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1 Introduction and summary

There have been many ideas proposed to explain the mechanism of the color confinement.

One influential idea has been the monopole condensation [1, 2], that the color is confined

due to the condensation of magnetically charged objects.

Let us for a moment consider a case where a U(1) gauge symmetry is broken by a scalar

field of electric charge q. In the infrared, there still is an unbroken Zq gauge symmetry.

Such a discrete gauge field is locally trivial, but has a subtle physical effect globally. For

example, in a conventional superconductor, the Cooper pairs have charge 2, and therefore

there is a Z2 gauge symmetry.

In a class of confining gauge theories, such as softly-broken N=2 supersymmetric

systems, the confinement proceeds in two steps [3, 4]: the gauge group is effectively broken

to its maximal Abelian subgroup by the strong dynamics, which is then confined by the

condensation of monopoles. We see that, if the monopoles have charge greater than 1,

there can be a magnetic Zq gauge symmetry in the confining vacuum.

The appearance of magnetic Zq gauge symmetry is a much more general phenomenon,

independent of whether the confinement proceeds as above. For example, we argued in [5]

that pure (non-supersymmetric) Yang-Mills theory with gauge group SU(N)/ZN , with the

theta angle θ = 2πk where k is an integer,1 has a magnetic Zgcd(N,k) gauge symmetry in

the infrared confining vacuum.

A rough argument, using the monopole condensation picture, goes as follows. Say, in

the SU(N) Yang-Mills theory with θ = 0, the confinement is due to the magnetic U(1)

gauge field broken by a condensate of magnetic charge 1. In the SU(N)/ZN theory, the

periodicity of the magnetic U(1) gauge field changes by a factor of N . Stated differently, the

magnetic U(1) is now broken by a condensate of magnetic charge N , thus giving a magnetic

ZN gauge field in the infrared. Now, by shifting the theta angle to θ = 2πk, there is a

1Note that the instanton number of SU(N)/ZN gauge fields on a nontrivial spin manifold is 1/N times

an integer, and therefore the periodicity of the theta angle is θ ∼ θ + 2πN .
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discrete version of the Witten effect [6], and the condensate has the magnetic charge N

and the electric charge k. Therefore, what remains in the infrared is a Zgcd(N,k) gauge

field. The same conclusion can also be reached without using the monopole condensation

picture [5].

It can be said that the confining vacuum of the Yang-Mills theory is a version of sym-

metry protected topological phase, if the reader allows the author to use a more fashionable

terminology used these days. This point of view is further studied in e.g. [7–9].

The aim of this short note is to provide another piece of evidence to the existence

of this magnetic Zq gauge field, by considering the Witten index of N=1 supersymmetric

pure Yang-Mills theory with various gauge group G. We start by studying the simplest

cases when G = SU(2) and G = SO(3) in section 2. In section 3 and in section 4, we

analyze the cases G = SU(N)/ZN and G = SO(N), respectively. Finally we analyze pure

super Yang-Mills theory with arbitrary connected gauge groups in section 5.

It should be remarked at this point that all of the difficult gauge-theoretic computations

that are required for the analysis of this note have already been performed in [10, 11], and

what will be presented below is just a translation of the result (3.31) in [11] in the language

of [5]. Therefore, there is nothing new in this note, except for a possibly new viewpoint

that emphasizes the magnetic Zq gauge field in the confining vacuum.

2 With G = SU(2) and G = SO(3)

When G = SU(N). In a classic paper [12], Witten considered pure N=1 super Yang-

Mills theory with G = SU(N) by making the spatial slice to be T 3 of size L. Let us first

briefly recall the analysis performed there.

The spatial slice is periodically identified, xi ∼ xi + L for i = 1, 2, 3. We denote by

Z(L) the Witten index of the system

Z(L) = trH(−1)F e−βH (2.1)

where H is the Hilbert space, F the fermion number, and H is the Hamiltonian. Using the

by-now standard argument, we know Z(L) is independent of L.

When L is very, very big, we can compute Z(L) using the structure of the infrared

vacua. The system has an Z2N R-symmetry which acts on the gaugino λ by a multiplication

by an 2N -th root of unity. The gaugino condensate 〈trλλ〉 breaks it to Z2, which is the

360◦ rotation of the space. Therefore, there are N vacua related by the action of the

R-symmetry, with the gaugino condensate

〈trλλ〉 = Λ3, ωΛ3, . . . , ωN−1Λ3 (2.2)

where ω = e2πi/N and Λ is the gauge theory dynamical scale.

By putting the system on a large T 3, these N vacua give N zero energy states. They

all have the same value of (−1)F , since they are related by the action of the R-symmetry.

We thus find

|ZSU(N)(L)| = N (LΛ ≫ 1). (2.3)
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When L is very, very small, the system is weakly-coupled, and the index Z(L) can be

computed reliably using semi-classical methods. To have zero energy states, the holonomies

g1,2,3 ∈ SU(N) around the three nontrivial paths xi ∼ xi+L of T 3 need to commute. They

can be simultaneously conjugated into the Cartan torus T ⊂ SU(N).

The system is then effectively described by a supersymmetric quantum mechanics with

the following structure: the bosonic degrees of freedom are g1,2,3 ∈ T , the fermionic degrees

of freedom are λ1,2 ∈ t where t is the Lie algebra of T , and we need to impose the invariance

under the Weyl symmetry SN . The zero-energy states are then given by

|0〉 , (trλ1λ2) |0〉 , (trλ1λ2)
2 |0〉 , . . . , (trλ1λ2)

N−1 |0〉 (2.4)

with a suitably chosen state |0〉; note that tr(λ1λ2)
N = 0 because rankT = N − 1.

In the end we find

|ZSU(N)(L)| = 1 + rankT = N, (LΛ ≪ 1). (2.5)

This is consistent with what we found in the infrared, (2.3).

When G = SO(3). Let us now consider what changes when we consider G = SU(N)/ZN .

The case with general N will be considered momentarily; let us first study the simplest

case N = 2.

We begin by considering when the system size L is very very small. As before, we need

to analyze the supersymmetric quantum mechanics based on three commuting holonomies

g1,2,3 ∈ SO(3). We still have the component when g1,2,3 ∈ T ∈ SO(3) where T is the Cartan

torus. This still gives N = 2 states as before.

But this is not all. We can take, for example, three matrices

g1 = diag(+1,−1,−1), g2 = diag(−1,+1,−1), g3 = diag(−1,−1,+1) (2.6)

that mutually commute but cannot be in the same Cartan torus. In fact this is isolated

and its gauge equivalence class cannot be continuously deformed. This gives one zero-

energy state.

Lifting from SO(3) to SU(2), we find that the holonomies g1,2,3 lift to Pauli matrices

σ1,2,3. Note that g1g2 = g2g1 but σ1σ2 = −σ2σ1. This means that the Stiefel-Whitney

class2 w2 of the SO(3) bundle, evaluated on the face C12 of the T 3, gives −1. Here and in

the following, Cij is the T 2 formed by the edges in the i-th and the j-th directions of T 3.

We can similarly compute w2(C23) and w2(C31); we have (w2(C23), w2(C31), w2(C12)) =

(−1,−1,−1).

In general, the possible choices of w2 are (±1,±1,±1). The commuting triples in the

class (+1,+1,+1) are the ones that can be simultaneously conjugated to the Cartan torus

T ⊂ SO(3) discussed above, and they give 2 states. For each of the other seven choices

of w2, there is one isolated commuting triple, that gives one zero-energy state.3 In total,

we find

|ZSO(3)(L)| = 2 + 7 = 9 (LΛ ≪ 1). (2.7)

2This is the w2 of the gauge bundle. In this note we only consider tori with trivial spin structure.
3The fermion number (−1)F1 of these seven states is the same as the fermion number (−1)F0 of the

two states we found earlier. To see this, let us consider the partition function on a small T 4 with fixed
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Therefore, we should find the same when L is very, very big. But how? There are still

two vacua, with 〈trλλ〉 = ±Λ3. But one vacuum has magnetic Z2 gauge symmetry while

the other does not [5]. More precisely, the theory has a line operator with nontrivial Z2

charge, coming from the ’t Hooft line operator in the ultraviolet. In the first vacuum it

has a perimeter law, and in the second vacuum it has an area law.

Thus, on a very big T 3, the first vacuum gives 23 states due to the choice of the

holonomies on T 3, and the second vacuum gives just 1. In total,4 we find

|ZSO(3)(L)| = 23 + 1 = 9 (LΛ ≫ 1). (2.8)

This is again consistent with the computation in the opposite regime (2.7).

3 With G = SU(N)/ZN

Now let us move on to the case G = SU(N)/ZN . The index of the system in a large T 3

can be found easily. There are N vacua in the infinite volume limit, and as discussed in [5]

and recalled in the Introduction, the k-th vacuum has magnetic Zgcd(N,k) symmetry. Each

vacuum with Zq symmetry gives rise to q3 zero energy states in a large T 3. Therefore the

Witten index is5

|ZSU(N)/ZN
(L)| =

N
∑

k=1

(

gcd(N, k)
)3

=
∑

m |N

(N/m)3ϕ(m), (LΛ ≫ 1) (3.1)

where m|N denotes that N is divisible by m, and ϕ(m) is Euler’s totient function, i.e. the

number of positive integers less than m and relatively prime with m.

To perform the computation in the opposite regime, we need to understand the moduli

space of commuting triples of SU(N)/ZN . First, the topological class of SU(N)/ZN bundles

on T 3 is labeled by its generalized Stiefel-Whitney class w2. In the case of a flat bundle

on T 3, we first take three holonomies g1,2,3 ∈ SU(N)/ZN along three edges X1,2,3 of T 3.

We then lift each element to SU(N) and call them h1,2,3. Then they should commute up

to the center of SU(N), i.e.

hihj = mijhjhi (3.2)

w2. When w2 is trivial along the spatial T 3, the T 4 partition function has the phase (−1)F0 , independent

of w2 along the temporal-spatial directions. When w2 is nontrivial along the spatial T 3 but trivial along

the temporal-spatial direction, the partition function has the phase (−1)F1 . These two configurations can

be mapped to each other by exchanging the time and the space directions. Therefore, we should have

(−1)F0 = (−1)F1 .
4Again, all the states have the same (−1)F . Note that the Z2 gauge theory on T 3 has a global symmetry

C := H1(T 3,Z2), given by tensoring the gauge bundle by another Z2 bundle. The charge under C is

C∨ = H2(T 3,Z2). Now, the 23 states coming from the first vacuum are permuted by C; let us say they have

(−1)F = (−1)Fa . The additional state from the second vacuum is invariant under C, with (−1)F = (−1)Fb .

Stated differently, there are one state with (−1)F = (−1)Fa for each charge in C∨, and another state with

(−1)F = (−1)Fb with zero charge in C∨. Now, the two states with zero charge in C∨ are the same two

states in the SU(2) theory, and therefore have the same (−1)F . Therefore we see that (−1)Fa = (−1)Fb .
5That all the states have the same value of (−1)F can be seen exactly as explained in footnote 4.
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where mij is an N -th root of unity. This mij is w2 evaluated on the face Cij . The

topological class of the bundle is then given by

(w2(C23), w2(C31), w2(C12)) = (m23,m31,m12) ∈ Z
3
N . (3.3)

For example, when (m23,m31,m12) = (e2πi/N , 1, 1), it is known that any h1,2,3 ∈ SU(N)

that satisfy (3.2) can be conjugated to

h
(N)
1 = ek2πi/N , (3.4)

h
(N)
2 = diag(e2πi/N , e2·2πi/N , e3·2πi/N , . . . , eN2πi/N ), (3.5)

h
(N)
3 =

















0 1 0 · · · 0

0 0 1 · · · 0
...

. . .
. . .

...

0 · · · 0 1

1 0 · · · 0 0

















(3.6)

for some integer k. The corresponding elements g
(N)
1,2,3 do not depend on k. Therefore, there

is just one zero energy state with (m23,m31,m12) = (e2πi/N , 1, 1).

In general, we can always set (m23,m31,m12) = (el·2πi/N , 1, 1) for some l | N by

an SL(3,Z) transformation. To see this, consider the finite subgroup of U(1) generated

by m23, m31 and m12. This subgroup consists of l′-th roots of unity for some l′ | N .

Therefore there are three coprime integers (a, b, c) such that ma
23m

b
31m

c
12 = el2πi/N where

ll′ = N . Using this (a, b, c) one finds an SL(3,Z) transformation that sends (m23,m31,m12)

to (el2πi/N ,m′
31,m

′
12). By construction m′

31 and m′
12 are some powers of el2πi/N , and

therefore we can perform a further SL(3,Z) transformation so that the magnetic flux is

now (el·2πi/N , 1, 1).

Then the commuting holonomies h1,2,3 can be put to the standard form

ha = h(N/l)
a ⊗ sa, sa ∈ Tl ⊂ SU(l) (3.7)

where Tl is the Cartan torus of SU(l). Again, h
(N/l)
1 has N/l choices, but they all project

down to the same element in SU(N)/ZN . Quantizing the supersymmetric quantum me-

chanics based on s1,2,3, we get 1 + rankTl = l states.

We now need to count the number of triples (m23,m31,m12) such that they can be

mapped to (e2πil/N , 1, 1). Equivalently, we need to count the number of triples (x, y, z) of

integers mod N such that gcd(x, y, z) = l. This is given by

∑

k | (N/l)

(N/kl)3µ(k) (3.8)

where µ(k) is the Möbius function, defined to be (−1)n if it is a product of n distinct

– 5 –
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primes, and 0 otherwise. Then we find that, when LΛ ≪ 1, the index is6

|ZSU(N)/ZN
(L)| =

∑

l |N

l
∑

k | (N/l)

(N/kl)3µ(k)

=
∑

l |m |N

(N/m)3lµ(m/l) =
∑

m |N

(N/m)3ϕ(m) (3.9)

where the Möbius inversion formula ϕ(m) =
∑

l |m lµ(m/l) was used. This is equal to the

result above (3.1) of the computation in the infrared.

4 With G = SO(N)

Let us now consider the case G = SO(N), N ≥ 7. But let us first recall the situation when

G = Spin(N), first studied in the appendix I of [13].

The dual Coxeter number is N − 2, and therefore, there are N − 2 vacua in the far

infrared, distinguished by the gaugino condensate

〈trλλ〉 = Λ3, ωΛ3, . . . , ωN−3Λ3 (4.1)

where ω = exp(2πi/(N − 2)). Therefore when the size L of T 3 is very big, we find

|ZSpin(N)(L)| = N − 2, (LΛ ≫ 1). (4.2)

The commuting holonomies (g1, g2, g3) can be put into either of the following standard

forms:

ga ∈ T ⊂ Spin(N) (4.3)

where T is the Cartan torus of Spin(N), or

ga = g(7)a sa (4.4)

where g
(7)
1,2,3 is a lift to Spin(7) of the following SO(7) matrices

diag(+1,+1,+1,−1,−1,−1,−1),

diag(+1,−1,−1,+1,+1,−1,−1),

diag(−1,+1,−1,+1,−1,+1,−1),

(4.5)

and sa ∈ T ′ where T ′ is the Cartan torus of Spin(N −7) ⊂ Spin(N) commuting with g
(7)
1,2,3.

The former component gives 1 + rankT zero-energy states, and the latter component

gives 1 + rankT ′ zero-energy states. In total, we find

|ZSpin(N)(L)| =

(⌊

N

2

⌋

+ 1

)

+

(⌊

N − 7

2

⌋

+ 1

)

= N − 2, (LΛ ≪ 1). (4.6)

Now, we move on to the case G = SO(N). In this case, there are two choices of the

discrete theta angle, so there are two theories SO(N)±, see [5]. As argued there, in the

6We can follow the same argument as in footnote 3 to see that these states have the same (−1)F .
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SO(N)+ theory all vacua have Z2 gauge symmetry for SO(N)+, but in the SO(N)− theory

all vacua have just Z1 gauge symmetry. Therefore, in the infrared, we find

|ZSO(N)+ | = 8(N − 2), (LΛ ≫ 1) (4.7)

and

|ZSO(N)− | = (N − 2), (LΛ ≫ 1). (4.8)

Let us confirm this result in a computation in the ultraviolet, LΛ ≪ 1. The topo-

logical type of the bundle is given by the Stiefel-Whitney class evaluated on the faces,

(m23,m31,m12) ∈ {±1}3.

When (m23,m31,m12) = (+1,+1,+1), all the commuting holonomies are obtained by

projecting the Spin(N) commuting holonomies down to SO(N). Then, these give (1 +

rankT ) + (1 + rankT ′) = N − 2 zero-energy states as before.

For seven other choices (m23,m31,m12) 6= (+1,+1,+1), we can always apply SL(3,Z)

to have (m23,m31,m12) = (−1,+1,+1). In [10] it was proved that the commuting

holonomies are either of the form

ga = g(3)a sa (4.9)

where g
(7)
1,2,3 is the following SO(3) matrices

diag(+1,+1,+1), diag(−1,−1,+1), diag(−1,+1,−1), (4.10)

and sa ∈ T ′′ where T ′′ is the Cartan torus of SO(N − 3) ⊂ SO(N) commuting with g
(3)
1,2,3,

or of the form

ga = g(4)a sa (4.11)

where g
(4)
1,2,3 is the following SO(4) matrices

diag(−1,−1,−1,−1), diag(−1,−1,+1,+1), diag(−1,+1,−1,+1), (4.12)

and sa ∈ T ′′′ where T ′′′ is the Cartan torus of SO(N − 4) ⊂ SO(N) commuting with g
(4)
1,2,3.

Quantization of the zero modes then give

(1 + rankT ′′) + (1 + rankT ′′′) = N − 2 (4.13)

states for each of the seven choices (m23,m31,m12) 6= (+1,+1,+1). In the SO(N)+ theory

they are all kept, but in the SO(N)− theory, they have a nontrivial induced discrete electric

charge e = (m23,m31,m12) due to the non-zero theta angle. This causes these states to be

projected out.

In total, we find

|ZSO(N)+ | = 8(N − 2), (LΛ ≪ 1) (4.14)

and

|ZSO(N)− | = (N − 2), (LΛ ≪ 1) (4.15)

in the ultraviolet computation, agreeing with the infrared computations.

We can similarly perform the check for SO(N)/Z2 or Spin(4N)/Z2 that is not SO(4N);

the explicit descriptions of almost commuting triples in [14, 15] are quite useful in this

regard. Instead of describing this, let us move on to a general analysis.

– 7 –
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5 With general connected gauge groups

In fact we can give a uniform argument that the computations of the Witten index in the

ultraviolet and in the infrared always agree, given the facts derived in [10] and [11], once

the basic properties of the discrete theta angle and the magnetic gauge fields given in [5]

are taken into account.

Setup. Let us quickly recall the concepts of the discrete theta angle θdisc and the spectral

flow ∆. For more details, see [5] and [11]. Let the gauge group be G/K where G is

connected and simply connected and K is a subgroup of the center C of G. The elements

of C label the discrete magnetic charge, while the set of irreducible representations C∨

of C label the discrete electric charge.7 The magnetic and the electric line operators in a

theory with gauge algebra g can then be labeled by C × C∨. There is a natural pairing

〈·, ·〉 : C × C∨ → U(1), so that two charges can coexist if and only if the pairing is

trivial, 1 ∈ U(1).

When the gauge group is G/K, the allowed magnetic charges are in K ⊂ C. When

the discrete theta angle is zero, the magnetic charge m and the electric charge e of an

allowed line operator in the system are of the form (m, e) ∈ K × L∨ ⊂ C × C∨, where the

subgroup L∨ ⊂ C∨ is such that m ∈ K and e ∈ L∨ satisfy 〈m, e〉 = 1 ∈ U(1) under the

Dirac quantization pairing. Phrased differently, we have e = 0 ∈ C∨/L∨ = K.

The discrete theta angle θdisc is a K-linear map from K to K∨, and changes the

conditions on the allowed charges in (m, e) ∈ C × C∨ to be

m ∈ K, e = θdiscm ∈ C∨/L∨ = K∨. (5.1)

In other words, θdisc measures the induced electric charge a magnetic source has.

When K = Zq, the discrete theta angle is therefore an integer modulo q. For G =

Spin(4n) and C = K = Z2×Z2, the discrete theta angle is a 2×2 matrix of mod-2 integers.

There is also the continuous theta angle θcont, which might be more familiar. For a

given G, there is a fixed linear map ∆ from C to C∨ such that the continuous change

θcont → θcont + 2π is equivalent to θdisc → θdisc + ∆. Here, ∆ is regarded as a map from

the subset K ⊂ C to the quotient C∨/L∨ = K∨. This ∆ is called the spectral flow and

computed for all G in [11].

Global symmetries. Let h∨ be the dual Coxeter number of G. The R-symmetry of the

N=1 pure super Yang-Mills theory with gauge group G is Z2h∨ , such that Z2 subgroup

is the fermion number. For simplicity, we measure the R-symmetry using Zh∨ , and take

into account the fermion number separately. As far as we only consider pure N=1 super

Yang-Mills theory, we can now set θcont = 0 by performing a phase rotation of the gaugino.

When the gauge group is G/K, some of the R-symmetry is lost, since θcont → θcont+2π

is no longer a symmetry. But there is an additional symmetry that is useful. To discuss

7As abstract groups C and C∨ are the same, but it is useful for the author to distinguish them to make

sure that we only perform mathematically natural operations. If it confuses the reader s/he can ignore ∨’s

in the notation.
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it, let us consider for a moment a general situation where the spatial slice to be a three-

dimensional manifold X whose integral homology has no torsion. We later set X = T 3.

In the ultraviolet, note that the topological type of a G/K bundle on X is specified by

m ∈ H2(X,K), which is the generalized Stiefel-Whitney class of the bundle. By quantizing

the system, the kets are labeled by m. On these states, we can define an action of g ∈

H1(X,K∨) given by

g |m〉 = 〈g,m〉 |m〉 (5.2)

where 〈·, ·〉 : H1(X,K∨)×H2(X,K) → U(1) is the natural pairing.

In the far infrared, we just have a discrete gauge theory with gauge group K∨, which

is partially confined to some subgroup as we will see below. There is no matter charged

under K∨. The dynamical variable of the system is a K∨-bundle a on X, and we have a

symmetry given by sending a 7→ g ⊗ a, where g is another K∨-bundle. Both a and g can

be specified by their holonomies a, g ∈ H1(X,K∨). In the ket notation, we have

g |a〉 = |ga〉 (5.3)

where we use multiplicative notation for the group structure in H1(X,K∨).

In the language of [8, 16], we have a 1-form global symmetry with group K∨ in four

dimensions, and it becomes an ordinary global symmetry H1(X,K∨) when compactified

on X. When we compare the index in the ultraviolet and in the infrared, we should be able

to match it including the charge H2(X,K) under this global symmetry group H1(X,K∨).

In fact, it is easier to do so than to count the total index itself, as we will see soon.

Ultraviolet. Let us first perform the ultraviolet computation. When the gauge group

is G/C, the topological class of the gauge bundle on T 3 is given by an element m =

(m23,m31,m12) ∈ C3, where mij is the generalized Stiefel-Whiteny class evaluated on the

T 2 face in the direction ij. For each given m, the supersymmetric quantum mechanics on

the moduli space of almost commuting triples in G was performed in [11], when θdisc = 0.

The details of the computation depended on the choice of G, but in the end it was found

that there are always h∨ states in total.

The resulting states carry discrete electric charges e = (e1, e2, e3) ∈ C3 and the R-

charge k ∈ Zh∨ . But since k → k + 1 is equivalent to e → e + ∆m, we cannot measure

k and e simultaneously. For our purposes it is convenient to decide to measure the R-

symmetry charge k under the subgroup Zh∨/nm
⊂ Zh∨ depending on m, where nm is the

smallest positive integer such that nm∆m = 0. Then we can measure the electric charges

in C3. Then what was found in [11] concerning the zero-energy states in a given sector of

m ∈ C3 can be summarized as follows, see (3.30) and (3.31) in that paper:

• The possible electric charge is of the form e = k∆m, k = 1, . . . , nm.

• For each such e, and for each possible R-charge under Zh∨/nm
, there is one state.

• Every zero-energy states have the same (−1)F = (−1)rankG.

In total, there are indeed h∨ states in that sector.

With this result it is easy to count how many vacua there are when the gauge group

is G/K and the discrete theta angle is θdisc. The topological type of the G/K bundle is
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classified by m ∈ K3 ⊂ C3. The possible electric charge is then of the form k∆m+ θdiscm

for k = 1, . . . , nm. Now, we need to impose a discrete version of the Gauss law constraint,

saying that the state is uncharged under the gauge transformation in K ⊂ G. This restricts

the electric charge to be zero in G∨/L∨ = K∨. Therefore, the number of the vacua for a

given m ∈ K3 is

h∨

nm
×#{k = 1, . . . , nm | (k∆+ θdisc)m = 0 ∈ (K∨)3} (5.4)

which is either h∨/nm or 0, depending on whether there is a k such that (k∆+ θdisc)m = 0

or not. In the former case, there is one state for each possible R-charge under Zh∨/nm
.

Infrared. Next, let us perform the infrared computation. There are h∨ vacua, with the

gaugino condensate given by

〈trλλ〉 = Λ3, ωΛ3, . . . , ωh∨−1Λ3 (5.5)

where ω = exp(2πi/h∨). They are related by the operation θcont → θcont + 2π.

In a theory with G/K gauge symmetry, we have ’t Hooft line operators whose magnetic

charges are valued in K. They give infrared line operators. On a spatial slice X, these lines

are labeled by H1(X,K). Let us say that the condensate is purely magnetic in the zero-th

vacuum when the discrete theta angle is zero. Then all these infrared line operators have

perimeter law. We can say that in the infrared, there is a gauge field with finite gauge

group K∨, so that these line operators are electrically charged Wilson line operators of this

finite group K∨.

In the k-th vacuum, with the discrete theta angle θdisc, the condensate has an induced

electric charge due to the operation θcont → θcont + 2πk and also due to the discrete theta

angle. As recalled above, the two effects can be combined, by changing the discrete theta

angle by θdisc → k∆+ θdisc.

In the infrared description we adopted above, where the line operators are electrically

charged under the finite gauge field with gauge group K∨, the condensate has now the

induced magnetic charge. The line operator with charge m ∈ H1(X,K) shows the area

law if it feels the induced electric charge in the condensate, i.e. when (k∆+ θdisc)m 6= 0 ∈

H1(X,K∨). This means that the gauge symmetry K∨ is partially confined to a subgroup

K∨
k which is the kernel of k∆+θdisc. We also see that it has a nontrivial confinement index

in the language of [17].

Now, let us put the infrared theory on a big X = T 3. The k-th vacuum has a discrete

K∨
k gauge symmetry, and it gives |K∨

k |
3 zero-energy states. We would like to identify the

charges of these states under the global symmetryH1(X,K∨) mentioned above. The charge

under this global symmetry is given by an element m ∈ H2(X,K) ≃ H1(X,K), which can

be naturally identified with the charge of the line operators. When (k∆ + θdisc)m 6=

0, they are confined as argued above and therefore they cost non-zero energy. When

(k∆+ θdisc)m = 0 they are not confined, and indeed there are |K∨
k |

3 such states.

Let us now count the number of vacua with a given m, varying k. This is of course

#{k = 1, . . . , h∨ | (k∆+ θdisc)g = 0} (5.6)
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which is either 0 or h∨/nm, where in the latter case, nm is the smallest positive integer

such that nm∆m = 0. Note that the R-symmetry Zh∨ in this sector is broken to Zh∨/nm
,

which rotates these states. Therefore, there is exactly one state for each possible R-charge

under Zh∨/ng
in this case. Generalizing the argument given in footnote 4, we see that all

the zero-energy states thus found have the same value of (−1)F .

Comparison. What we found in the ultraviolet (5.4) and in the infrared (5.6) are clearly

equal, including the charge under the R-symmetry. This is as it should be, since the Witten

index is independent of the size of the box, in each of the charge sector under the global

symmetry H1(X,K∨) of the system on X = T 3.

At this point we see that we did not add almost anything compared to the under-

standing already given in [11], as already mentioned at the end of the Introduction. In the

previous sections we compared the total Witten index, that looked complicated. But in

fact it is easier and more trivially related to what was done in [11] to compare the index in

a fixed value of the charge of the low-energy line operators m ∈ H1(T
3,K) or equivalently

the ultraviolet topological class m ∈ H2(T 3,K).
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