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1 Introduction

The multiple-collinear limit of scattering amplitudes in gauge theories is relevant for many

reasons. From a phenomenological point of view, higher-order splitting functions are an

essential ingredient of subtraction-like algorithms for computing physical cross sections [1].

In particular, multiple collinear splitting functions at loop level are required to achieve

next-to-next-to-leading order (NNLO) or even higher perturbative orders. Besides that,

parton shower (PS) generators make an extensive use of the collinear behaviour of matrix

elements. In order to have a complete description of the collinear splitting, it is important

to keep spin correlations from the parent parton. This is the main motivation for comput-

ing polarized splitting functions at higher-orders, both increasing the number of collinear

particles and loops.

Collinear factorization properties [3] establish that the divergent behaviour of scatter-

ing amplitudes is isolated into universal factors called splitting amplitudes [5, 6].1 Besides

these well-known properties, strict collinear factorization could be broken in certain kine-

matic configurations [3, 4]. These effects are originated by non-vanishing color correlations

among collinear and non-collinear partons, and they could become manifest in the multiple

collinear limit at loop-level. So, this constitutes another motivation for exploring higher-

order corrections to polarized splitting functions with more than two collinear partons.

For the double-collinear limit at the level of squared matrix-elements, splitting func-

tions are usually called Altarelli-Parisi (AP) kernels [7]. They have been computed at one-

loop [8–14] and two-loop level [15–19], both for amplitudes and squared matrix-elements.

1See also ref. [2] and references therein.
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For the multiple collinear limit, tree-level splitting functions were computed by several au-

thors [20–25]. Although a full one-loop description is still missing, there are some specific

results for the triple collinear limit of one-loop amplitudes for the antisymmetric part of

q → qQQ̄ [26] and for processes involving at least one photon [27].

In this article, we compute polarized splitting functions in the triple-collinear limit at

next-to-leading order (NLO) in QCD. For the sake of simplicity, we consider only processes

involving at least one photon. Quark-started splitting processes are constrained by helicity

conservation. So, they turn out to be proportional to the unpolarized splitting functions,

which were computed in a previous article [27]. Explicitly, it is possible to write

Pq→a1...am(s, s′) = ωqδs s′ 〈P̂q→a1...am〉 , (1.1)

where ωq is the number of fermionic degrees of freedom.2 For this reason, we only consider

the polarized splitting functions associated with the processes γ → qq̄γ, γ → qq̄g and

g → qq̄γ.

The outline of the paper is the following. In section 2 we describe the computational

techniques applied to obtain the results. They are based in an extension of the Passarino-

Veltman procedure at amplitude level, combined with inversion rules and transcendentality

classification. After that, we present results for photon-started processes in section 3. In

this section we also include a brief discussion about the structure of these expressions, in

order to complement the one exhibited in ref. [27]. Then we discuss the polarized splitting

function for g → qq̄γ and its corresponding NLO corrections, in section 4. Finally, we

present the conclusions in section 5.

2 Collinear limits and polarized splitting functions

Before focusing into the details of the computation of polarized splitting functions, let’s

recall some useful definitions to analyse the multiple collinear limit. Let’s consider an n-

particle process where m particles become collinear at the same time. Collinear momenta

are labelled as pi with i ∈ C = {1, 2, . . . ,m} and these vectors fulfil p2
i = 0 (massless on-shell

partons). The subenergies are defined as sij = 2 pi · pj and si,j = (pi + pi+1 + . . .+ pj)
2 =

p2
i,j . To avoid potential strict factorization breaking issues [3, 4], we work in the time-like

(TL) region, which implies sij ≥ 0 for every i, j ∈ C. We mention strict factorization

breaking effects in the context of the discussion presented in ref. [3]. In that article, the

authors show that in space-like (SL) kinematics (i.e. sij ≥ 0 and sik ≤ 0 for some i, j, k ∈ C)

some color correlations involving non-collinear partons can appear in the factorization

formula. Also they have shown that the splitting amplitudes are independent of non-

collinear particles only in the TL kinematics.

A proper description of the collinear limit requires the introduction of a pair of light-like

vectors (P̃ 2 = 0, n2 = 0), such that

P̃µ = pµ1,m −
s1,m

2 n · P̃
nµ , (2.1)

2This property is not obvious in the context of dimensional regularization (DREG). The main inconve-

nient arises from the extension of γ5 to a DST-dimensional space-time, which introduces some ambiguities

in the treatment of fermion polarizations. In particular, some interactions can violate helicity-conservation

as we described in ref. [14].
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corresponds to the collinear direction in the multiparton collinear limit, and nµ parametrizes

how this limit is approached, with n · P̃ = n · p1,m. The longitudinal-momentum fractions

zi are given by

zi =
n· pi
n · P̃

, i ∈ C , (2.2)

and they fulfil the constraint
∑

i∈C zi = 1.

Factorization properties become explicit when virtual gluons or photons are allowed to

have only physical polarizations. For this reason, we work in the light-cone gauge (LCG),

which is characterized by the absence of ghosts and

dµν(k,Q) = −ηµν +
kµQν +Qµkν

Q · k
(2.3)

is the physical polarization tensor of a gauge vector boson (gluon or photon) with momen-

tum k and Q2 = 0, k ·Q 6= 0. Although the quantization vector Q is arbitrary, we choose

Q = n in order to simplify the computation.

Polarized splitting functions are obtained from the tensor product of two amputated

splitting matrices. Using collinear factorization properties [2, 3], we know that

|A (p1, . . . , pn)〉 ' Spa→a1...am
(
p1, . . . , pm; P̃

)
|A
(
P̃ , pm+1, . . . , pn

)
〉 , (2.4)

where the sum over the physical polarizations of the intermediate parent parton is under-

stood. The index a is fixed by flavour conservation for processes started by QCD partons,

so we drop this label for these configurations. Since we are considering also photon initi-

ated processes, it has to be explicitly specified in our notation to avoid ambiguities. So, in

that case we write γ → a1 . . . am. In order to make a complete general analysis, we kept in

this section the complete flavour labelling to treat simultaneously gluon and photon-started

splitting processes. It is important to notice that eq. (2.4) only takes into account the most

divergent contributions in the limit s1,m → 0, neglecting all the subleading terms. Besides

that, it constitutes a definition of the splitting matrices Sp in the color+spin space.

Relying on the previously mentioned collinear factorization properties, let’s explain

how to compute the spin-dependent splitting functions. With the aim of disentangling

the different helicity contributions, we remove the polarization vector from the splitting

amplitude. Explicitly,

|A (p1, . . . , pn)〉 '
∑

λ∈phys.pol.

Spµa→a1...am

(
p1, . . . , pm; P̃

)
εµ

(
P̃ , λ

)
|A
(
P̃−λ, pm+1, . . . , pn

)
〉,

(2.5)

thus, after taking the square of this formula, we obtain

〈A (p1, . . . , pn)|Id|A (p1, . . . , pn)〉 '
∑
λ,λ′

〈A(P̃−λ, pm+1, . . . , pn)|

×
(
εµ

(
P̃ , λ

))∗(
Spµa→a1...am

(
p1, . . . , pm; P̃

))†
Spνa→a1...am

(
p1, . . . , pm; P̃

)
εν

(
P̃ , λ′

)
× |A

(
P̃−λ

′
, pm+1, . . . , pn

)
〉 , (2.6)
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which allows to define the polarized splitting function according to

Pµνa→a1...am ≡
(
s1,m

2µ2ε

)m−1 (
Spµa→a1...am

(
p1, . . . , pm; P̃

))†
Spνa→a1...am

(
p1, . . . , pm; P̃

)
(2.7)

that represents the product of two amputated splitting matrices. This product implies

a sum over polarizations (and colors) of all the outgoing collinear partons, but parent

parton polarization is not specified. The presence of a mass scale µ in the normalization

of the splitting functions is related with the fact that we use dimensional regularization

(DREG) [28, 29] with DST = 4−2ε space-time dimensions. Also, it is crucial to appreciate

that the collinear limit is completely described by the object

Pa→a1...am(λ, λ′) =
(
εµ

(
P̃ , λ

))∗
Pµνa→a1...amεν

(
P̃ , λ′

)
, (2.8)

which implies that we drop terms proportional to P̃µ and nµ in the tensorial expansion of

Pµνa→a1...am , because εµ(P̃ , λ) is associated to an on-shell vector particle in a physical gauge

and it must fulfil

ε
(
P̃ , λ

)
· n = ε

(
P̃ , λ

)
· P̃ = 0 (2.9)

for every physical polarization λ. In consequence, combining eq. (2.1) and eq. (2.9), we

conclude that it is possible to make the replacement pµm = −pµ1,m−1 and cancel terms

proportional to nµ. We anticipate that this fact will allow us to reduce the size of the

tensorial basis employed to expand the polarized splitting functions.

Since the computation of the collinear limit of squared amplitudes can be done using

amputated amplitudes, then it is preferable to express our results in terms of Pµνa→a1...am .

Of course, in the helicity formalism, it is more suitable to consider Pa→a1...am . In any case,

both expressions can be easily related by contracting with polarization vectors or just by

removing them.

Considering collinear factorization at one-loop level,

|A(1) (p1, . . . , pn)〉 ' Sp(1)
a→a1...am

(
p1, . . . , pm; P̃

)
|A(0)

(
P̃ , pm+1, . . . , pn

)
〉

+Sp(0)
a→a1...am

(
p1, . . . , pm; P̃

)
|A(1)

(
P̃ , pm+1, . . . , pn

)
〉 , (2.10)

then the one-loop correction to the polarized splitting function is given by

P (1),µν
a→a1...am ≡

(
s1,m

2 µ2ε

)m−1 (
Sp(0),µ

a→a1...am

(
p1, . . . , pm; P̃

))†
×Sp(1),ν

a→a1...am

(
p1, . . . , pm; P̃

)
+ h.c. . (2.11)

We will use this expression as a master formula for all our calculations.

After introducing a general definition for Pµνa→a1...am , a tensorial basis is required to

perform an expansion of this object. When considering an n-particle process with m-

collinear partons, there are m vectors associated with external momenta and a null-vector

nµ introduced by the quantization procedure. Due to the fact that Pµνa→a1...am is a rank-2

– 4 –
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tensor and it depends only on ηµν , {pµi }i∈C and nµ, then we define the basis

fµν1 = ηµνDST
, (2.12)

fµν1+i = p̃µνσ1(i),σ2(i) i ∈ {1, . . . ,∆1} , (2.13)

fµν1+i+∆1
= p̄µνρ1(i),ρ2(i) i ∈ {1, . . . ,∆2} , (2.14)

fµν1+j+∆1+∆2
= p̃µνj,m+1 j ∈ {1, . . . ,m} , (2.15)

fµν1+j+∆1+∆2+m = p̄µνj,m+1 j ∈ {1, . . . ,m} , (2.16)

fµν2+∆1+∆2+2m = p̃µνm+1,m+1 , (2.17)

with

p̃µνi,j = pµi p
ν
j + pµj p

ν
i , (2.18)

p̄µνi,j = pµi p
ν
j − p

µ
j p

ν
i , (2.19)

∆1 =
m(m+ 1)

2
, (2.20)

∆2 =
m(m− 1)

2
, (2.21)

where we define pµm+1 = nµ to simplify the notation.3 In the previous expressions, σ

is a permutation of pairs of collinear momenta which can also include repeated elements

and contributes to the symmetric part; ρ is a permutation that excludes repeated indices.

Also it is important to appreciate that f1 is the DST-dimensional metric tensor, with DST

the number of space-time dimensions. When using DREG, we could choose fµν1 = ηµν4

and it would be associated with a different regularization scheme (RS). In the context

of conventional dimensional regularization (CDR), it is requested to use fµν1 = ηµνDST
to

achieve consistency.

It is worth noticing that, in spite of imposing the cancellations induced by the contrac-

tion with εµ(P̃ ), we can not completely neglect the remaining elements in the basis. The

reason is that the computation of tensor-like integrals requires a complete basis of tensorial

structures. In other words, when performing the tensorial reduction it is mandatory to

project over all the possible tensor products of the vectors involved in the integral and the

metric tensor (whenever considering a rank higher than or equal to 2). In consequence,

working at the integrand level and using eq. (2.9), we can throw away a posteriori con-

tributions proportional to nµ and P̃µ when µ is an index referring to the parent parton’s

polarization vector. After expanding the general expression for Pµνa→a1...am and applying

this procedure, we obtain

Pµνa→a1...am =

1+∆1+∆2∑
j=1

(∫
q
A(0)(q)

)
fµνj |Sµ∪Sν +

m∑
j=1

(∫
q
A(1)(q)qν

)
pµj |Sµ

+

m∑
j=1

(∫
q
A(2)(q)qµ

)
pνj |Sν +

∫
q
A(3)(q)qµqν , (2.22)

3The validity of this assumption is restricted to TL kinematics. Otherwise, factorization breaking effects

described in refs. [3, 4] could introduce a dependence in the non-collinear partons.
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where we defined ∫
q

= −ı
∫

dDSTq

(2π)DST
, (2.23)

and A(l)(q) is a scalar function of the loop momenta. In eq. (2.22), Sσ implements all the

cancellations associated to index σ = {µ, ν}, i.e.

nσ|Sσ → 0 , (2.24)

P̃ σ
∣∣∣
Sσ
→ 0 , (2.25)

pσ1,m
∣∣
Sσ
→ 0 , (2.26)

pσm|Sσ → −
m−1∑
i=1

pσi , (2.27)

which are consequence of eq. (2.9) and the definition of P̃ . The first term in the r.h.s. of

eq. (2.22) contains only scalar integrals and the tensorial dependence is independent of the

loop momentum. Then, we neglect those elements of the basis which contains nσ because

they will be cancelled after applying Sµ ∪ Sν . In consequence, it is enough to sum over

the first 1 + ∆1 + ∆2 elements of the basis. In a similar way, the second and third terms

of eq. (2.22) involve rank-1 tensor integrals and we can exclude nσ in the sums. The last

term contains rank-2 integrals and the cancellations must be imposed after performing the

tensorial reduction. In summary, eq. (2.22) describes all the simplifications that can be

carried out before applying any tensorial-reduction technique, decreasing the complexity

of the intermediate steps of the computation.

We would like to emphasize that our approach is different from the usual Passarino-

Veltman reduction, since we are not treating integrals as isolated objects. Instead, we

are combining them inside the scattering amplitude and, then performing the reduction

simultaneously. This method is more efficient because it exploits the symmetries associated

with the matrix elements. In both cases, it is mandatory to employ a complete basis to

write tensor integrals.

The following step consists in projecting eq. (2.22) over the υ = ((m+1)2 +1) elements

of the whole basis. So, we get

Pµνa→a1...am =

υ∑
j=1

Ajf
µν
j , (2.28)

and we define the vector Bj as

Bj =
υ∑
i=1

Aif
µν
i (fj)µν = (M ·A)j , (2.29)

with the kinematic matrix (M)ij = fµνi (fj)µν . It is important to note that this υ-

dimensional matrix contains information about all the possible scalar products among

collinear particle momenta and nσ, together with (ηDST
)µµ = DST (the trace of the DST-

dimensional metric tensor). Also, if DST = 4 this matrix becomes singular because mo-

menta are not represented by independent vectors. For this reason, Det(M) = O(ε) when

– 6 –
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DST = 4 − 2ε. Of course, through the computation of M−1 we recover the coefficients in

the expansion eq. (2.28) but this procedure is extremely lengthy due to the size of M .

In the special case of the triple collinear limit, we use Cramer’s rule to recover the

coefficients inside eq. (2.28). First of all, we rewrite the tensorial basis making a distinction

according to the symmetry properties. Thus

fµν1 = ηµνDST
, (2.30)

fµν2 =
pµ1p

ν
2 + pν1p

µ
2

s123
, (2.31)

fµν3 = 2
pµ1p

ν
1

s123
, (2.32)

fµν4 = 2
pµ2p

ν
2

s123
, (2.33)

fµν5 =
pµ1p

ν
123 + pν1p

µ
123

s123
, (2.34)

fµν6 =
pµ2p

ν
123 + pν2p

µ
123

s123
, (2.35)

fµν7 = 2
pµ123p

ν
123

s123
, (2.36)

fµν8 =
pµ1n

ν + pν1n
µ

n · P̃
, (2.37)

fµν9 =
pµ2n

ν + pν2n
µ

n · P̃
, (2.38)

fµν10 =
pµ123n

ν + pν123n
µ

n · P̃
, (2.39)

fµν11 = s123
nµnν

(n · P̃ )2
, (2.40)

are the symmetric structures, while

fµν12 =
pµ1p

ν
2 − pν1p

µ
2

s123
, (2.41)

fµν13 =
pµ1p

ν
123 − pν1p

µ
123

s123
, (2.42)

fµν14 =
pµ2p

ν
123 − pν2p

µ
123

s123
, (2.43)

fµν15 =
pµ1n

ν − pν1nµ

n · P̃
, (2.44)

fµν16 =
pµ2n

ν − pν2nµ

n · P̃
, (2.45)

fµν17 =
pµ123n

ν − pν123n
µ

n · P̃
, (2.46)

give rise to the antisymmetric ones. Notice that all the basis elements are dimensionless

quantities. Since symmetric and antisymmetric spaces are orthogonal, the matrix M in

– 7 –
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eq. (2.29) can be written as

M =

(
Msym 0

0 Masym

)
, (2.47)

where Msym is a 11 × 11 matrix while Masym has dimension 6 × 6. We are going to treat

both contributions independently.

As mentioned before, the determinant of M vanishes in the limit ε→ 0. Explicitly,

det(M) = det (Msym)× det (Masym) , (2.48)

det (Masym) = Ω3 , (2.49)

det (Msym) = −8εΩ5 , (2.50)

and

Ω =

3∑
i=1

xizi

xizi −∑
j 6=i

xjzj

 , (2.51)

with the notation

xi =
−sjk − ı0
−s123 − ı0

, (2.52)

where (i, j, k) is a reordering of the indices set {1, 2, 3}. Ω is independent of ε and cyclically

invariant under relabelling of particles. Also, it is important to appreciate that M becomes

singular when working in DST = 4 due to the linear dependence on the momenta.

After specifying the tensor basis, we introduce the vector Bj following eq. (2.29). Due

to the cancellations mentioned before, we just need to know 4 coefficients for the symmetric

part and only 1 for the antisymmetric one. In other terms, we can expand the polarized

splitting function as

Pµνa→a1a2a3 =
4∑
j=1

Asym
j fµνj + Aasymfµν12 , (2.53)

after neglecting contributions that are proportional to nµ and pµ123. To obtain the coeffi-

cients Asym
j and Aasym we use Cramer’s rule by introducing the matrices

(
MCramer

sym

)
ij

= −det M̄ (i,j)

8εΩ8
i ∈ {1, . . . , 4} , j ∈ {1, . . . , 17} , (2.54)(

MCramer
asym

)
j

= −det M̄ (12,j)

8εΩ8
j ∈ {1, . . . , 17} , (2.55)

where M̄ (i,j) denotes a new matrix formed by replacing the column i of M with the canon-

ical vector êj . Thus, MCramer
sym is a 4 × 17-dimensional matrix while MCramer

asym is just a

17-dimensional vector. These matrices allow us to recover only the relevant coefficients,

which makes this approach more efficient than inverting the whole system. So,

Asym
j =

(
MCramer

sym ·B
)
j

j ∈ {1, . . . , 4} , (2.56)

Aasym =
(
MCramer

asym ·B
)
, (2.57)

lead to the desired expressions.
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Finally we would like to make some remarks about the treatment of Bj . Since each

component of this vector is a scalar, all this procedure simplifies the computation of Feyn-

man integrals due to the presence of only scalar ones. We must take into account the

existence of different propagators contributing to Bj . For this reason, we define certain

propagator’s basis and we put together all the contributions that can be described inside

the same set. Then, integration by parts (IBP) reduction [30, 31] is applied and all the

components are expanded using a set of master integrals.

On the other hand, Sp
(1)
a→a1...am can be decomposed as

Sp(1)
a→a1...am = Sp(1) div.

a→a1...am + Sp(1) fin.
a→a1...am , (2.58)

where Sp
(1) fin.
a→a1...am contains only finite pieces while IR/UV divergences are kept inside

Sp
(1) div.
a→a1...am . Moreover, Sp

(1) div.
a→a1...am can be expressed as

Sp(1) div.
a→a1...am

(
p1, . . . , pm; P̃

)
= I (1)

a→a1...am

(
p1, . . . , pm; P̃

)
Sp(0)

a→a1...am

(
p1, . . . , pm; P̃

)
,

(2.59)

with the insertion operator

I (1)
a→a1...am(p1, . . . , pm; P̃ ) = cΓ g

2
S

(
−s1,m − i0

µ2

)−ε { 1

ε2

m̄∑
i,j=1(i 6=j)

T i · T j
(
−sij − i0
−s1,m − i0

)−ε

+
1

ε2

m̄∑
i,j=1

T i · T j
(
2− (zi)

−ε − (zj)
−ε)

−1

ε

(
m̄∑
i=1

(γi − εγ̃R.S.
i )− (γa − εγ̃R.S.

a )− m̃− 2

2

(
β0 − εβ̃R.S.

0

))}
,

(2.60)

where the color matrix of the collinear particle with momentum pi is denoted by T i, m̄

counts the number of collinear final state QCD partons and m̃ refers to the total number

of QCD partons in the splitting process. This formula was first introduced in ref. [26]

and constitutes an extension to the multiple collinear limit of the original one derived by

Catani and Seymour.4 However, there are some alternative approaches that lead to similar

expressions. For instance in ref. [33], the authors use renormalization techniques for the

treatment of IR singularities; proposing an all-order formula for the anomalous dimension,

they obtained a general structure for the IR-divergences of scattering amplitudes.

The description of color operators is based on the discussion presented in refs. [1, 32].

In the context of QCD with NC colors, the associated gauge group is SU(NC). Given a

representation R of the algebra, the generators are normalized according to

Tr
[
Ta(R)Tb(R)

]
= TR δ

ab . (2.61)

4For more details, see ref. [1], section 7.3.
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As a conventional choice, we use TA = NC and TF = 1/2 for the adjoint and fundamen-

tal representations, respectively. Applying Fierz identities and the definition of Casimir

operators implies

CA = NC , (2.62)

CF =
N2

C − 1

2NC
, (2.63)

and also we use Tr [Id] = CA, with Id the identity element in the fundamental representa-

tion.

Following with the description of eq. (2.60), the one-loop DST-dimensional volume

factor is given by

cΓ =
Γ (1 + ε) Γ (1− ε)2

(4π)2−ε Γ (1− 2ε)
, (2.64)

and final state particles are ordered such that {1, . . . , m̄} are the coloured ones while the

remaining ones are singlets under SU(NC) transformations. Also, it is useful to notice that

m̃ = m̄ in the collinear splitting processes which are started by non-QCD partons (in this

paper, photons). On the other hand, the flavour coefficients γa are given by

γq = γq̄ = 3CF /2 , (2.65)

γg = β0/2 , (2.66)

and β0 = (11CA − 2Nf )/3, while γa = 0 for non-QCD partons. Besides predicting the

ε-poles, I (1) also controls the RS dependence up to O(ε0) through the coefficients γ̃R.S.
i and

β̃R.S.
0 . They are given by

γ̃C.D.R.
i = β̃C.D.R.

0 = 0 , (2.67)

in CDR, while

γ̃D.R.
q = γ̃D.R.

q̄ = CF /2 , (2.68)

γ̃D.R.
g = β̃D.R.

0 /2 = CA/6 , (2.69)

in dimensional reduction (DR).

As can be seen from eq. (2.60), all the divergent structure is controlled by the insertion

operator I
(1)
a→a1...am . This object is a matrix in the color space, but for the processes

considered it is possible to completely describe its action using a pure c-number. Let’s

explain this point more carefully. Due to color conservation, we have∑
i

T i Sp
(0)
a→a1...am = Sp(0)

a→a1...am T a , (2.70)

thus the color charge of the parent parton can be expressed using the color information of

the outgoing collinear particles. When m̃ ≤ 3, eq. (2.70) implies that all the products of

color operators inside I
(1)
a→a1...am are proportional to the unit matrix. So, we write

I (1)
a→a1...am → I(1)

a→a1...amId , (2.71)

where I
(1)
a→a1...am is a pure c-number.
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After discussing the divergent structure of splitting functions at NLO, we can exploit

this knowledge to write the finite corrections in an advantageous way. If we apply the

decomposition suggested in eq. (2.58) and eq. (2.59) to the definition given in eq. (2.11),

we obtain

P (1),µν
a→a1...am ≡

(
s1,m

2 µ2ε

)m−1 (
Sp(0),µ

a→a1...am

)† (
Sp(1) div.,ν

a→a1...am + Sp(1) fin.,ν
a→a1...am

)
+ h.c. ,

= 2 Re
(
I

(1)
a→a1···am

(
p1, . . . , pm; P̃

))
P (0),µν
a→a1...am +

(
P (1) fin.,µν
a→a1...am + c.c.

)
, (2.72)

with

P (1) fin.,µν
a→a1...am =

(
s1,m

2 µ2ε

)m−1 (
Sp(0),µ

a→a1...am

)†
Sp(1) fin.,ν

a→a1...am , (2.73)

where we must recall that a sum over color and polarization of outgoing collinear particles

is always understood. Centering in the triple collinear limit, eq. (2.53) can be rewritten as

P (1) fin.,µν
a→a1a2a3 = ca→a1a2a3

 4∑
j=1

A
(1) fin.
j fµνj + A

(1) fin.
5 fµν12

 , (2.74)

with ca→a1···am is a normalization factor which depends on the process and, at this point,

we can just take care of the coefficients Ai. Since all the processes studied in this work are

of the form V → q1q̄2V3, they turn out to be symmetric under the exchange 1 ↔ 2. The

tensorial basis has a well-defined behaviour under the symmetry operator S1↔2, closely

related with the symmetry properties in the indices µ↔ ν; explicitly,

S1↔2

(
fµνj

)
= fµνj for j ∈ {1, 2} , (2.75)

S1↔2 (fµν3 ) = fµν4 , (2.76)

S1↔2 (fµν12 ) = −fµν12 , (2.77)

so we can infer the behaviour of the associated coefficients. Thus, A
(1) fin.
4 is obtained from

A
(1) fin.
3 . Of course, making no assumptions about the symmetry during the computation

allows to check for potential errors at the final stage.

The last step in the organization of the finite pieces consists in classifying the different

terms according to their transcendental weight. The notion of transcendental weight is

related to the number of iterated integrals of rational functions required to express a

specific function. In this way, rational functions (including constants) have weight 0. log(x)

and π have weight 1; Lin(x) and ζn have weight n. Since it is a multiplicative quantity,

log(x) log(y) has weight 2 and so on. It is known that one-loop QCD amplitudes can be

expanded using up to weight 2 functions, when considering only O
(
ε0
)

terms. For these
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reasons and symmetry considerations, the coefficients Aj can be written as

A
(1) fin.
j =

2∑
i=0

C(i)
j + (1↔ 2) for j ∈ {1, 2} , (2.78)

A
(1) fin.
3 =

2∑
i=0

C(i)
3 , (2.79)

A
(1) fin.
5 =

2∑
i=0

C(i)
5 − (1↔ 2) , (2.80)

where C(i)
j includes only functions of transcendental weight i.

As a final comment, let’s notice that unpolarized splitting functions can be recovered

by contracting Pµνa→a1...am with dµν(P̃ , n), i.e.

〈P̂a→a1···am〉 =
1

ω
dµν

(
P̃ , n

)
Pµνa→a1...am , (2.81)

where ω = 2(1−ε) is the number of physical polarizations associated with the parent vector

particle.

3 Photon-started processes

In this section we present the results associated to the processes γ → qq̄γ and γ → qq̄g. In

contrast to the path followed in ref. [27], we start analysing the simplest splitting process

with the objective of improving our understanding of their structure.

3.1 γ → qq̄γ

Let’s start with the γ → qq̄γ splitting amplitude. It is the easiest process in the triple-

collinear limit as it involves only Abelian interactions. At LO the splitting amplitude reads

Sp
(0)(a1,a2)
γ→q1q̄2γ3 =

e2
qg

2
eµ

2εIda1a2
s123

ū(p1)

(
/ε(p3)/p13

/ε(P̃ )

s13
−
/ε(P̃ )/p23

/ε(p3)

s23

)
v(p2) , (3.1)

which implies that the LO polarized splitting function can be expressed as

P
(0),µν
γ→q1q̄2γ3 = e4

qg
4
eCA Pµν

(
p1, p2, p3; P̃

)
, (3.2)

where we introduced the function

Pµν
(
p1, p2, p3; P̃

)
=

1

x1x2

(
ηµνDST

(
εx1(1− x3)− (1− x1)2

)
+ 2ε fµν2 + 2(ε− 1) fµν3

)
+(1↔ 2) . (3.3)

Note that this expression is totally symmetric under the exchange of particles 1↔ 2, and

that it only involves symmetric elements of the tensorial basis. The function P describes

completely the kinematics of all the splitting processes considered in this article. This
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is due to the factorization of the color structure at tree-level in the triple collinear limit

with photons.

In spite of involving solely symmetric tensorial structures, NLO corrections include

non-trivial contributions to C(i)
5 . However, as expected, the full splitting function is com-

pletely symmetric under 1↔ 2. For γ → qq̄γ, the normalization factor is given by

cγ→qq̄γ = CACF e
4
qg

4
eg

2
S , (3.4)

while

I
(1)
γ→q1q̄2γ3(p1, p2, p3; P̃ ) =

cΓg
2
S

ε2

(
−s123 − ı0

µ2

)−ε [
−2CFx

−ε
3 − 2εγq

]
(3.5)

controls the divergent structure for this process. When comparing ε-poles in our bare

results with the ones predicted by this formula, we found a complete agreement.

Now, let’s show the NLO corrections. The rational terms are described by

C(0)
1 =

1− x1

x1

(
8(1− x1)

x2
+ 1

)
, (3.6)

C(0)
2 =

4

1− x3

(
1− x1

x1 x2
− 1

)
− 2

1− x1
, (3.7)

C(0)
3 =

1

x1 x2

(
4
(
1− x2 + x2

2

)
1− x3

+
(1− x2)2

1− x1
+ 15− x2

)
, (3.8)

C(0)
5 = − 2

x1

(
1

1− x1
− 2

1− x3

)
, (3.9)

while

C(1)
1 =

1− x2

x2

(
2x3 − x2

1− x1
log(x1) +

2x3

1− x3
log(x3)

)
, (3.10)

C(1)
2 =

2

x1 x2

[
1

1− x1

(
2x3

x2
− 2x1 x2 + x3

1− x1

)
log(x1)

+
2

1− x3

(
x3

x1
+
x3(1− x1)− x1x2

1− x3

)
log(x3)

]
, (3.11)

C(1)
3 =

(1− x2)2

x1 x2(1− x1)

(
1

1− x1
+

2

x2

)
log(x1) +

2x3 − x1

x2
1 x2

log(x2)

+
2

(1− x3)2

(
2(2− x2)x3

x1 x2
+
x2

3

x2
1

+
1

x2
2

− 2

)
log(x3) , (3.12)

C(1)
5 =

2

1− x1

(
2x3

x1 x2
− 1

1− x1

)
log(x1) +

4

x1(1− x3)2
log(x3) , (3.13)

contain the weight 1 functions.
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Finally, for the weight 2 contributions we have

C(2)
1 =

2

x1 x2

[
(1− x3)x3

(
1− 1

x2

)
− (1− x1)2

]
R (x1, x3) , (3.14)

C(2)
2 =

4

x3
2

(
1− (1− x2)2

x1

)
R (x1, x3) , (3.15)

C(2)
3 = − 2

x1x2

[(
2 +

(1− x2)2

x2
2

)
R (x1, x3) +

(
1 +

x2
3

x2
1

)
R (x2, x3)

]
, (3.16)

C(2)
5 = − 4x3

x1 x2
2

R (x1, x3) , (3.17)

with

R (xi, xj) =
π2

6
− log (xi) log (xj)− Li2 (1− xi)− Li2 (1− xj) , (3.18)

being originated from the ε-expansion of standard scalar boxes, after the subtraction of the

terms proportional to log2(xi) included in I
(1)
γ→q1q̄2γ3(p1, p2, p3; P̃ ). Explicitly, the standard

scalar box with one off-shell leg is given by

I
(box)
ij =

∫
q

µ2εs2
123

(q2 + ı0) ((q − pi)2 + ı0) ((q − p123)2 + ı0) ((q − p123 + pj)2 + ı0)

=
2cΓ

ε2 xixj

(
−s123 − ı0

µ2

)−ε[
x−εi 2F1

(
1,−ε; 1− ε;−xk

xj

)
+ x−εj 2F1

(
1,−ε; 1− ε;−xk

xi

)
− 2F1

(
1,−ε; 1− ε;− xk

xixj

)]
, (3.19)

where {i, j, k} is a permutation of {1, 2, 3} and standard bubbles are simply written as

I
(bubble)
i =

∫
q

µ2ε

((q − pi)2 + ı0) ((q − p123)2 + ı0)
=

cΓ

ε(1− 2ε)

(
−s123 − ı0

µ2

)−ε
x−εi , (3.20)

with the notation pµ0 = 0µ. Thus, we obtain the following identity

R (xi, xj) ≡ −
xixj

2
I

(box)
ij +

1− 2ε

ε

(
I

(bubble)
i + I

(bubble)
j − I(bubble)

0

)
, (3.21)

which is valid up to O
(
ε0
)
. This is an important step towards the extension of the results

to higher orders in ε, although rational coefficients dependence on ε could make it a bit

complicated.

3.2 γ → qq̄g

The following process is γ → qq̄g, which includes three QCD partons. Since all of them

are on-shell final state particles, it is expected that the associated splitting function will

be expressed in a very compact form. The corresponding splitting amplitude at tree-level

is given by

Sp
(0)(a1,a2,α3)
γ→q1q̄2g3 =

eqgegSµ
2εTα3

a1a2

s123
ū(p1)

/ε(p3)/p13
/ε
(
P̃
)

s13
−
/ε
(
P̃
)
/p23

/ε(p3)

s23

 v(p2)

=
gS

geeq
Tα3
a1a2 Sp

(0)(a1,a2)
γ→q1q̄2γ3 , (3.22)
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while the polarized LO splitting function can be written as

P
(0),µν
γ→q1q̄2g3 = e2

qg
2
eg

2
SCACF Pµν

(
p1, p2, p3; P̃

)
. (3.23)

Centering in the NLO corrections, the divergent structure is dictated by

I
(1)
γ→q1q̄2g3

(
p1, p2, p3; P̃

)
= I

(1)
γ→q1q̄2γ3

(
p1, p2, p3; P̃

)
+
cΓg

2
SCA
ε2

(
−s123 − ı0

µ2

)−ε (
x−ε3 − x

−ε
1 − x

−ε
2

)
, (3.24)

and

cγ→qq̄g = CACF e
2
qg

2
eg

4
S , (3.25)

is the global NLO normalization factor. As an usual check, we verified that all the ε-poles

were equal to those predicted by the expansion of I
(1)
γ→q1q̄2g3 .

Due to the presence of a non-trivial color structure, it is useful to decompose the C(i)
j

coefficients according to

C(i)
j = CAC(i,CA)

j +DAC(i,DA)
j , (3.26)

where DA = CF −CA/2 is related with the Abelian contributions. Moreover, we find that

C(i,DA)
j = C(i,γ→qq̄γ)

j , (3.27)

which was expected since the Abelian terms in γ → qq̄g are the same that those present in

the γ → qq̄γ process. So, in order to simplify the presentation of the results, we only write

the contributions proportional to CA. The rational terms are given by

C(0,CA)
1 =

1− x1

2x1

(
8(1− x1)

x2
− 1

)
, (3.28)

C(0,CA)
2 = − 1

1− x1
, (3.29)

C(0,CA)
3 =

1

2x1 x2

(
(1− x2)2

1− x1
+ 15− x2

)
, (3.30)

C(0,CA)
5 =

1

1− x2

(
1

x2
− 1

1− x1

)
, (3.31)

and

C(1,CA)
1 = −3(1− x2)

2(1− x1)
log(x1) , (3.32)

C(1,CA)
2 = − 1

(1− x1)2

(
x3

x1 x2
+ 2

)
log(x1) , (3.33)

C(1,CA)
3 =

1

2x1 x2

(
(1− x2)2

(1− x1)2
log(x1)− 3 log(x2)

)
, (3.34)

C(1,CA)
5 =

1

1− x1

(
2(1− x2)

x1 x2
− 1

1− x1

)
log(x1) , (3.35)
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are the weight 1 contributions. The non-trivial weight 2 terms are given by

C(2,CA)
1 = −(1− x1)2

x1 x2
R (x1, x2) , (3.36)

C(2,CA)
3 = − 2

x1 x2
R (x1, x2) . (3.37)

It is interesting to appreciate that this is the last remaining R-function involved in the

expansion of standard scalar boxes. Also, we obtain the relation∑
j∈{1,3}

C(2,CA)
j fµνj + (1↔ 2) = R (x1, x2) Pµν |ε0 , (3.38)

which tells us that the weight 2 contribution associated with CA is proportional to the LO

splitting function.

Due to the fact that γ → qq̄γ and γ → qq̄g share some Feynman diagrams in their

perturbative expansion, the corresponding NLO corrections are related. This constitutes

a cross-check of the results, since they were obtained from independent implementations.

Explicitly, we have the relation

Pµνγ→q1q̄2γ3 = cγ→qq̄γ

(
Pµνγ→q1q̄2g3
cγ→qq̄g

∣∣∣∣
CA→0

)
, (3.39)

which is equivalent to cancel all the non-Abelian diagrams from γ → qq̄g (and adapt the

normalization due to the presence of an additional color matrix). The color structure of the

LO splitting function Pµνγ→q1q̄2g3 is proportional to Tr [TaTa] = CACF whilst Pµνγ→q1q̄2γ3 ∝
Tr [Id], using Tr [Id] = CA. In both processes, NLO corrections involve diagrams with

virtual gluons, but only γ → qq̄g allows triple-gluon vertices. Since these vertices are

multiplied by a structure constant fabc, they turn out to be proportional to CA when

performing the contraction with the LO splitting amplitudes. As discussed in ref. [27],

virtual-gluon corrections with fermion-gluon vertices are multiplied by an additional factor

CF or DA compared to the LO. In consequence, after factorizing the LO color structure, we

can consider the limit CA → 0 to cancel diagrams with non-Abelian vertices. Moreover, in

that limit, CF = DA which leads to Pµνγ→q1q̄2γ3 after adding all the non-vanishing diagrams.5

3.3 Remarks on the structure of the photon-started splitting functions

In order to make a proper analysis, let’s recall the associated unpolarized results shown in

ref. [27]. Before that, it is useful to introduce the notation

∆i ≡ xi + zi − 1 , (3.40)

where the indices correspond to outgoing particles. For γ → qq̄γ we found

〈P̂ (1) fin.
γ→q1q̄2γ3〉 =

CFCA
2

e4
qg

4
eg

2
S

[
C(0) + C

(1)
1 log(x1) + C

(1)
2 log(x3)

+ C(2)R (x1, x3) + (1↔ 2)
]
, (3.41)

5It is important to remark that this procedure is not the same as replacing the gauge group of the theory

by an Abelian one. In an effective sense, it only accounts for the replacement of a gluon by a photon in a

particular process.
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with

C(0) = (x1x2 − z1z2 −∆1∆2)

(
2− 2x1(x2 + 1)

x1x2(1− x3)
− 1

1− x1

)
− 8(1− x1)2

x1x2
− 1− x1

x1

−2z1∆1

x1x2

(
(x2 + 1)(1− x2)2

(1− x1)(1− x3)
+
x3 − x1x2

1− x3
+

(3− x2)x2 − x1(x2 + 1)

2(1− x1)
+ 8

)
, (3.42)

C
(1)
1 =

x1x2 − z1z2 −∆1∆2

(1− x1)x1

(
x2 + 2x3

x2
2

− x1x2 + 2x3

(1− x1)x2
− 1 + x1

1− x1

)
− z2(2x3 − x2)∆2

x1x2
2

−(1− x2)2z1(2(1− x1) + x2)∆1

(1− x1)2x1x2
2

+
(1− x2)(x2 − 2x3)

(1− x1)x2
, (3.43)

C
(1)
2 =

2

(
2x1(z2 − 1−∆2(x1x2 + 1))−

(
∆0,3

1,2

)2
− 2x2(z1 + 2z2 − 3)(x1x2 + 2z3)− x2z3

)
x2

2(1− x3)2

−
2
(
x2

1(2z1(z2 − 3) + (4z2 − 13)z2 + 7) + 2z2
3

)
x1x2(1− x3)2

− 2

(
z3 + x1(z2 − 1)

x2(1− x3)

)2

−2(2x1x2 + (z1 − 15)z1 + 7)

(1− x3)2
, (3.44)

C(2) =
2x2

(
x3(z1 + x3(z2 − 1)) + ∆3(2z1 + x2(z3 − 1)) + x3

2 + 2x2x3z1

)
x1x3

2

−4∆1(x3 − z1)

x1x2
+

2 (z1 + x3(z2 − 1))2

x1x3
2

, (3.45)

for the finite NLO corrections, after applying a subtraction procedure analogous to the one

described in eq. (2.72). On the other hand, the corrections to γ → qq̄g are given by

〈P̂ (1) fin.
γ→q1q̄2g3〉 =

DAg
2
S

e2
qg

2
e

〈P̂ (1) fin.
γ→q1q̄2γ3〉+

C2
ACF
2

e2
qg

2
eg

4
S

[
C(0) + C

(1)
1 log(x1)

+ 〈P(0)
q1q̄2γ3 |ε0〉R (x1, x2) + (1↔ 2)

]
, (3.46)

with

C(0) =
16− 7x2 − 2z1z2 + (1− z1)2 − 15z2

x1
− z2

1

(1− x1)x2
− 8

z2
1 + (1− z1)2

x1x2

+
2z1(1− z3)− x2(1− z1)2 − (x2 + 1)z1

(1− x1)x1
, (3.47)

C(1) =
z2(x2(4x1z1 + x1 − 1) + 2x3z1) + x2(x1((x2 − 1)z1 + x2 − 3)− 2x2 + 3)

(x1 − 1)2x1x2

+
3x2

2 + 5x2(z2 − 1) + 3z2
2 − 4z2 + 1

x1x2
− (1− x2)2z1

2

(1− x1)2x1x2
, (3.48)

and

〈P(0)
q1q̄2γ3 |ε0〉 =

(∆1)2 + z2
1

2x1x2
+ (1↔ 2) =

〈P̂ (0)
q1q̄2γ3〉
e2
qg

2
eg

2
S

∣∣∣∣∣
ε=0

, (3.49)

which corresponds to the O
(
ε0
)

contribution to the g → qq̄γ LO unpolarized splitting

function.
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It is interesting to appreciate that the coefficients C(i)
j involved in the expansion of

the polarized splitting functions are independent of the longitudinal-momentum fractions

zi, both for P
(1) fin.,µν
γ→q1q̄2γ3 and P

(1) fin.,µν
γ→q1q̄2g3 . However, the unpolarized version of these splitting

functions depends on zi in a non-trivial way. So, we conclude that these contributions

are originated in the contraction of the different tensorial structures with the parent-gluon

polarization tensor, dµν(P̃ , n). Explicitly, we have

dµν

(
P̃ , n

)
fµν1 = −2(1− ε) , (3.50)

dµν

(
P̃ , n

)
fµν2 = x1x2 − z1z2 −∆1∆2 , (3.51)

dµν

(
P̃ , n

)
fµν3 = −2z1∆1 , (3.52)

dµν

(
P̃ , n

)
fµν12 = 0 , (3.53)

which also justifies the presence of the ∆i functions in the final expressions, and fµν12 does

not contribute because it is antisymmetric under the exchange 1 ↔ 2 (or, equivalently,

µ ↔ ν). Due to gauge invariance, photon-started splitting functions at loop-level can be

computed using the replacement dµν → −ηDST
µν inside gluon propagators.6 If we remove the

polarization vector associated with the parent parton, then it is possible to compute the

splitting amplitude without explicitly taking into account the LCG quantization vector nµ.

This property is straightforwardly translated into Pµν , because this object is computed

using the product of amputated splitting amplitudes. Thus, the coefficients C(i)
j for the

collinear processes γ → a1 . . . am must be independent of zi (and, of course, n · P̃ ).

Anyway, as we discussed in ref. [27], photon-started splitting processes can be computed

without performing any ε-expansion because they only involve standard boxes and bubbles

that are known in terms of exponentials and hypergeometric functions. Since the exact

expressions are lengthy, we present them in appendix A.

4 Gluon-started splitting: g → qq̄γ

Finally, we arrive to the gluon started splitting. Due to the fact that it is originated from

a parent gluon, there is a non-trivial color flow and it is not possible to remove all LCG

integrals to trivially avoid all zi dependence, as happened in the γ → a1 . . . am processes.

Starting with the tree-level contributions, the splitting amplitude is

Sp
(0)(a1,a2;α)
q1q̄2γ3 =

eqgegSµ
2εTα

a1a2

s123
ū(p1)

/ε(p3)/p13
/ε
(
P̃
)

s13
−
/ε
(
P̃
)
/p23

/ε(p3)

s23

 v(p2) , (4.1)

and the polarized splitting function is given by

P
(0),µν
q1q̄2γ3 =

e2
qg

2
eg

2
S

2
Pµν

(
p1, p2, p3; P̃

)
. (4.2)

Analysing the NLO corrections to this process, the normalization factor is given by

cqq̄γ =
e2
qg

2
eg

4
S

2
, (4.3)

6For further details and a formal proof of this claim, see ref. [27], section IV.
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and the divergent structure is in complete agreement with the one predicted by Catani’s

formula, i.e.

I
(1)
q1q̄2γ3

(
p1, p2, p3; P̃

)
=
cΓg

2
S

ε2

(
−s123 − ı0

µ2

)−ε [
CA
(
2− z−ε1 − z

−ε
2 + x−ε3

)
− 2CF x

−ε
3 − ε

(
2γq − γg −

β0

2

)]
. (4.4)

Notice that the ε-expansion of eq. (4.4) involves the presence of logj(zi) (i, j = 1, 2), which

implies that it could be possible to have some zi dependence in P
(1) fin.,µν
q1q̄2γ3 .

As we did previously, it is convenient to classify the different color contributions to

C(i)
j . So, we use the decomposition

C(i)
j = CAC(i,CA)

j +DAC(i,DA)
j + β0C(i,β0)

j , (4.5)

with

C(i,DA)
j = C(i,γ→qq̄γ)

j , (4.6)

because the Abelian component of this splitting function coincides with P
(1),µν
γ→qq̄γ . Applying

this notation, the terms proportional to β0 are expressed as

P
(1) fin.,µν
q1q̄2γ3

∣∣∣
β0

=
10

3
cqq̄γ Pµν , (4.7)

because this contribution is originated from the self-energy correction of the parent

gluon [14].

After these appreciations, we need to present only C(i,CA)
j to complete the description

of the g → qq̄γ splitting function. The rational terms are given by

C(0,CA)
1 =

1− x1

2x1

(
10 (1− x1)

3x2
+ 1

)
, (4.8)

C(0,CA)
2 =

1

1− x1
, (4.9)

C(0,CA)
3 = − 1

2x1 x2

(
(1− x2)2

1− x1
− 23

3
− x2

)
, (4.10)

C(0,CA)
5 =

1

x1(1− x1)
, (4.11)

while the contributions of weight 1 are

C(1,CA)
1 = −3(1− x2)

2(1− x1)
log(x1) , (4.12)

C(1,CA)
2 = − 1

(1− x1)2

(
2x3

x1 x2
+ 1

)
log(x1) , (4.13)

C(1,CA)
3 = − 1

2x1 x2

(
(1− x2)2

(1− x1)2
log(x1) + 3 log(x2)

)
, (4.14)

C(1,CA)
5 =

1

(1− x1)2

(
x3

x1 x2
+ 2

)
log(x1) . (4.15)
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As we could appreciate for the photon-started splitting processes, all the contributions

were independent of zi due to the lack of LCG integrals. However, the same behaviour

is observed here, at least for weights 0 and 1. In this case, a cancellation among the

zi-logarithms in P
(1),µν
q1q̄2γ3 and those in I

(1)
q1q̄2γ3 takes place.

The situation changes when studying weight 2 contributions, which are more com-

plicated than in the previous splitting functions. For this reason, a more sophisticated

procedure was required for their treatment. The first step consisted in identifying a set of

functions to expand these terms. Following the choice shown in ref. [27] for the unpolarized

splitting function g → qq̄γ, we have the basis

F1 =
π2

6
− 2Li2

(
1− x1

1− z1

)
− 2Li2

(
1− z2

1− z1

)
+ 2Li2 (1− z1)

+2 log(x2) log(1− z1) + (1↔ 2), (4.16)

F2 = log(x1) log(x2) , (4.17)

F3 =
π2

4
− Li2 (1− x1)− log(x1) log(z1) + (1↔ 2) , (4.18)

F4 = log

(
x1

1− z1

)
log

(
1− z1

z1z2

)
− log(x2) log(1− z1) , (4.19)

F5 = log

(
x2

1− z2

)
log

(
1− z2

z1z2

)
− log(x1) log(1− z2) = S1↔2 (F4) , (4.20)

whose associated coefficients are

C(2,CA)
1 = − 1

2x1 x2

[
F1

2
+

(
(x2 − x1)

x3 + (1− x1)∆2

∆1
− (1− x3)2

2

)
F2 − 2(1− x1)2F3

+

(
(x1 − x2)

(
z3 + x1∆2

∆1
− x2

)
− x1 x3 + (1− x3)∆1

z3
− x1 − 4x2 + 3

)
F4

]
,

(4.21)

C(2,CA)
2 =

(x1 z1 + x2 z2 + z3)(2z1z2 − x1(1− z2)− x2(1− z1) + z3)

2x1 x2

F1

Ω

−
(

(x3 + (1− x1)∆2)2

x2 ∆1
+
x3 (1 + 2z2 − 2(z3 + 2z2)z1) + z2(2z1 − 2z2 − 1)

x1

−x1(2 + ∆2) + z3 + 4z2
1

)
F2

Ω
+

[
(1− z1)2∆1 − x1 z3

x2 z1 z3 ∆1

+
z2

Ω

(
x1(1− z2)

(
2z2

1 − (1− z2)z2

)
x2 z3

−
x2

(
1− z2

1

)
z2

x1 z3

−
2
(
(1− z1)z2

1 + (1− 2z1 − z2)z2

)
z3

+
(2z1 − z2)z3

x1 x2
+

2(z2 − (1− z1)z1)

x1

+
2(z1 + z2

1 + z2z3)

x2

)]
F4 , (4.22)
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C(2,CA)
3 = − 1

2x1 x2

(
2(x1 z1 + x2 z2 + z3)z2 ∆2

Ω
+ 1

)
F1 +

(
z2(z2 − x3(2z2 + z3))

x1

+
(x1(x2 + z2)− z2)

(
x2

1 x2 + x2 z
2
2 − x1 z2 ∆2

)
x1 x2 ∆1

− (1− z2)(x3(1− z2)− z1 + z2)

x2

+1− x2(x1 + z3)− (x1 + 2)z2 − 2(1− z2)z1

)
F2

Ω
+

2

x1 x2
F3

+

(
(x1(x2 + z2)− z2)

(
x2

1x2 + x2z
2
2 − x1 z2 ∆2

)
x1 x2∆1

− (2− z2)z2
3

x1x2
− 2(1− x3)z1z

3
2

x1z3

+
z2

3(x3z1 − z2) + (1− z1)(z3(4− 3x3z1 + x3) + (1− z1)(2x3z1 + x3 − 2))

x1
+ 1

+
(1− z2)

(
x3(1− z2) +2−3z1 − 2z2 + 3z1z2 − z2

2

)
x2

+
2(1− z2)z2

2

z3
− x2(x1+z3)

−(x1 + z2
1 + z2

2)z2 − 2(1− z3)z3

)
F4

Ω
−
[
z2

Ωx1

(
(2z1 + z3)(x1z1 − x3z3)

x2
+ z1z3

+
1

z3

(
x1

(
z2

1 (z2+1)− z1(1−z2)+(1−z2)2z2

)
− (1↔ 2)

))
+

1

x1 x2

]
F5 , (4.23)

C(2,CA)
5 = −F2 + F4

x1 ∆1
− (1− z1)2 + (1− z2)2

x1 x2 z3
F4 . (4.24)

For these contributions, there is a non-trivial dependence in both zi and ∆i, not only inside

the rational coefficients but also in the definition of the transcendental functions Fi. This

is a consequence of the presence of Feynman integrals with LCG denominators, which is

closely related to non-Abelian interactions.

As a final comment, let’s discuss about the possible functional dependence of the

rational coefficients. The description of the triple collinear limit involves three almost-

collinear momenta, pµi , and the quantization direction nµ. Since we are computing scalar

objects, they can only depend on the scalar products n · pi and sij . Moreover, the result

is dimensionless and independent of nµ, which justifies the introduction of the variables zi
and xi. But these variables are not independent, i.e. they fulfil

3∑
i=1

xi = 1 ,

3∑
i=1

zi = 1 , (4.25)

which implies that we can describe all the results using four variables. Motivated by the

possibility of simplifying the expressions, we introduced the variables ∆i that correspond

to the scalar products of the collinear direction P̃µ and the momentum pµi ; explicitly,

2P̃ · pi = s123

(
2pi · pj + 2pi · pk

s123
− n · pi
n · P̃

)
= s123

(
s123 − sjk
s123

− n · pi
n · P̃

)
= s123 (1− xi − zi) = −s123 ∆i , (4.26)

where we considered i 6= j 6= k. For this reason, the variables ∆i have a well-defined

physical meaning and it is expected that they appear in the calculation. Since weight 0

and 1 contributions depend only on xi, we could replace zi = 1−xi+∆i and rewrite all the

coefficients Cj . However, we decided to mix the different variables involved in the problem

with the purpose of reducing the length of the final results.
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4.1 Comments on cross-checks

As we did with all the previous processes, the first check consisted in comparing the di-

vergent structure with Catani’s formula. In this particular case, we carefully studied the

cancellation of higher weight functions that were multiplying single ε-poles. Since we are

performing operations with matrices whose elements have ε-poles (M−1, as defined in sec-

tion 2), some transcendental weight 2 functions associated with the finite pieces of Feynman

integrals could contribute to the divergent IR structure. Of course, Catani’s formula rules

out this possibility. However, we explore this issue putting flags in some integrals. Explic-

itly, the triple collinear limit involves the massless box-integral

Ibox
LCG =

∫
q

1

(q2 + ı0) ((q − p2)2 + ı0) ((q − p23)2 + ı0) ((q − p123)2 + ı0) (n · q + ı0)
,

(4.27)

which is known up to order ε0. If we perform a naive general ε-expansion, we have

Ibox
LCG = cΓ g

2
S

(
−s123 − i0

µ2

)−ε (B0

ε2
+
B1

ε
+B2

)
, (4.28)

where B0 only contains rational functions and Bi incorporates transcendental functions of

weight up to i. So, we studied the cancellation of single ε-poles without writing down the

explicit form of B2. Since subtracting I
(1)
q1q̄2γ3 removes all the divergences, we obtained the

following equation
1

ε

[
B2 + S1↔2 (B2)

2
+D(xi, zi)

]
= 0 , (4.29)

with D(xi, zi) only involves rational combinations of weight 2 functions. In consequence,

this procedure allowed us to perform a cross-check among our polarized splitting results and

the O
(
ε0
)

terms of LCG Feynman integrals, which were computed using other methods.

Following a more conventional path, we also checked that the final result is symmetric

under the exchange 1↔ 2. Another test consisted in taking the limit CA → 0, Nf → 0 of

the normalized splitting function and comparing it with Pµνγ→qq̄γ . Explicitly, the relation

Pµνγ→q1q̄2γ3 = cγ→qq̄γ

(
Pµνq1q̄2γ3
cqq̄γ

∣∣∣∣
CA→0,Nf→0

)
, (4.30)

turns out to be successfully verified. Notice that, in addition to the limit CA → 0 described

in section 3, here we also require Nf → 0. This leads to the complete cancellation of gluon

self-energy corrections and it allows a one-to-one correspondence between the Feynman

diagram expansion of γ → qq̄γ and g → qq̄γ.

Finally, we contracted P
(1) fin.,µν
γ→qq̄γ with dµν(P̃ , n) to recover the unpolarized splitting

function (which was computed with an independent implementation). Again, we found a

complete agreement.

5 Conclusions

In this paper, we computed all the relevant polarized splitting functions in the triple

collinear limit, for processes involving at least one photon: γ → qq̄γ, γ → qq̄g and
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g → qq̄γ. We obtained the NLO corrections to these objects, working in CDR and us-

ing TL-kinematics, where strict collinear factorization is fulfilled.

Due to gauge invariance, photon-started polarized splitting functions are completely

independent of nµ and independent of the longitudinal-momentum fractions zi too. This

reduces the amount of transcendental functions required to express the results. Moreover,

weight 2 components are very simple because they turn out to be proportional to the

function R(xi, xj).

The fact that Pµνq1q̄2γ3 is a gluon-initiated process implies a rather different behaviour

of this splitting function compared with the others. In particular, LCG Feynman integrals

are required for the computation. Also, the components of transcendental weight 2 depend

on zi and ∆i. However, all this contributions are isolated in terms proportional to CA,

because the Abelian part is related to Pµνγ→q1q̄2γ3 .

All the results shown in this article were compared against their unpolarized ver-

sion, presented in ref. [27], and they were consistent. Besides that, we implemented

some cross-checks among the polarized splitting functions, in particular, testing the limit

CA → 0, Nf → 0 after removing the LO normalization. An alternative test was proposed

to check the g → qq̄γ splitting function. Relying on Catani’s formula, it is expected that

single ε-poles do not contain any weight 2 function. On the other hand, the O(ε0) pieces

of all the LCG integrals involved contain only this kind of functions. So, we took the LCG

massless box and replaced the finite piece with a generic expression. Then, we forced the

cancellation of single ε-poles and obtained an additional constraint which relates Feynman

integrals expansions and polarized splitting functions. Due to the fact that they were

computed independently, this comparison provides another check to our results.

Finally, we would like to emphasize that NLO corrections to polarized splitting func-

tions in the triple collinear limit are essential ingredients for NNNLO computations and

beyond. Pure QCD triple-splitting processes, which have a more complicated color struc-

ture, will be presented in a forthcoming article.
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A Exact results for photon-started processes

Here we present the expressions for the photon-started splitting functions in terms of

boxes and bubbles, without performing any ε-expansion or ε-pole subtraction. We write

the functions according to

P (1) ,µν
γ→a1a2a3 = cγ→a1a2a3

 4∑
j=1

A
(1)
j fµνj + A

(1)
5 fµν12

 , (A.1)
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where the coefficients A
(1)
j are expressed as linear combinations of master integrals (MI)

multiplied by rational functions that depend only on xi and ε.

γ → qq̄γ. The normalization factor for this process is defined in eq. (3.4) and the expan-

sion of the coefficients introduced in eq. (A.1) involves only the MIs presented in eqs. (3.19)–

(3.20). After taking into account symmetry considerations, we obtain

A
(1)
1 =

I
(box)
13 x3

x2

(
2
(
ε3 + 3ε2−ε+ 1

)
(1− x3)

(1− 2ε)x−1
1

+
(ε−1) (x1 + 5x2 − 1)

x−1
1 x2(1− 2ε)

− x2
2ε+ (1−x2)2 +1

)

+I
(bubble)
0

(
2
(
ε2 − 2ε+ 2

)
x1x2ε

+
x2

(
2ε3 + 15ε2 − 7ε+ 6

)
− 2

(
2ε2 − 5ε+ 6

)
x1ε

− 2

1− x3

− (2ε+ 3)(x1(ε− 1) + ε+ 1)

1− x2
+

2x3(1− ε)
x2

2ε
+

4
(
ε3 + 3ε2 − ε+ 1

)
ε

)

+I
(bubble)
1

(
x2

(
ε2 − 8ε+ 4

)
− x2

2

(
ε3 + 4ε2 − 6ε+ 2

)
+ 8ε− 4

x1x2ε

−
2x1

(
2x2

(
ε3 + 3ε2 − ε+ 1

)
+ ε− 1

)
x2

2ε
+

(2ε+ 3)(x2(ε− 1) + ε+ 1)

1− x1

−
x2

2

((
7ε3 + 16ε2 − 6ε+ 4

))
+ 2x2(6ε− 5)− 2(ε− 1)

x2
2ε

)

+I
(bubble)
3

(
2(x2 − 1)(1− ε))

x2
1ε

−
2
(
2x2

2

(
ε3 + 3ε2 − ε+ 1

)
+ x2(4ε− 5)− 3ε+ 2

)
x1x2ε

−
4x1x2

(
ε3 + 2ε2 + 1

)
+ 3ε− 2

x1x2ε
+

2

1− x3

)
+ (1↔ 2) , (A.2)

A
(1)
2 =

I
(box)
13

1− 2ε

(
2(x1 − 1)2(ε− 1)2

x3
2

− 2
(
ε
(
ε(ε+ 5) + x1

(
ε2 + ε+ 2

)
− 2
)

+ 1
)

−
2
(
(x1(x1 + 2)− 1)ε3 + (x1(x1 + 7)− 6)ε2 + (x1(2x1 − 3) + 4)ε+ x1 − 3

)
x2

−
2(x1 − 1)

(
ε
(
x1(ε+ 1)2 − 2ε+ 4

)
− 3
)

x2
2

)
+ I

(bubble)
0

(
2(ε+ 1)2

x2
2

− 2(ε− 1)2

(1− x1)2x3
1ε

+
2(1− ε)
x2

1x
2
2

+
1− ε2

1− x2
+
ε2 + 2ε+ 5

x2
−

3
(
ε2 + ε+ 1

)
(1− x1)x3

1x2
− 2(2εx1 − 3x1 + 2)

x3
1(1− x3)

+
2x1ε

2 − ε2 + 2x1ε+ 2ε+ 4x1 − 9

(1− x1)2
+

2
(
ε3 + 4ε2 − 3ε+ 2

)
(1− x1)2x2

1ε
−

3
(
ε2 + ε+ 1

)
x1(1− x2)

+
3ε3 + 17ε2 − 9ε+ 4

x1x2ε
+
ε(ε(3ε+ 7)− 1)− 2x2(ε− 1)2 + 4

x3
1x2ε

−
4
(
x2

1 + 1
)

x2
1(1− x3)2

− 3ε3 + 8ε2 − 5ε+ 2

(1− x1)2x1ε
− 8− ε(3ε(ε+ 1) + 5)

x2
1x2ε

)
+ 2I

(bubble)
1

(
2(x1 − 1)(1− ε)2

x1x3
2ε

+
3
(
ε2 + ε+ 1

)
(1− x1)x2

−
(ε− 1)

(
εx2

1 + 2x1 − ε− 1
)

(x1 − 1)2x1
− 3ε3 + 11ε2 − 7ε+ 2

x1x2ε
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−
2
(
ε2 + ε+ 2

)
x2

−
2
(
x1ε

3 + 2x1ε
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As we can appreciate, the ε dependence of the rational terms is non-trivial which pre-

vents a straightforward extension of the results presented in the main text towards higher

orders in ε.

γ → qq̄g. In section 3.2 we performed a decomposition of P
(1) ,µν
γ→q1q̄2g3 according to its colour

structure. Thus, we can write the coefficients defined in eq. (A.1) as
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j , (A.6)
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using the normalization factor given in eq. (3.25). The terms proportional to CA are

given by
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