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Abstract: We study the gluon cascade generated via successive medium-induced branch-

ings by an energetic parton propagating through a dense QCD medium. We focus on the

high-energy regime where the energy E of the leading particle is much larger than the

characteristic medium scale ωc = q̂L2/2, with q̂ the jet quenching parameter and L the

distance travelled through the medium. In this regime the leading particle loses only a

small fraction ∼ αs(ωc/E) of its energy and can be treated as a steady source of radiation

for gluons with energies ω ≤ ωc. For this effective problem with a source, we obtain exact

analytic solutions for the gluon spectrum and the energy flux. These solutions exhibit

wave turbulence: the basic physical process is a continuing fragmentation which is ‘quasi-

democratic’ (i.e. quasi-local in energy) and which provides an energy transfer from the

source to the medium at a rate (the energy flux F) which is quasi-independent of ω. The

locality of the branching process implies a spectrum of the Kolmogorov-Obukhov type, i.e.

a power-law spectrum which is a fixed point of the branching process and whose strength

is proportional to the energy flux: D(ω) ∼ F/√ω for ω � ωc. Via this turbulent flow, the

gluon cascade loses towards the medium an energy ∆E ∼ α2
sωc, which is independent of the

initial energy E of the leading particle and of the details of the thermalization mechanism

at the low-energy end of the cascade. This energy is carried away by very soft gluons,

which propagate at very large angles with respect to the jet axis. Our predictions for the

value of ∆E and for its angular distribution appear to agree quite well, qualitatively and

even semi-quantitatively, with the phenomenology of di-jet asymmetry in nucleus-nucleus

collisions at the LHC.
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1 Introduction

The experimental observation of the phenomenon known as ‘di-jet asymmetry’ in Pb+Pb

collisions at the LHC [1–8] has triggered intense theoretical efforts [9–21], aiming at un-

derstanding the evolution of an energetic jet propagating through a dense QCD medium,

such as a quark-gluon plasma. An important conclusion of these studies is that the in-

teractions between the partons composing the jet (the leading particle and the products

of its fragmentation) and the constituents of the medium lead to a specific in-medium

fragmentation pattern, in which the main role is played by relatively soft gluon emissions,

with energies ω much smaller than the characteristic medium scale ωc = q̂L2/2. Such soft

gluons are abundantly radiated inside the medium because the associated formation time

tbr(ω) ∼
√
ω/q̂ (the typical duration of a branching process triggered by multiple scat-

tering) is much smaller than the distance L traveled by the leading particle through the

medium. In the previous formulæ, q̂ is the ‘jet quenching parameter’, a transport coefficient

which measures the dispersion in transverse momentum accumulated per unit time by an

energetic parton which undergoes multiple scattering in the medium. This conclusion has

far reaching consequences, in particular for the phenomenology of di-jet asymmetry.

The soft gluons can be easily deviated towards large angles by rescattering in the

medium. Therefore, their abundant production via jet fragmentation may explain the

significant transport of energy to large angles with respect to the jet axis — the hallmark

of di-jet asymmetry. Also, the successive emissions of soft gluons are well separated from
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each other and can be described as a classical, probabilistic, branching process. Indeed, the

quantum coherence effects and the associated interference phenomena are efficiently washed

out by rescattering in the medium [9–11]. The loss of color coherence occurs on a time

scale comparable to that of the branching process. Hence, even gluons which emerge from

the same splitting vertex can be viewed as propagating independently of each other [14].

Based on such considerations, one has been able to derive a classical effective theory for

the gluon cascade generated via successive medium-induced gluon branchings [16, 17] (see

also refs. [22–24] for earlier, related, studies). This is a stochastic theory for a Markovian

process in which the branching rate is given by the BDMPSZ spectrum1 [25–29] for a

single medium-induced emission. The branching probability corresponding to a distance L

is parametrically of order ᾱ[L/tbr(ω)], with ᾱ ≡ αsNc/π. For the relatively hard emissions

(ω ∼ ωc) this probability is small, of O(ᾱ). On the other hand, for ω . ωs ≡ ᾱ2ωc it

becomes of order one, meaning that the branching dynamics becomes non-perturbative. As

we shall see, this ‘soft’ scale ωs is truly semi-hard (in the ballpark of a few GeV), so there

is a significant region in phase-space where naive perturbation theory breaks down. The

effective theory put forward in refs. [16, 17] allows one to deal with such non-perturbative

aspects, by resumming soft multiple branchings to all orders.

The original analysis in [16] demonstrated that the non-perturbative dynamics asso-

ciated with multiple branchings has a remarkable consequence: it leads to wave turbu-

lence [30, 31]. The leading particle, whose initial energy E is typically much larger than

the non-perturbative scale ωs, promptly and abundantly radiates soft gluons with energies

ω . ωs and thus loses an energy amount ∆E ∼ ωs event by event. After being emitted,

these soft primary gluons keep on branching into even softer gluons, and their subsequent

branchings are quasi-democratic: the two daughter gluons produced by a typical splitting

have comparable energies.2 This democratic nature of the branching is the key ingredient

for turbulence. It leads to a power-law spectrum D(ω) ∝ 1/
√
ω, which emerges as the

Kolmogorov-Zakharov (KZ) fixed point [30, 31] of the respective rate equation, and to

an energy flux which is independent of ω — the turbulent flow. An energy flux uniform

in ω means that the energy flows from the high-energy end to the low-energy end of the

cascade, without accumulating at any intermediate value of ω. For an ideal cascade the

branching law remains unchanged down to arbitrary small values of ω and thus the energy

accumulates into a condensate at ω = 0. In practice, we expect the branching process to

be modified when the gluon energies become comparable to the medium ‘temperature’ T

(the typical energy of the medium constituents): the soft gluons with ω ∼ T ‘thermalize’,

meaning that they transfer their energy towards the medium. In that case, the rate for

energy loss is controlled by the turbulent flow and thus independent of the details of the

thermalization mechanism. This universality is a well known feature of turbulence [30, 31].

The crucial property of the turbulent flow for our present purposes is the fact that

it can transfer a significant fraction of the original energy of the leading particle towards

1‘BDMPSZ’ stands for Baier, Dokshitzer, Mueller, Peigné, Schiff, and Zakharov.
2It is interesting to notice that a similar branching process occurs in a different physical context, namely

the thermalization of the quark-gluon plasma produced in the intermediate stages of a ultrarelativistic

heavy ion collision: during the late stages of the ‘bottom-up’ scenario [22], the hard particles lose energy

towards the surrounding thermal bath via soft radiation giving rise to quasi-democratic cascades [32].
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arbitrarily soft quanta. This fact is highly non-trivial, as it can be best appreciated by

comparing with the traditional parton cascade in perturbative QCD: the DGLAP cascade

for a jet fragmenting in the vacuum. In the DGLAP cascade, the typical splittings are

very asymmetric, due to the ‘infrared’ (ω → 0) singularity of bremsstrahlung, and lead to

a rapid rise in the number of gluons with small values of the energy fraction x ≡ ω/E. Yet,

the total energy carried by these ‘wee’ gluons with x� 1 is very small: the energy fraction

contained in the region of the spectrum at x < x0 vanishes as a power of x0 when x0 → 0.

Most of the original energy remains in the few partons with larger values of x. This is due

to the fact that, after a very asymmetric splitting, the parent parton preserves most of its

original energy.

By contrast, for the in-medium cascade, where splittings are quasi-democratic, the

energy contained in the bins of the spectrum at x < x0 is only a part of the total energy

which has ‘fallen’ below x0. The other part is the energy carried by the turbulent flow,

which ends up at arbitrarily low values of x and hence is independent of x0. In the presence

of a thermalization mechanism at ω ∼ T , this argument remains valid so long as x0 ≥ xth,

with xth ≡ T/E. In practice, this value xth ∼ 10−2 is quite small, so most of the energy

lost by the gluon cascade towards the medium is associated with the turbulent flow, and

not with the region of the spectrum at x . xth. Depending upon the size L of the medium,

the whole initial energy E can be lost in this way.

Soft gluons propagate at large angles θ with respect to the jet axis: θ ∼ k⊥/ω, where k⊥
is the typical transverse momentum acquired by the gluon via rescattering in the medium;

roughly, k2
⊥ ∼ Q2

L ≡ q̂L. So, the ability of the medium-induced cascade to abundantly

produce soft gluons provides a natural explanation for the main feature of di-jet asymmetry:

the fact that the energy difference between the trigger jet and the away jet is carried by

many soft (p . 2 GeV) hadrons propagating at large angles (θ & 0.8) with respect to the

axis of the away jet [2]. This qualitative explanation has been originally proposed in [16]

and further developed in refs. [17–20]. However, these previous studies were not fully

conclusive, as they did not explicitly consider the kinematical regime which is pertinent

for di-jet asymmetry. Namely, they focused on the ‘low-energy’ regime where the energy

E of the leading particle (LP) is smaller than the medium scale ωc. Albeit the value of

ωc is not precisely known from first principles, its current phenomenological estimates are

well below the energy E & 100 GeV of the trigger jet in the experimental measurements of

di-jet asymmetry (see the discussion in section 4). It is our main objective in this paper to

provide a thorough analysis of the high-energy regime at E � ωc, including its implications

for the phenomenology.

As compared to the low-energy case, the main new feature emerging at high energy is

a gap in the spectrum, which separates between the leading-particle peak at ω ' E and a

continuum at ω ≤ ωc representing the radiation. To understand this structure, we recall

that, when E > ωc, the energy loss by the LP is controlled by hard but rare emissions

with ω ∼ ωc, leading to an average energy loss3 〈∆E〉 ∼ ᾱωc [25–28]. Accordingly, a very

energetic particle with E � ωc loses only a tiny fraction ᾱ(ωc/E)� 1 of its original energy

3The ᾱ factor in 〈∆E〉 appears because an emission with ω ∼ ωc occurs with a low probability of O(ᾱ).

– 3 –



J
H
E
P
0
3
(
2
0
1
5
)
0
8
2

and hence emerges from the medium with an energy E′ ∼ E, which is much larger than the

maximal energy ωc of its radiation. This explains the gap in the spectrum (see section 3 for

details). The detailed structure of the LP peak is unimportant for the di-jet asymmetry:

the energy carried by the LP is strongly collimated around the jet axis, within an angle

θLP ∼ QL/E � 1, which is much smaller than the angular opening θJ of the experimentally

defined ‘jet’. (Some typical values are QL = 2 GeV and E = 100 GeV, hence θLP ∼ 0.02,

whereas θJ ≥ 0.2.) This is in agreement with the experimental observation [1, 2] that the

azimuthal distribution of di-jets in Pb+Pb collisions is as narrowly peaked at ∆φ = π as the

corresponding distribution in p+p collisions. What actually matters for the phenomenology

of di-jet asymmetry is the continuum part of the spectrum at ω < ωc and, especially, its

very soft sector at ω . ωs = ᾱ2ωc, which controls the energy loss at large angles.

In view of the above, our subsequent analysis focuses on the radiation part of the

spectrum at x ≤ xc, where we recall that x = ω/E and xc = ωc/E � 1. For that purpose,

the LP can be treated as a steady source of radiation for soft gluons with energy fractions

x ≤ xc. For this effective problem with a source, we are able to construct exact solutions

for the gluon spectrum D(x, t) at any time t ≤ L, and also for the energy flux F(x, t)

(the rate for energy transfer throughout the cascade; see section 2 for a precise definition).

This energy flux, and more precisely its ‘flow’ limit Fflow(t) ≡ F(x = 0, t), is the most

interesting quantity in the present context, since it controls the energy transfer from the

gluon cascade to the medium.

A non-zero ‘flow’ component in the energy flux is the main signature of turbulence [30,

31] (e.g., there is no such a component for the DGLAP cascade). An important property of

turbulence, which follows from the locality of the branchings, is the celebrated Kolmogorov-

Obukhov relation between the spectrum and the energy flux. A priori, our problem differs

from the familiar turbulence set-up via its explicit time-dependence: the source acts only

up to a finite time tmax = L, which moreover is quite small, in the sense that q̂L2 � E. (In

that sense, our problem corresponds to transient phenomena in the context of turbulence,

for which very little is known in general.) Notwithstanding, we shall demonstrate that a

time-dependent generalization of the Kolmogorov-Obukhov relation holds for the problem

at hand: the gluon spectrum at x � xc is fully determined by the turbulent flow Fflow(t)

together with the characteristic KZ scaling. Namely, we shall find D(x, t) ∝ Fflow(t)/
√
x,

where the proportionality constant is under control too.

The energy transferred by the gluon cascade to the medium can be identified with the

energy ∆Eflow carried away by the flow, i.e. the time integral of Fflow(t) between t = 0

and t = L. For the high-energy regime under consideration, this quantity turns out to

be independent of the original energy E of the LP and to have a transparent physical

interpretation:4 ∆Eflow ' υ ωs, where ωs = ᾱ2ωc and υ ' 4.96 is a pure number which can

be interpreted as the average number of soft primary emissions with energies ω ∼ ωs. Such

soft gluons are radiated by the LP with probability of order one and they subsequently

transfer their energy towards the medium via quasi-democratic branchings. A typical gluon

4This estimate for ∆Eflow holds to leading order in ᾱ; see eq. (4.4) and the plots in section 4 for more

accurate results.
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Figure 1. A typical gluon cascade as generated via medium-induced gluon branchings. The small

angle θc ' QL/ωc is the propagation angle for a relatively hard gluon with energy ω ∼ ωc. Such a

hard emission is a rare event and hence is not included in our typical event. All the shown gluons

(besides the LP) have soft energies ω . ωs = ᾱ2ωc, hence their emissions occur with probability of

O(1). The primary gluons are emitted (by the LP) at a typical angle θs = θc/ᾱ
2 and subsequently

disappear via branching into even softer gluons. The opaque lines refer to gluons which exist at

intermediate stages of the cascade, while the black lines refer to the ‘final’ gluons, which thermalize

and propagate at even larger angles, θ ∼ θth � θs (see section 4 for details).

cascade is illustrated in figure 1. Using phenomenologically motivated values for q̂ and L,

we find ∆Eflow ' 10 ÷ 20 GeV (see section 4). Since carried by very soft gluons, with

energies ω ∼ T � ωs, this energy propagates at very large angles with respect to the jet

axis, at least as large as θs ≡ QL/ωs ∼ 0.5. (θs is the typical propagation angle of the

soft primary gluons.) By progressively increasing the jet opening angle θ0 above θs, one

recovers part of the missing energy, but only very slowly : most of this energy lies at even

larger angles, θ ∼ θth > θs (see figure 1 and section 4 for details). The above predictions —

the numerical estimate for the energy loss at large angles ∆Eflow and its extremely weak

dependence upon the jet opening angle θ0 — are in good agreement, qualitative and even

semi-quantitative, with the phenomenology of di-jet asymmetry at the LHC [2, 4, 5, 8].

Whereas this agreement is, of course, encouraging, it must be taken with a grain of salt,

because of the limitations inherent in our formalism (for instance, we ignore the parton

virtualities, which would provide an additional mechanism for radiation) and also because

of the difficulty to relate our theoretical predictions to the actual measurements at the LHC.

Our paper is organized as follows. In section 2, we shall consider the low-energy

regime at E . ωc as a warm-up. Besides a succinct review of the main results obtained

in ref. [16], this section contains some new material, like the explicit calculation of the

energy flux and a first discussion of the Kolmogorov-Obukhov relation. Sections 3 and 4

are devoted to the main new problem of interest for us here: the high-energy regime

at E � ωc. Section 3 presents the main theoretical developments: the justification of

the effective problem with a source, the exact, analytic and numerical, solutions for the

radiation spectrum at ω ≤ ωc and for the turbulent flow, the democratic nature of the
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branchings and its physical implications, and the proof of the (time-dependent version

of the) Kolmogorov-Obukhov relation for the branching dynamics at hand. Finally, in

section 4 we shall discuss some phenomenological consequences of this dynamics for the

energy lost by the jet via soft gluons propagating at large angles.

2 The low-energy regime

We would like to study the gluon cascade generated via successive medium-induced gluon

branchings by an original gluon — the ‘leading particle’ (LP) — with energy E which

propagates through a dense QCD medium along a distance L. For simplicity, we assume the

LP to be on its mass-shell before it enters the medium, so that there would be no radiation

in the absence of the medium. Accordingly, the parton cascades to be considered in what

follows include only those quanta which are produced via medium-induced fragmentation,

according to the BDMPSZ mechanism (meaning that several soft scatterings in the medium

coherently contribute to a single gluon emission [25–29]).

As explained in the Introduction, there are two interesting physical regimes, depending

upon the ratio between E and the characteristic medium scale ωc = q̂L2/2:

(i) the high energy regime E � ωc, where the LP emerges out of the medium with

an energy E′ which is close to its original energy and hence much larger than the maximal

energy ωc of its radiation, so there is a gap in the spectrum;

(ii) the low energy regime E . ωc, where the LP loses a significant fraction of its

energy via medium-induced radiation and can even disappear inside the medium (in the

sense of not being distinguishable from its products of fragmentation).

Recalling that ωc = q̂L2/2, we see that the ‘high energy’ case can also be viewed as

the limit where the in-medium path L is relatively small, whereas the ‘low energy’ case

corresponds to relatively large values of L.

In preparation for the analysis of the high energy regime, which is our main interest

in this paper, we shall first discuss the low energy case in some detail. This is useful

for several reasons. Besides providing a benchmark for the comparison with the high-

energy case, the corresponding results at low energy also enter as ‘technical ingredients’ in

the calculations at high energy. So, by introducing them in the present section, we shall

considerably streamline the subsequent discussion of the high-energy regime. Moreover,

some of the original results to be obtained in this paper, like the ‘jet quenching version’ of

the Kolmogorov-Obukhov relation, apply to both cases (high energy and low energy) and

can be more pedagogically introduced in the familiar set-up at low energy.

2.1 The rate equation

Let us first introduce the main notations and equations to be used throughout this paper.

The basic quantity that we would like to compute is the gluon spectrum integrated over

transverse momenta,

D(ω, t) ≡ ω
dN

dω
=

∫
d2k ω

dN

dωd2k
, (2.1)
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where ω ≤ E and k denote the energy and, respectively, transverse momentum of a gluon

in the cascade, N is the number of gluons and t the evolution time obeying 0 ≤ t ≤ L.

The function D(ω, t) describes the energy distribution within the cascade and its evolution

with time. For sufficiently soft gluons at least, namely as long as ω � ωc, and to leading

order5 in αs, this evolution can be described as a classical stochastic branching process [14,

16, 17], with the elementary splitting rate determined by the BDMPSZ spectrum [25–29].

Specifically, the differential probability per unit time and per unit z for a gluon with energy

ω to split into two gluons with energy fractions respectively z and 1− z is

d2Pbr

dz dt
=

αs
2π

Pg→g(z)

tbr(z, ω)
, (2.2)

where Pg→g(z) = Nc[1−z(1−z)]2/z(1−z), with 0 < z < 1, is the leading order gluon-gluon

splitting function, Nc is the number of colors, and tbr(z, ω) is the typical duration of the

branching process:

tbr(z, ω) ≡
√
z(1− z)ω
q̂eff(z)

, q̂eff(z) ≡ q̂ [1− z(1− z)] . (2.3)

Note that this branching time depends on both the energy ω of the parent gluon and the

splitting fraction z, which is much smaller than L whenever at least one of the two daughter

particles, with energies zω and respectively (1− z)ω, is soft compared to ωc.

The elementary splitting rate (2.2) together with the requirement of probability con-

servation completely specifies the structure of the stochastic branching process and, in

particular, the evolution equation obeyed by the gluon spectrum. As long as E < ωc, this

equation reads

∂D(x, τ)

∂τ
= ᾱ

∫
dzK(z)

[√
z

x
D

(
x

z
, τ

)
− z√

x
D
(
x, τ
)]
, (2.4)

in convenient notations where ᾱ ≡ αsNc/π, D(x, τ) ≡ D(ω, t) with x ≡ ω/E ≤ 1 the

energy fraction with respect to the leading particle, and

τ ≡
√
q̂

E
t =
√

2xc
t

L
, xc ≡

ωc
E
, (2.5)

is the reduced time (the evolution time in dimensionless units). This variable τ takes

values between τ = 0 and a maximal value τL ≡
√

2xc =
√
q̂/E L, which increases with

the medium size L, but decreases with the energy E of the LP. Notice that xc > 1 for the

low-energy regime to be discussed in this section. The splitting kernel K(z) is defined as

K(z) ≡ f(z)

[z(1− z)]3/2 = K(1− z) , f(z) ≡
[
1− z(1− z)

]5/2
. (2.6)

5A class of particularly large radiative corrections, which are enhanced by the double-logarithm ln2(LT ),

can be effectively resummed into the effective dynamics by replacing the ‘bare’ value of the jet quenching

parameter q̂ by its renormalized value, as recently computed in refs. [33–37].

– 7 –



J
H
E
P
0
3
(
2
0
1
5
)
0
8
2

It depends only on the splitting fraction z since the corresponding dependence upon the

energy fraction x of the leading particle, cf. eq. (2.2), has been explicitly factored out in

writing eq. (2.4).

We shall refer to the r.h.s. of eq. (2.4) as the ‘branching term’ and denote it as ᾱI[D].

This is the sum of two terms, which can be recognized as the familiar ‘gain’ and ‘loss’

terms characteristic of a branching process. The first term, which is positive and nonlocal

in x, is the gain term: it describes the rise in the number of gluons at x due to emissions

from gluons at larger x′ = x/z. The respective integral over z is restricted to x < z < 1 by

the support of D(x/z, τ). The second, negative, term, which is local in x, represents the

loss term and describes the reduction in the number of gluons at x due to their decay into

gluons with smaller x′ = zx. Taken separately, the gain term and the loss term in eq. (2.4)

have endpoint singularities at z = 1, but these singularities exactly cancel between the two

terms and the overall equation is well defined.

2.2 The spectrum and the flow energy

By integrating eq. (2.2) over dt and over z with some lower cutoff z0 � 1, one obtained

an estimate for the probability to emit a gluon with energy larger than ω0 ≡ z0ω during a

time interval ∆t:

∆Pbr(ω0) ∼ ᾱ
∆t

tbr(ω0)
∼ ᾱ

√
q̂

2ω0
∆t . (2.7)

This probability becomes of order one, meaning that multiple branchings start to be im-

portant, when ω0 . ωs(∆t) ≡ ᾱ2q̂∆t2/2. Note that, for any ∆t ≤ L, there exists a

sufficiently soft sector, at ω0 . ωs(∆t), where the branching dynamics is non-perturbative.

The typical duration of such a soft branching is parametrically small at weak coupling,

tbr(ω) ∼ ᾱ∆t � ∆t for ω ∼ ωs(∆t), hence there is enough phase-space for this non-

perturbative dynamics to manifest itself. In particular, for ∆t = L, one recovers the ‘soft’

scale ωs introduced in section 1: ωs(L) = ωs.

To study the effects of multiple branchings, one needs a non-perturbative solution to

eq. (2.4). Whereas it is straightforward to solve this equation via numerical methods, for

the purpose of demonstrating subtle physical phenomena, it is much more convenient to

dispose of an analytic solution. Such a solution has been obtained in ref. [16], but for the

simplified kernel K0(z) ≡ 1/[z(1− z)]3/2, which is obtained from eq. (2.6) after replacing

the slowly varying factor f(z) in the numerator by 1. This simplified kernel has the same

singularities at z = 0 and z = 1 as the original kernel K(z), hence it is expected to have

similar physical implications, at least qualitatively. (This will also be checked via numerical

simulations later on; see e.g. figure 4.)

For the simplified kernel K0(z) and the initial condition D(x, τ = 0) = δ(x − 1),

corresponding to a single gluon (the ‘leading particle’ ) carrying all the energy at τ = 0,

the exact solution reads [16]

D(x, τ) =
ᾱτ√

x(1− x)3/2
exp

{
−πᾱ

2τ2

1− x

}
. (2.8)

– 8 –



J
H
E
P
0
3
(
2
0
1
5
)
0
8
2

This is recognized as the product between the BDMPSZ spectrum [25–29] (which is the

same as the result of the first iteration of eq. (2.4)),

D0(x, τ) =
ᾱτ√

x(1− x)3/2
, (2.9)

and a Gaussian factor describing the broadening of the peak associated with the LP [38]

at early times and the suppression of the spectrum as a whole at late times.

To be more specific, consider increasing the time from τ = 0 up to the maximal value

τL =
√

2xc, where we recall that xc > 1. When τ → 0, the r.h.s. of eq. (2.8) approaches

δ(x− 1), as it should. As long as τ is small enough for πᾱ2τ2 � 1, the spectrum exhibits

a pronounced peak in the vicinity of x = 1, which describes the leading particle: the

maximum of this peak lies at xp with 1 − xp ' (2π/3)ᾱ2τ2 and its width ∆x around xp
is of order πᾱ2τ2. The fact that the peak gets displaced below 1 is a consequence of the

Gaussian factor in eq. (2.8), which strongly suppresses the spectrum for x close to 1, within

a window

1− x . πᾱ2τ2 � 1 . (2.10)

The physical origin of this suppression is quite clear: for x close to 1, the quantity ε ≡
(1 − x)E is the energy lost by the LP via radiation. According to eq. (2.10), this has a

typical value ε(t) ' 2πωs(t), where ωs(t) = ᾱ2q̂t2/2 is recognized as the non-perturbative

scale for multiple branchings during a time t (recall the discussion after eq. (2.7)). That

is, the LP radiates relatively soft gluons with ω ∼ ωs(t), for which the emission probability

is of O(1), and thus loses an energy of order ωs(t). This energy loss is further enhanced

by a rather large numerical factor 2π, which can be interpreted as the average number of

gluons with energy ω ∼ ωs(t) that are emitted by the LP during a time interval t. This

interpretation will be supported by other findings below.

Let us now increase τ towards larger values πᾱ2τ2 & 1. Then the Gaussian suppression

extends to all values of x, the LP peak gets washed out — it broadens, it moves towards

smaller values of x, and its height is decreasing — and eventually disappears from the

spectrum. One can say that a LP with energy E . ᾱ2ωc has a finite ‘lifetime’ inside the

medium, of order ∆τ ∼ 1/ᾱ or, in physical units (cf. eq. (2.5)),

∆t ∼ 1

ᾱ

√
E

q̂
. (2.11)

More precisely, this means that the LP has fragmented into gluons which carry a sizable

fraction of its original energy E. Via successive branchings, the energy gets degraded to

lower and lower values of x, and it is interesting to understand this evolution in more detail.

A priori, one might expect this energy to accumulate in the small–x part of the spectrum,

and notably at x . xs(τ) ≡ ᾱ2τ2 (corresponding to ω . ωs(t)), but eq. (2.8) shows that

this is actually not the case: for x� 1, eq. (2.8) reduces to

D(x, τ) ' ᾱτ√
x

e−πᾱ
2τ2

, (2.12)
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Figure 2. Plot (in log-log scale) of
√
xD(x, τ), with D(x, τ) given by eq. (2.8), as a function of

x for various values of τ : solid (black): τ = 0.3; dashed (purple): τ = 0.6; dashed-dotted (blue):

τ = 1.3; dashed-triple dotted (red): τ = 2.5; long-dashed (brown): τ = 3.5; triple dashed-dotted

(green): τ = 4.5. We use ᾱ = 0.3.

which has exactly the same shape in x as the small–x limit of the BDMPSZ spectrum,

eq. (2.9). In fact, eq. (2.12) formally looks like the BDMPSZ spectrum produced via a single

emission by the LP, times a Gaussian factor describing the decay of the LP with increasing

time. This interpretation seems to imply that multiple branchings are not important at

small x, but from the discussion following eq. (2.7) we know that this cannot be true: after a

time t, the single-branching probability becomes of order one for all the soft modes obeying

x < xs(τ). This last condition can also be inferred from eq. (2.9): when x ∼ xs(τ) � 1,

the BDMPSZ spectrum becomes of O(1).

We are thus facing an apparent paradox — in spite of the importance of multiple

branching, the energy does not get accumulated in the bins of the spectrum at small x —

which finds its solution in the phenomenon of wave turbulence [16]. The BDMPSZ spectrum

at small x is not modified by the fragmentation because this represents a fixed point of the

rate equation (2.4) at small x � 1: the branching term I[D] vanishes (meaning that the

‘gain’ and ‘loss’ terms compensate each other) when evaluated with the ‘scaling’ spectrum

Dsc(x) ≡ 1/
√
x. This represents the Kolmogorov-Zakharov (KZ) spectrum [30, 31] for the

branching process at hand. In turn, the existence of this fixed point implies that, via succes-

sive branchings, the energy gets transmitted from large x to small x, without accumulating

at any intermediate value of x: it rather accumulates into a condensate at x = 0.

This is illustrated in figure 2, where the exact solution (2.8) is represented as a function

of x for several values of τ , up to relatively large values, such that πᾱ2τ2 & 1. The LP

peak is well pronounced at early times τ . 1, but it is totally washed out at later times

τ & 1/ᾱ, where the spectrum is seen to be suppressed as a whole.

The energy flow can also be studied analytically, on the basis of eq. (2.8). To that aim,

we consider the energy balance between spectrum and flow. The energy fraction contained
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in the spectrum after a time τ is computed as [16]

E(τ) =

∫ 1

0
dxD(x, τ) = e−πᾱ

2τ2
, (2.13)

and decreases with time. The difference

Eflow(τ) ≡ 1− E(τ) = 1− e−πᾱ
2τ2

, (2.14)

is the energy fraction carried by the flow, i.e. by the multiple branchings, and which formally

ends up in a condensate at x = 0. For sufficiently large times ᾱτ & 1, this can be as large

as the total initial energy of the LP. It is also interesting to consider the small time limit

of eq. (2.14), that is

Eflow(τ) ' πᾱ2τ2 = 2πxs(τ) for πᾱ2τ2 � 1 . (2.15)

This formula admits a simple physical interpretation: υ0 ≡ 2π is the average number of

primary gluons with energies of the order of ωs(t) = ᾱ2q̂t2/2 that are emitted by the

leading particle during a time t. Remarkably, this number is independent of both t or

ᾱ. This is possible since such soft gluon emissions occur with probability of order one

during an interval of order t. Stated differently, the typical time interval between two

successive emissions with energies of order ωs(t) is itself of order t. This interval ∆t can be

estimated from the condition that ∆Pbr ∼ O(1), with ∆Pbr given by eq. (2.7); this gives

∆t(ω) ∼ (1/ᾱ)tbr(ω) and therefore ∆t ∼ t when ω ∼ ωs(t), as anticipated. After being

emitted, the primary gluons with ω ∼ ωs(t) rapidly cascade into even softer gluons and

eventually transmit, after a time ∆t ∼ t, their whole energy to the very soft quanta which

compose the flow.

2.3 Energy flux, turbulence, and thermalization

The physical interpretation of eq. (2.14) in terms of multiple branchings and, in particular,

its relation to turbulent flow become more transparent if one studies a more differential

quantity, the energy flux F(x0, τ). This is defined as the rate for energy transfer from the

region x > x0 to the region x < x0. Since the energy in the region x > x0 is decreasing

with time, via branchings, it is natural to define the flux as the following, positive, quantity

F(x0, τ) ≡ −∂E
>(x0, τ)

∂τ
=

∂E <(x0, τ)

∂τ
, (2.16)

where E >(x0, τ) is the energy fraction contained in the bins of the spectrum with x > x0,

that is,

E >(x0, τ) =

∫ 1

x0

dxD(x, τ) , (2.17)

whereas the complementary quantity E <(x0, τ) is the energy fraction carried by the modes

with x < x0. In turn, E <(x0, τ) is the sum of two contributions: the flow energy (2.14)

and the energy contained in the bins of the spectrum at x < x0; that is,

E <(x0, τ) = 1− E >(x0, τ) = Eflow(τ) +

∫ x0

0
dxD(x, τ) . (2.18)
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Figure 3. Plot (in log-log scale) of the energy flux F(x0, τ), cf. eq. (2.16), as a function of x0 for

various values of τ . We use the same conventions as in figure 2. The thin curves, which are drawn

for x0 ≤ 0.05, represent the approximation in eq. (2.19), which is valid at small x0.

Using the above definitions together with eq. (2.8) for D(x, τ), it is straightforward to

numerically compute the energy flux F(x0, τ), with the results displayed in figure 3. For

a physical discussion, it is convenient to focus on the behavior at small x0 � 1. In that

region, one can use eq. (2.18) together with the small–x approximation to the spectrum,

eq. (2.12), to deduce the analytic estimate

F(x0, τ) '
[
2πᾱ2τ + 2ᾱ

√
x0

(
1− 2πᾱ2τ2

)]
e−πᾱ

2τ2
. (2.19)

The first term within the square brackets, which is independent of x0, is the flow

contribution,

Fflow(τ) ≡ ∂Eflow(τ)

∂τ
= 2πᾱ2τ e−πᾱ

2τ2
, (2.20)

while the second term, proportional to
√
x0, is the rate at which the energy changes in the

region of the spectrum at x ≤ x0. Clearly, the flow component in eq. (2.20) dominates over

the non-flow one at sufficiently small values of x0, such that x0 . xs(τ) = ᾱ2τ2. This is

also visible in figure 3, where the various curves become indeed flat at sufficiently small x0.

The function Fflow(τ) is represented in figure 6 (see the brown, long-dashed, curve in that

figure). It exhibits a rather wide maximum at a value τ ∼ 1/ᾱ, which corresponds to the

average lifetime of the LP before undergoing a democratic branching (cf. eq. (2.11)).

A uniform energy flux (in the sense of being independent of x, or of ω) is the distin-

guished signature of (wave) turbulence [30, 31]. It physically means that the energy flows

through the spectrum without accumulating at intermediate values of x. It is intuitively

clear that a quasi-uniform flux requires the branchings to be quasi-local in x (or ‘quasi-

democratic’). Since, if the typical branchings were strongly asymmetric, then after each

branching most of the energy would remain in the parent gluon and the energy would ac-

cumulate in the bins at large x. It is also quite clear, in view of the splitting law (2.2), that
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in the non-perturbative region at x . xs(τ) the branchings are indeed quasi-democratic: a

gluon with energy x ∼ xs(τ) splits with probability of O(1) during a time interval τ irre-

spective of the value z of the splitting fraction. Hence, there is no reason why special values

like z � 1 or 1 − z � 1 should be favored. A more elaborate argument for democratic

branchings will be presented in section 3.4.

The locality of the interactions is a fundamental property of turbulence [30, 31]. In

the traditional turbulence problem, where the energy is injected by a time-independent

source which is localized in energy and produces a steady spectrum, this property ensures

that the energy spectrum in the ‘inertial range’ (i.e. sufficiently far away from the source)

can be expressed in terms of the (steady) flux F and a special power-like spectrum, the

‘Kolmogorov-Zakharov spectrum’, which is a fixed-point of the ‘collision term’. In the case

of hydrodynamic turbulence in 3+1 dimensions, this relation between the energy spectrum

and the flux is known as the ‘Kolmogorov-Obukhov spectrum’.

For the problem at hand, where the ‘source’ is the leading particle originally localized at

x = 1, the ‘inertial region’ corresponds to x� 1, the ‘collision term’ term is the branching

term ᾱI[D], and the fixed-point solution is the scaling spectrum Dsc(x) = 1/
√
x. But

unlike for the more conventional set-up, our current problem is clearly not stationary: the

‘source’ (the LP) loses energy and can even disappear at large times, so both the spectrum

and the energy flux have non-trivial time dependencies. Notwithstanding, it turns out

that the fundamental relation alluded to above, between the energy spectrum and the flux,

also holds for the time-dependent physical problem at hand. Namely, by inspection of

eqs. (2.12) and (2.20), it is clear than one can write

D(x, τ) ' 1

2πᾱ

Fflow(τ)√
x

for x � 1 . (2.21)

This is a version of the Kolmogorov-Obukhov relation adapted to the current problem

and generalized to a time-dependent situation. Note that eq. (2.21) involves only the

flow contribution to the flux, albeit this relation holds for any x � 1 and not only in

the ‘non-perturbative’ sector at x . xs(τ). At this level, the relation (2.21) might look

fortuitous, but in section 3.4 we shall present a general argument showing that it has a

deep physical motivation.

So far, we have implicitly assumed that the branching dynamics as described by

eq. (2.4) extends all the way down to x = 0, that is, it includes arbitrarily soft gluons. In

reality, the dynamics should change at sufficiently low energies, for various reasons. First,

when the gluons in the cascade become as soft as the medium constituents — that is, their

energies become comparable to the temperature T — they rapidly thermalize via collisions

in the medium and thus ‘disappear’ from the cascade. Second, the BDMPSZ branching

law (2.2) assumes the dominance of multiple soft scattering and hence it ceases to be

valid when the branching time tbr(z, ω) becomes as low as the mean free path ` between

successive collisions in the medium. This condition restricts the gluon energies to values

ω & ωBH ≡ q̂`2/2. For a weakly coupled quark-gluon plasma, the ‘Beithe-Heitler’ scale

ωBH is comparable to the temperature T . (Indeed, one has q̂ ∼ ᾱ2T 3 and ` ∼ (ᾱT )−1 to

parametric accuracy.) With this example in mind, we shall not distinguish between these
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two scales anymore, but simply assume that the dynamics described by eq. (2.4) applies

for all the energies ω & T , i.e., for all x & xth ≡ T/E. In all the interesting problems, the

thermal scale xth is small enough to allow for multiple branchings: xth � xs = ᾱ2xc. For

instance, in the case of a weakly coupled plasma, the above condition is tantamount to

L � `/ᾱ ∼ (ᾱ2T )−1, which is indeed satisfied since the interesting values for L are much

larger than the typical relaxation time λrel ∼ (ᾱ2T )−1 of the plasma.

So far, we have implicitly assumed that the thermalization mechanism acts as a ‘perfect

sink’ at x ∼ xth. (A similar assumption was made in the ‘bottom-up’ scenario for ther-

malization [22] and in the Monte-Carlo implementation of the rate equation in the event

generator MARTINI [24].) That is, the surrounding medium absorbs the energy from the

cascade at a rate equal to the relevant flux F(xth, τ), without modifying the branching

dynamics at higher values x � xth. This is a rather standard assumption in the context

of turbulence and is also well motivated for the problem at hand, as we now explain. To

that aim, one should compare the relaxation time λrel ∼ (ᾱ2T )−1 aforementioned, which

represents the characteristic thermalization time at weak coupling, with the lifetime ∆t(ω)

of a gluon generation (the time interval between two successive branchings) for gluons with

energy ω ∼ T . This ∆t(ω) can be estimated as explained at the end of section 2.2, and

reads, parametrically,

∆t(ω) ∼ 1

ᾱ
tbr(ω) ∼ 1

ᾱ

√
ω

q̂
. (2.22)

Using ω ∼ T and the perturbative estimate q̂ ∼ ᾱ2T 3, one deduces ∆t ∼ (ᾱ2T )−1 ∼ λrel.

We thus conclude that the physics of thermalization is as efficient in dissipating the energy

as the turbulent flow. This implies that there should be no energy pile-up towards the

low-energy end of the cascade.

Under these assumptions, it is interesting to compute the total energy lost by the

cascade towards the medium, i.e. ‘the energy which thermalizes’. This is the same as the

energy which has the crossed the bin xth during the overall time τL, namely (cf. eq. (2.18))

Eth ≡ E <(xth, τL) ' 1− e−πᾱ
2τ2

L + 2ᾱτL
√
xth e−πᾱ

2τ2
L , (2.23)

where the approximate equality holds since xth � 1. eq. (2.23) is recognized as the sum

of the flow energy, eq. (2.14), and of the energy that would be contained in the spectrum

at x ≤ xth, cf. eq. (2.12). Using τL =
√

2xc and xth � xs = ᾱ2xc, it is easy to check that

the flow component dominates over the spectrum piece, and hence Eth ' Eflow(τL). This

implies that the energy lost by the gluon cascade towards the medium is independent of

the details of the thermalization process, like the precise value of xth. This universality too

is a well known feature of a turbulent process [30, 31].

3 The high-energy regime

With this section, we begin the study of the main physical problem of interest for us in

this paper, namely the gluon cascade produced in the medium by a very energetic leading

particle, with original energy E � ωc. The main new ingredient as compared to the

previous discussion is a kinematical restriction on the primary gluon emissions that can
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be triggered by interactions in the medium: the energy ω of the gluons emitted by the

LP cannot exceed a value ωc in order for the respective formation time tbr(ω) to remain

smaller than L. When xc ≡ ωc/E � 1, this restriction has important consequences: it

implies that the LP loses only a small fraction of its total energy, of order ᾱxc � 1. Our

main focus in what follows will not be on this average energy lost by the LP (this is well

understood within the original BDMPSZ formalism, including multiple soft emissions of

primary gluons [38]), but rather on the further evolution of this radiation via multiple

branchings and the associated flow of energy towards small values of x and large angles.

3.1 The coupled rate equations

Since the radiation is restricted to relatively low energies ω ≤ ωc � E, or x ≤ xc � 1, it

is clear that the part of the spectrum at higher energies xc < x < 1 has to be associated

with the LP. This makes it natural to decompose the overall spectrum as

D(x, τ) =
[
Θ(x− xc) + Θ(xc − x)

]
D(x, τ) ≡ DLP(x, τ) + Drad(x, τ) . (3.1)

In reality, the LP piece DLP(x, τ) is a rather narrow peak located in the vicinity of x = 1

(see below), so there is a large gap between the two components of the spectrum.

The evolution of the radiation via successive branchings involves no special constraint,

so the respective rate equation can be obtained simply by replacing D(x, τ) according to

eq. (3.1) in the r.h.s. of the general equation eq. (2.4) (restricted to x < xc, of course).

This yields

∂Drad(x, τ)

∂τ
= S(x, τ) + ᾱ

∫
dzK(z)

{√
z

x
Drad

(
x

z
, τ

)
− z√

x
Drad

(
x, τ
)}
, (3.2)

where the source S(x, τ) is the energy per unit time and per unit x radiated by the LP:

S(x, τ) ≡ ᾱ
∫

dzK(z)

√
z

x
DLP

(
x

z
, τ

)
. (3.3)

It is here implicitly understood that this source has support at x ≤ xc and that it acts

over a limited interval in time, at 0 ≤ τ ≤ τL ≡
√

2xc, which is moreover small, τL � 1,

in the high-energy regime of interest. The integral over z in the gain term of eq. (3.2)

is restricted to x/xc < z < 1, where the lower limit is introduced by the support of the

function Drad(x/z, τ).

In the rate equation for the leading particle, one needs to enforce the condition that

the radiated gluons have energy fractions smaller than xc. The ensuing equation reads

(with x > xc)

∂DLP(x, τ)

∂τ
= ᾱ

∫
dzK(z)

{
Θ

(
z − x

x+ xc

)√
z

x
DLP

(
x

z
, τ

)
− z√

x
DLP

(
x, τ
)[

Θ

(
z − 1 +

xc
x

)
+ Θ

(
xc
x
− z
)]}

(3.4)

where the various Θ-functions enforce the kinematical constraint: in the gain term, one

requires that the unmeasured gluon emitted (with splitting fraction 1− z) by the LP (with
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initial energy fraction x/z) be softer than xc: (1 − z)(x/z) < xc =⇒ z > x/(x + xc). In

the loss term, one requires that one of the daughter gluons be soft: either zx < xc, or

(1− z)x < xc.

As it should be clear from the previous discussion, the functions DLP(x, τ) and

Drad(x, τ) at any time τ < τL also depend upon xc, hence upon the overall size L of

the medium, via the kinematical constraints on the gluon emissions. This shows that the

dynamics in this high energy regime is non-local in time; e.g., the branching rate in eq. (3.4)

‘knows’ about the maximal time τL via the various Θ-functions, which involve xc. This

property reflects a true non-locality of the underlying quantum dynamics: it takes some

time to emit a gluon and this time cannot be larger than L. Accordingly, at any τ < τL,

one should only initiate emissions whose energies are smaller than ωc: gluon fluctuations

with higher energies would have no time to become on-shell. The kinematical constraint

ω ≤ ωc reflects only in a crude way the actual non-locality of the quantum emissions. The

classical description at hand, as based on rate equations, is truly appropriate only for the

sufficiently soft emissions with small formation times tbr(ω) � L. Fortunately, these are

the most important emissions for the physics problems that we shall here address.

In the zeroth order approximation, which is strictly valid as τ → 0, one can use

DLP(x, τ) = δ(1− x), and then the source in eq. (3.3) reduces to the BDMPSZ spectrum,

as expected:

S0(x) ≡ ᾱxK(x) ' ᾱ√
x
. (3.5)

In writing the second, approximate, equality we have used the fact that x is small, x ≤
xc � 1, to simplify the expression of the splitting kernel (cf. eq. (2.6)): K(x) ' x−3/2

for x� 1.

We shall now argue that the expression (3.5), which is time-independent, remains a

good approximation for all the times τ of interest. Of course, the spectrum DLP(x, τ) of

the LP changes quite fast with increasing τ , notably due to the prompt radiation of very

soft quanta with energy fractions x . xs(τ) = ᾱ2τ2. This leads to a broadening of the

LP peak on the scale ∆x ∼ ᾱ2τ2 . ᾱ2xc � 1, similar to that exhibited by eq. (2.8) at

small times. Yet, the probability to emit a relatively hard gluon with x ∼ xc is very small,

of O(ᾱ). Accordingly, the support of the function DLP(x, τ) remains limited to a narrow

band at 1 − xc . x < 1, which is well separated from the radiation spectrum at x < xc.

Hence, the integration over z in eq. (3.3) is effectively restricted to a narrow range close to

x, namely x < z < x/(1− xc), and the integral can be approximated as

S(x, τ) ' ᾱxK(x)

∫
dx′DLP(x′, τ) ' ᾱ√

x

[
1 +O(x, ᾱxc)

]
. (3.6)

Here we have used the fact that the overall strength of the function DLP(x, τ), i.e. the

energy fraction carried by the LP after a time τ , can be estimated as

ELP(τ) ≡
∫

dxDLP(x, τ) ' 1− 2ᾱτ
√
xc , (3.7)

that is, the initial energy minus the energy lost via radiation (the integral of eq. (3.5) up

to x = xc).
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Figure 4. The full spectrum D(x, τ) = DLP(x, τ) + Drad(x, τ) obtained by numerically solving

the coupled equations (3.2) and (3.4), versus the radiation spectrum predicted by eq. (3.8) with a

source. We use both versions of the kernel, K and K0, together with xc = 0.2 and τ =
√

2xc ' 0.63.

(i) Simplified kernel K0: black curve: eqs. (3.2)–(3.4); purple, dashed: eq. (3.8). (ii) Full kernel K:

blue, dashed-dotted: eqs. (3.2)–(3.4); red, dashed-triple dotted: eq. (3.8). In the insert: the same

plots (for the radiation part only) in log-log scale.

To summarize, after an evolution time τL, the energetic LP loses only a small fraction

ᾱ
√
xcτL ∼ ᾱxc � 1 of its total energy and its spectral density remains peaked near x = 1.

Accordingly, it can be effectively treated as a steady source S0(x) for the soft radiation at

x� 1. This is verified in the plots in figure 4, where we perform two types of comparisons:

(i) between the evolution with the exact kernel K in eq. (2.6) and that with the simplified

kernel K0, and (ii) between the solution to the coupled system of equations (3.2) and (3.4)

and that to the effective equation with a source, i.e. eq. (3.2) with S(x, τ) → S0(x). As

one can see in this plot, the two choices for the kernel lead indeed to results which are

qualitatively similar and numerically very close to each other. Furthermore, the radiation

spectrum at x ≤ xc produced by the ‘model’ equation with a source is indeed close to the

respective prediction of the coupled rate equations. (In fact, for the exact kernel K, this

similarity looks even more striking — the respective curves almost overlap with each other

at sufficiently small x — but in our opinion this is merely a coincidence.) In the next

subsection, we shall construct an exact analytic solution for the equation with the source,

for the case of the simplified kernel K0.
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3.2 The radiation spectrum

In the remaining part of this section, we shall concentrate on the solution to the follow-

ing equation

∂Drad(x, τ)

∂τ
=

ᾱ√
x

+ ᾱ

∫
dzK(z)

{√
z

x
Drad

(
x

z
, τ

)
− z√

x
Drad

(
x, τ
)}

≡ S0(x) + ᾱI[Drad](x, τ) , (3.8)

which, as above argued, offers a good approximation for the dynamics of the medium-

induced radiation by a leading particle with high energy E � ωc. This is an inhomogeneous

equation with vanishing initial condition and can be solved with the help of the respective

Green’s function:

Drad(x, τ) =

∫ xc

x
dx1

∫ τ

0
dτ1G(x, x1, τ − τ1)S0(x1) . (3.9)

The Green’s function G(x, x1, τ) obeys the homogeneous version of eq. (3.8) with initial

condition G(x, x1, τ) = δ(x− x1).

From now on, we shall again restrict ourselves to the case of the simplified splitting

kernel K0(z), which we recall is obtained by replacing f(z)→ 1 in eq. (2.6). For this case,

the Green’s function G(x, x1, τ) can be exactly computed, since it is closely related to the

function D(x, τ) in eq. (3.10): both functions obey eq. (2.4), but with slightly different

initial conditions. It is easy to check that the corresponding solutions are related via an

appropriate rescaling of the variables:

G(x, x1, τ) =
1

x1
D

(
x

x1
,
τ√
x1

)
=

√
x1

x

ᾱτ

(x1 − x)3/2
exp

{
− πᾱ

2τ2

x1 − x

}
. (3.10)

Since the source S0(x1) in eq. (3.9) is independent of time, the integral over τ1 involves

only the Green’s function and can be readily computed:∫ τ

0
dτ1G(x, x1, τ − τ1) =

1

2πᾱ

√
x1

x(x1 − x)

[
1− exp

{
− πᾱ

2τ2

x1 − x

}]
. (3.11)

To also compute the integral over x1, it is convenient to change the integration variable

according to u ≡ πᾱ2τ2/(x1 − x). One thus easily finds

Drad(x, τ) =
ᾱτ√
x

1

2
√
π

∫ ∞
ζ

du

u3/2

[
1− e−u

]
=

ᾱτ√
x

{
1√
π

Γ

(
1

2
, ζ

)
+

1− e−ζ√
πζ

}
, (3.12)

where

ζ ≡ ζ(xc − x, τ) ≡ πᾱ2τ2

xc − x
, (3.13)

and

Γ

(
1

2
, ζ

)
≡
∫ ∞
ζ

dz√
z

e−z =
√
π −

∫ ζ

0

dz√
z

e−z =
√
π − γ

(
1

2
, ζ

)
(3.14)
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Figure 5. Plot (in log-log scale) of Drad(x, τ), cf. eq. (3.12), as a function of x for xc = 0.2 and

various values of τ . The thick curves show the function
√
xDrad(x, τ) for τ = 0.2 (black, solid),

τ = 0.4 (purple, dashed), τ = 0.63 (blue, dashed-dotted), and τ = 1.0 (red, dashed-triple dotted).

Note that the maximal value for τ which is physically allowed is τL =
√

0.4 ' 0.63. The thin curves,

shown for τ ≤ τL, represent the corresponding approximations at small ζ(xc−x, τ), as obtained by

keeping only the first 2 terms in the Taylor expansion in eq. (3.20). The enveloping curve (brown,

long-dashed) is the limiting curve at large ζ, cf. eq. (3.21).

is the upper incomplete Gamma function (whereas γ(1/2, ζ) is the respective lower func-

tion). Note that Drad(x, τ) is also a function of the limiting energy fraction xc, but in our

notations this dependence is left implicit. A similar observation applies to all formulæ that

appear in this section.

For what follows, it is also useful to single out the piece of the spectrum that would

be produced by the source term alone, in the absence of branchings. Specifically, using

eq. (3.14), we can write

Drad(x, τ) =
ᾱτ√
x
− δDbr(x, τ) ,

δDbr(x, τ) ≡ ᾱτ√
x

{
1√
π
γ

(
1

2
, ζ

)
− 1− e−ζ√

πζ

}
≡ ᾱτ√

x
h(ζ) , (3.15)

where the quantity δDbr(x, τ) is the change in the spectrum due to multiple branchings and

it is positive semi-definite, as one can easily check — meaning that the effect of branchings

is a depletion in the spectrum, at any x ≤ xc. This depletion reflects the flow of energy

from one parton generation to the next one, via parton branching — a phenomenon to

which we shall return in the next subsection. But before doing that, let us discuss the

radiation spectrum (3.12) in more detail.

This spectrum is depicted in figure 5 as a function of x for various values of τ . The

different limiting behaviors can be also understood in analytic terms. To that aim, it

is useful to notice a few properties of the function h(ζ). This function is monotonously

increasing and interpolates between h = 0 at ζ = 0 and h → 1 as ζ → ∞. Furthermore,
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the ratio h(ζ)/
√
ζ is an analytic function of ζ with infinite radius of convergence and a

rapidly converging Taylor expansion:√
π

ζ
h(ζ) =

∫ 1

0
duu−1/2 e−ζu − 1− e−ζ

ζ
= 1− 1

6
ζ +

1

30
ζ2 + O(ζ3) . (3.16)

Finally, for large ζ, one finds the asymptotic behavior

1− h(ζ) =
1√
πζ

+ · · · , (3.17)

where the dots stand for terms which are exponentially suppressed.

Returning to the spectrum in eq. (3.15), we first observe that at small x � xc this

reduces to the scaling spectrum Dsc(x) = 1/
√
x — the expected fixed point of the branching

dynamics at small x. Indeed, when x � xc, one can approximate ζ(xc − x, τ) ' ζ(xc, τ)

and therefore

Drad(x, τ) ' ᾱτ√
x

[
1− h(ζ0)

]
, ζ0 ≡ ζ(xc, τ) =

πᾱ2τ2

xc
. (3.18)

Interestingly, at the end of the evolution, i.e. for τ = τL =
√

2xc, eq. (3.18) reduces to the

BDMPSZ spectrum times a function of the QCD coupling ᾱ, which is strictly smaller than

1 and which expresses the reduction in the spectrum due to multiple branchings:

Drad(x, τL) ' ᾱ

√
2xc
x

[
1− h

(
2πᾱ2

)]
for x� xc . (3.19)

Consider now larger values of x, where the deviations from the scaling spectrum start

to be important. As long as x is not too close to xc, such that ζ . 1, the spectrum can be

expanded in powers of ζ, with the help of eq. (3.16). One thus finds

Drad(x, τ) =
ᾱτ√
x

{
1 − ᾱτ√

xc − x
+
π

6

(
ᾱτ√
xc − x

)3

+ · · ·
}

when ζ(xc − x, τ) . 1 ,

(3.20)

where the dots stand for terms of O(ζ5/2) and higher. This expansion is rapidly converging

for any ζ . 1. Given that ζ(xc, τL) = 2πᾱ2 is a relatively small number (2πᾱ2 ' 0.6 for

ᾱ = 0.3), we expect a limited expansion like eq. (3.20) to be quite accurate for any τ . τL
and for x values in the bulk. And indeed, the curves obtained by keeping just the first 2

terms in this expansion provide an excellent approximation to the full curves in figure 5

for any τ ≤ τL, except of course for x very close to xc. Notice that the inclusion of the first

correction in eq. (3.20), which expresses the dominant effect of the multiple branchings

at small ᾱτ , is truly essential in order to obtain such a good agreement. Indeed, for

τ ∼ τL and x values in the bulk, that correction is numerically important, of relative order

ᾱτL/
√
xc =

√
2ᾱ ' 0.4.

The expansion in eq. (3.20) breaks down when the first correction becomes of O(1) or

larger, namely for xc − x . ᾱ2τ2. This is in agreement with the fact that the emission
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of very soft gluons, with energy fractions x . xs(τ) = ᾱ2τ2, is non-perturbative. To

investigate the effect of such emissions via analytic approximations, let us consider the

behavior near the endpoint of the spectrum, at x → xc. In that limit, one has ζ � 1, so

one can use eq. (3.17) to deduce

Drad(x, τ) ' 1

π

√
xc − x
x

when ζ(xc − x, τ) � 1 . (3.21)

This result is time-independent and shows that the spectrum vanishes when x→ xc at any

time τ . This demonstrates the efficiency of the soft branchings in depleting the spectrum

near its endpoint. The energy which is transferred in this way towards the bins at x < xc
cannot be compensated by a corresponding flow of energy coming from the bins at x > xc,

since the spectrum ends at xc.

The steady spectrum in eq. (3.21) also represents the limiting curve for the function

Drad(x, τ) in the formal large-time limit at ζ(xc, τ) = πᾱ2τ2/xc � 1. That is, in this limit,

the spectrum takes the form in eq. (3.21) for any x ≤ xc. This large-time limit is merely

formal, since, as already mentioned, the maximal value for ζ(xc, τ) which is physically

allowed is ζ(xc, τL) = 2πᾱ2, which is not that large. Still, this limit is conceptually inter-

esting, in that it corresponds to the more familiar turbulence set-up: a steady situation in

which the whole energy injected by the source flows through the spectrum into the ‘sink’

at x = 0 (see the discussion in the next subsection).

It is finally interesting to clarify the suitability of perturbation theory (by which we

mean the iterative solution to eq. (3.8) in which the branching term ᾱI[Drad] is treated as a

small perturbation) for the problem at hand. Via successive iterations, one can construct a

perturbative solution for Drad(x, τ) in the form of a series in powers of ᾱτ and is interesting

to compare this series to the small–ζ expansion of the exact solution in eq. (3.20). Clearly,

we do not expect this perturbative approach to be reliable near the endpoint of the spectrum

at xc, but one may hope that it becomes meaningful for x well below xc and for small times

ᾱτ � 1 — that is, in the region where the expansion (3.20) can be viewed too as a series in

powers of ᾱτ . But even this last expectation is naive, as shown by the following argument:

a perturbative solution via iterations would generate both odd and even powers of ᾱτ ,

whereas the corresponding expansion in eq. (3.20) contains only odd powers.

To further clarify this mismatch, we shall construct in appendix A the perturbative

solution to low orders: Drad = D
(0)
rad +D

(1)
rad +D

(2)
rad + · · · . The zeroth order result is, clearly,

D
(0)
rad = ᾱτ/

√
x, while the first iteration, as obtained by evaluating the branching term

ᾱI[Drad] with the zeroth order result, yields precisely the correction of O(ᾱτ) shown in

eq. (3.20), that is,

D
(1)
rad(x, τ) = − ᾱ2τ2√

x(xc − x)
. (3.22)

But a subtle issue shows up starting with the second iteration: the first-order correction

D
(1)
rad turns out to be an exact fixed point of the branching kernel: I[D

(1)
rad] = 0. Accordingly,

the second-order correction is exactly zero, D
(2)
rad = 0 (still in agreement with eq. (3.20)),

but then the same is true for all the subsequent iterations: D
(n)
rad = 0 for any n ≥ 2. That
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is, the perturbative expansion, as computed without any approximation, terminates after

just one non-trivial iteration and predicts Drad = D
(0)
rad +D

(1)
rad. This prediction is certainly

incorrect (except as an approximation at small times and small x): it differs from the

actual expansion eq. (3.20) of the exact result and, in particular, it becomes negative and

divergent when x→ xc.

The mathematical origin of this failure will be clarified in appendix A. But its physical

origin should be quite clear: we have already noticed the non-perturbative nature of the

dynamics associated with the emission of very soft quanta, with energy fractions x .
xs = ᾱ2τ2. For such emissions, the effects of multiple branchings must be resumed to all

orders and cannot be accurately studied via iterations. This non-perturbative dynamics

is responsible for the rapid broadening of the LP peak and also for the fact that the

radiation spectrum in eq. (3.12) exactly vanishes as x → xc for any τ . Similar, non-

perturbative aspects affect the spectrum at any value of x, including the intermediate bins

at xs � x� xc, since the occupation of any such a bin can change via the emission of very

soft gluons. Hence, not surprisingly, the spectrum D(x, τ) cannot be faithfully computed

within perturbation theory for generic values (x, τ), albeit interesting information can be

obtained via this method in special cases, as we shall see.

3.3 The energy flux

As in section 2, the dissipative properties of the cascade, in particular, the rate for energy

loss towards the medium, can be best studied by computing the energy flux associated with

branchings. Let E(x0, xc, τ) denote the energy which at time τ is contained in the modes

in the spectrum within the interval x0 < x < xc:

E(x0, xc, τ) =

∫ xc

x0

dxDrad(x, τ) . (3.23)

When increasing τ , this energy can change via two mechanisms: (i) it increases due to

additional radiation by the source, at a rate
∫ xc
x0

dxS0(x), and (ii) it decreases due to the

energy transfer towards the modes at x < x0 via gluon branching, at a rate which is by

definition the energy flux F(x0, τ) through the bin x0. Hence, we can write

∂E(x0, xc, τ)

∂τ
=

∫ xc

x0

dxS0(x) − F(x0, τ) , (3.24)

which immediately implies

F(x0, τ) =

∫ xc

x0

dx
∂

∂τ
δDbr(x, τ) = −ᾱ

∫ xc

x0

dx I[Drad](x, τ) , (3.25)

where the first equality follows after recalling the definition (3.15) of δDbr(x, τ), and the

second one after also using the rate equation (3.8). Each of the two integral representations

for F(x0, τ) in the equation above has its own virtues. When combined with the explicit re-

sult for δDbr(x, τ) shown in eq. (3.15), the first representation allows for efficient numerical

calculations, with results that we shall shortly describe. On the other hand, this formula is

not so well suited for analytic studies, as we shall see. The second integral representation,
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which involves the branching term I[Drad], is more directly connected to the dynamics of

branchings and admits a transparent physical interpretation, to be discussed in section 3.4.

A priori, this representation seems to be mathematically more involved, in that it involves

a double convolution over the spectrum. Yet, as we shall see, this representation allows for

more accurate analytic studies. In particular, it provides an exact analytic result in the

important limit x0 → 0.

Using the first equality in eq. (3.25) together with the expression (3.15) for δDbr(x, τ),

one finds, after simple manipulations,

F(x0, τ) =
ᾱ√
π

∫ xc

x0

dx√
x
γ

(
1

2
, ζ

)
, (3.26)

with ζ ≡ ζ(xc−x, τ) as defined in eq. (3.13). We are mostly interested in the limit x0 → 0

of this result, which represents the energy flux carried by the turbulent flow:

Fflow(τ) =
ᾱ√
π

∫ xc

0

dx√
x
γ

(
1

2
, ζ

)
. (3.27)

As explained in section 2, this is the rate at which the energy leaks out of the spectrum and

accumulates into a condensate at x = 0. It is straightforward to numerically compute the

integral in eq. (3.27) and thus study the flow as a function of τ for various values xc � 1.

The results are shown in figure 6, together with the respective prediction of the ‘low-energy’

case xc > 1, that is, the function Fflow(τ) in eq. (2.20). In principle, one should consider

these curves only for τ values within the physically allowed range, i.e. for τ ≤ τL =
√

2xc.

But in figure 6 we also show them for larger values τ > τL; this is interesting too, but for

a different physical problem (see below).

By comparing curves which refer to different values of xc, one can better appreciate the

role of the kinematical constraint x ≤ xc � 1 in slowing down the branching process and

thus reducing the energy flow. The plots in figure 6 make clear that, when lowering xc, one

reduces not only the total duration τL of the branching process, but also the rate for energy

loss at any given time τ < τL. This trend is natural on physical grounds: by decreasing xc,

one limits the phase-space for medium-induced radiation to emissions which carry lower

and lower fractions of the total energy of the leading particle. Figure 6 also shows that the

deviation between curves corresponding to different values of xc increases with time; for

τ ∼ τL, this deviation is seen to be sizable for all values of xc under consideration.

It would be interesting to understand the systematics of these plots via analytic studies.

To that aim, one may attempt a small–τ expansion of the flow in eq. (3.27) based on the

corresponding expansion of δDbr(x, τ) in eq. (3.20). (This is tantamount to performing the

small–ζ expansion of the function γ(1/2, ζ) in eq. (3.27).) At leading order, one should

use the dominant contribution to δDbr(x, τ), that is, (minus) the function D
(1)
rad(x, τ) in

eq. (3.22). One thus finds

Fflow(τ) ' −
∫ xc

0
dx

∂

∂τ
D

(1)
rad(x, τ) = 2ᾱ2τ

∫ xc

0

dx√
x(xc − x)

= 2πᾱ2τ . (3.28)

This estimate, which is independent of xc, holds only for sufficiently small times, such that

ζ(xc, τ) = πᾱ2τ2/xc � 1, where it describes indeed the common behavior of all the curves
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Figure 6. The rate of flow Fflow(τ) as a function of τ for various physical regimes. The brown,

long-dashed curve represents the function in eq. (2.20), which corresponds to xc > 1, that is, to the

low energy regime. The other curves correspond to different values xc < 1 (i.e. to various ‘high-

energy’ regimes) and are obtained according to eq. (3.27): xc = 0.4 (black, solid), xc = 0.2 (purple,

dashed), and xc = 0.1 (blue, dashed-dotted). The thick lines represent the respective curves within

their physical range of validity (τ < τL), whereas the thin curves are their extrapolations at larger

times τ > τL. The vertical lines denote the upper time limit τL =
√

2xc.

exhibited in figure 8. But this approximation is unable to capture the lift in degeneracy

with increasing τ . One may expect to be able to compute corrections to eq. (3.28) by

using the higher order terms in the expansion (3.20) of Drad, but this turns out not to be

possible: for all the terms in this expansion beyond D
(1)
rad, the integral over x in eq. (3.27)

develops a non-integrable singularity at its upper endpoint xc.

In the next subsection, we shall exploit the second equality in eq. (3.25) to deduce an

exact, analytic, result for Fflow(τ) (see eq. (3.39)). But for the purposes of the present

discussion, it suffices to consider just one more term in the small–τ expansion of Fflow(τ).

This can be obtained by expanding the exact result in eq. (3.39) and reads

Fflow(τ) ' 2πᾱ2τ

(
1− ᾱτ√

xc

)
. (3.29)

As expected, the corrective term above lifts the degeneracy between different values of xc.

The relative importance of this term increases with time and becomes independent of xc
when τ ∼ τL (since τL itself scales like

√
xc): ᾱτL/

√
xc =

√
2ᾱ. Hence, this correction

would be negligible in the formal weak coupling limit, but it is numerically important

for realistic values of ᾱ: e.g.
√

2ᾱ ' 0.4 for ᾱ = 0.3. And indeed, the inclusion of this

correction greatly improves the accuracy of the small-time expansion, as it will be shown

later, in figure 8: the limited expansion in eq. (3.29) provides an excellent approximation

to the exact result for any τ ≤ τL.

Consider now the behavior of the flow for relatively large times τ � τL, that is,

outside of the physical range for jet evolution. This corresponds to a different physical
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problem, which is closer to the familiar turbulence set-up — a steady source acts for

arbitrarily large time and eventually builds up a time-independent energy spectrum —,

except that our source has a rather unusual spectrum: rather than being localized near

xc (e.g. S(x) = δ(x − xc)), the function S0(x) = ᾱ/
√
x has a long tail at small x ≤ xc,

as expected for radiation. The associated steady flow at large times can be obtained as

follows: from section 3.2 we recall that, when πᾱ2τ2/xc � 1, the spectrum reaches the

steady shape in eq. (3.21) (see also figure 5). From that moment on, the energy contained in

the spectrum cannot increase anymore. For this to be possible, the energy flux associated

with branchings must precisely equilibrate the rate for energy injection by the source; that

is, the r.h.s. of eq. (3.24) must vanish:

F(x0, τ) '
∫ xc

x0

dxS0(x) = 2ᾱ
(√
xc −

√
x0

)
. (3.30)

As expected, this result is independent of time and fixed by the source. For x0 = 0, it yields

Fflow(τ) ' 2ᾱ
√
xc when πᾱ2τ2/xc � 1 , (3.31)

which is indeed consistent with both the numerical results in figure 8 and the large-time

asymptotics of eq. (3.27), as one can easily check.6

For comparison, let us also notice the spectrum and flux that would be generated by

a localized source S(x) = Aδ(x − xc) acting at τ ≥ 0. (This problem has been already

considered in ref. [16].) For generic τ , the corresponding spectrum coincides (up to a factor

of A) with the r.h.s. of eq. (3.11) evaluated at x1 = xc. For large times πᾱ2τ2/xc � 1, this

reaches the steady shape

Das(x) =
A

2πᾱ

√
xc

x(xc − x)
. (3.32)

In the same limit, the energy flux is steady and strictly uniform, Fas(x0) = A, as in stan-

dard turbulence. For x � xc, these results are consistent with the Kolmogorov-Obukhov

relation (2.21).

It is finally interesting to study the x0-dependence of the energy flux in this high-energy

case. This is expressed by eq. (3.26) that we have plotted in figure 7 as a function of x0 for

different values of τ and for xc = 0.2. Good analytic approximations can also be obtained.

For relatively small times πᾱ2τ2/xc � 1, and for x0 not too close to xc, it is convenient to

rewrite eq. (3.26) as

F(x0, τ) = Fflow(τ) − ᾱ√
π

∫ x0

0

dx√
x
γ

(
1

2
, ζ

)
. (3.33)

When ζ � 1, we can use the Taylor expansion of the function γ(1/2, ζ), which is rapidly

converging. To the same accuracy as in eq. (3.29), i.e. to second order in ᾱτ , it is enough

to use γ(1/2, ζ) ' 2
√
ζ, which yields

F(x0, τ) ' 2πᾱ2τ

{
1− ᾱτ√

xc
− 2

π
arcsin

√
x0

xc

}
. (3.34)

6At large times, one has ζ � 1 for any x, hence one can approximate γ(1/2, ζ) '
√
π within eq. (3.27).
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Figure 7. Plot (in log-log scale) of the energy flux F(x0, τ), cf. eq. (3.26), as a function of x0 for

ᾱ = 0.3, xc = 0.2, and various values of τ : τ = 0.2 (solid, black), τ = 0.4 (purple, dashed), τ = 0.63

(blue, dashed-dotted), τ = 1 (red, dashed-triple-dotted). The thin curves, shown for τ ≤ τL = 0.63

and x0 ≤ 0.005, represent the approximation (3.34) valid at small τ and small x0. The enveloping

curve (brown, long-dashed) is the limiting curve at large τ , cf. eq. (3.30).

At larger times πᾱ2τ2/xc � 1, and also for x0 very close to xc and any τ , the flux takes the

form in eq. (3.30). Both the numerical results in figure 7 and the analytic approximations

in eqs. (3.34) and (3.30) demonstrate that the flux associated with branchings is quasi-

uniform (i.e. independent of x0) for any x0 � xc. As already mentioned, this signals a

phenomenon of wave turbulence. Additional evidence in that sense will emerge from the

analysis in the next subsection.

3.4 The energy flux revisited: democratic branchings

In this subsection, we shall present an alternative calculation of the energy flux, which

exploits the second equality in eq. (3.25), i.e. the x-integral of the branching term I[Drad].

As we shall see, the main virtue of this alternative method is that it involves the gluon

spectrum quasi-locally in x: in order to compute the flux F(x0, τ) at small x0 � xc,

we need the spectrum Drad(x, τ) at small x � xc as well. This property has important

consequences, of both practical and conceptual nature. In practice, it will allow us to derive

an exact analytic expression for the rate of flow Fflow(τ) = F(x0 = 0, τ) and to establish

the analog of the Kolmogorov-Obhukov relation for the problem at hand. At a conceptual

level, it sheds further light on the quasi-democratic nature of the in-medium branching

process, which we recall is very unusual in the context of a gauge theory.

The integral of the branching term occurring in eq. (3.25) can be decomposed as

−
∫ xc

x0

dx I[Drad](x, τ) =

∫ xc

x0

dxL(x, τ) +

∫ xc

x0

dxG(x, τ) , (3.35)

where the two terms in the r.h.s. are the respective contributions of the ‘loss’ and ‘gain’
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term in the rate equation. The ‘loss’ contribution is easily evaluated as∫ xc

x0

dxL(x, τ) =

∫ 1

0
dz zK(z)

∫ xc

x0

dx
Drad(x, τ)√

x
. (3.36)

In the ‘gain’ contribution, it is useful to change the integration variable as x→ x′ ≡ x/z:∫ xc

x0

dxG(x, τ) = −
∫ xc

x0

dx

∫
dzΘ

(
z − x

xc

)
K(z)

√
z

x
Drad

(
x

z
, τ

)
= −

∫
dz zK(z) Θ

(
z − x0

xc

) ∫ xc

x0/z
dx′

Drad(x′, τ)√
x′

, (3.37)

where, in the second line, the upper limit xc on x′ follows from the condition z > x/xc;

also, the last Θ-function, which enforces z > x0/xc, guarantees that the lower limit x0/z

in the integral over x′ remains smaller than the upper limit xc. As usual, the ‘gain’ and

‘loss’ contributions taken separately develop singularities from the endpoint at z = 1 of the

integral over z, but these singularities cancel in the sum of the two contributions. Hence,

the overall result is well defined and reads

F(x0, τ) = ᾱ

∫ 1

x0/xc

dz zK(z)

∫ x0/z

x0

dx
Drad(x, τ)√

x

+ ᾱ

∫ x0/xc

0
dz zK(z)

∫ xc

x0

dx
Drad(x, τ)√

x
. (3.38)

To better appreciate the physical interpretation of this result, let us return to the individual,

‘loss’ and ‘gain’, contributions, as shown in eq. (3.36) and respectively eq. (3.37).

The interpretation of the ‘loss’ term in eq. (3.36) is quite clear: this is the energy

transferred per unit time from one parton generation to the next one via the branching of

any of the ‘hard’ modes with x0 < x < xc. (Recall that K(z)/
√
x represents the splitting

rate for the parent mode x into daughter modes zx and (1−z)x. Also the factor of z within

the first integral can be equivalently replaced by z → [z + (1 − z)]/2 = 1/2, due to the

symmetry property K(z) = K(1− z); hence, this factor truly accounts for the contribution

of both daughter gluons.) However, some of these splittings do not contribute to the energy

flux at x0: this is the case for the splittings with zx > x0 (a condition which can be satisfied

only for z values which are large enough, namely z > x0/xc), for which the daughter gluons

are still harder than x0. The contributions of these splittings are therefore subtracted by

the ‘gain’ term in eq. (3.37), which is negative indeed. Accordingly, the net result is the

sum of two types of contributions, represented by the two terms in the r.h.s. of eq. (3.38):

(i) relatively hard splittings with x0/xc < z < 1, but such the parent gluon x was close

enough to x0 (within the strip at x0 < x < x0/z), and (ii) relatively soft splittings with

z < x0/xc, in which case the parent gluon can be located anywhere between x0 and xc.

In the limit where x0 � xc, the first term in the r.h.s. of eq. (3.38) dominates over the

second one and controls the rate of flow. This is clear from the fact that the second term

in eq. (3.38) vanishes when x0 → 0, while the first one preserves a finite value in that limit,

as we shall shortly see. Furthermore, still for x0 � xc, the second term is controlled by
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very asymmetric splittings (z < x0/xc � 1), whereas the first one is dominated by quasi-

democratic branchings, that is, by generic z values in the bulk, which are not specially

close to either the lower limit z = x0/xc � 1, or the upper limit z = 1, of the z-integral.

Indeed, this integral is rapidly convergent both at small z, because of the factor of z in

the integrand, and at z → 1, because the result of the integral over x linearly vanishes in

that limit.

The dominance of quasi-democratic branchings at small x0 allows us to construct an

exact solution for the energy flux in the limit x0 → 0 and for the simplified kernel K0(z)

(for which the spectrum is analytically known). Specifically, the fact that the integral over

z within the first term in eq. (3.38) is not specially sensitive to its lower limit x0/xc means

that the relevant values of z do not scale like x0 when x0 → 0. Hence, the upper limit

x0/z of the integral over x vanishes when x0 → 0, so like the corresponding lower limit.

Accordingly, this integral is controlled by very small values of x, which do scale like x0 and

in particular are much smaller than xc. It is then justified to evaluate this integral using

the dominant behavior of the spectrum for x � xc, that is, eq. (3.18). With this scaling

behavior ∼ 1/
√
x, the integral over x is logarithmic and its result is independent of x0.

One thus finds

Fflow(τ) = 2πᾱ2τ
[
1− h(ζ0)

]
, ζ0 ≡ ζ(xc, τ) =

πᾱ2τ2

xc
, (3.39)

where the overall factor 2π has been generated as

2π =

∫ 1

0
dz zK0(z) ln

1

z
=

∫ 1

0
dz

1√
z(1− z)3/2

ln
1

z
. (3.40)

Using the properties of the function h(ζ) discussed in section 3.2, one can easily recover both

the small–τ expansion of the flow, as anticipated in eq. (3.29), and its large–τ asymptotics

in eq. (3.31). As a check of eq. (3.39), we display this result in figure 8 (as a function of τ

for several values of xc) versus the result of the numerical integration in eq. (3.26). One can

also see in this figure that the limited expansion (3.29) is indeed a very good approximation

for any τ in the physical range, as already noticed in section 3.3. This is understandable

since the first correction beyond eq. (3.29) in the small–τ expansion of eq. (3.39) is exactly

vanishing, as manifest on eq. (3.20).

By inspection of eqs. (3.18) and (3.39), it is obvious that the spectrum at small x is

proportional to the flow, in the sense of eq. (2.21). The above construction of eq. (3.39)

explains the physical origin of this proportionality and also suggests that it is quite general:

it holds for any splitting kernel with the singularity structure shown in eq. (2.6), since any

such a kernel leads to democratic branchings and to a spectrum which at small x has the

shape of the scaling spectrum Dsc(x) = 1/
√
x. The time dependence of the spectrum (again

at small x) depends upon the detailed structure of the branching kernel (it is generally

different for the full kernel K(z) and for the simplified one K0(z)), and also upon the nature

of the ‘source’ at large x (it is e.g. different for a source localized at xc, S(x) = Aδ(x−xc),
as opposed to a radiation source S0(x) = θ(xc−x)ᾱ/

√
x). But the rate of flow Fflow(τ) has

exactly the same time-dependence as the spectrum and the proportionality relation (2.21)
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Figure 8. The rate of flow Fflow(τ) as a function of τ in the high-energy regime for various values

of xc: xc = 0.4 (black, solid), xc = 0.2 (purple, dashed), and xc = 0.1 (blue, dashed-dotted). The

thick lines represent the respective curves within their physical range of validity (τ <
√

2xc), as

computed by numerical integration in eq. (3.26). The thin curves following the thick ones are the

predictions of eq. (3.26) for larger times, outside the physical range (τ >
√

2xc). The thin curves

deviating from the thick ones correspond to the limited expansion in eq. (3.29). Finally, the very

thick (opaque) curves are the new, fully explicit, analytic result in eq. (3.39). The vertical lines

denote the physical upper limit on time τL =
√

2xc.

universally holds, with a proportionality factor which is however kernel-dependent:

D(x, τ) ' 1

vᾱ

Fflow(τ)√
x

for x � xc . (3.41)

Here, υ is a pure number, defined by the obvious generalization of eq. (3.40):

υ ≡
∫ 1

0
dz zK(z) ln

1

z
=

∫ 1

0
dz

f(z)√
z(1− z)3/2

ln
1

z
' 4.96 . (3.42)

On both eq. (3.42) or eq. (3.40), it is obvious that the respective integral over z is dominated

by generic values in the bulk, as expected for quasi-democratic branchings. As discussed

after eq. (2.15), υ has the physical interpretation of the average number of soft primary

gluons with energies ω ∼ ωs(t) = ᾱ2q̂t2/2 that are emitted by the leading particle during

a time t.

Eq. (3.41) is particularly useful in a steady situation, where the energy flux is a priori

known, since determined by the external source. (This is the case in the familiar turbulence

problem, where the Kolmogorov-Obhukov relation has been originally identified.) As a

simple, yet non-trivial, application of this type, consider the steady situation reached when

the external source S0(x) = θ(xc− x)ᾱ/
√
x acts for sufficiently large time ᾱ2τ2 � xc. The

corresponding flow is given by eq. (3.31) and then eq. (3.41) can be used to deduce the

asymptotic spectrum at large times and small x:

D(x, τ →∞) ' 2

v

√
xc
x

for x � xc . (3.43)
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Figure 9. The numerical solution to the rate equation eq. (3.8) with the full splitting kernel K
from eq. (2.6), for xc = 0.2 and various values of τ : τ = 0.2 (solid, black), τ = 0.4 (purple, dashed),

τ = 0.63 (blue, dashed-dotted), τ = 1 (red, dashed-triple-dotted). The thin curves, shown for

τ ≤ τL = 0.63 and x ≤ 0.07, represent the small–τ and small–x approximation in eq. (3.44). The

enveloping curve (brown, long-dashed) is the limiting curve at large τ , cf. eq. (3.43).

This result is interesting in that it represents a non-perturbative prediction associated with

the full kernel, for which exact analytic solutions are not known. (For the simplified kernel,

v → 2π and eq. (3.43) reduces to eq. (3.21), as it should.)

Still for the full kernel, eq. (3.41) can also be used in the reversed way, namely to

deduce the flow from the spectrum in the small-time regime at ᾱ2τ2 � xc. Indeed, in this

limit and for x� xc, the spectrum can be computed in perturbation theory, via iterations

(see the discussion in appendix A). To second order in ᾱτ , the result turns out to be the

same as for the simplified kernel K0(z), namely (compare to eq. (3.20))

Drad(x, τ) ' ᾱτ√
x

(
1 − ᾱτ√

xc

)
for ᾱ2τ2 � xc and x � xc . (3.44)

By using this approximation together with eq. (3.41), we can obtain the generalization of

eq. (3.29) to the case of the complete kernel:

Fflow(τ) = υᾱ2τ

(
1 − ᾱτ√

xc

)
. (3.45)

This result is quite useful, in particular for phenomenology, in that it offers a good accurate

estimate for the energy loss via flow for the case of the physical kernel. In figure 9 we

show the numerical solution to the rate equation (3.8) with the full splitting kernel K in

eq. (2.6), together with its analytic approximations valid at small x: eq. (3.44) at small τ

and eq. (3.43) at large τ .

4 Physical discussion: energy loss at large angles

In this section, we summarize the results obtained in the previous sections and deduce

some physical consequences which, modulo some assumptions, can be compared to the
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phenomenology of di-jet asymmetry at the LHC, at least qualitatively. Ultimately, we are

interested in the energy transported at large angles with respect to the jet axis. To study

this, we successively consider the three following quantities:

(I) the flow energy Eflow(τ): this is the energy fraction carried away by the turbulent

flow and which formally ends up in a condensate at x = 0;

(II) the thermalization energy Eth(τ): this is the energy fraction which is carried by quanta

with x < xth ≡ T/E, which are assumed to thermalize and thus transmit their energy

to the medium.

(III) the energy transported at angles larger than a given value θ0: the definition of this

quantity requires some additional discussion and is postponed after the study of the

two previous ones.

(I). The flow energy can be calculated in two alternative ways: as the τ -integral of the

respective flux Fflow(τ), which is explicitly given by eq. (3.39), or as the x-integral of the

change δDbr(x, τ) in the spectrum due to branchings, as shown in eq. (3.15),

Eflow(τ) ≡
∫ τ

0
dτ ′Fflow(τ ′) =

∫ xc

0
dx δDbr(x, τ) . (4.1)

The second representation relies on the fact that the flow energy is by definition the differ-

ence between the total energy supplied by the source S0(x) and the energy which remains

in the spectrum. Here, we shall use this second representation to numerically compute

Eflow, but rely on the first one for analytic estimates. Indeed, we know that the limited

expansion of the flow rate shown in eq. (3.45) is rather accurate for any τ ≤ τL; this can

be easily integrated over time,

Eflow(τ) ' υ

2
ᾱ2τ2

(
1− 2

3

ᾱτ√
xc

)
. (4.2)

This estimate holds for the full kernel K(z), but the corresponding result for the simplified

kernel K0(z) is simply obtained by replacing υ → 2π in the prefactor.

In figure 10 we show the flow energy evaluated at the end of the evolution (τ =

τL =
√

2xc) as a function of xc and for two values of ᾱ. The exact respective results,

cf. eq. (4.1), are compared with the limited expansion in eq. (4.2) (which is seen to be

accurate, as expected) and with the prediction (2.14) of the ‘low-energy case’ extrapolated

to xc � 1, that is, outside its physical range of validity. The purpose of this extrapolation

is to emphasize that, by ignoring the kinematical constraint x ≤ xc, one would significantly

overestimate the energy loss via flow.

Remarkably, figure 10 shows that the quantity Eflow(τL) is a linear function of xc. This

property is obvious for the limited expansion in eq. (4.2), but is in fact exact within the

present effective theory too: using eq. (3.15) for δDbr(x, τ), we write

Eflow(τL) = ᾱτL

∫ xc

0

dx√
x
h

(
πᾱ2τ2

L

xc − x

)
=
√

2ᾱxc

∫ 1

0

du√
u
h

(
2πᾱ2

1− u

)
, (4.3)

– 31 –



J
H
E
P
0
3
(
2
0
1
5
)
0
8
2

0.1 0.2 0.3 0.4

0.05

0.10

0.15

0.20

xc
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Figure 10. The energy fraction Eflow(τL) carried by the turbulent flow, i.e. eq. (4.1) with τ =

τL ≡
√

2xc, plotted as a function of xc for two values of the coupling constant: ᾱ = 0.2 (black)

and ᾱ = 0.3 (purple). Solid lines: the exact result obtained by numerical integration in the

second equality in eq. (4.1). Dashed lines: the weak-coupling expansion in eq. (4.2), that is,

Eflow = 2πᾱ2xc(1 − 2
√

2ᾱ/3). (For ᾱ = 0.2, this approximation can hardly be distinguished from

the exact curve.) For comparison, we also show, with dashed-dotted lines, the respective predictions

of the ‘low-energy case’, i.e. eq. (2.14) with τ =
√

2xc.

where the r.h.s. is linear in xc, as anticipated. This is interesting as it implies that the

energy which is carried away by the flow, namely (cf. eq. (4.2)),

∆Eflow ≡ E Eflow(τL) ' υ ᾱ2ωc

(
1− 2

√
2

3
ᾱ

)
, (4.4)

is independent of the energy E of the leading particle and parametrically of order ᾱ2ωc = ω2
s

(the natural energy scale for multiple branchings). One should however keep in mind that

this conclusion holds only for sufficiently energetic jets, such that xc � 1, or E � ωc.

Notice also that the energy loss in eq. (4.4) is enhanced by the relatively large numerical

factor υ
(
1 − 2

√
2ᾱ/3

)
(' 3.5 for ᾱ = 0.3) as compared to its parametric estimate ᾱ2ωc.

This is mostly due to the factor υ ' 4.96, which we recall is the average number of soft

primary emissions with energies ω ∼ ωs.

(II). Given the flow energy in eq. (4.1), the thermalization energy can immediately be

computed as the sum between Eflow(τ) and the energy contained in the bins of the spectrum

at x ≤ xth:

Eth(τ) = Eflow(τ) +

∫ xth

0
dxDrad(x, τ) . (4.5)

In practice, xth � xc, which allows us to approximate the above integral as

Eth(τ) ' υ

2
ᾱ2τ2

(
1− 2

3

ᾱτ√
xc

)
+ 2ᾱτ

√
xth

(
1− ᾱτ√

xc

)
. (4.6)
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Figure 11. The energy fraction which ‘thermalizes’ Eth(τL), plotted as a function of the thermal-

ization scale xth for two values of xc: xc = 0.4 (black, solid) and xc = 0.2 (purple, dotted). The

thick curves are the exact result obtained via numerical integration in eq. (4.5). The thin, opaque,

curves are the respective predictions of the limited expansion in eq. (4.6) with υ → 2π.

We emphasize that this result is fully obtainable from perturbation theory, including the

complete kernel (2.6): it only requires the second iteration to the spectrum in eq. (3.44). As

manifest in eq. (4.6), the flow contribution to Eth(τ) is formally of higher order in ᾱτ , yet

it dominates over the ‘spectrum’ contribution as soon as xth is small enough: for τ = τL,

the flow dominates provided xth < xs = ᾱ2xc (or, equivalently, T < ωs), a condition which

is well satisfied in practice (see below).

In figure 11 we plot Eth(τL) as a function of xth for xc = 0.2 and xc = 0.4, and for the

simplified kernel K0. The exact result as obtained via numerical integration in eq. (4.5) is

compared to the limited expansion in eq. (4.6) with υ → 2π.

(III). We now turn to the third quantity introduced above, namely the energy loss at

large angles. Let E(θ > θ0, τ) denote the energy fraction which after a time τ has been

transported to angles larger than a given value θ0. So far, we have considered only the

energy distribution of the gluons in the cascade, but did not resolve their distribution in

transverse momentum k, or in the polar angle θ w.r.t. the jet axis (defined as sin θ = k⊥/ω).

Rather, the k-distribution has been explicitly integrated out, as shown in eq. (2.1), in order

to obtain simpler versions for the rate equations. Yet, it turns out that for qualitative

and even semi-quantitative estimates, one can restore the θ-distribution via the following,

simple, argument. All the gluons in the cascade which are not too soft (namely, those with

x & xs = ᾱ2xc) propagate in the medium along a distance of order L and hence accumulate

via multiple scattering an average transverse momentum squared 〈k2
⊥〉 ' Q2

L ≡ q̂L, which

is independent of x. As long as this momentum QL is much smaller than the gluon energy

ω = xE, one can estimate the propagation angle according to

θ(x) ' QL
xE

=
xc
x
θc, with θc ≡

QL
ωc

=
2√
q̂L3

. (4.7)
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Hence, the interesting quantity E(θ > θ0, τ) can be computed as the energy fraction

E <(x0, τ) carried by the gluons with x < x0, where x0 ≡ xc(θc/θ0). This is of course

the same as the ‘thermalization energy’ in eq. (4.5) evaluated for xth = x0. Hence, plotting

the following quantity

E <(x0, τ) ≡ Eflow(τ) +

∫ x0

0
dxDrad(x, τ) (4.8)

as a function of xc/x0 is tantamount to representing the quantity E(θ > θ0, τ) as a function

of θ0/θc. This is strictly true as long as the angle θ0 is not too large, namely θ0 . θc/ᾱ
2,

in order for the condition x0 & xs to remain satisfied.7 But as we argue now, this is

not a serious limitation. Indeed, for smaller values x0 < xs, the r.h.s. of eq. (4.8) is

dominated by the flow piece, which is independent of x0; accordingly, for θ0 larger than

θs ≡ θ(xs) ' θc/ᾱ2, the function E(θ > θ0, τ) is quasi-independent of θ0 and approximately

equal to Eflow(τ). An intuitive view of the angles θc and θs in the context of a typical gluon

cascade is provided by figure 1.

In practice, it is more convenient to plot the complementary quantity, namely the

energy fraction located at x-values larger than x0, meaning at angles θ smaller than a

value θ0 = θc(xc/x0):

E >(x0, τ) ≡ 1 − E <(x0, τ) = ELP(τ) + E(x0, xc, τ)

= 1− 2ᾱτ
√
xc +

∫ xc

x0

dxDrad(x, τ)

= 1− 2ᾱτ
√
x0 −

∫ xc

x0

dx δDbr(x, τ) . (4.9)

Indeed, within our present set-up, the quantity EJ(θ0) ≡ E E >(x0, τL) can be identified

with the total jet energy for a jet with opening angle θ0. As emphasized by the second

equality above, this is the sum of the energy ELP of the leading particle and that carried

by the radiation modes at x0 < x < xc. Vice-versa, the difference ∆E(θ0) ≡ E−EJ(θ0) =

E E <(x0, τL) is the energy lost by the jet, i.e. the energy which has been transported by

the radiation to angles larger than θ0.

In figure 12, the quantity (4.9) is represented as a function of xc/x0 for τ = τL and

xc = 0.4. We also show the single-branching (or BDMPSZ) approximation, E >(x0, τL) =

1− 2ᾱ
√

2xcx0, as obtained by neglecting the integral of δDbr in the third line of eq. (4.9).

In addition, we plot the respective prediction of the low-energy case, eq. (2.17), which here

is extrapolated outside its physical range.

Two features of these curves are worth emphasizing: first, the two curves which include

the effects of multiple branchings (the solid curve and the dashed one) show an offset at

large xc/x0, meaning that at large angles the difference 1− E >(x0) = E <(x0) approaches

7The softer gluons with x . xs have a shorter lifetime ∆t(x) < L, as shown in eq. (2.22). The

corresponding transverse momentum broadening is estimated as 〈k2
⊥〉(x) ∼ q̂∆t(x), and the relation (4.7)

between the propagation angle θ(x) and the reference angle θc gets replaced by (to parametric accuracy)

θ(x)/θc ∼
(
1/
√
ᾱ
)
(xc/x)3/4 [18–20].
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Figure 12. The energy E >(x0, τL) contained in the bins of the spectrum with x ≥ x0 at the end of

the evolution plotted as a function of xc/x0 for x0 ≤ xc, xc = 0.4, and ᾱ = 0.3. Black, solid, curve:

the full result computed according to eq. (4.9). Blue, dotted-dashed, curve: the approximation

obtained by neglecting the effects of multiple branchings. Purple, dashed, curve: the respective

prediction of the low-energy case, eq. (2.17), which is extrapolated to xc = 0.4. As explained in the

text, these curves can also be viewed as representing the energy fraction EJ(θ0) contained within a

jet with opening angle θ0 plotted as a function of θ0/θc.

a finite value as xc/x0 → ∞. This non-zero value is, of course, the energy fraction Eflow

taken away by the turbulent flow — the distinguished feature of the medium-induced

multiple branching. As a check, we also notice from figure 12 that this offset is absent,

as it should, for the corresponding prediction of the BDMPSZ spectrum. For applications

to the phenomenology, it is interesting to observe that the kinematic restriction to x < xc
(which applies whenever xc < 1) significantly reduces the value of this offset. This reduction

is visible in both figure 12 and figure 10.

Second, as also visible in figure 12 (and anticipated after eq. (4.8)), the variation with

xc/x0 is extremely slow, especially for the two curves which include the effects of multiple

branchings. Physically, this means that, by increasing the jet opening angle θ0 = (xc/x0)θc,

one can recover some of the energy that has been transported to large angles, but only very

slowly. This is so because most of this energy has been transported, by the turbulent

flow, directly at very large angles θ & θth, where it has been lost towards the medium via

thermalization. Here, θth is the propagation angle for very soft quanta with x ∼ xth (θth

is significantly larger than θs, since xth is much smaller than xs = ᾱ2xc). In principle,

this angle θth can be estimated within our effective theory — to parametric accuracy one

finds θth/θc ∼
(
1/
√
ᾱ
)
(xc/xth)3/4, cf. footnote 7 —, but this estimate is questionable:

the angular distribution of the very soft gluons with x ∼ xth could be influenced by

other effects, like the precise mechanism of thermalization, the Bethe-Heitler limit on the

medium-induced radiation, or the kinematic constraint k⊥ < ω, which are not properly

included in the current formalism. Fortunately though, this theoretical uncertainty is not
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important for the angular distribution of the energy loss: the relevant curves in figure 12

are essentially flat for xc/x0 & 1/ᾱ2 ' 10, i.e. for angles θ0 & θs.

To conclude, let us try to make contact with the phenomenology of di-jet asymmetry

at the LHC. As explained in the Introduction, this requires some care and additional

assumptions, because the present formalism is not developed well enough to permit direct

comparison with the data. In particular, by treating all the partons as being on-shell, we

have neglected the ‘vacuum-like’ radiation, i.e. the parton fragmentation triggered by their

virtuality. This mechanism is already effective for a jet fragmenting in the vacuum, in which

case it is encompassed by the DGLAP equation. In the presence of a dense medium, both

types of radiation — medium-induced and virtuality-triggered — are a priori expected and

their interplay is generally complicated (and in any case beyond the scope of the present

analysis). Note however that these two mechanism have rather different predictions for

the energy transport to large angles. For the medium-induced radiation à la BDMPSZ,

this proceeds via efficient multiple branchings leading to many soft quanta, as discussed

at length in this paper. By contrast, for the vacuum-like radiations, this involves mainly

three-jet (or multi-jet) events, as produced via hard branchings; then, the energy is carried

to large angles by only few, but relatively hard, hadrons. The final states look quite

different in the two cases (e.g. the medium-induced branchings lead to a larger multiplicity

for soft hadrons) and such qualitative differences are indeed visible in the data [8]. Given

this physical distinction and by lack of a better, unified, treatment of both mechanisms,

we shall merely assume that the corresponding effects at large angles can be incoherently

added to each other. It then makes sense to view our current formalism as describing

the difference between the energy loss at large angles in nucleus-nucleus (‘dense medium’)

versus proton-proton (‘vacuum’) collisions. This difference can in turn be estimated from

the LHC data for di-jet asymmetry, albeit its extraction involves various assumptions and

hence must be taken with care.

With this in mind, let us recall that a distinguished prediction of the turbulent mecha-

nism for medium-induced fragmentation refers to variation of the jet energy with increasing

the jet opening angle θ0, i.e. the function EJ(θ0) introduced after eq. (4.9): as shown by

the solid curve in figure 12, one expects a very slow rise of this function with θ0 and a

significant ‘offset’ at very large angles θ0 & π. A recent analysis of di-jet asymmetry by

CMS [8] has measured the energy imbalance between two nearly back-to-back jets as a

function of the jet ‘radius parameter’ R (essentially, our θ0), for both p+p and Pb+Pb

collisions. This imbalance should decrease (in modulus) with increasing R and approach

zero after integrating over all angles (R ≈ 2π), since there is no missing energy. And

indeed the respective curves in figure 7 of ref. [8] show a rather strong dependence upon R,

meaning a rapid recovery of the energy of the subleading jet with increasing R (≈ θ0), for

both p+p and Pb+Pb; clearly, this measured R-dependence is much stronger than the one

shown in figure 12. Yet, as previously explained, it is only the difference between these two

experimental curves that can be associated with the medium-induced fragmentation and

hence compared with our solid curve in figure 12. Remarkably, by inspection of figure 7 in

ref. [8], one sees that this difference looks essentially flat in R within the error bars and,

moreover, it is quite large, in the ballpark of 5 to 10 GeV, for all angles up to R ' 2. This
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is in qualitative and even semi-quantitative agreement with figure 12, as we now explain.

For quantitative estimates, we shall use q̂ = 1 GeV2/ fm (an average value supported

by recent phenomenological analyses [39]), L = 4 fm, and ᾱ = 0.3. For these choices one

finds ωc = q̂L2/2 ' 40 GeV, ωs = ᾱ2ωc ' 4 GeV, and θc ' 0.05. This value for ωc is

significantly smaller than the typical jet energy E ≥ 100 GeV in the experimental set-up

for di-jet asymmetry at the LHC. Furthermore, the non-perturbative scale ωs for the onset

of multiple branching is reasonably hard for perturbation theory to apply; in particular, it is

significantly harder than the medium ‘temperature’ T . 1 GeV, as assumed in our previous

developments. Finally, θc ' 0.05 is much smaller than a typical jet radius parameter used

in the phenomenology (R ≥ 0.2), meaning that the hard medium-induced emissions with

ω ∼ ωc do not contribute to the energy loss by the jet. The latter is rather controlled

by very soft quanta with energies ω . ωs, which are abundantly produced via multiple

branchings and propagate at large angles θ & θs, with θs = θc/ᾱ
2 ' 0.5.

In this high-energy regime, the energy ∆Eflow carried away by the turbulent flow is

quasi-independent of the original jet energy E and can be estimated according to eq. (4.4):

∆Eflow ' 0.32ωc ' 13 GeV . (4.10)

As anticipated, this value compares reasonably well with the corresponding experimen-

tal results [2, 8], notably with the value of the ‘offset’ at large angles in Pb+Pb colli-

sions, as read from figure 7 in ref. [8]. Albeit encouraging, this good agreement must

be taken with care and further studies are certainly needed before being able to claim a

successful phenomenology.
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A Perturbation theory for the rate equation

In this appendix, we shall discuss the perturbative solution to the rate equation with a

source, eq. (3.8), as obtained via successive iterations of the branching term ᾱI[Drad] in

the r.h.s. This is tantamount to an expansion in powers of ᾱτ in which the source term

S0(x) = ᾱ/
√
x (including its factor ᾱ) is treated as a quantity of O(1). The zeroth order

result is D
(0)
rad = ᾱτ/

√
x, while the first iteration, as obtained by evaluating the branching

term ᾱI[Drad] with the zeroth order result and integrating over τ , yields

D
(1)
rad(x, τ) =

ᾱ2τ2

2

∫
dzK(z)

{
Θ
(
z − x

xc

) z
x
− z

x

}
= − ᾱ

2τ2

2x

∫ x/xc

0
dz zK(z) . (A.1)

The net result, which is negative, is due to an excess in the phase-space for the loss term, at

z < x/xc. To simplify the final integral over z, we shall restrict ourselves to the simplified
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kernel K0(z). In that case, one can easily compute (say, by changing the integration variable

as z ≡ (u− 1)/u)∫ x/xc

0
dz zK0(z) =

∫ x/xc

0

dz√
z(1− z)3/2

= 2

√
x

xc − x
. (A.2)

When inserted into eq. (A.1), this confirms the result (3.22) for D
(1)
rad.

Note that the small–x limit (in the sense that x/xc � 1) of the result in eq. (A.2) would

be the same for the full kernel K(z): indeed, when z < x/xc � 1, one can approximate

f(z) ' 1 in eq. (2.6). This confirms that the limited expansion shown in eq. (3.44) holds

for the physical kernel.

Returning to the simplified kernel K0(z), in which case eq. (A.2) holds for any x < xc,

let us also compute the second iteration, by evaluating the branching term with the first

order correction in eq. (3.22). One can write

I[D
(1)
rad](x, τ) = − ᾱ

2τ2

x

∫
dz zK(z)

{
Θ
(
z − x

xc

) 1√
xc − x/z

− 1√
xc − x

}
=

2ᾱ2τ2

√
x(xc − x)

− ᾱ2τ2

x

∫ 1

x/xc

dz zK(z)

{
1√

xc − x/z
− 1√

xc − x

}
. (A.3)

Let us denote by J the integral in the second line above. After changing the integration

variable according to z = u/(u+ 1), this becomes

J =

∫ 1

x/xc

dz zK(z)

{
1√

xc − x/z
− 1√

xc − x

}
=

1√
xc − x

∫ ∞
u0

du

{
1√

u− u0
− 1√

u

}
,

(A.4)

where we denoted u0 ≡ x/(xc − x). For any finite value of u0, the above integral over u is

well defined and can be evaluated as

J =
2√

xc − x
lim

uM→∞

{√
uM − u0 −

√
uM +

√
u0

}
=

2√
xc − x

lim
uM→∞

{√
u0 −

u0

2
√
uM

}
=

2
√
x

xc − x
, (A.5)

where uM is a sharp upper cutoff on u that has been introduced at intermediate steps

in order to separate the two terms within the braces in the integral in eq. (A.4). When

inserting the final result from eq. (A.5) into the second line of eq. (A.3), one finds that

it precisely cancels the other term there, so that the net result of this second iteration

is exactly zero: I[D
(1)
rad] = 0. Accordingly, the perturbative series becomes trivial (in the

sense that all the higher order terms vanish) after the first iteration, and then the overall

result is just the sum of the first two terms: Drad = D
(0)
rad + D

(1)
rad. This is the result that

has been announced towards the end of section 3.2.

Now, the fact that the function D
(1)
rad(x, τ) is an exact fixed point of the branching term

is indeed correct and should not be a surprise: in section 3.3, we have seen that the very

same function of x, namely Das(x) ∝ 1/
√
x(xc − x), emerges as the exact solution to the
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rate equation for the case of a source localized at x = xc (cf. eq. (3.32)). Since the source

vanishes at any x < xc, this is tantamount to saying that Das(x) is an exact fixed point

for the branching term: I[Das] = 0. This solution Das(x) becomes divergent when x→ xc,

but this is indeed a real property of that particular problem, because the respective source

S(x) = Aδ(x− xc) diverges at the end of the spectrum.

On the other hand, for the delocalized source S0(x) = ᾱ/
√
x, no such divergence is

expected (as also confirmed by the exact manipulations in section 3.2), hence the iterative

solution Drad = D
(0)
rad +D

(1)
rad cannot be fully right: it fails when x→ xc. The mathematical

reason for this failure can be traced to the subtlety of the limit x→ xc in relation with the

manipulations in eqs. (A.4)–(A.5): clearly, these manipulations become ambiguous when

x→ xc, or u0 →∞, since this limit u0 →∞ does not commute with the limit uM →∞.
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