive

helicity modes, but below we shall see that the above choice leads to a more symmetric

expression for the metric mode expansion.

Note that the reality condition makes it unnatural to put factors of M in front of

the modes. Thus, as it stands, the expression (7.12) does not have the Minkowski limit

M → 0, because some terms go to zero in this limit, and some other terms blow up. This

is one difference with e.g. the Majorana fermion, which has a very similar type of the mode

expansion. However, in that case there is a massless m → 0 limit in which half of the

modes are set to zero, but the other half survives and gives the mode expansion of the

Weyl fermion. In our case the connection (7.12) does not admit the M → 0 limit.

We also note that in (7.12) only the relative coefficient between the a, a† terms in each

helicity sector is fixed by the reality condition, so we could have multiplied each sector by

an arbitrary constant factor. By doing this we could obtain an expression that survives in

the M → 0 limit. However, we are now going to show that the mode decomposition (7.12)

is written in terms of canonically normalized operators. We do this by computing the

commutators as implied by the canonical Poisson brackets between the connection and its

conjugate momentum.

7.7 Commutators

We start with the relation that the equal time connection and its conjugate momentum

should satisfy:

[aij(t, ~x), ∂takl(t, ~y)] = iδ3(x− y)Pijkl. (7.13)
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For the conjugate momentum we have

∂taij(t, ~y) =

∫

d3p

(2π)32ωp
(−iωp)

[

mi(p)mj(p)a−p
H√
2ωp

e−iωpt+i~p~y

(

1 +
iH
ωp

)

(7.14)

−m̄i(p)m̄j(p)(a−p )
†

√
2ωp

H eiωpt−i~p~y

(

1− H2

2ω2
k

+
iH3

2ω3
k

)

−m̄i(p)m̄j(p)a+p

√
2ωp

H e−iωpt+i~p~y

(

1− H2

2ω2
k

− iH3

2ω3
k

)

+mi(p)mj(p)(a+p )
† H√

2ωp

eiωpt−i~p~y

(

1− iH
ωp

)

]

.

Substituting this into (7.13), and using the fact that under ~k → −~k the vectors mi, m̄i get

interchanged, as well as the fact that for any ~k

Pijkl = mimjm̄km̄l + m̄im̄jmkml, (7.15)

we get

[a±k , (a
±
k )

†] = (2π)32ωkδ
3(k − p), (7.16)

which are the canonical commutational relations for the creation-annihilation operators in

field theory. This gives one confirmation of the correct normalization used in (7.12). An-

other confirmation comes by computing the metric, and then the associated Hamiltonian.

7.8 Metric

Let us now use (7.12) to obtain the mode decomposition for the metric (5.10). The action

of the operator D̄ on all the modes has already been computed in (7.10). We get

hij(t, ~x) =
H
M

∫

d3k

(2π)32ωk

[

(mimja−k + m̄im̄ja+k )e
−iωkt+i~k~x

(

1 +
iH
ωk

)

(7.17)

+(m̄im̄j(a−k )
† +mimj(a+k )

†)eiωkt−i~k~x

(

1− iH
ωk

)

]

.

This expression has an obvious (correct) Minkowski limit M → 0. It is also explicitly

hermitian. It is in order to obtain the above symmetric expression that we chose to in-

troduce the minus signs in front of the positive helicity modes in (7.12). To compute

the Hamiltonian in terms of the modes, let us also give an expression for the momentum

p = (M2/H2)∂th. We get

pij(t, ~x) =
M

H

∫

d3k

(2π)32ωk
(−iωk)

[

(mimja−k +m̄im̄ja+k )e
−iωkt+i~k~x

(

1 +
2iH
ωk

− 2H2

ω2
k

)

(7.18)

−(m̄im̄j(a−k )
† +mimj(a+k )

†)eiωkt−i~k~x

(

1− 2iH
ωk

− 2H2

ω2
k

)

]

.

The Hamiltonian (6.9) then reads:

∫

H=
1

2

∫

d3k

(2π)32ωk
ωk

(

a−k (a
−
k )

†+(a−k )
†a−k +a+k (a

+
k )

†+(a+k )
†a+k

)

(

1− H2

2ω2
k

+
H4

ω4
k

)

. (7.19)
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The Hamiltonian is explicitly time dependent, as is appropriate for particles in time-

dependent de Sitter Universe where the energy is not conserved. We note that it has

the correct Minkowski limit M → 0.

8 Discrete symmetries

In this section we obtain the action of the discrete C, P, T symmetries on the connection

field, and on the creation-annihilation operators.

8.1 Charge conjugation

Our fields are ”real”, in the sense that we do not have independent operators in front of

the positive and negative frequency modes. The metric is explicitly real. Thus, the charge

conjugation acts trivially - all operators go into themselves.

8.2 Parity

We could obtain the action of parity from the mode expansion for the metric, which is

standard. We could also just directly define the action on the operators. Indeed, parity

changes the sign of the spatial momentum, and interchanges the two helicities:

P †a±k P = a∓−k. (8.1)

In view of (7.17) this is equivalent to

P †hij(t, ~x)P = hij(t,−~x). (8.2)

It is much more interesting to obtain the parity action on the connection field. Using (8.1)

and the mode decomposition (7.12) we get

P †aij(t, ~x)P = −(aij(t,−~x))†. (8.3)

The minus sign in this formula can be interpreted as being related to the fact that we are

dealing with the spatial connection, which changes sign under parity. But most importantly,

we see that parity is related to the hermitian conjugation of the connection field operator.

This is reminiscent of what happens in the case of fermions, where the parity at the level

of 2-component spinors is also related to the hermitian conjugation of the spinor fields.

8.3 Time reversal

Time-dependent physics in de Sitter space is not time reversal invariant. However, it can

be made to be such by simultaneously reversing the sign of the time coordinate and the

sign of the parameter M . This sends one from one patch of de Sitter space (covered by

the flat slicing) to another patch where the time flows in the opposite direction. Hence, it

must be a symmetry of the theory. The action of the time reversal, which is an anti-linear

operator, can then be obtained by requiring

T †hij(t, ~x)T = hij(−t, ~x)
∣

∣

∣

M→−M
. (8.4)
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This gives, at the level of the operators

T †a±k T = a±−k. (8.5)

While parity flips the sign of the spatial momentum while leaving the particle’s spin un-

changed, which results in flipping of the helicity, time reversal flips both the momentum

and the spin, which does not change helicity. At the level of the connection we get

T †aij(t, ~x)T = aij(−t, ~x)
∣

∣

∣

M→−M
. (8.6)

8.4 CPT

We now combine all of the above transformation rules into the action of the CPT trans-

formation. We see that, modulo an overall minus sign, this action is that of the spacetime

inversion (t, ~x) → −(t, ~x), as well as the hermitian conjugation of the field. This is of course

standard in field theory. Note, however, that in our case the hermitian conjugation comes

not from the charge conjugation, in spite of the fact that the field is complex. Rather, it

is a part of the parity transformation. But the end result is the same: CPT is hermitian

conjugation together with the spacetime inversion. This is the CPT theorem for our theo-

ries - a hermitian Lagrangian will be CPT invariant. At the same time, hermiticity of the

Lagrangian is important for unitarity of the theory. While we have seen this hermiticity

at the linearized level (e.g. by going to the metric description), the question whether there

exists an appropriate real structure on the space of solutions of the full theory that allows

a real section to be taken is open.

9 Discussion

Let us recap the main points of our construction. We have studied diffeomorphism-invariant

gauge theories of the type (2.3) with the gauge group SL(2,C), with the aim of describing

the linearized theory around a background connection that corresponds to the de Sitter

space. We have seen that all theories of this type coincide at the linearized level, and

describe massless spin 2 particles. We have also seen that the arising connection evolution

equation is in general complex, with the imaginary part appearing with a factor of the

Hubble parameter H in front. Thus, in a time-dependent background such as the one

given by the de Sitter space, the connection cannot be taken to be real. We also gave

general arguments to the same effect based on the fact that the (linearized) connection

realizes an intrinsically complex spinor representation S3
+ ⊗ S− of the Lorentz group. At

the same time, we have seen that a real structure exists on the space of solutions, and

that this can be used to select a real section in the phase space, on which one obtains a

theory with a hermitian Hamiltonian. All this was shown to be quite analogous to the

treatment of fermions in which they are described as complex fields satisfying the Klein-

Gordon equation, with an additional first order in derivatives reality condition (Dirac

equation) imposed. The main difference with the case of fermions was that in our case the

reality condition was necessarily of the second order in derivatives. We have also seen that
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this second order nature of the reality conditions is what guarantees that a real (metric)

description exists.

We have avoided discussing the above statements in the spacetime form, staying all the

time at the level of the phase space formulation. On one hand this makes things more clear.

On the other hand, for path integral computations it is necessary to develop the spacetime

version of the mode decomposition. This will be accomplished in the second paper of the

series, where this formalism is used to compute the graviton scattering amplitudes. One of

the reasons why this was not treated already in the present paper is that it requires a much

more detailed introduction into the spinor techniques (e.g. spinor helicity), and this would

take us too far from the present goal of expanding the connection into the canonically

normalized creation-annihilation operators.

Let us finish with a very brief list of the open problems of this approach. The one

that is most directly related to the topics covered in this paper is that of unitarity. Thus,

it is not clear if there exists a satisfactory way to select a real section of the non-linear

dynamics described by a general theory from the class (2.3). However, the fact that this

is possible in the linearized theory around such a time-dependent background as de Sitter,

and the fact that at least for one of the theories from this class, namely GR, this is possible

also at the full non-linear level, allows for optimism.

The other major open problem of this approach is coupling to matter. Many types

of bosonic matter can be coupled just by enlarging the gauge group, i.e. considering still

theories of the same general class (2.3), but with a larger G ⊃ SL(2,C). In particular,

Yang-Mills fields, as well as e.g. a massive scalar field can be coupled this way naturally. A

very interesting symmetry breaking mechanism selecting what should be called the grav-

itational SL(2,C) then becomes available, see [9] for more details. However, the arising

matter/gravity dynamics should be studied in more details, in particular with the real-

ity conditions issues in mind. An open question is that of coupling of fermions. This

seems difficult in the usual first-order in derivatives formalism, but it should also be kept

in mind that the fermions can also be described via a second-order in derivatives action,

with a first-order reality condition imposed, as described in more details in the Introduc-

tion. This brings fermions much close to what seems to be at work in the class of theories

considered here, and raises hopes that they can be coupled satisfactorily.

The third major open problem of this approach is renormalizability. It has been

conjectured in [11] that the class (2.3) with G = SL(2,C) is closed under renormalization.

Work is in progress on testing this conjecture at one loop. Even if this turns out not to be

the case for G = SL(2,C), it will still be possible that only for some specific choices of G

the class of theories (2.3) becomes renormalization closed. For example, this may be the

case when G is an appropriate graded Lie group (i.e. a Lie supergroup). Such more general

choices of G may in any case be necessary to describe fermionic particles with their anti-

commuting Grassmann-valued fields. These various version of the conjecture [11] should

be tested, and the formalism developed here for G = SL(2,C) is a necessary prerequisite

for computations of this type.
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A Self-dual two-forms

For any self-dual two-form we have:

1

2
ǫµν

ρσUρσ = iUµν , (A.1)

and for anti-self-dual form we have an extra minus on the right-hand-side. The space of

self-dual two-forms being 3-dimensional, we can introduce a basis in it. A choice of such

basic self-dual two-forms can be rather arbitrary as long as they span the required subspace.

However, there is always a canonical (modulo certain gauge rotations, see below) choice of

the basis. Let us denote such canonical basis self-dual two-forms by Σi
µν , i = 1, 2, 3. Note

that we have denoted the index enumerating the two-forms by the same letter as was used

to refer to the spatial index in the Hamiltonian analysis. This is not an oversight; the two

indices can be naturally identified, see below. The canonical basic self-dual two-forms are

defined to satisfy

ǫµνρσΣi
µνΣ

j
ρσ = 8iδij , (A.2)

where the numerical coefficient on the right is convention-dependent, and δij is the

Kronecker-delta. It can be shown that the self-dual two-forms satisfying (A.2) are de-

fined uniquely modulo SO(3) rotations preserving δij . We can now give an explicit form

of the basic self-dual two-forms in the case of the Minkowski spacetime metric. Using the

two-form notation we have:

Σi = idt ∧ dxi +
1

2
ǫijkdxj ∧ dxk. (A.3)

it is not hard to check the Σi
µν are self-dual (with the conventions that ǫ0123 = +1), and

that (A.2) holds. Let us also note what becomes of the components of the basis self-dual

two-forms Σi
µν under the space+time split. We have:

Σi
0j = i δij , Σi

jk = ǫijk. (A.4)

Thus, we see that the objects Σi
µν indeed provide a natural identification of the basis index

i with the spatial index. Let us also note an important identity satisfied by our self-dual

two-forms. We have

Σi
µ
νΣj

ν
ρ = −δijηµ

ρ − ǫijkΣk
µ
ρ. (A.5)

Thus, the basic self-dual two-forms satisfy an algebra similar to that of Pauli matrices.

This identity can be checked by direct verification, using the explicit expression (A.3).
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