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1 Introduction

The discovery of a 125GeV Higgs boson [1, 2] by both the ATLAS and CMS collaborations

has completed the Standard Model (SM). The experimental data reported so far by LHC

agree quite well with the SM predictions. On the other hand, the lack of significant hints

in electroweak precision tests and the absence of evidences for new particle contents at

the LHC challenge many proposals of new physics beyond the SM, including weak scale

supersymmetry (SUSY).

SUSY, which was regarded for a long time as one of the most appealing extensions

of the SM, has many desirable features. For example, the observed 125GeV Higgs boson

falls within the narrow 115 − 135GeV window predicted by the minimal supersymmetric

standard model (MSSM). Besides, the genuine unification of gauge couplings [3–9], which

can hardly be achieved in the SM, can be successfully realized in the framework of low

energy SUSY. Also, the puzzle of cosmic dark matter can naturally be explained in SUSY.

Although SUSY is appealing, null search results of sparticles at LHC suggest that

either low energy SUSY needs to be tuned or sparticles are well above the weak scale.

In fact, the LHC data has already set a limit [10–13] mg̃ > 1.5TeV for mq̃ ∼ mg̃ and

mg̃ & 1TeV for mq̃ ≫ mg̃ for certain popular CMSSM models. On the other hand, the

observed mass of the Higgs boson requires rather large loop effects of top squarks in the

MSSM and CMSSM, which implies some extent of fine-tuning [14, 15]. So naturalness in

SUSY may be realized in a more involved way even though it was initially proposed to

solve the hierarchy problem.

Split SUSY, proposed in [16–18], gives up the naturalness criterion while keeps the

other two main advantages: the gauge coupling unification and viable dark matter can-

didates. This scenario assumes a very high scalar mass scale MS and the low energy
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spectrum contains only the gauginos and higgsinos as well as a fine-tuned Higgs boson in

addition to the SM sector. The SUSY CP and flavor problems can naturally be solved in

this scenario due to very heavy sfermions. The latest results of the Higgs mass from the

LHC measurement, together with the requirement of gauge coupling unification, suggest

a scalar superpartner mass scale roughly of order MS ∼ 100 − 1000TeV [19–21], which

indicates a moderately split spectrum for split SUSY. The hierarchy of sparticle spectrum

is argued to be determined by the gauge loop factor [20]. We propose in this paper to split

the sparticle spectrum from the hierarchy between the GUT scale and the Planck scale.

Actually, there are various ways to split the sparticle spectrum. In this work we propose

to use the generalized gravity mediation [22–33] with non-renormalizable Kähler potential

and superpotential. Because GUT is one of the retained motivations of split SUSY, certain

high-representation Higgs fields of GUT group could appear in the non-renormalizable

Kähler potential and superpotential. Such high-representation fields could not only amend

the gauge coupling unification condition at the GUT scale, but also establish new relations

among various theory inputs. In our scenario we have non-universal gaugino masses at the

GUT scale (for other scenarios giving non-universal gaugino masses, see [34–44]). Such non-

universal gaugino masses can naturally appear with non-renormalizable Kähler potential

and superpotential involving various high-representation Higgs fields.

This paper is organized as follows. In section 2 we present our model. In section 3 we

check the phenomenology of our model. Based on a calculation of two-loop beta functions

for gauge couplings (taking into account all weak scale threshold corrections), we check

the gauge coupling unification and the dark matter constraints. The future XENON1T

sensitivity to our scenario is also examined. Finally, in section 4 we give our conclusions.

2 A split SUSY model from SUSY GUT

There are many possible ways to mediate the SUSY breaking effects from the hidden sector

to the visible sector. A very interesting and predictive possibility is the gravity mediation.

With certain non-renormalizable terms, proper soft SUSY breaking parameters can be

generated. In many popular gravity mediation scenarios, the Kähler potential is assumed to

be minimal. However, a general Kähler potential seems to be more natural. When certain

high-representation chiral fields for the GUT group are involved in the non-renormalizable

Kähler potential, the kinetic terms of superfields could have other contributions after the

GUT symmetry breaking. New non-renormalizable terms in the superpotential involving

high-representation fields could also be important.

In general, the non-vanishing F-term VEVs of certain fields which break SUSY could

be either gauge singlets or non-singlets. In this section, we propose that SUSY breaking is

triggered by the GUT group non-singlet F-term VEVs. The gaugino and sfermion masses

will be generated by some non-renormalizable operators which could arise from integrating

out certain gravitational effects. In order to get more compact spectrum and simplify the

relevant expressions, we adopt the SO(10) GUT group with the Georgi-Glashw SU(5) GUT

group as an intermediate stage in the symmetry breaking chain:

SO(10)
16,16

SU(5)×U(1)X
54(45)

SU(3)c × SU(2)L ×U(1)Y .
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Here U(1)X is broken by possible νcL component VEVs of H16 and H̄
16

Higgs fields. There-

fore, most of the results in this paper are also valid in SU(5) GUT. The possibility of SO(10)

to Pati-Salam will be considered elsewhere.

In order to accommodate the non-minimal Kähler potential, we need to know the

group products of various SO(10) representations [45]. The spinor representation (for the

matter part) can be decomposed as

16⊗ 16 = 1⊕ 45⊕ 210, (2.1)

while the adjoint representation for gaugino is

(45⊗ 45)symmetric = 1⊕ 54⊕ 210⊕ 770. (2.2)

and the fundamental representation of Higgs is

10⊗ 10 = 1⊕ 45⊕ 54. (2.3)

We assume the non-minimal gauge kinetic term for vector supermultiplets

L =

∫

d2θWα

(

δαβ + η
Φαβ

M∗

)

W β . (2.4)

with M∗ being the reduced Planck scale. So the kinetic part for gauge field with non-

minimal Kähler potential is given by

L = − 1

4k
Tr[FµνF

µν ]− η

4kM∗
Tr[FµνΦF

µν ] , (2.5)

with k being the normalization factor for various representations according to Tr(T aT b) =

kδab. After the GUT non-singlet develops a VEV, 〈Φ〉 = v + FΦθ
2 with v2 ≫ FΦ, the

unification condition turns into

g21(MX)

(

1 +
ηv

M∗
δ1

)

= g22(MX)

(

1 +
ηv

M∗
δ2

)

= g23(MX)

(

1 +
ηv

M∗
δ3

)

(2.6)

with δ3,2,1 being the appropriate group factors for SU(3)c, SU(2)L,U(1)Y , respectively. If

the hierarchy between the (first step Georgi-Glashow SU(5)) GUT scale and the Planck

scale is not small, the previous GUT conditions turn into two independent new GUT

conditions:

F1 ≡
g2
1

g2
2

(MX)− 1

g2
1

g2
3

(MX)− 1
=

δ2 − δ1
δ3 − δ1

= −2

3
, (2.7)

F2 ≡
g2
2

g2
1

(MX)− 1

g2
2

g2
3

(MX)− 1
=

δ1 − δ2
δ3 − δ2

=
2

5
. (2.8)

For non-singlet Φ, the F-term FΦ can be decomposed as (FΦ)ab = FU ·Aab with Aab being

the group factor and FU the universal part. The review of the group structure can be

found in [45].
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The group structure of the 24 component F-term VEV of 54 representation Higgs can

be written in terms of 10× 10 matrix

〈F54〉ab = FU
54Aab = FU

54

√

3

5

(

1

3
,
1

3
,
1

3
,−1

2
,−1

2
,
1

3
,
1

3
,
1

3
,−1

2
,−1

2

)

. (2.9)

The gaugino will get contribution from

L ⊇ < FΦ >αβ

M∗
λαλβ (2.10)

with the F-term VEVs (F54)ab = FU
54
.Aab. Here the universal part FU

54
is independent of

the group structure. Then the non-universal gaugino masses are given by

M1 = −1

6

√

3

5
m1/2, M2 = −1

2

√

3

5
m1/2, M3 =

1

3

√

3

5
m1/2 (2.11)

with

m1/2 =
FU
54

M∗
. (2.12)

The sfermion masses and kinetic term will be generated by the following non-renormalizable

Kähler potential

K =
1

M2
∗

φ†
a(Φ

†Φ)abφb (2.13)

with proper F-term and lowest component VEVs of Φ, respectively. Here we assume that

the universal part of the kinetic terms Φ†Φ is approximately canceled by a similar high

dimensional operators with a lowest component VEV of singlet.

We know from the group theory that possible contributions to Kähler potential for

matter content (filled in 16 representation of SO(10)) can arise from the following type of

Higgs fields

1⊕ 45 ⊃ 54⊗ 54 , 1⊕ 210 ⊃ 16⊗ 16 . (2.14)

So the F-term VEV of the 54 representation chiral superfield will contribute to non-

universal sfermion masses of order (F54/M∗)
2 in addition to possible contributions from

F16. We assume F16 ∼ F54 and we always have F
16

= F16. Since v16 ≫ v54, the 54 repre-

sentation field will give sub-leading contributions and we will not include them explicitly in

the following expressions. From the group structure there are several possible contractions

for matter fields φ with the form of Kähler potential

K ⊃ 1

M2
∗

3
∑

a=1

(φ†
a,16 ⊗ φa,16)

1[(d1Φ
†
H16

+ d̃1ΦH̄
16

)⊗ (f1ΦH16
+ f̃1Φ

†

H̄
16

)]1

+
1

M2
∗

3
∑

a=1

(φ†
a,16 ⊗ φa,16)

45

mn[(d45Φ
†
H16

+ d̃45ΦH̄
16

)⊗ (f45ΦH16
+ f̃45Φ

†

H̄
16

)]45mn (2.15)

+
1

M2
∗

3
∑

a=1

(φ†
a,16 ⊗ φa,16)

210

mnlp[(d210Φ
†
H16

+ d̃210ΦH̄
16

)⊗ (f210ΦH16
+ f̃210Φ

†

H̄
16

)]210mnlp

where d, f, d̃, f̃ denote the corresponding combination coefficients and a is the family index.
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It can be checked that only the first term in eq. (2.15) contributes in this scenario.

Then the soft sfermion masses are given by

ǫ2m̃2
16 = d1f1

F ∗
16
F16

M2
∗

+ d̃1f̃1
F ∗
16
F
16

M2
∗

+ d1f̃1
F ∗
16
F
16

M2
∗

+ d̃1f1
F ∗
16
F16

M2
∗

(2.16)

after we take into account the normalization factor ǫ2 = v2
16
/M2

∗ of the kinetic term. So

we have

m̃2
16 ∼ F ∗

16
F16

M2
∗ ǫ

2
∼ F ∗

16
F16

v2
16

. (2.17)

We can see that the typical gaugino mass scale m1/2 is suppressed by a factor ǫ relative to

the sfermion mass scale.

The soft SUSY breaking masses for the Higgs potential can be similarly obtained

K ⊃ 1

M2
∗

(φ†
10

⊗ φ10)
1[(g1Φ

†
H16

+ g̃1ΦH̄
16

)⊗ (h1ΦH16
+ h̃1Φ

†

H̄
16

)]1

+
1

M2
∗

(φ†
10

⊗ φ10)
45

mn[(g45Φ
†
H16

+ g̃45ΦH̄
16

)⊗ (h45ΦH16
+ h̃45Φ

†

H̄
16

)]45mn, (2.18)

with also contributions from F54 after we add similar terms involving the 54 representation

Higgs fields. Both contributions are at the same order and the soft SUSY breaking Higgs

masses are given by m2
Hu,d

∼ (m1/2)
2. Thus we can see that the soft SUSY breaking Higgs

mass parameters can be at the same order as the gaugino.

The trilinear terms will also get contributions from both 16 and 16 representation

Higgs fields. The relevant non-renormalizable superpotential has the form

W ⊃ yYukawa
M2

∗

(ΦH
16

⊗ ΦH16
)1[C1(16i ⊗ 16i)

m
1010

m]

+
yYukawa
M2

∗

(ΦH
16

⊗ ΦH16
)45mn[C

45(16i ⊗ 16i)
mnl
12010

l]

+
yYukawa
M2

∗

(ΦH
16

⊗ ΦH16
)210mnlp[C

210(16i ⊗ 16i)
mnlpq
126

10q] . (2.19)

Again, here only the first term contributes. From the lowest component VEV and F-term

VEV of H16 and H
16
, we can obtain the trilinear coupling as

ǫ2Ay = C1

[

v16F16

M2
∗

+
v
16
F16

M2
∗

]

yYukawa . (2.20)

after we normalize the kinetic term for the 16 representation matter contents. Thus, we

see that

A0 =
Ay

yYukawa
∼ F

16

v16
(2.21)

is typically of the same scale as sfermion masses.

The Bµ-term and µ term are given by

W ⊃ (M +Φ45)φ10φ10 + k1(M +Φ45)
(Φ54)

M∗
φ10φ10 . (2.22)
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We will not discuss in detail the doublet-triplet splitting problem in GUT and just use the

fact that the combination M + 〈Φ45〉 will lead to (by possible tuning or some mechanism)

proper low energy effective µ term.

The Bµ-term will be generated after Φ54 acquires F-term VEVs

Bµ = −k1

√

3

5

FU
54

M∗
µ . (2.23)

The electroweak symmetry breaking condition can relate different parameters as

|µ|2 = −M2
Z

2
+

1

tan2 β − 1
(m2

Hd
− tan2 βm2

Hu
) , (2.24)

2Bµ = sin 2β(m2
Hd

+m2
Hu

+ 2|µ|2) . (2.25)

Although there are many possibilities for the choice of µ from electroweak symmetry break-

ing condition, the relation eq. (2.23) will further constrain the choice of µ. Combining

eq. (2.23) with the (RGE modified) approximation m2
Hd

& m2
Hu

, we can see that the sym-

metry breaking condition requires |µ|2 ∼ −m2
Hu

∼ Bµ ∼ m2
1/2 for a negative m2

Hu
. For a

positive m2
Hu

, it is difficult to reconcile a large tanβ and m2
Hd

& m2
Hu

in case of µ ≪ m2
hu
.

Only if the RGE running can affect greatly the GUT scale relation m2
Hd

= m2
Hu

can a

relatively heavy µ be possible. The cases of tanβ ∼ 1 which indicate |µ|2 ≫ |m2
hd
| for both

signs of m2
Hu

can hardly be compatible with eq. (2.23).

So we see that in our scenario the hierarchy between the GUT scale and the Planck

scale is used in splitting the SUSY soft spectrum in contrast to the gauge loop factor

appeared in simply unnatural supersymmetry [20].

3 Gauge coupling unification and dark matter constraints

3.1 Inputs of our model

In this section we check the gauge coupling unification and dark matter constraints in our

scenario. From the previous section, we can see the inputs of our scenario at the GUT scale:

• The gaugino masses with the raito

M1 : M2 : M3 = −1 : −3 : 2

• The hierarchy between the GUT scale (SO(10) breaking scale) and the Planck scale

ǫ.

• The higgsino mass µ which should be at the same sacle as gaugino mass.

• The parameter tanβ. We scan it in the range 1 ∼ 50.

The sfermion mass m0, determined by m1/2/ǫ, and the trilinear term A0 ≃ m0 are not

independent parameters in our model. This scenario predicts different parameter values in

comparison to the universal gaugino mass scenario [21]. It is well known that the ratios of

– 6 –



J
H
E
P
0
3
(
2
0
1
5
)
0
5
0

gaugino masses and the corresponding gauge couplings in SUSY are RGE-invariant up to

one-loop level

d

d lnµ

(

Mi

g2i

)

= 0. (3.1)

If we assume universal gaugino masses M1 = M2 = M3 ≡ MU at the GUT scale, from the

RGE-invariant ratio

M1

g21
=

M2

g22
=

M3

g23
=

MU

g2U
(3.2)

and the electroweak scale inputs we can have a mass relation given by

M1 : M2 : M3 ≃ 1 : 2 : 6 (3.3)

at electroweak scale. On the other hand, if we assume non-universal gaugino masses at the

GUT scale, the above gaugino mass ratios at the electroweak scale will be approximately

changed to

M1 : M2 : M3 ≃ 1 : 6 : −12 . (3.4)

We should note again that the formula eq. (3.1) can no longer be valid below MS where

heavy scalars decouple. So the exact gaugino mass ratio in split SUSY should be obtained

by the subsequent RGE running from MS to EW scale.

3.2 The gauge coupling unification requirement

We study the gauge coupling unification with the two-loop RGE running of gauge couplings,

taking into account all weak scale threshold corrections. The relevant analytical results for

the two-loop beta functions are given in the appendix. It is well known that the two-loop

RGE running for gauge couplings are scheme independent [46], so we use the MS couplings

in our study of the gauge coupling unification. Lacking the full knowledge responsible

for GUT symmetry breaking, especially the mechanism used to solve the doublet-triplet

splitting problem which is model dependent, we therefore neglect such GUT scale threshold

corrections in our study. In order to make our calculation reliable, the first step SU(5) GUT

scale must be much lower than the Planck scale so that the gravitational effects can be

neglected. Besides, the GUT scale can not be too low, otherwise it will lead to fast proton

decay. The constraint is [21, 47–50]

1.0× 1019GeV > MGUT >
√
35αGUT

(

6.9× 1015
)

GeV . (3.5)

In our numerical study we input the central values of g1 and g2 while for g3 we require

it in the 3σ at the electroweak scale. Other inputs at the electroweak scale, for example,

the top Yukawa coupling yt, are extracted from the SM taking into account the threshold

corrections. Relevant details can be seen in the appendix of [21, 51, 52]. Because of the

uncertainty of the GUT scale threshold contributions, we adopt the criteria that the gauge

coupling unification is satisfied when the three couplings differ within the range < 0.005.
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Figure 1. The scatter plots of the parameter space with gauge coupling unification in case of

universal gaugino input (upper) and non-universal gaugino input (lower) at the GUT scale.

Figure 1 shows the result of the parameter space (M2, MS , µ) with successful gauge

coupling unification in case of universal condition eq. (3.3) and non-universal condition

eq. (3.4), respectively. We can see that the gaugino unification gives a stringent constraint

on the parameter space. From the upper-left panel we can find an upper bound for MS ,

which is about 106GeV. Since split SUSY requires MS ≫ Mg̃i , we can also obtain an upper

bound for M2 correspondingly. From the upper-right panel we can find upper limits for µ

and M2, which are around 100TeV, independent of the MS value. However, the constraints

for the non-universal gaugino scenario are rather mild. From the lower panels, we can see

that MS can be as high as 1012GeV while M2 can be 109GeV. The µ parameter, which

plays an important role in gauge coupling unification, also has an upper bound around

105GeV for both non-universal and universal case.

3.3 Dark matter constraints

Now we study the dark matter constraints in our scenario, using the latest dark mat-

ter relic density data from Planck [53], WMAP [54] and the direct detection limits from

XENON100 [55] and the LUX [56]. The package DarkSUSY [57] is used to scan the pa-

rameter space of our scenario. In addition to the inputs defined above, we also require

1 < tanβ < 50. In order to calculate the relic density of dark matter, we use the fact
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that the effects of heavy sfermions and heavy Higgs fields almost entirely decouple when

MS = MA > 5TeV [58]. So in our numerical study, we keep the samples which satisfy the

GUT constraints and then set MS = MA = 10 TeV in DarkSUSY to carry out the dark

matter related calculations.

For illustration we set MS = 30, 50, 100, 200 TeV and show the allowed ranges for

the parameters M2, µ, tanβ. In our scan, we take into account the current dark matter

and collider constraints (the details can be found in our previous work [21]):

(1) We require that the relic density of the neutralino dark matter satisfies the Planck

result ΩDM = 0.1199± 0.0027 [53] (in combination with the WMAP data [54]).

(2) The LEP lower bounds on neutralino and charginos, including the invisible decay

of Z-boson. For LEP experiments, the most stringent constraints come from the

chargino mass and the invisible Z-boson decay. We require mχ̃± > 103GeV and the

invisible decay width Γ(Z → χ̃0χ̃0) < 1.71 MeV, which is consistent with the 2σ

precision EW measurement Γnon−SM
inv < 2.0 MeV.

(3) The precision electroweak measurements. We require the oblique parameters [59, 60]

to be compatible with the LEP/SLD data at 2σ confidence level [61].

(4) The combined mass range for the Higgs boson: 123GeV < Mh < 127GeV from

ATLAS and CMS collaborations of LHC [1, 2]. In split SUSY, due to large MS ,

log(m2
f̃
/m2

t ) ≫ 1 will spoil the convergence of the traditional loop expansion in

evaluating the SUSY effects of Higgs boson self-energy. So in order to calculate mass

of the SM-like Higgs boson, we use the RGE improved effective potential [62] which

is employed in the NMSSMTools package [63] after we set λ = κ → 0.

Note that the spin-independent (SI) dark matter-nucleon scattering rate is calculated with

relevant parameters chosen as [64–67]: f
(p)
Tu

= 0.023, f
(p)
Td

= 0.032,f
(n)
Tu

= 0.017, f
(n)
Td

= 0.041

and f
(p)
Ts

= f
(n)
Ts

= 0.020. We take into account all the contributions known so far (including

QCD corrections) in our calculation of the scattering rate. The value of fTs
is taken from

the recent lattice simulation results [68–70].

It is instructive to compare the dark matter constraints for non-universal and universal

gaugino scenarios. Results for the universal gaugino scenario are taken from our previous

work [21]. In figures 2 and 3 we show the samples surviving the constraints (1-4), where the

green ‘×’ and red ‘△’ denote respectively the samples allowed and excluded by the gauge

coupling unification requirement. For these results we have the following discussions:

• We can see from figure 2 that increasing MS tends to slightly relax the gauge coupling

unification constraints in non-universal gaugino scenario, in contrast to universal

gaugino scenario where increasing MS tends to spoil the gauge coupling unification.

• For both scenarios, a strip corresponding to the higgsino dark matter with mass range

from 1.0 to 1.3TeV can always survive the combined constraints of gauge coupling

unification and dark matter direct detection (except MS > 200TeV in universal

gaugino scenario which is not preferred by gauge coupling unification requirement).

– 9 –
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Figure 2. The scatter plots of the (µ, M2) parameter space satisfying constraints (1-4) including

dark matter relic density. The green ‘×’ (red ‘△’) can (cannot) achieve the gauge coupling unifica-

tion. The left panel is for the non-universal gaugino scenario proposed in this work while the right

panel is for the universal gaugino scenario studied in our previous work [21].

This is the well known fact that higgsino at about 1.2TeV can be a viable dark matter

candidate.

• Outside the strip of higgsino dark matter, almost all the survived points will be

covered by XEON1T in both scenarios. An interesting exception occurs in non-

universal gaugino scenario, where a tiny strip at about 50GeV cannot be covered

by XEON1T and such a strip enlarges as MS increases. However, a careful analysis

indicates that this strip corresponds to a bino dark matter. Although the gaugino

mass ratio M1 : M2 : M3 = 1 : 6 : 12 is no longer valid at the weak scale in split

SUSY, the RGE running in general will not change significantly the mass ratio for

a not too large MS . So we can estimate that this strip corresponds to a gluino

below 700GeV. The current preliminary limits on gluino mass using 20 fb−1 of 8TeV

data are Mg̃ = 1350GeV ([74]) and Mg̃ = 1200GeV ([75]) assuming a massless

neutralino for mini-split SUSY [76]. So this tiny strip should have been ruled out by

the LHC data.

So we can see that a neutralino dark matter below about 1.0TeV will be fully covered

by XENON1T for both non-universal and universal gaugino scenarios in split SUSY. We

checked that our numerical calculation results are not sensitive to the sign of µ, except that

for the minus sign a very small part of parameter space (called blind spots) can survive all

the constraints including the future XENON1T limits [73].

4 Conclusion

In this work we proposed to achieve the hierarchy of sparticle spectrum in split SUSY

from the gap between the GUT scale and the Planck scale. We built a split SUSY model

– 10 –
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Figure 3. Same as figure 2, but showing the spin-independent cross section of dark matter scat-

tering off the nucleon. The curves denote the limits from XENON100(2012) and LUX as well as

the future XENON1T sensitivity.

(which gives non-universal gaugino masses) with proper high dimensional operators in the

framework of SO(10) GUT. Based on a calculation of two-loop beta functions for gauge

couplings (taking into account all weak scale threshold corrections), we checked the gauge

coupling unification and dark matter constraints. We found that our scenario can achieve

the gauge coupling unification and satisfy the dark matter constraints in some part of

parameter space. We also examined the sensitivity of the future XENON1T experiment

and found that the currently allowed parameter space in our scenario can be covered for a

neutralino dark matter below about 1.0TeV.
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A The two-loop beta function for gauge couplings

In this work, we adopt the method in [77–79] to calculate the two-loop beta functions

for three gauge couplings in the split SUSY, taking into account the weak scale threshold

corrections. Our result is in agreement with [17, 19]. The notations for the two-loop RGE

can be found in the appendix of our previous work [21]. The one-loop beta functions for

the three gauge couplings are given by

b3 = −7θ(µ−MZ) + 2θ(µ−Mg̃) + 2θ(µ−MS) , (A.1)

b2 = −19

6
θ(µ−MZ) +

4

3
θ(µ−MW̃ ) +

2

3
θ(µ−MH̃) +

13

6
θ(µ−MS) , (A.2)

b1 =
41

10
θ(µ−MZ) +

2

5
θ(µ−MH̃) +

21

10
θ(µ−MS), (A.3)
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with the step function defined as

θ(x) =

{

1, x ≥ 0;

0, x < 0.
(A.4)

The 2-loop RGE for SU(3)c, SU(2)L,U(1)Y gauge couplings (g3, g2, g1, respectively)

are given by

d

d lnE
gi =

bi
(4π)2

g3i +
g3i

(4π)4

[

∑

j

Bijg
2
j−

∑

a=u,d,e

dai Tr(h
a†ha)−dW (g̃2u + g̃2d)− dB(g̃

′2
u + g̃′2d )

]

(A.5)

with the U(1)Y normalization g21 = 5
3(gY )

2.

The two-loop beta functions for gauge couplings are given by

Bij = θ(µ−MZ)







199
50

27
10

44
5

9
10

35
6 12

11
10

9
2 −26






+ θ(µ−M2)







0 0 0

0 64
3 0

0 0 0






+ θ(µ−M3)







0 0 0

0 0 0

0 0 48







+θ(µ−MH̃)







9
50

9
10 0

3
10

49
6 0

0 0 0






+ θ(µ−MS)







19
5

9
5

44
5

3
5 −31

3 12
11
10

9
2 −8






. (A.6)

Similarly, we have

du = θ(µ−MZ)

(

17

10
,
3

2
, 2

)

+ θ(µ−MS)

(

7

2
,
9

2
, 2

)

, (A.7)

dd = θ(µ−MZ)

(

1

2
,
3

2
, 2

)

+ θ(µ−MS)

(

23

10
,
9

2
, 2

)

, (A.8)

de = θ(µ−MZ)

(

3

2
,
1

2
, 0

)

+ θ(µ−MS)

(

21

10
,
3

2
, 0

)

, (A.9)

dW =

(

9

20
,
11

4
, 0

)

θ(µ−max(M2,MH̃)) + θ(µ−MS)

(

− 9

20
,−11

4
, 0

)

, (A.10)

dB =

(

3

20
,
1

4
, 0

)

θ(µ−max(M1,MH̃)) + θ(µ−MS)

(

− 9

20
,−11

4
, 0

)

. (A.11)

The one-loop renormalization group equations for Yukawa couplings below the MS scale

can be written as

16π2 d

dt
hu = hu

[

−3cui g
2
i + cuTT + cuS1

S1 + cuS2
S2 +

3

2

(

hu†hu − hd†hd
)

]

, (A.12)

16π2 d

dt
hd = hd

[

−3cdi g
2
i + cdTT + cdS1

S1 + cdS2
S2 +

3

2

(

hd†hd − hu†hu
)

]

, (A.13)

16π2 d

dt
he = he

[

−3ceig
2
i + ceTTT + ceS1

S1 + ceS2
S2 +

3

2
he†he

]

, (A.14)

with

T = Tr(3hu†hu + 3hd†hd + he†he), S1 =
1

2

[

(g̃′u)
2 + (g̃′d)

2
]

, S2 =
3

2

(

g̃2u + g̃2d
)

. (A.15)
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Above MS , we will recover the MSSM result and the one-loop RGE for Yukawa-type

interactions in the superpotential are well known to be

16π2 d

dt
λu = λu

[

−2cui g
2
i + 3Tr(λu†λu) + 3λu†λu + λd†λd

]

, (A.16)

16π2 d

dt
λd = λd

[

−2cdi g
2
i + Tr(3λd†λd + λe†λe) + λu†λu + 3λd†λd

]

, (A.17)

16π2 d

dt
λe = λe

[

−2ceig
2
i + Tr(3λd†λd + λe†λe) + 3λe†λe

]

, (A.18)

with

cui =

(

13

30
,
3

2
,
8

3

)

, cdi =

(

7

30
,
3

2
,
8

3

)

, cei =

(

9

10
,
3

2
, 0

)

. (A.19)

The one-loop Yukawa couplings for cui , c
d
i , c

e
i are calculated to be







cui
cdi
cei






= θ(µ−MZ)







17
60

3
4

8
3

1
12

3
4

8
3

3
4

3
4 0






+ θ(µ−MS)







3
20

3
4 0

3
20

3
4 0

3
20

3
4 0






(A.20)

All terms are set to zero above MS . Besides, we have






cuT cuS1
cuS2

cdT cdS1
cdS1

ceT ceS1
ceS2






= θ(µ−MZ)







1 0 0

1 0 0

1 0 0






+ θ(µ−max(M2,MH̃))







0 0 1

0 0 1

0 0 1






,

+θ(µ−max(M1,MH̃))







0 1 0

0 1 0

0 1 0






(A.21)

and all set to zero above MS .

One loop RGE for gaugino couplings g̃u, g̃
′
u, g̃d, g̃

′
d below MS are given as (with the

gaugino relation M1 < M2)

• Between [max(M2,MH̃),MS ], the RGE for g̃u,d are given by

16π2 d

dt
g̃u = −3g̃uc

u
i g

2
i +

5

4
g̃3u − 1

2
g̃ug̃

2
d

+
1

4
g̃ug̃

′2
u + g̃dg̃

′
dg̃

′
u + g̃u(T + cS1

S1 + cS2
S2) (A.22)

16π2 d

dt
g̃d = −3g̃dc

d
i g

2
i +

5

4
g̃3d −

1

2
g̃dg̃

2
u

+
1

4
g̃dg̃

′2
d + g̃ug̃

′
ug̃

′
d + g̃d(T + cS1

S1 + cS2
S2) (A.23)

with the coefficient

cu,di =

(

3

20
,
11

4
, 0

)

, cS1
= cS2

= 1. (A.24)

Below max(M2,MH̃), the coupling are switched off.
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• Between [max(M2,MH̃),MS ], the RGE for g̃u,d are given by

16π2 d

dt
g̃′u = −3g̃′uc̃

u
i g

2
i +

3

4
g̃′3u +

3

2
g̃′ug̃

′2
d

+
3

4
g̃′ug̃

2
u + 3g̃′dg̃dg̃u + g̃′u(T + cS1

S1 + cS2
S2) (A.25)

16π2 d

dt
g̃′d = −3g̃′dc̃

d
i g

2
i +

3

4
g̃′3d +

3

2
g̃′dg̃

′2
u

+
3

4
g̃′dg̃

2
d + 3g̃′ug̃ug̃d + g̃′d(T + cS1

S1 + cS2
S2) (A.26)

with the coefficient

c̃u,di =

(

3

20
,
3

4
, 0

)

, cS1
= cS2

= 1. (A.27)

Between [max(M1,MH̃),max(M2,MH̃)], the RGE reads

16π2 d

dt
g̃′u = −3g̃′uc̃

u
i g

2
i +

3

4
g̃′3u +

3

2
g̃′ug̃

′2
d + g̃′u(T + cS1

S1 + cS2
S2), (A.28)

16π2 d

dt
g̃′d = −3g̃′dc̃

d
i g

2
i +

3

4
g̃′3d +

3

2
g̃′dg̃

′2
u + g̃′d(T + cS1

S1 + cS2
S2), (A.29)

with the coefficient

c̃u,di =

(

3

20
,
3

4
, 0

)

, cS1
= 1, cS2

= 0. (A.30)

Below max(M1,MH̃), the coupling are switched off.
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