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1 Introduction

Since the seminal work of Cremmer and Julia [1] it is well known that maximal supergravity
compactified on a torus T enjoys a hidden exceptional symmetry Eg(a)- From the M-theory
point of view these U-duality transformations unify the perturbative T-duality, that relates
type ITA and type IIB theories, and the S-duality of type IIB string theory. However, such
formulation does not provide a natural geometric interpretation of the duality symmetries.

In the series of works [2-5], exceptional field theory, the Ey4)-covariant formulation
of the full bosonic sector of maximal supergravity, was constructed for d = 6,7,8. It
brings together the ideas from double field theory [6-10], its extension to exceptional
groups [11-14], and extended geometry [15-17] that is an extension of Hitchin’s generalised
geometry [18, 19] to the case of exceptional duality groups. These structures are defined
on an exceptional space-time parametrized by external and internal coordinates {x#, Y™},
w=0,...,4; M =1,...,27, the latter transforming in the fundamental representation of

1

Eg).- This space is dynamically restricted by a covariant differential constraint called

n the scheme of [20], generalized space-time is encoded in the infinite-dimensional l; representation
of E11 .



section condition, that allows to systematically drop the extra coordinates and return to
the conventional supergravity. The structure of the exceptional field theories resembles the
one of the corresponding (11 — d)-dimensional gauged supergravities [21, 22], however with
all fields living on the full exceptional space-time. The dynamics of the “internal” sector is
formulated in terms of the Lagrangian for a generalised metric, that is constructed from the
scalar fields, parametrising the coset space G/K. In this formalism U-duality symmetries
are recovered from generalized Lie derivatives in the internal space [15, 23]. Invariance un-
der generalized diffeomorphisms in the external and internal coordinates uniquely fixes all
the bosonic couplings of the theory without imposing any supersymmetric structure. Yet,
the resulting bosonic system can be supersymmetrized by introducing fermions together
with the corresponding connections under the generalized Lorentz group. The supersym-
metric version of the full E77y EFT has been constructed in [24].

In this work we present the supersymmetric completion of the Egg)-covariant excep-
tional field theory that lives on a 5+27-dimensional exceptional space-time. The bosonic
theory has been constructed in [2, 3]. Generalized diffeomorphisms in the internal coordi-
nates YM enter the theory as Yang-Mills type gauge symmetries coupled to the Kaluza-
Klein vector field AMM in the fundamental representation of Eg(g). Fermions enter the
theory as spinors under the generalized SO(1,4) x USp(8) Lorentz group. Under gener-
alized diffeomorphisms they transform as weighted scalars. As in D = 5 maximal super-
gravity [21, 25|, gravitinos ,’ and fermions x“* transform in the fundamental 8 and the
antisymmetric traceless 42 representation of USp(8), respectively. However, unlike in the
five-dimensional truncation, they live on the full exceptional space-time modulo the covari-
ant section condition, which effectively reduces the number of physical coordinates down
to ten or eleven. Accordingly, the coupling of fermions requires a set of spin connections

| D Dy
SO(1,4) | w,®  wy® (1.1)
USp(8) | Qui/ Qi

in the external and internal directions, and for the two factors of the Lorentz group, re-

spectively. These connections are defined in terms of the bosonic frame fields, the fiinfbein
eu®, and the Egg)-valued 27-bein Vys. The SO(1,4) connection wy,® is defined by the

usual vanishing torsion condition
'D[Mey]a =0 < F[My]p =0, (1.2)

however modified by the fact, that the derivative is covariantized also w.r.t. internal gen-
eralized diffeomorphisms under which the fiinfbein e,* transforms as a weighted scalar.
For the internal sector on the other hand, vanishing torsion translates into the projection
condition [15]

Tun™ =0, (1.3)
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for the generalized Christoffel connection, decomposed into irreducible Egg) representa-
tions. The off-diagonal blocks in (1.1) finally are determined by demanding that the



algebra-valued currents
T = e“"Dlwle,’ Tuw? = VM DIA, Q) V", (1.4)

of the frame fields live in the complement of the maximal compact subalgebra within

GL(5) X EG(G) :

jMab s0(1,4) =0 ’ jﬂklw usp(8) =0 (1'5)
Based on these connections we construct the supersymmetry transformation laws and the
full supersymmetric Lagrangian in Eg(g)-covariant form. Upon explicit solutions of the
section condition, the Lagrangian reduces to full D = 11 supergravity and the IIB theory,
respectively.

The paper is organized as follows. In section 2 we briefly review the structure of the
bosonic Eg(g) exceptional field theory. We give explicit expressions for the SO(1,4) and
USp(8) connections (1.1) and the associated curvatures which are the building blocks for
the bosonic field equations. In section 3 we present the supersymmetry transformations
for all the fields of the theory in a U-duality covariant form based on the connections (1.1).
The supersymmetry algebra closes with the following schematic form

[0(e1),5(€2)] = E"Dpu + Ss0(1,4) () + Suep(z) (A7) + Ssusy (€3)

_ _ _ (1.6)
+ 6gauge (AM) + 5gauge (:u M) + 5gauge(\:uu a) + 5gauge(:uu M) )

into the local bosonic symmetries of the theory, with the explicit transformation parameters
listed in (3.4) below. The geometry of the extended space deforms the supersymmetry
algebra in a non-trivial way, although its structural form remains the same as that of the
maximal gauged D = 5 supergravity [21, 25]. The full U-duality covariant supersymmetric
Lagrangian is then given in section 4. In particular, we observe that all Pauli couplings
of the fermions to the field strength fw,M can be absorbed by a shift of the internal spin
connection according to

1
wjjf/[ab = wy®+ §MMN .FWN ehaerh (1.7)

We sketch the relevant steps in the proof of supersymmetry invariance while the full cal-
culational details are collected in appendix A. The results are discussed in section 5.

2 (Gauge structure and connections

We start by giving a brief review of the bosonic field content and gauge symmetry of the
Eg(6)-covariant exceptional field theory, constructed in [2, 3] (to which we refer for details).
Next we set up the USp(8) x Eg(g)-covariant geometrical formalism and in particular de-
fine the SO(1,4) and USp(8) spin connections required for the coupling of fermions. We
then work out their various curvatures which are the building blocks for the bosonic field
equations.



2.1 Bosonic field content and tensor hierarchy

The bosonic field content of Eg) exceptional field theory is given by
a ij M
{eu » Y, Au > B/LZ/M}) (2'1)

with indices p,v = 0,...,4, and M = 1,...,27, labelling external and internal coordi-
nates, respectively, while indices a = 0,...,4, and 7,5 = 1,...,8, label fundamental indices
of the SO(1,4) and USp(8) Lorentz group, respectively. The fiinfbein e,* defines the
five-dimensional ‘external’ metric as g,, = e““e,,bnab with the flat Minkowski metric 7.
Similarly, the pseudo-real 27-bein Vj;% defines an ‘internal’ metric as

Mun = V'V, (2.2)

where Vasi5 = (Var?)*. The 27-bein Vi can be viewed as an Egg)/USp(8) coset repre-
sentative with the properties

Vi = vyl Vi =0, Vi = V) = VM, (2.3)

where €;; = Q[ij] denotes the symplectic invariant tensor. Thus M,y in (2.2) is real and
symmetric. We further define the inverse 27-bein as

. 1
ViV = ou? VM = s — ng‘ijl ) (2.4)

where we use conventions ;) = %(%55 —5;5%) and Q;, Wk = 55 The fact that the 27-bein is
an Eg() group-valued matrix is most efficiently encoded in the structure of its infinitesimal
variation,

(5VMij = -2 (5qk[i VMj]k + (5pijkl Vur ki (2.5)
with dg;7 and p* spanning the 36 and 42 of USp(8), respectively, i.e.
dgi = =g, spU = gplitl (2.6)

and corresponding to the compact and non-compact generators of ¢g(s), respectively. Dou-
ble brackets [ijkl] here and in the following indicate projection onto the totally antisym-
metric and Q-traceless part, i.e. 6p7* €y, = 0.

All fields (2.1) formally depend on the five external coordinates z*, and 27 internal co-
ordinates Y™, with the latter transforming in the fundamental representation of Eg(s)- The
YM_dependence is strongly restricted by the Eg(6) covariant section condition [11, 23, 26]

dEMN gyonA =0,  dEMN 9y AONB =0, (2.7)

for any fields or gauge parameters A, B. Here, d¥M¥ is the totally symmetric cubic
invariant of Eg). These constraints admit (at least) two inequivalent solutions, in which
the fields depend on a subset of six or five of the internal coordinates. The resulting theories



are the full D = 11 supergravity and the type IIB theory, respectively. For later use we
note that the cubic Eg(g) invariant dMNK g related to the symplectic tensor (Q;; via

dMNP _ lvz]MVklNanPQ]leanl,

\25 ) (2.8)
dMNP = EVMUVNMVPanijlani )

as a consequence of the group property of Vy;%. We use normalization such that
dypdVEE = 6N, With (2.8), the section constraint (2.7) can be rewritten as

1
VM VN 9y AdNB = 5 % MMN 9, ADNB | ete. (2.9)

which is a form that we will often use in the following.
The exceptional field theory is invariant under generalized diffeomorphisms in the
internal coordinates which act according to [15]

(LAVYM = ANoN VM — 6 PM K Lo ARV 4 Ay op APV M, (2.10)

on a vector VM of weight \y.. Here, PM K1 = (to) v (t*) X denotes the projector
onto the adjoint representation of E), (ta)n™ denoting the representation matrix in the
fundamental representation. The diffeomorphism parameter AM in (2.10) may depend on
internal and external coordinates. As a result, all external derivatives are covariantized
according to

Dy=08,—La, (2.11)

with the vector field A, from (2.1). Accordingly, non-abelian field strengths for vector
and two-form fields are defined as

]:;WM = 28[uAU}M — QA[HKC?K.AZ,}M +10dMEBqn R A[,LLN 8KA,,]L
+ 10 dMNK 8I(ls,/u/N )

HMVPM =3 D[uByp] M—3 AdMKL .A[MK 8,,Ap]L +2dyv Kl A[MK.Al,Pap.Ap]L
— 10 dMKLdLPRdRNQ A[HKAVN ap.Ap]Q + (2.12)

with the dots indicating terms that vanish under projection with d¥™Ngy. Here, vector
fields and two-forms carry weight Ay = %, A = %, respectively, and the same weight is car-
ried by their respective gauge parameters. The field strengths (2.12) transform covariantly
under the non-abelian gauge transformations

SAM = DAM —10aMVE 9K E, N

5BMVM = 2D[MEV] M+ AdvKL (AK]:W,L — .A[MK(SA,/]L) + O}U/M , (2.13)

with ¢&MN OmOy v = 0. The parameter O,y can be viewed as the tensor gauge param-
eter of the three-forms of the theory which we have not explicitly introduced, since they



do not enter the Lagrangian. More precisely, this parameter may decomposed according
to the field content of three-forms, as

O,uuM = (ta)MN aNEuua +E/,LI/M’ (214)

with gauge parameter =,, o in the adjoint representation, and a constrained gauge pa-
rameter =, \ satisfying the same section condition (2.7) as the internal derivatives, i.e.
dEMN =)0y = 0, etc.. This is analogous to the structure of two-forms in E7(7) EFT and
vector fields in Eggy EFT, respectively, cf. [4, 5]. The two forms By, y enter the Lagrangian
only under projection %MV Om B N, such that their shift symmetry do constitutes a triv-
ial symmetry of the action.

Under generalized diffeomorphisms, the field strengths ]-"WM and H,,, v transform
according to (2.10) as contravariant and covariant vector of weight \r = % and \y = %,
respectively. In contrast, both are inert under tensor gauge transformations =, ;. The
remaining bosonic fields in (2.1) transform as scalars under generalized diffeomorphisms
with vanishing weight for V3;% and weight % for the fiinfbein e,“.

Furthermore, the non-abelian field strengths (2.12) satisfy the Bianchi identities

3D T = 10d" VK0 My
ADMypoi vt = =3dyrr Fiuw™ Foo)™ + -+ (2.15)

In addition to the generalized internal diffeomorphisms and tensor gauge transforma-
tions (2.10), (2.13), the theory is invariant under external diffeomorphisms in the coordi-

nates x*, under which the fields transform as

de,* = &"Dye,* + Dy&le*
IMun =& DyMuyn ,
SAM = & F M+ MM g, On€"
0Bm = L gr €Euvpor .FUTNMMN —dymKr A[ K 5./41,]1' , (2.16)
2V/10 :
according to a modified version of the standard five-dimensional diffeomorphisms, with
parameter £# which also is a function of z* and Y'M.

2.2 Fermions and connections

The fermionic fields of the theory comprise 8 gravitino fields 1/1; and 42 spin—% fermions
xk = xlk] With respect to generalized internal diffeomorphisms (2.10) the fermionic
fields transform as weighted scalars of weight Ay, = %, A = —%. With respect to the (ex-
ternal and internal) Lorentz group, the fermions are SO(1,4) spinors and transform in the
corresponding representations of USp(8). Like the bosonic fields, also the fermions depend
on all coordinates ##, Y™, modulo the section condition (2.7). We use the conventions

of [21] from five-dimensional gauged supergravity.

“The only exception is our convention for the Levi-Civita density where we follow [3], with the two

. 1312.0614 . [hep—th/0412173 . . . . abede
conventions related by ELupar = —ZELVCEUT / !, Accordingly, y-matrices satisfy y**°d¢ = jg@bede,



In particular, we use symplectic Majorana spinors subject to the reality constraint

-1 j i 5,7 -1c mn
CTWl =it Wt C =99, T = QaQm Qe (2.17)

where the charge conjugation matrix C' is defined by the following relations

Cr,C ' =~ cT=-c, ct=c!. (2.18)

a

This implies the following relation for fermionic bilinears with spinor fields ¢" and ¢°
0iT! = —Qu Vg (C7ITTCYy* | (2.19)

for any expression of gamma matrices I
According to the structure of the internal and external Lorentz group there are four
different blocks of the spin connection

wy Qum

[“’“ < ] , (2.20)

that ensure SO(1,4) and USp(8) covariance of external and internal derivatives, respec-
tively. Let us discuss them one by one. The external SO(1,4) connection w”ab is defined
by the vanishing torsion condition

D[He,,]a = D[Mel,]“ + w[uabeu]b 0, (2.21)

as in standard Riemannian geometry albeit with derivatives D, covariantized according
to (2.11). Furthermore, the external Christoffel connection I';, can be defined by imposing
the vielbein postulate for the fiinfbein D,e,* — Fi‘weﬂ = 0. The internal spin connection
on the other hand is defined via

e“[aDMeMb] L0 e— wy® = e”[‘l@Meub}. (2.22)

Its presence guarantees that internal spinor derivatives transform as SO(1,4) spinors. As
a general notation in the following we will use D to indicate (internal or external) deriva-
tives including all spin connections while D,, will only refer to the covariantization (2.11).
Moreover, in the following it will be useful to define the modified internal spin connections

1
wﬁab = wy™®+ B Muyn ]-"WN elaet? (2.23)

shifted by the non-abelian field strength (2.12). We will denote the corresponding covariant
derivatives by D]j\}.

Similar relations define the USp(8) connections. The external connection Q, ;7 is
defined in analogy to D = 5 gauged supergravity [21] by imposing that the covariant
derivative of the 27-bein takes the form

!

DV = DV +20,, vt = PR Yy (2.24)



with an Eg(g)/USp(8) coset current P,* K — p, Lk After proper contractions of indices
it is straightforward to find the explicit expressions

1 A g iy
VMDD Vy* PR = DRI (2.25)

Q,uij = 3

Note the use of the covariant derivative D), = 8, — L 4, to preserve invariance under gener-
alized diffeomorphisms. These equations imply the following Maurer-Cartan integrability
conditions

1

. . . 2 . .
Quvi’ =20, Quy? +2 Qui® Quii’ = =5 Pluitim Poy™™ = 3 Vi L, Vi,

- 1 - (2.26)
D[NPI/]”M = _5 L}—MVVM[UVM]M ’

with the field strength 7, from (2.12). It is straightforward to check that the B, a
contribution in the action £ ]:WVM” drops out due to the section condition (2.7).

Finally, the internal USp(8) connection Qj; is defined by an analogue of the vanishing
torsion condition (2.21) for the internal vielbein [15, 16]. To this end, it is convenient to
define the full internal covariant derivative on an Eg) x USp(8) tensor X ~N° of weight Ax as

, ) ) ) .3 A
VuXn' = 0uXn' — Qu ' Xn? — Tyn™ Xi' — Z)\XFKMKXN’ , (2.27)

with the algebra valued Christoffel connection I'yyn™ = T'y®(to) v . Such defined covari-
ant derivative transforms as a generalized tensor of the weight A = Ax —% under generalised
diffeomorphisms. Vanishing torsion corresponds to imposing the relation

3 !
TNKMEFNKM—GPMKPLFPNL+§PMKQNFPQP =0, (228)

which transforms as a tensor under generalized diffeomorphisms (2.10). The vanishing
torsion condition can equivalently be rewritten as [15, 17, 27]

(Pas1) Y gTNP =0, (2.29)

with the explicit form of the projector P35; onto the 351 representation of Fg) given by

6 3 1
(P3s1) ™ g = —5(t°‘)PN(tB)MP + ﬁ(ta)MP(tﬁ)PN + 551\]\255 : (2.30)
A particular consequence of (2.29) is
1
dMNK FNKL = *5 dMEL FNKN . (2.31)

The vanishing torsion conditions (2.21) can be explicitly solved upon imposing the
generalized vielbein postulate for the 27-bein

VuVn? = 0y V" 4 200 1P VF — Tayn Vi =0, (2.32)



which allows to express the Christoffel connection in terms of the 27-bein and the internal
USp(8) connection. In turn, the vanishing torsion conditions (2.21) translate into the

conditions
2 )
Vi XDy VEIF =3 (VikMDMVNjk - ijMDMVNik) (2.33)
3

— 1 ™ (VikMVNjk - ijMVNik) ,

for the USp(8) connection Qj7;/. These equations determine (part of) the USp(8) connec-
tion Qus47 in terms of the standard decomposition of the Cartan form V=19,V along the
compact and non-compact parts of the Eg) Lie algebra

1
3

7 VieNouVn*, puH = oy VN IVRIN (2.34)

M
Explicitly, parametrizing the connection as
Qus' = aus’ + V" Q" Gt jim (2.35)

with qriij = quy,ij), it 18 straightforward to verify that equations (2.33) are verified
provided that?

1
kl,mn = —PM kip(m Vn)qM OPd — 1 quM (pMqu;(m Qn)l — PM pql(m Qn)k)
1
+7 L™ Vien™ Qyt = Vien™ Qi) + ktmn - (2.36)

Here, ug mn denotes the undetermined part of the connection, satisfying
y
Ukl jm = ULk, Gm) > Ukimln = 05 Ukljm Q7 = 0, (2.37)

i.e. transforming in the 594 of USp(8), and dropping out from equations (2.33). Vanishing
torsion thus determines the USp(8) connection (and thereby the Christoffel connection)
up to a block transforming in the 594 of USp(8) [15, 16, 27]. The undetermined part of
this connection drops out of all field equations and supersymmetry variations. Finally, one
may fix the trace part in the Christoffel connection by demanding

4
Ve L 0 = FKMK = 56_1 oye . (2.38)

2.3 Curvatures

Let us recollect the notation for the various covariant derivatives introduced in the previous
sections for the external and internal coordinates

Dy, = D[AV]M )
D,u - D[Al/awlu Qu],u, ) Dy = D[WN7 QN]M ) (239)
VMZV[AvaWQVvFV]Mv VMZV[WNaQNaFN}u )

3 An explicit form of Qur;7 in terms of the GL(6) components of Vas* has been given in [15].



with vector field A,M gauging generalized diffeomorphisms as (2.11) and the composite
connections w, Q, defined by (2.21), (2.22), (2.25), (2.35), in terms of the fiinfbein e,* and
the 27-bein Vj;%. In addition, we recall the modified covariant derivatives D]j\} and Vf/[,
defined with the shifted internal spin connection w]jf/[ from (2.23), that will come to play
their role below.

The external curvature can be evaluated in the standard way by the commutator of
covariant derivatives on an SO(1,4) x USp(8) spinor € of weight A

1 ‘ o . A
- 'R,w,ab Yab € — Qw,jz e — F#VM 6]\/[61 - )\5 8M.7:W,M € y (2.40)

[Dﬂ’,DV] ei = 4

in terms of the Riemann curvature, USp(8) curvature Qm,ij, and the non-abelian field
strength fw,M from (2.12). As it stands however, none of the terms on the r.h.s. is
simultaneously covariant under generalized diffeomorphisms and local SO(1,4) x USp(8)
transformations. In particular, the naive Riemann curvature defined as the curvature of
the external spin connection

Rm,ab =2 D[uwy}ab + 2 w[“ac w,/]cb , (2.41)

transforms as 6y R, % = F,, 0y A% under SO(1,4) Lorentz transformations. Using (2.26)
and (2.32), the terms on the r.h.s. of (2.40) can be rearranged into the manifestly covariant
expressions

P 9 o . . .
Dy, Do) " = 1 Ry ™ Yab € + 3 PlujktmPu)™™ € + Vi FY (VN]sz’kM — Yy V" M) e

— FuM Ve = AV Fu M e, (2.42)

with the full covariant internal derivatives Vj; from (2.27) and the ‘improved’ Riemann
tensor defined by [3, 28]

rﬁleab = Ruyab + F/,LVM wMab 7 (243)

transforming covariantly under local Lorentz transformations. For later use, we note that
this tensor and the associated Ricci tensor R, = Rup“beape,,b, satisfy the modified Bianchi
identities

1 M
Riw) = =5 9ol VuF" ™

= a a 1 a
Riwp” = _]:[/WK Viey" — 3 Cln VK]:V/J}K : (2.44)

In contrast, the symmetric part of the Ricci tensor ﬁ( will appear in the Einstein field

p)
equations in the standard way. Similar to (2.42), the Maurer-Cartan integrability relations

for the coset currents (2.26) can be rewritten in the manifestly covariant form

D, P M = 3y liviiM g, 7 N (2.45)

Let us now discuss the mixed components of the curvature, i.e. the tensors obtained by
commuting internal with external covariant derivatives. We only consider combinations of

,10,



commutators in which the undetermined part of the USp(8) spin connection (2.35), (2.36)
drops out. This is the case for

B o1 1 .
Vz‘jM [DM;DH] e = 3 V]kMDMPM ijkn€" + ZRMuab Yab € . (2.46)

Indeed, the undetermined connection on the l.h.s. appears as Qjmuij,km = 0. On the r.h.s.,
the two term describe the mixed USp(8) and SO(1,4) curvature, respectively, with the
second term defined by the tensor

R]T/[M“b = Oy w,"’ — D, w;ﬁb . (2.47)

Evaluating this curvature gives rise to its Bianchi identity

_ 1 N
Mlvpo] — §D[u (‘Fpa] MNM) ) (2.48)
and the mixed Ricci tensor
1~ 1
ijy‘uy = —5 JHar + 5 ea‘ueby D, (MMN]:abN> , (2_49)

with the current J* m defined by

~

JHy = —2e,'ep” <8Mwl,“b —D, (e”[aaMepb]» , (2.50)

that will feature in the vector field equations. Similar to (2.46), we can evaluate the
following combination of commutators

. . . 1 L
VM pr D] e = 2V, Q,, QD p,KImper - 3 Vinn™ Day P, M
1 .
+ 5 Rag VI M yape (2.51)
ijkl

in terms of the coset current P,"”* and the mixed curvature (2.47). Again, the undeter-

mined part of the USp(8) spin connection drops out on the Lh.s..

Let us finally discuss the internal components of the curvature. These are obtained
from commutators of internal derivatives in combinations such that the undetermined part
of the spin connections drops out. The relevant combinations are given by [15-17]

. ) . 1 . .
VEMY N Vi, V€ + <4w’€MijN + oMM 5;-) V'V e
1., | ,
=7 VEMYLN RN Yoy € — 6 Re, (2.52)

VEINYHEMQ, 17, V] € + 2 Qup VEMVImING 0 ) €]

1 .. 1 ..
= Z V[[U vaﬂl ManRMNab,Yabﬁn — Z kal an 6” . (2.53)

The combinations on the Lh.s. are such that the undetermined part wuy; p, of the USp(8)
spin connection is projected out while the leading two-derivative terms vanish due to the

— 11 —



section condition (2.9). The first terms on the r.h.s. refer to the curvature of the internal
spin connection (2.22) which takes the form [24]

ab

1
RMN = —5 e“[“eb]"g”VMgWVNgw . (2.54)

The generalized scalar curvatures R and R¥* in (2.53) can be evaluated using the explicit
expressions for the USp(8) spin connection (2.35), (2.36), leading to

. o 1 .
R = 2V, My <3MPN”M + 4qu[le]kl]m) + 6 MMN iy

5 16 - .

+ 2V MVFN 10 M s bt — 5 Vi MV et Opre pn 't
8 4

+ £ MMNe=15, dyve — £ MMN =25, edye ,

3 1 . o
Rzgkl _ gMMN 6_1 (aM(epN ’ij‘l) +4equ[[szjkl]]m)

—4 anMe_l <8M(€p]\[ mnﬂij) +2 emenp[[iquj +2 equmpan[[ij) Vk”]N
+ 2 YMYHKIN =15, 5 e — ? YEIMYPKIN =2 5, chye

ikl 32

2 . .
_“ anMquNpM menpq + ? an[MquN]panp[[sz]kl]}q

3
. 1 .
+4 anMquNpan[[Z]kalﬂpq + g V[[WMVM]]NPM mnpq menpq ’ (255)

in terms of the 27-bein and its derivatives. Their explicit calculation requires a num-
ber of non-trivial USp(8) identities, some of which are collected in appendix B. Together
with (2.54), these curvatures appear in the Einstein and the scalar field equations, re-
spectively. For the following, it is also useful to note the relation between the curvature
components R and R¥*: under a non-compact ¢6(6) transformation of the form

Vri; = S V™, (2.56)
the scalar curvature R transforms as
R= RMS i + VI, (2.57)

into the R¥¥ curvature, up to a boundary current of weight \ T = —%. Moreover, the
dependence of R on the external metric is such that

d(eR) = (6e) R + total derivatives . (2.58)

3 Supersymmetry transformations and algebra

As the main result of this section we present the supersymmetry transformation rules for
all the fields of the Fg) exceptional field theory and verify that their algebra consistently
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closes into generalized diffeomorphisms and gauge transformations. The full set of super-
symmetry transformations is given by

. . . 1
e, = Dye’ —iv/2 VI (v&(yﬂe’f) -3 Wvﬂ—Jek> Q.

56X1]k _ %rpﬂl]klglm ,yuem + \ﬁ V[[Z]M VX/[GIC]] 7
a 1_ a,| i e YiTe Vil - 3.1
decfy =S &V W, 0V = 4 QY VY QX € (3.1)
0 AM = V2 (1958, ] + @) V™,
1 - -
0eBuvnr = I V¥ <2 i€ e + ZXijk’Y;wEk) — dynp AN oA,

in terms of the covariant derivatives defined above. Spinor conventions were summarized
in section 2.2. Upon dropping all internal derivatives dy; — 0, these transformation rules
precisely reproduce those of D = 5 maximal supergravity [21, 25].# It is interesting to
note that just as for the supersymmetric E7 ) theory [24], all appearance of the gauge
field strength ]-'WM in the transformation rules can be absorbed into the homogeneous
shift (2.23) of the internal spin connection. In the next section, we will see that the
supersymmetric Lagrangian in contrast carries the opposite derivative Vj(/[ as well.

The internal derivatives Vs appear in the supersymmetry transformations only in
particular combinations such that the undetermined part of the USp(8) connection (2.35)
drops out [15, 16]. With the explicit parametrization of Q77 from (2.36) we may explicitly
evaluate these derivatives in terms of the Cartan form (2.34) of the 27-bein as

. . , 1. 1 j
Vi Ve = v (8M€] —qum k]€k> ~3 VI prrijene™ + 1 (232 Vi Tru™ €
Yl M, (Kl — Pl M <8M6k]] _ quk]]61> + 2V M Qe mlip ke cr
1 y 1 g
+ 5 V™ a2 (1= 60 Dy VT (3.2)

where we have suppressed all wys contributions (which enter canonically), and used (B.4)
to simplify the expression in the second line.

The algebra of the supersymmetry transformations closes on the (1 + 4)-dimensional
general coordinate transformations (2.16), generalized internal diffeomorphisms (2.10), co-
variant gauge transformations of the p-form fields (2.13), local SO(1,4) and USp(8) ro-
tations, and an additional supersymmetry transformation, higher order in the fermions.
The structural form of the supersymmetry algebra is the same as for the five-dimensional
theory [21]

[5(61)> 5(62)] = fN’D# + 550(1,4)(Qab) + 6u5p(8) (AZ]) + (5susy(€3)

_ _ _ (3.3)
+ 6gauge(AM) + 5gauge(:,uM) + 5gauge (:';wa) + 5gauge(:';w M) .

4To be precise, we note the rescaling of gauge and tensor fields AHM[1312,0614] = %A#M[hep,th/oéllgl'yg],
By M[1312.0614] = —iBW M [hep—th/0412173] together with rescaling of the associated symmetry parameters,
in order to translate the notation from [21] into [3]. In this paper, we will stick to the conventions of [3] for
the normalization of the gauge fields.
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The transformation parameters on the r.h.s. can be explicitly given as combinations of
the spinors €; 2, their covariant derivatives, and the external and internal vielbeins e,?,
V', as

1 .
g = 5621'7“621 ,

21 -

0 — \/?:Z <Eli7abvg/[6]2€ B vMﬁlz’Yabfk) Vi Mij: _ AMwJTdab 7

AM — \/571 VijMij ggiélf ,
St = —= Vi ()
S M \/5 M im\€2kVu€1 ) (3‘4)
_ 31 N /-
Suv o = \/E (ta)MNVMlinzN(Qk’Yuuell) s
- (e k _ ko~ ky.a
EwM=— Vin) (62k’YW3M61 — OmEor Vel — (21€1) € [u0MeLq

2 .
3 VEN OV VN i (€2k7,uz/€l1)> :

In the rest of this section we provide the explicit calculations that show closure of the
supersymmetry algebra (3.3), (3.4), thereby confirming the supersymmetry transformation
laws (3.1). Let us start with closure on the external vielbein e,*

1 ; i i _ 1 _
[0ers 0e,] € = 55217”)#611 - E €2V (VM(’YMGIS) - 3%LVM€]1€) Qi — (1422)

= 1D (Egi'yl’eﬁe,,“) —V2i (EgielfVijMij> Voen
V2 (
fz

— 3 \2Y; (62161> Vs M ikeu”

(3.5)
engyabVMel VM6217ab€k> VijMijeub

Taking into account that the term €2i6]f has all spinor indices contracted, the general-
ized vielbein postulate (2.32), and the vanishing torsion (2.21), we may rewrite the above

expression as follows
1
[561 ) 562] e,ua = euapugy + ganyeua + ANaNe,ua + g aNANe,ua + Qabeub ) (36)

reproducing the correct transformation under external and internal diffeomorphisms. In
particular, we obtain the correct value A = 1/3 for the weight of the fiinfbein.

Next we check closure of the supersymmetry on the generalized vielbein Vj/%. We
directly project the variation onto its coset valued part, since any remaining part can be
absorbed into a local USp(8) transformation. The result is

VM (5 5,1V = 2P, mliakQleq  (e0,n7e}) + 6v/2i VMM Qille, v €l — (1 5 2)
= ¢tP M 4 6 YIRM G ) (VyETIANY (3.7)
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where we used the identity Pu[ij KlQmnl — (0 and the vielbein postulate. The first term in
the expression above gives just a (covariantized) diffeomorphism along &, while the second
can be rewritten using the generalised vanishing torsion condition (2.33) which gives

V[[klM [561 ’ 552}VMU}]

g y g 1
_ g,urpuklz] yeyHMp,, (VNU]])AN 4 VI My il <8MAN _ ZANFKMK) .
_ éﬂpukuj ERVILATF IV

The weight term that comes from the derivative of VN A" is cancelled by the same con-

tribution from the vanishing torsion condition. Again, we find the correct transformation
with the same gauge parameters as in (3.6).

Now we turn to the gauge field sector and investigate closure of the supersymmetry
algebra on the vector field A“M . A direct calculation gives

[0cy 0en] A = V20 QF (0, D, )Vii™ + V/2i €0y, P 7 * Y Qe Vi M
o 1 ...
+ 3En, (Qm[’w’le -3 Q[”Vk]mN> Qur Ve Vi
. . B 5 1 o
+ 2QF e VIt N <v NOwel) = 3wV N61> Q. VM — (14 2)
1 — a
= DMAM + 58]\/ (Egk’yuelf)MMN — (Egk'y”elf)./\/lMNe,,aVNeH (3.9)
, . 1 .
2 (VMY N 4 VY M 2 MM )V (eanee])
= DAY + g OnE MMY — 28" MM N, Ve,

) ) 1 .
—-2Vy { <v“vaijN + VRN M- 45;?MMN> (e%we{)] :

Finally using the relations (2.8) and (2.22), the above expression can be written in the
following form

[0cy, B, AMM = guVanyMMN - QfVMMNea[uvz_veu]a
+ D AM —10dMVEONE, K (3.10)

= & Fu™ + guon e MMN 4 DAM — 10dM VKON E, K,
with the parameter =, s from (3.4), thus precisely reproducing the Egg) covariant gauge
transformation (2.13) of the gauge field coming from tensor hierarchy. The first two terms

in the expression correspond to the transformation (2.16) of the gauge field under external
diffeomorphisms.
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Finally, we investigate transformations of the two-form field B, s that give

1 ii= 1 — mn
[0y 5 0, ] BMVM - 7% |:2 Vu J€2i7[#Dv]€lfij + 9 Vi lmGQn’yw/prpl prqE%]
_ 4i VMUVA N €271,V N (,}, ep) _ 152‘7 Vel
\/ﬁ Jp eV NUTv] €1 320w Y NE
31

1 _

— \TOVMM@WW (Q’fﬂvm"W — 39“’”1}”1”) O, Ve, — (142)
1 .

= % Dy, (VMlJEQi’Yu}EIf ij;) -

43
V10

Vir"VEIM (Evamer) eV iven)”

2 , , .
— \/%»O <VMninZN — VniNVMk’L> (€2k7uuv]_\767f) + \/% (EQkVHVVX/IGIf)
—(1+2)

= 2D, Ey — \/—110 (VM VRN Vm-NVM'”) Vi (Earyuel)

4 ki N Ny, ki\/= .n\. ao—
— \/E (VMm‘V — Vi VYV )(E%Gl) Clu vNel/]a
7 _ -k - k
+ E <€2k’YuuVM€1 - VMEZk'YW€1> : (3.11)

Here, we have systematically ignored the contribution from the last term dsn p.A[MN 5AZ,]P
in the supersymmetry variation, which will simply reproduce the corresponding terms in
the action of generalized diffemorphisms and gauge transformations, due to the fact that
the algebra closes on the vector field AMM . To simplify the second term in (3.11) it is
helpful to consider the following identity

(VM piVFN — Vm'NVMkZ) (E2kvyuel)

= (VM wi VPN Qi + Vg mivkiNﬂnk)Qmp(Ezpme’f) (3.12)
3

=5 Pu™ QP Vp i VF 9 (Earwel)

where in the second line we notice that the expression in brackets is symmetric in (mn)
and hence is an element of the usp(8) part of eg). The traceless antisymmetrisation on
the r.h.s. can be replaced by the usual antisymmetrization giving the same result. Using
this relation and the vanishing torsion condition we may express the corresponding term
as follows

VN KVMM'VMN — Vm'NVMkZ) (EQk”Y,uufyll)}

- , 1 )
= 0N KVMm'V]ﬂ Nk _ Vm‘NVM]“) (@k%ﬁ?)} - gVNmDMVkZN(EQk’YWG?) (3.13)
V101

- 1 N~
= (ta)m™ ONEw™ — gVNm‘DMVkZN(sz’YWE?) ;

with 2, from (3.4). Next, using the identity (2.8), the second line of the last equation
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in (3.11) can be rewritten in the following suggestive form

4i ki N Ny ki) (2 .ny, ag—
_m(VMmV + Vi Vi )(62]661)6[“ VNeu]ab
N K i - k axy—
=dynxk AN Fu™ — NiT) (€2r€1) €V reua- (3.14)

Finally, we focus on the last term in the last equation of (3.11) and notice that its USp(8)
connection part cancels that of the last term in (3.13). Hence, we may take into account
only the spin connection w),”” that includes the SO(1,4) connection and the field strength
FroM - After some gamma-matrices algebra we obtain the following expression

_ _ _ 1 _ _ _
EQkFyHVvMGIf - VM62’€’VMV6]1C - _1 Muyn (GQkV;WpUGIf)]:pUN + (62]@6]16)6[MavM€V]a

+ €2k7,ul/aM€]f - 8M€2k'}/w/€]f (€2k€1) €y “Onre Va (3 15)
1 - - .
T2 g)\egf\#upcr MunFN + (€2k€1)€[uavM6u]a

+€2m;w<9M€]f - aMg%'Yuuelf (6%61) Clu “Ome vla:

The first term here represents the diffeomorphism transformation (2.16) of the field By,
the second term precisely cancels the last term in (3.14). The rest can be packaged into a
tensor Oy, constrained by

dMNE 9N Op =0, (3.16)

as a consequence of the section condition. Collecting everything together, the commutator
of supersymmetry transformations (3.11) of the two-form field takes the following form

§ 62":)\,ul/po'~/\/IMN-7:.'OUN + (ta)MN 8NEpua

2\F (3.17)
+dMNKA Jr ;w"‘OMuu_dMKLA[H [661)562]“41/] )

[6c1+ 8es) B a1 = 2Dy Eppnr + ——

up to terms of higher order in the fermions. This confirms the supersymmetry alge-
bra (3.3), (3.4).

4 Invariant Lagrangian

We now have all the ingredients to present the full supersymmetric Lagrangian for Egg)
exceptional field theory. Its bosonic part has been constructed in [2, 3], here we give the
supersymmetric extension based on the fermionic structures introduced in the previous
sections. The final result reads

1 1. V10
e L =R- 7 My Fu M PN G PLIRPE 4 = e Liop — V(M. g)

_@Z_),ui')"uyppl/¢f) + 2\/§i VijMQikq/_}uk'Y[qu/[ (7"%/)
4
_§ ngk’YMD X ik + 8\62 an ar kalv+ mht

’L .. _ L. _ _
+§Pw“xijm”v“wmm + 42 VM AN 0 (4.1)
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up to quartic fermion terms. The latter are expected to coincide with the quartic terms of
the D = 5 theory [25]. Let us explain the various terms of (4.1). The first line describes
the bosonic couplings, with the modified Ricci scalar R obtained from contracting (2.43),
Yang-Mills term for the field strength (2.12) and the scalar kinetic term

1

. 1
G P IRPE = i D, My nD* MMV (4.2)

We note, that variation of the Einstein-Hilbert term and the scalar kinetic term w.r.t. the
vector fields is given by

1] » ~
5 <e7z - ewf’“wijkl> —e (J“ M+ T M) sAM, (4.3)
with the current J*; from (2.50) and the scalar current given by
T'n = =2Vri V™ Vi (9P, M) (4.4)

The topological term in (4.1) is most compactly defined by its variation
6£t0p = ghvPor <dMNKFp,VMFpJN5-ATK (45)
20
+ ? dMNKaNHp,VpM (58071( + dKPQAUP(SATQ) > )

equivalently, the associated action can be expressed as the boundary contribution of a
manifestly covariant integral over six external dimensions. The scalar potential V' has been
given in [2, 3] in the explicit form

1 1
VM, g) = — oo MM oy MFE oy M, + 5 MM oy M F 0L M (4.6)

1 _ 1 _ _ 1 v
—39 Lorrg On MMY — 1 MMN G009 g7 Ong — 1 MMN 16" ON G

and can be rewritten in the following manifestly covariant form
1
VM, g) =R - MMN N 090V v g + V™ (4.7)

with the curvature scalar R from (2.55), up to boundary contributions 7/ and terms that
vanish due to the section condition. The explicit calculation confirming (4.7) requires a
number of non-trivial USp(8) identities, some of which are collected in appendix B.

The kinetic fermion terms in (4.1) are such that upon dropping all internal derivatives,
the Lagrangian Ly = L|s,,—0 reduces to the five-dimensional theory [21, 25]. The fermion
terms carrying internal derivatives Vj; are then obtained by imposing invariance of the
Lagrangian under the supersymmetry transformations (3.1).° In the limit 9y — 0, these
terms reduce to the Pauli couplings of fermions to the field strength via (2.23) and again
reproduce the couplings from the D = 5 theory. It is interesting to observe that in the

®See also [16] for these couplings in a Cliff(10, 1; R) formulation.
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full theory, and unlike for the supersymmetry transformations (3.1), these ]-"WM couplings
cannot entirely be absorbed into a homogeneous shift of the internal spin connection (2.23),
but require both VL and V;, derivatives, however in a very systematic pattern.

By construction, the full Lagrangian (4.1) is manifestly invariant under generalized
internal diffeomorphisms. To show that it is invariant under supersymmetry, one has to go
through rather tedious calculations, that we sketch in the remainder of this section. For the
full detailed calculations the reader is referred to appendix A. The proof of supersymmetry
of the Lagrangian is most conveniently organized order by order in the internal derivatives
V7.8 Internal derivatives enter in £ in two different ways: first they render the Lagrangian
Ly covariant under generalized diffeomorphisms by virtue of (2.11) and (2.12), second they
give rise to explicit couplings such as the bilinear fermion terms and the scalar potential
V. l.e. the Lagrangian schematically organizes as

L =L+ EI[QEVMQM + [,Q[VMMVNM] . (4.8)
Similarly, the supersymmetry transformations (3.1) organize as
0 = 05> + 01[V el , (4.9)

where §g describe the supersymmetry transformation laws of the five-dimensional theory.
In lowest order in Vs, supersymmetry of the Lagrangian amounts to the corresponding
property of the five-dimensional theory [21, 25]. In first and second order in Vj;, the
contributions from 05°V L1, 1L5%, and §;L; can be organized according to their fermion
structure

YD, Vye, xD,Vme, vVyVye, xVuVie, (4.10)

and we discuss the four classes of terms separately in appendices A.1-A.4. The latter
terms combine with the second order contributions from J5°VLy arising from variation
of the scalar potential (4.7). These are obtained by using the properties of the scalar
curvature (2.57), (2.58) as

1 1
56(6‘/) = 9 € <g,u,1/ R — 1 g MMNVMQ#VVNQMV + VN(MMNVMQHV)> 669#1/
- 1 ..
+e Egjkl <R”kl — 5 % kalN VMQ;wVNQ“”) y (411)
up to total derivatives, and with Eze‘jk:l = —4i QX e describing the supersymmetry

variation of the scalar fields (3.1).

In addition, we have further contributions from 6§°VL§”" due to the fact that covariant
derivatives D, no longer commute. Such contributions arise from variation of the fermionic
kinetic term with (2.45)

43

— Xigk 7€ D, P,y = 46 ey €™ Qe VNEIVFIM 7 7 N (412)

5This is very much in parallel with the analogous calculation in gauged supergravity [21] order by order

in the coupling constant.
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but also from variation of the Rarita-Schwinger term upon using the commutator (2.42)
1/;;1 i’Yqu [DV) Dp] €

B VIR 1 N 2 B .
= Q;Z);L i’YI/eZ (Ruu + 5 g#l/ R> + g Pqulm ijklm wui’ywjpej
B : . . B . (4.13)
— Fo iy PV €t + Vi Fop (VNJkVikM - VNikVJkM) Yy’

1 - ) 1 -
D) ¢ui7MPVEZ vM]:,DV]M + 1 wul'VVpU Z}—up 9" ViKgor -

Here the first two terms cancel as in the D = 5 theory (where it is important though that
RM arises with indices contracted in the proper order since A # 0), while all remaining
terms cancel against terms of the form (4.10) as discussed in appendix A.3, A.4.

Finally, there are the contributions that arise from variation of the vector gauge field
in the minimal couplings of (2.11), and from variation of the two-form gauge field in the
vector kinetic term and the topological term. The first appear proportional to the currents
from (4.3)

1 3 N
o4 (eR - epﬁklwijm> — e (T + T ) SAM (4.14)

and the latter are proportional to the first order duality equation between vectors and
tensors

VI

Spl = 5dMNEy (eMMNfWN +

chvpoT prUTM) (5EB,U«VK + dKPQ.A“P(SeAyQ) .
(4.15)

All these terms cancel against terms of the form (4.10) as discussed in appendix A.1-A.4.

As a final result, we find that the Lagrangian (4.1) is supersymmetric under the
transformations (3.1) up to terms of higher order in the fermions. Remarkably, and
unlike in the reduced theory, invariance of the Lagrangian under generalized diffeomor-
phisms (2.10), (2.16) already fixes all the bosonic couplings without reference to supersym-
metry. The present construction gives the fermionic completion which turns the bosonic
Lagrangian of [2, 3] into a supersymmetric system.

5 Conclusions and discussion

In this paper we have constructed the supersymmetric completion of Eg)-covariant ex-
ceptional field theory, with the final result given by the Lagrangian (4.1) and the super-
symmetry transformation laws (3.1). The section condition (2.7) effectively constrains
the geometry of the extended space. It admits at least two independent maximal solu-
tions which restrict the number of internal coordinates to six and five, respectively [2, 3].”
They are identified upon splitting the 27 representation of Eg) under the action of the
subgroup GL(6) and GL(5) x SL(2), respectively. Upon imposing the former solution,

"The same is true for the E7 g cases and the higher dimensional SO(5,5) and SL(5) EFT’s [4, 5, 29, 30].
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the Lagrangian (4.1) reproduces the full Lagrangian of D = 11 supergravity, as explicitly
demonstrated for its bosonic part in [3]. With the latter solution, the Lagrangian (4.1)
describes the full supersymmetric IIB theory. It may at first appear surprising that one
and the same set of fermions and couplings encodes both type ITA and type IIB, despite
the crucial difference of their fermion chiralities. This is due to the fact that the Eg)-
covariant formulation (4.1) does not preserve the original D = 10 Lorentz invariance. As
a consequence, its fermions can consistently encode the fermions of the type IIA and type
IIB theory in the same way that both type IIA and type IIB give rise to the same super-
symmetric theory in D = 5 upon dimensional reduction.

Upon the most straightforward solution of the section constraint, that is dy; = 0, the
Lagrangian (4.1) directly reduces to the maximal D = 5 supergravity of [25]. In the con-
text of generalized Scherk-Schwarz reductions, it has been proposed to relax the section
condition (2.7) from a differential constraint into the known algebraic constraints on the
embedding tensor, that naturally appears as a generalized torsion [17, 31-33]. Although,
the generalized torsion formally reproduces all the gaugings, it remains an open question,
to which extent they can be embedded into higher-dimensional supergravity via the cor-
responding EFT. The work [34], where the structure of the space of T-duality orbits was
analysed, suggests that in principle one should be able to catch non-geometric compact-
ifications by generalized Scherk-Schwarz reductions of EFT. On the other hand, a gener-
alized Scherk-Schwarz ansatz that is consistent with the section condition (2.7), describes
a consistent truncation of the exceptional field theory (4.1) and by virtue of the section
condition translates into a consistent truncation of the conventional higher-dimensional
supergravities. For the SO(p, ¢q) gauged supergravities, this ansatz has been constructed
in [35]. It yields their higher-dimensional embedding as sphere and hyperboloid compact-
ifications of the higher-dimensional supergravities [35],% and naturally extends to the full
Lagrangian (4.1).

In discussion of geometry of the extended space let us mention the works [37-39]
where the geometrical meaning of the T-duality group O(d,d) has been investigated. It
was conjectured that the d-dimensional torus is just one of possible solutions of the field
equations of double field theory, precisely the one that preserves the whole O(d,d) group.
Following this direction one may try to construct other solutions of DFT or EFT that
preserve less duality symmetries and compare these with the known examples. Recently,
in [40] it was shown that the brane solutions of D = 4 supergravity can be uplifted to a single
solution of E7(7) exceptional field theory, that solves the twisted self-duality constraint. A
possible direction of further research would be the investigation of similar uplifts in the
presented Egg) theory adding, possibly, winding coordinates, that should lead to non-
geometric branes. Following the lines of [24] and the result of this paper one may explicitly
investigate the supersymmetry properties of the obtained solutions in the EFT sense. In
this context, we also mention the recent [41] for the embedding of supersymmetric flux
backgrounds in exceptional geometry.

8See also [36] for the explicit uplift of several vacua of these theories.
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A Details of the supersymmetry calculation

In this section we provide most of the technical details of the rather lengthy calculations
required to verify supersymmetry invariance of the Lagrangian (4.1) under the transfor-
mations (3.1). We discuss the various cancellations according to the different types of
terms (4.10) that arise in the variation of the Lagrangian.

A.1 The ¢V )/D,e terms

The relevant contributions of this type from variation of the Rarita-Schwinger term are

56(*67[)#{7#”/)2)1/‘7&:‘))
— — i D (ey"P) Sty — 2e,y" P D, o),
_ 92 . . Al
— — ZﬁieDl,wmfy’“’p <37PVX46kV”Mij + VJT/I’ypekV”Mij> (A1)
= — 4\f2ieDl,@ZMm“”VX4€kVij Mij — Qﬂiequﬂuiv“”pV&'ypekVUMﬂjk s

where the term D, (ey*”?) vanishes due to the vanishing torsion condition. The other
contributions of this type come from the following variations

Oc (4\/§VijM>Zijk7uvaﬂ/Juk) — 2v2iD, VM Q" vy €,
b (2V2ieV MO GuAIVT (16,7) ) — = AV2ieQ VM (D)0
— 2V2i VeV MOF Y gy Sl
dc @Z Py kliijm”v“wlnﬁzm) — 2V2 D VM U PV €

16 __ .. _
- ?Pumkl;(ijk’yuvMervlrM
442

3

Pk i (’Y“’YVV&%)GTVer-
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Let us first separately verify cancellation of the ]-'WM terms against the variation of the
vector kinetic term and of the topological term. From the above expressions we have

Qim (szM Dythum (Y77 — 29"Py ) ek Fpgnr + Vir Gum ¥ yP 7D ek Fospo
- %D#VmM Yo (V7Y A — v“v”vpa)ekfpm)
= <szMDu1;um (7P — 26" P €* Fport — DyuVia™ hum (777 + 29" 6”7 ) ¥ Fpomt
+ VidMhym (v — QQWQVP)DMGIC}"MM> Qim
= D, (Var kithumy™ 7 ) Fou™ + 20D, (vk,MzZVme’f)fW e (A.3)

where we have defined F,, yy = ]-'WN Myyn. The last term above is already present in
the D = 5 reduced theory and cancels the €1 part of the lowest order variation of the
vector kinetic term. The first term can be rewritten upon partial integration and use of
the Bianchi identities (2.15)

5\3@ le ghvpoT

which precisely cancels the corresponding part in the variation (4.15) of the topologi-

%Z)um%Gk VM ki dMNKaNproK > (A4)

cal term.

To check the remaining terms one first notes the following relations

Ve = V(™) V(™) = 2(Var)n (A.5)
which can be used to bring the remainder into the following form
QerlMleDuz/_JUmfy””VMek + VklMleDuz/_J,,mVM (67“”)6k
— DM (T arhom ™ ¢ — Doy Vare) + eg D VM2V ar (Gme”)  (A.6)
— 2eQ"™ VMV Py V" D — Vg U0V 0 (e ) D e

Now integrating by parts of D, in the first term and of V) in the fourth and the seventh
term we get

le( — 26D, V™M Yy V ar€” — 26Vt by DV m€” + Vid M Dythyin Vs (e ) e*
+ eV D VM bum "™ € + D V™M ym V ar(ey™)e* + 2¢D, Vg™ "V pre®
+ 2V V ar (ev ) Dpue® + 2eVia™ ™ V i Dpue® — Vi thin V ar (e ) Dy
+ g DV Vs (Gome®) ) (A7)

Here it is straightforward to construct a commutator from the second terms in the first
and the third lines, while the terms with Vjze* cancel. What is left can be collected into
the following expression

Qim <2€Vk;lM¢_Jum7W (Var, Dule® + eV D V™M dymy™ € 4 g Dy Via™ V ar (Yume®)

+ VklMDui/?VmVM(e’y“”)ek + DMVklM@VmVM(e’y“”)ek + VklMlﬁymVM(e'y“”)Duek> )
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Integrating D, and V), by parts in the second line this simplifies into

le (erZMZZVmVMV[VM,'D#]Gk — erlM[VM,D#]q/?meyW k + eg’“’D Vkl VM(i/_Jymek)>

(A.8)
Upon using the expression (2.46) for the commutator of covariant derivatives together
with (2.49) and restoring the prefactor 21/2i, these terms reduce to

1 A _
2v/2i Q™ (—26VMM Vume" T ar + eg" D, VMV M(wymek)> : (A.9)

Upon partial integration in the second term, these remaining contributions precisely can-
cel the corresponding terms in (4.14). In what follows we drop the e-factor for simpler
presentation as the corresponding terms cancel out in the very similar way as above.

A.2 The xVyD,c terms

There are four fermionic terms from the Lagrangian which contribute such terms

4 : . np.— m
(1) = =3 X7 " Dux™, (2) = 8V2i VM QP Vi X,
4' . . _
(3) = §P TR A Y, (4) = 4V2 VM QMY iy Y

(A.10)

The relevant terms in supersymmetry variations of these expressions have the following form
5L (1) = — V2 X" D (VI MV €M)
= — 4V2 3" VIM D,V € + AV2 X010V €t P M
02(2) = — 8V2 VMO Vi, (P 1 Qe
= — V22V M XX Q€ T ar P 2V, MU P V
+ anMankal"YVqueT Pumqu nglw - Vu ananpkl’Pumqu'yyQqTET]:WVM) )

4\/5 i — r 1 - r
5! (3) = —=Pu ik VN <VN(%6 ) — 3w Ve )

4f z]kl N 8\/§ mz]kv N -
3

- Xijk V€ " ngNV Vi — Xijk PYMVNG

o 2\[ zykl—
3

Xijk Vi riFup AP
62(4) = 4 V2 VI M5, A"V 1 Dye” (A.11)
The variations of (1) and (4) give rise to a commutator of type (2.51)
4V2VIM A IV 3, Dyl
= 8V2 VM @V M PR Qe 4 2 VM VPR Vg5 609 AN (A12)
+2V2 VM Pu IV " Xigewe® + V2VIMRE Xy ane®

of which the first term cancels the corresponding term in 6°(2), and the second term
cancels with the Jjs contribution in (4.14). The V;¢g"” can be seen to cancel against the
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contributions from 6%(2) and §!(3) by virtue of the USp(8) identity (B.4). By the same
identity, the three Vjse terms in (A.11) would cancel if they came with the same spin
connection wj,, i.e. they induce an extra term in the field strength ]-'WM .

Collecting all resulting terms, we arrive at

(A.11) =
= V2V¥ MR]T/[uab Xijk'Y“'Yabek —2V2Vy mnwa(pklpumquVMQqTWVpEr ]:z/pM (A.13)
PAVO S
+4V2 V0 0P Xkt P M0 Qe FHM — \?,[P#Z]klf(z'jk Vs riFup AP

with the second term coming from converting VL into V3. Now the curvature term can
be expanded with (2.48), (2.49) as

V2VIMRL ik Yape®
=V2VIMRL Xy P e + 2V2 VIR B Ky e
1
V2
+ V2 VUM gk, )’(ijk’yuek —V2ViMe Ve k Du(MMN}—abN)Xz’jk%ﬁk .

) (A.14)
Dypu(Fop N Muar) VI M x5y P eF

The last two terms cancel against the vector field variation from the Einstein-Hilbert
term (4.14) and from the vector kinetic term. The first term gives

1 ~ 3

— E Vart D[M]:,,p]M }Zij]g’}/'uup6k + \/ipuzjmnVanfpr Xijk,yuupek (A.15)
1

V2

2 . - ~ L
+ g\/5 Vit P Fy oM k™ P €™ — 2V 2 Varmn Fop™ Qe Xijiry P Qmip, knp

Vit D[u]:'/p]]\/[ Xijﬂwpﬁk

where we have once more used the algebraic identity (B.4). The last two terms precisely
cancel the F,,,M terms from (A.13). We remain with the first term of (A.15) which can be
rewritten with the Bianchi identity (2.15) and cancels against the corresponding H ., M
term from variation of the topological term in (4.15).

A.3 The vV Vye terms

These terms arise from the Vj,se variation of the following two terms from the La-
grangian (4.1)

(1) = 2v24 Vi Q9 v, (»ﬂwﬂ) L (2) = W2V M PV, (fyﬂxiﬂ“) . (A.16)

— 25 —



Explicitly, with (3.1) this gives

j 7 — n 1 - n
0 (1) = 8V MVIEN v <7”} (VMW ) = 3V e >) :
&@)z—lz(vWNQW"—;vmWWWM)Qm»%MmvavaNﬁ)
) (A.17)
=4 <MMN oF + 2V, MYIFN 1 gvz-jMmeQikan> Vuk Vo (P Vye™)

. ) . _
=4 <MMN A 3vanw’€M) VeV (VVye")

Let us now consider the terms containing Vs and the gauge field flux FWM separately.
For the derivative terms and ignoring all derivatives on the external metric we have

64 8 -
5e(1) 4+ 6.(2) — (3 + 3) Vi MVNIEG BN NV pre™
+38 anMij Nl/;uk’y‘uvaNen + 4AMMN &uk’y‘uvaNEk
32 4

= <—3 3 + 4> anMijNlﬁuk’Yﬂ[va Vle"

64 8 kN T 7
<+3 T3t 8) Vo VNGV (0 V e + AMMN 4yt 3 Ve

= — 8V MVIEN Y 4 A" [V ar, Vv ]e™
+ 32V MVIEN Gy N 0V €+ AMMN 4yt 0V v e

1 _
= — SRy (A.18)

upon using (2.52).

That cancels the corresponding variations of the scalar potential. Now for the FF
terms altogether we obtain

1

16
1 - 1 _

- g MMN %mv’“fk fpuM}—pVN - 5 MMN wmﬂ%k IJWM}—upN

= — i\/ga””)‘p"dMNK Vi Qe FoM Fpo™

Sc(1) 4 6.(2) — (MMN o +8 vanw"“M) "€ Frox i Fpo N

(A.19)

1 1
+7 (e 10ce) MMN Fo i FP7 5 + 7 (v 9" ) MMN Front Fuan

that precisely cancels the variation from the kinetic and topological vector term. Let us
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turn to the terms of the form V.F that give

- 1
Se(1) + 6c(2) = Vi MVIEN (7”07”6” + 37"’7""6”> VnFpo M

1
2

<MMN 0 4 20N, VIR %van VIEN ) D'V N F po Mt
=- % MMV A 07 N np Fpg v = 2 Vi MVIF N 7 €N 3 F o )

— AV MVIEN v €V (0 FH Ny — %MMN Dur e N FY N
= — 2V, VRN 7 €N (0 F iy ) — %%w"pgekvM}}oM

— 5dMNE §WOB, e V0 F (A.20)

The first line here precisely cancels against the corresponding terms in (4.13) from vari-
ation of the Rarita-Schwinger term. The second line cancels against the corresponding
contribution in (4.15). Finally, for the terms of type FVe, we obtain

. - 2
Oe(1) — anMijquk"Y[u’ng <’YV] (37uvM€n>> FpUN
. 1
— VN VIRM g A (7”] <7”"% - 3%7”")) V€ Foo N

4 kN7 4 S
= gvanV]kquk,yupovMen poN"’ganMV]kN¢uk’YUVM€nf“gN

A0 NyykM T 40 NykM T (A.21)
+ gVn] V ¢uk7#povM€n]:poN - gVn] V! Q;Z)ulc’)/gvMEn]:uaN )
1 ) 2 . _
0e(2) = — 5 (MMN 8 + 21, N YIEM 4 SvanvNﬂk> Duk V"V M€ Fpo N
1 . 2 . _
-5 (MMN O + 2V MVIEN 3vanw’“M> Dkt V7V " Foo N -
Together these contribution simplify to the following nice expression
55(1) + 56(2) - - 7wzuk’}ﬂupa~rptfj\/lVMGk, (A22)

which precisely cancels the corresponding contribution from (4.13).

A.4 The xV Ve terms

As the final check we collect the ¥V sV ye terms which originate from the V e variation
of the following two terms

(1) = 8V2i Vi M Q"X Vi X™, (2) = 4vV2 VM V3, (»yuxijk) , (A.23)
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of the Lagrangian (4.1). Their supersymmetry variation gives
A T
Oe(1) = — 480V, M QP (VNUka]J -~ 3VN7[lka]> QjrXpmt Vi Ve
. . 2 .
=16 (212’“] NQj,yrtMep  PRINYpiMQ .y gv“Mvm NQJ-T) Xt Vi Ve
, 2
0c(2) = — S VI MYPINQ . 1"V o, <3%VN6T + Vo€ VNeM“> : (A.24)
Again for simplicity we start from analysis for the terms that do not contain the field
strength
0e(1) + 0¢(2) — 321 ijMananN kalV(MVN)Ep + 16inlNijMer)_(pkl (Var, Ve
— &I VIMYPINQ . Sy Vo€ Ve Vive,
=16 (VDM 3 [ Vi, V€ + 2V M0 VN 30 0, Ve

2.51 - ;
( = ) — 43 R”kl QM)Z]'MET + 27 VklMVp]NQjT Xklperngw/ng“V s (A.25)

with the curvature R“* in the 42 representation. These terms, after using the section
constraint for the second one, precisely cancel the variation of the scalar potential (4.11).
Collecting now the V.F terms, we get

de(1) + 6.(2)
— = L VIMYEPIO 4 X €V mF ™ — VM VRPIQ 0 X ae” FYE Vg
— 4 VFIM QL V™ Xy € Vg Fap™
= — 4 VIMYVRPIQ 0 X €V i Fu™ — 4 VM VRIS ae” FYE Y g
— 20 VRIM O Vi Xty €V FH K
= — 4 VFMVRPIQ 0 X €V F ™ — 4 VM VPIQ 0 i e FYE Vg,
—5d"MN § By N Vi (Mg, F™EY) (A.26)
The last term precisely cancels the corresponding variation of the vector kinetic term,
the second term cancels against (A.28) below, the first one upon using the identity (B.5)

cancels against the contribution from (4.12). Collecting the FF terms we obtain (again
with Fy = MMN]:N)

— (8e(1) + 6c(2)) (A.27)

) , . 2 .
5 <2vk3 NanvnlM(sf 4 PRLN P Mer + gvklMVp] Ner> Xkt V"V € Fuy i Fog N

4
é VRMYPING o Xkt (’YT’YW’YW% — ;777’“‘”%7p0> €
= i <2ij NQ VM gp 4 YRV ypi Mer) Kokt (P97 + 4qHT g0 — 2GR0 PN Fo i Fo
é VEREMYPING - Xpap(—2917P7 4+ 8417 g7 — 12 g ") e" Frp mFpo N
1

= S VINQ VML Xy € Fu™ Fpe™ = 20 Vi VNPT Qu Xy € Fyu™ FH N

\)
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These cancel against the corresponding variation of the kinetic and the topological vector
terms. Finally, for the FV terms, we write

0c(1) +0c(2)

2 . 2 .
— givklNVijerf,uuMkalry'uyvNeT - giVMlep]Ner‘F,uVMkal’Y#VvNer

) 7
i VRIMYPINQ . Sy P N€E Fuprt — =

3
. 5 .
+ i VIV iy 1IN Fopar = 2 VINVPIM Q0 PV e Fpar (A29)

Vkl MV”j Ner )Zklp’YVpVNGT.pr M

+ ¢ PREMy)p Ner Xetp V'V Pya€ Fupm Vney”

7 . _ v
-3 VHNVRIM O k¥ Vo P € Frp Ve,
=4y Vkl MVp] NQJT Xklp’}/uyerfup (M gpAvN)g,U)\ )

that precisely cancels the second term above in (A.26).

B USp(8) identities

In this section some useful algebraic relations, that follow from the structure of USp(8)
representations. Their derivation was facilitated in part by using the computer algebra
system Cadabra [42, 43]. Some of the more complicated algebraic relations were obtained
using an explicitly chosen USp(8) representation.

We first recall the notation of double brackets

pligkll — plijkl] _ (Q-traces) , etc. (B.1)

in order to define the irreducible USp(8) representations. E.g. the tensor P7F = plijk]
defines the irreducible 42 representation of USp(8) and can explicitly be constructed by
making use of the corresponding projector

ikl ijkl
PHZ] I — IED4]2 S— pmnpg 7
3

ikl _ i ij L s
P472 mnpqg — 6 ]klmnpq - 5 Q[]ékl] [mTLqu] + é Q[ ]le]Q[anpq] . <B2)

Several of the USp(8) identities are not straightforward to derive but most conveniently
derived by identifying the underlying representation structure. A simple example of such
an identity is

plaklgmnl — ¢ (B.3)

for Pk = Pkl in the 42 of USp(8). The identity (B.3) follows straightforwardly from
the fact that there is no 42 representation in the six-fold antisymmetric tensor product.
In the same manner, one may derive the identity

3 o 1 .. 3 i DJ
0 — | anMe[[zP]k]]mn _ 3 anMPmUken + 3 anMQpTETQm[[lP]k]]np ) (B'4)
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for Pkl — plidkll whose existence follows from the fact that there is no 42 representation
in the tensor product 27 x 42, and as a consequence there are only two singlets in 8 ® 27 ®
48 ® 42. The coefficients in (B.4) can then be fixed by employing an explicit realization
of these objects, or by using the explicit form (B.2) of the projector.

Similarly, one shows the identity

g 3 g
Vi Iis Vkl]]M Qrinkl = anMVqu <Q7‘[m>_<npq] o 5 QTinkl Q[W 5kl] [anpq]) (B 5)
1 .
— an MVqu QT[anpq] + 5 an ManVqu )Zrmp .

In the main text, the calculation of the scalar potential (4.7) and its properties
like (2.57) require further USp(8) identities. E.g. one derives

Vi VN 0umny™™ €m — Qi Voy M Via ™ 0 apiy’H T e (B.6)
1 4 B.6
=1 Vit " VinN 0oy ™™ €5 + Qi Vi M XV N 0arpny M €5

that follows from the fact that in the above VijM V3™V appears only projected onto the 42
due to the section condition (2.9), and furthermore there is only 1 and no 36 in (42®42)sym.
Another set of relations is required for the evaluation of the commutator (2.53) that

contains

M~ skl N ij My kl N
— an 1% querklrpMN mnar Yty anEpXikmpMlenp

mnpr Jkim

1 1 )
—5 Vo TV Qe x1rp 1N T MMNQ e X pimp N

1 3
+ Z anMVklNQkperlqrpMN a4 5 anMVklNQkaleqrpMN npar )

(B.7)

where we denote py;n* = I MpN)ij k. Next, one notes a non-trivial USp(8) identity

1 .
0= 5 Vo TVIN QP xparparny ™ — VMUIYRIN QMIepy o DAIN i
1 . .
- anMVklNQkpeleqrpMN e — E MMNQijEZXk:lmpMN gktm (B8)
1
- i anMVklNQkperlqrpMN mnar 4 anMVklNQkpeleqrpMN e

Finally, one employs the relations

1 .
Vi VN O e x1grpran ™ = — 3 VI MPIEN O 0 €™ X ppmnpar N ™ s

(B.9)
_ yili MyllkN

r mn
ik€ XimnPMN  jr

and
Vi MVHIN QP xprparn T — 2 VI MYRIN Qmnepy o DAN i
1
12
= 2 VI MYIEN Qe N DN ™

MNe i ikl
M€ X pimpun
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of which both r.h.s. vanish due to the section constraint. Together, we conclude that the
expression (B.7) contains
1

— MMNQu e X pamprry H™ (B.10)

— anMVklNQp[qerklr]pMN T — 12

which is precisely the contribution from —3 R¥* from (2.55).
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