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1 Introduction

Complete understanding of heavy ion collisions is impossible without a clear picture of

the initial stages of the collision, i.e., the processes leading to the creation of quarks and

gluons which later on thermalize forming quark-gluon plasma (QGP). The distribution of

quarks and gluons produced in these early-time processes, known as the initial condition

for the QGP formation, is the fundamental building block of heavy ion theory. Questions

concerning thermalization of the quark-gluon medium and the determination of the initial

conditions for the hydrodynamic evolution of the QGP can not be answered in a fully

satisfactory manner without the qualitative and quantitative knowledge of the production

mechanism for the initial-state quarks and gluons in a nuclear collision.

In the framework of saturation physics (see the reviews [1–7] and the book [8]) the

leading-order contribution to gluon production is given by the classical gluon fields [9–

13] of the McLerran-Venugopalan (MV) model [14–16]. Classical gluon fields in heavy

ion collisions resum powers of α2
sA

1/3
1 and α2

sA
1/3
2 [17], where αs is the strong coupling

constant, while A1 and A2 are the atomic numbers of the two nuclei (henceforth referred

to as the projectile and the target). Since the saturation scales squared of the two nuclei
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are proportional to these parameters, Q2
s1 ∼ α2

sA
1/3
1 and Q2

s2 ∼ α2
sA

1/3
2 , we can write down

the quasi-classical single-gluon production cross section as

dσ

d2k d2B d2b
=

1

αs
f

(

Q2
s1(

~B⊥ −~b⊥)

k2T
,
Q2

s2(
~b⊥)

k2T

)

, (1.1)

where ~B⊥ is the impact parameter between the two nuclei, ~b⊥ is the transverse position

of the produced gluon with respect to the center of the target nucleus, while ~k⊥ is the

transverse momentum of the produced gluon with kT = |~k⊥|. The expansion in the powers

of α2
sA

1/3
1 and α2

sA
1/3
2 corresponds to expansion in the powers of Q2

s1/k
2
T and Q2

s2/k
2
T ,

f

(

Q2
s1

k2T
,
Q2

s2

k2T

)

=
∞
∑

n,m=1

cn,m

(

Q2
s1

k2T

)n (
Q2

s2

k2T

)m

. (1.2)

Note that due to projectile-target symmetry (resulting in Qs1 ↔ Qs2 symmetry) we have

cn,m = cm,n. (The kT -dependence on the right-hand side of eq. (1.1) also enters through

powers of ln(kT /Λ) where Λ is the infrared (IR) cutoff of each nucleon: the powers of

ln(kT /Λ) are not shown explicitly above. The coefficients cn,m from eq. (1.2) are, in fact,

polynomials in ln(kT /Λ).)

At the moment we do not have an analytic expression for the function

f(Q2
s1/k

2
T , Q

2
s2/k

2
T ) in eq. (1.1). This function was extensively studied numerically in [18–

24]. Still it appears desirable to attain a better handle on the analytic form of this func-

tion. Apart from the general advantage of having an analytic solution, knowing the func-

tion f(Q2
s1/k

2
T , Q

2
s2/k

2
T ) should greatly facilitate the inclusion of small-x evolution correc-

tions [25–34] along with the running-coupling corrections [35–39] into the gluon production

cross section. These corrections are essential for realistic phenomenological applications.

Let us briefly summarize what is known about the function f(Q2
s1/k

2
T , Q

2
s2/k

2
T ). The

leading-order result (the coefficient c1,1 in eq. (1.2)) was obtained in [9, 10, 12], reproducing

the earlier results of [25, 40]. The case of proton-nucleus (p + A) collisions, defined as

the leading-order in Q2
s1 term in the expansion on the right-hand side of eq. (1.2), was

solved in [41] (see also [42, 43]), yielding the coefficients c1,n (and, due to target-projectile

symmetry, cn,1) for any positive integer n. This is all we presently know analytically about

the coefficients cn,m.

An ansatz for the full solution of the classical gluon production problem was proposed

by one of the authors in [44]. A variational approach to the problem was attempted in [45].

While consistent with our knowledge of coefficients c1,n, neither of these results can be

verified further due to our lack of knowledge of the coefficients cn,m for n,m ≥ 2. In

phenomenological applications one often employs the kT -factorization formula involving

unintegrated gluon distributions [46–48]: while the gluon production cross section in p+A

collisions (the lowest-order in Q2
s1 terms in eq. (1.2)) does lead to the kT -factorization for-

mula [49, 50], it is not clear whether kT -factorization holds beyond the p+A approximation,

again due to our lack of knowledge of cn,m for n,m ≥ 2. Moreover, numerical simulations of

the classical gluon production [18–24] for nucleus-nucleus (A+A) collisions appear to rule

out the kT -factorization ansatz, suggesting that this factorized result is only valid for p+A.
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The goal of the current project is to determine the coefficients c2,n (for n ≥ 2). As one

can see from eq. (1.2), to obtain c2,n coefficients one has to expand the gluon production

cross section to the second order in Q2
s1 keeping all orders of Q2

s2. This means that one

has to allow two nucleons in the projectile nucleus to participate in the interaction, while

allowing all nucleons in the target nucleus to interact. Formally one can think of this

as working in the regime where α2
s A

1/3
2 ∼ 1 while α2

s A
1/3
1 ≪ 1: the goal is to calculate

the O
[

(α2
s A

1/3
1 )2/αs

]

= O
[

α3
s A

2/3
1

]

correction to gluon production. Note that one still

has A1 ≫ 1 such that the O(α3
s) contribution to the cross section, where only one of the

projectile nucleons interacts, is small due to it being suppressed by a power of A
1/3
1 .

As we will detail below, having two nucleons interact in the projectile nucleus results in

the gluon production cross section consisting of two contributions (see the top two diagrams

in figure 2 below): (i) each of the two nucleons interacts both in the amplitude and in the

complex conjugate amplitude (or one nucleon interacts only in the amplitude and another

nucleon interacts only in the complex conjugate amplitude), or (ii) one nucleon interacts

both in the amplitude and in the complex conjugate amplitude while the other nucleon in-

teracts only in the (complex conjugate) amplitude. In the case (i) the scattering amplitude

is O(g3), such that the contribution to the cross section is ∼ |g3|2 ∼ α3
s. In the case (ii) the

amplitude is O(g5), while the complex conjugate amplitude is O(g), such that the cross

section contribution is ∼ g5 g ∼ α3
s. (As we will argue below, the case where the amplitude

is O(g4) and the complex conjugate amplitude is O(g2) is included by using retarded Green

functions in the O(g3) and O(g5) amplitudes in this quasi-classical calculation.)

In the present paper we calculate the scattering amplitude in case (i). While its

square would give a contribution to the desired gluon production cross section at order-

Q4
s1, the complete expression for the cross section can only be obtained if one includes

the contribution of case (ii) as well. Calculation of the contribution (ii) would involve the

O(g5) amplitude, which appears to be significantly more involved and is left for future

work. Our calculation is performed in the light-cone gauge of the projectile, with the final

results given in eqs. (3.21) and (3.25).

The paper is structured as follows. In section 2 we set up the problem by first repro-

ducing the lowest-order (p + A) gluon production calculation and then by outlining the

main ingredients needed to complete the calculation of the coefficients c2,n in eq. (1.2).

The elements of the calculation, along with the main results, are presented in section 3.

We conclude in section 4.

2 The setup

Consider the high-energy scattering of a projectile nucleus on a target nucleus. Defining

the light-cone variables as v± = (v0 ± v3)/
√
2 with the x3-axis being the collision axis,

we choose the projectile to be moving along the x+ light-cone direction, and the target

moving along the x− direction. All of our calculation will be performed in A+ = 0 light-

cone gauge. Transverse plane vectors are denoted as ~v⊥ = (v1, v2), such that the full

4-vector is vµ = (v+, v−, ~v⊥) in the (+,−,⊥) notation.

– 3 –
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Figure 1. Diagrams contributing to the single-gluon production amplitude in p+A collisions.

2.1 Classical gluon production in the p + A approximation

To introduce our formalism, let us begin by outlining the calculation of the single gluon

production cross section in p+ A collisions in the quasi-classical approximation. Working

in the approximation where α2
s A

1/3
2 ∼ 1 and α2

s A
1/3
1 ≪ 1, in this section we calculate

the O
[

α2
s A

1/3
1 /αs

]

= O
[

αsA
1/3
1

]

contribution. Since only one power of A
1/3
1 is required

we only need to include diagrams where one nucleon from the projectile interacts with

the target. The diagrams contributing to the gluon production cross section in p + A are

shown in figure 1. The target nucleus moving along the x−-axis generates the shock wave,

shown in this paper as a vertical band. Diagrammatically this vertical band represents

multiple interactions with the field of the shock wave, which happen over a very short

time interval around x+ = 0. Since only one nucleon in the projectile is involved in the

interaction, we model it with a single quark, shown in figure 1, by a horizontal solid

straight line. The spectator quarks are not shown explicitly in figure 1 (along with the

spectator nucleons if the projectile is a nucleus): below, for other processes, we also do

not show the spectators explicitly. The produced gluon can be emitted either before the

interaction with the shock wave (left diagram in figure 1) or after the interaction (right

diagram in figure 1). Emission during the passage of the projectile through the shock

wave is suppressed by a power of center-of-mass energy. Gluon emission from within the

shock wave is also suppressed in the A+ = 0 light-cone gauge we are using.

Normalizing the incoming quark in the projectile as a Wilson line, we write the fol-

lowing expression for the scattering amplitude resulting from the diagrams in figure 1:

A(~z⊥,~b⊥) = 2g

∫

d2k

(2π)2
ei
~k⊥·(~z⊥−~b⊥) ~ǫ

λ∗
⊥ · ~k⊥
k2⊥

[

Uab
~z⊥

− Uab
~b⊥

] (

V~b⊥
tb
)

. (2.1)

The amplitude in eq. (2.1) includes a Fourier-transform from transverse momentum space

to transverse coordinate space. It also involves the adjoint

Uab
~z⊥

=



Pexp







i g

∞
∫

−∞

dx+T cAc−(x+, z− = 0, ~z⊥)











ab

(2.2)

and fundamental

V~b⊥
= Pexp







i g

∞
∫

−∞

dx+taAa−(x+, b− = 0,~b⊥)







(2.3)

Wilson lines describing respectively the propagation of a high-energy gluon and quark

through the target gluon field Aµ. Here T a and ta are correspondingly the adjoint
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and fundamental SU(Nc) generators. In arriving at eq. (2.1) we used the Fierz iden-

tity Uab
(

V tb
)

= ta V when evaluating the right diagram in figure 1 in order to put the

contributions of both diagrams into a similar form.

Performing the Fourier transform in eq. (2.1) we obtain

A(~z⊥,~b⊥) =
i g

π

~ǫλ∗⊥ · (~z⊥ −~b⊥)

|~z⊥ −~b⊥|2
[

Uab
~z⊥

− Uab
~b⊥

] (

V~b⊥
tb
)

. (2.4)

The gluon production cross section is given by (see e.g. [8])

dσ

d2kT dy
=

1

2 (2π)3

∫

d2z d2z′ d2b e−i~k⊥·(~z⊥−~z ′

⊥
)
〈

A(~z⊥,~b⊥)A
∗(~z ′

⊥,
~b⊥)
〉

, (2.5)

where the summation over colors and polarizations of the final-state particles along with

the averaging over the quantum numbers of the initial-state particles are implicitly implied.

The angle brackets 〈. . .〉 denote averaging in the target nucleus wave function.

Substituting the amplitude eq. (2.4) into eq. (2.5) yields [41]

dσ

d2kT dy
=

αsCF

4π4

∫

d2z d2z′ d2b e−i~k⊥·(~z⊥−~z ′

⊥
) ~z⊥ −~b⊥

|~z⊥ −~b⊥|2
· ~z ′

⊥ −~b⊥

|~z ′
⊥ −~b⊥|2

×
[

SG(~z⊥, ~z
′
⊥)− SG(~b⊥, ~z

′
⊥)− SG(~z⊥,~b⊥) + 1

]

(2.6)

where the gluon dipole S-matrix is defined by

SG(~x⊥, ~y⊥) =
1

N2
c − 1

〈

Uab
~x⊥

U † ba
~y⊥

〉

=
1

N2
c − 1

〈

Tr
[

U~x⊥
U †
~y⊥

]〉

. (2.7)

In the quasi-classical MV/Glauber-Mueller (GM) approximation it is given by [51]

SG(~x⊥, ~y⊥) = exp

[

−1

4
(~x⊥ − ~y⊥)

2Q2
sG

(

~x⊥ + ~y⊥
2

)

ln
1

|~x⊥ − ~y⊥|Λ

]

(2.8)

where Q2
sG(

~b⊥) = 4πα2
s T (

~b⊥) is the square of the gluon saturation scale with T (~b⊥) the

nuclear profile function and Λ the IR cutoff of each individual nucleon (Λ ∼ ΛQCD).

Eq. (2.8) resums all the multiple rescatterings in the target nucleus: thus, in the MV

model, it resums all-order saturation corrections in the target.

Note a particular convenience of the form of the amplitude given in eq. (2.4), with the

fundamental Wilson line V placed to the left of the fundamental SU(Nc) generator in both

terms there: when we square the amplitude, the fundamental Wilson line V is multiplied

by its hermitean conjugate V † giving an identity. Below when calculating diagrams we will

always cast them in the same form, which would make all fundamental Wilson lines vanish

when we square the amplitude.

2.2 First saturation correction in the projectile: diagram types and calcula-

tional simplifications

The goal of this project is to calculate the first projectile saturation correction to the cross

section in eq. (2.6). That is, we need to find the order-α2
s A

1/3
1 correction to (2.6): this is

– 5 –
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Figure 2. The diagrams representing different types of saturation corrections in the projectile

nucleus to the gluon production cross section.

the leading in A1 part of the order-α2
s correction. To get the leading-A1 contribution, the

correction must include an interaction with another nucleon in the projectile nucleus. Hence

we see that we need to find order-α2
s correction to (2.6) involving one other nucleon in the

projectile. The main types of the diagrams we need to calculate are shown in figure 2. There

by two horizontal solid straight lines we show two quarks from two different nucleons in the

projectile nucleus, again suppressing the spectators. The diagrams in figure 2 represent the

amplitude squared which contributes to the cross section: the solid vertical line denotes

the final-state cut. The cross labels the measured gluon.

The three types of projectile saturation corrections to gluon production shown in fig-

ure 2 are (i) the square of the order-g3 amplitude; (ii) the interference between the order-g5

amplitude and the leading-order (order-g) amplitude from eq. (2.4); and (iii) the interfer-

ence between the order-g4 amplitude and the order-g2 amplitude. (In this power counting

we are assuming that the interaction with the shock wave is order-1, that is α2
s A

1/3
2 ∼ 1,

and are counting only powers of g arising from the vertices shown explicitly in figure 2.)

The order-α3
s diagrams in which one of the nucleons is a spectator and does not participate

in the interactions are suppressed by A
1/3
1 and are neglected in our analysis. Note that

diagram (iii) has two gluons in the final state: since we are calculating the single-inclusive

production cross section, having more than the measured gluon in the final state is allowed.

Below we calculate the order-g3 amplitude that enters diagram (i) in figure 2, thus

constructing the order-αs correction to the amplitude in eq. (2.4) which is enhanced by the

leading power of A
1/3
1 . The order-g5 amplitude from diagram (ii) is left for future work.

The situation with the diagram (iii) is more subtle. First let us note that, since we

are working in the classical MV model, the diagrams we consider for gluon production also

correspond to the diagrams contributing to the classical gluon field with the two colliding

nuclei providing the source current [9, 10, 12, 14–16]. Hence one can think of these diagrams

as graphically representing the solution of the Yang-Mills equations [12, 17]. In such case

– 6 –
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Figure 3. An example of diagrams which add up to convert a gluon Feynman propagator into a

retarded Green function. The bold arrow on the gluon line in the last diagram denotes a retarded

gluon Green function, with the arrow’s direction pointing in the direction of light-cone time flow,

that is, indicating that x+

2 > x+

1 .

each Feynman propagator would be replaced by the retarded Green function. While such

a replacement is relatively straightforward for gluon propagators, it is less clear what this

prescription means for quark propagators in the time-ordered picture we employ here: for

instance, the solution of Yang-Mills equations can only have the produced gluon emitted by

the projectile quark after the interaction with the shock wave (see e.g. [12]), whereas a naive

application of perturbation theory allows one to draw a number of a priori non-zero graphs

with the produced gluon emitted before the shock wave interaction (see figure 7 below).

To clarify this issue we need to perform a detailed diagrammatic analysis. First let us

review how the gluon Feynman propagators become retarded Green functions. As an ex-

ample consider the top two diagrams shown in figure 3 where regular Feynman propagators

are implied for uncut lines. The difference between the top two diagrams in figure 3 is due

to one of the vertices involving the gluon carrying momentum l being moved across the cut

in the right diagram. The rest of the diagram is the same in both cases. Concentrating on

the propagator of the gluon carrying momentum l and suppressing the rest of the diagrams’

contribution we see that adding the two graphs gives [52]

−iDµν(l)

l2 + i ǫ
+ 2π θ(−l+) δ(l2)Dµν(l) =

−iDµν(l)

l2 + i ǫ l+
, (2.9)

where

Dµν(l) = gµν −
ηµ lν + ην lµ

η · l = −
∑

λ=±1

ǫλµ(l) ǫ
λ∗
ν (l)− ηµ ην

l2

(η · l)2 (2.10)

is the numerator of the light-cone gauge gluon propagator with ηµ = (0, 1, 0⊥) in the

(+,−,⊥) notation, such that A+ = η · A = 0 is the gauge condition. For an on-shell

(l2 = 0) gluon, the numerator of the gluon propagator in eq. (2.10) can be written as a

sum over physical (transverse) gluon polarizations with the polarization 4-vector

ǫµ(l) =

(

0,
~ǫλ⊥ ·~l⊥
l+

,~ǫλ⊥

)

(2.11)

– 7 –
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in the light-cone gauge and ~ǫλ⊥ = −(1/
√
2)(λ, i). (Note that the last term on the right hand

side of (2.10) vanishes if l2 = 0.) In arriving at eq. (2.9) we have also used the fact that the

quark-gluon vertex changes sign when carried across the cut due to complex conjugation.

From eq. (2.9) we conclude that contributions of top two diagrams in figure 3 can be

found by only calculating the left diagram with the retarded gluon Green function: this

conclusion is illustrated in the bottom diagram in figure 3, with the retarded gluon Green

function denoted by a bold arrow on the gluon line. Note also that the retarded Green

function arising in eq. (2.9) implies that x+2 > x+1 in the notation shown in figure 3, such

that the gluon is first emitted by the quark line, and then it enters the triple gluon vertex

leading to the production of the measured gluon. The arrow in the last diagram of figure 3

indicates this direction of time flow.

So far we have considered an example of just two diagrams which combine to give

us a retarded gluon Green function. However, the statement that by moving an end of a

gluon line across the cut and by adding that contribution to the original diagram we would

obtain a retarded Green function for that gluon is valid in general, at this classical level.

To demonstrate this explicitly we need to consider many different types of diagrams: this

is done in appendix A. Note also that our ability to use a retarded gluon Green function

in calculating the amplitude should not depend on what goes on in the complex conjugate

amplitude: while naively our argument in figure 3 seems to depend on the absence of final-

state (post-shock wave) interactions in the complex conjugate amplitude, the argument is

in fact true in general, as long as we are working at the classical level, that is, calculating

order-α3
s cross-section contribution involving two interacting projectile nucleons (quarks).

We refer the reader to appendix A for details.

The diagram in the top left panel of figure 3 is in the (i)-class by the classification

presented in figure 2, while the diagram in the top right panel of figure 3 is in the (iii)-

class. We see that the contribution of the type-(iii) diagram is included in the type-(i)

diagram by using a retarded gluon propagator in the latter. Again this conclusion is true

in general: type-(iii) diagrams are included in the calculation of type-(i) and type-(ii)

diagrams if we use retarded gluon propagators.

Now let us consider diagrams where the projectile quarks exchange a gluon with each

other (the gluon may or may not go through the shock wave). An example of several such

diagrams is given in figure 4, where graphs labeled (1), (2) and (3) are different from each

other only by the placement of the gluon exchanged between the projectile quarks. Once

again, the arrow on this gluon line denotes a retarded gluon Green function, with the direc-

tion of the arrow indicating the direction of the resulting (light-cone) time ordering. We see

that each diagram in figure 4 represents a sum of two diagrams (akin to figure 3): each graph

of figure 4 implies a sum of itself (with the Feynman gluon propagator for the gluon with the

arrow on it) and the contribution where the lower quark-gluon vertex of the same gluon is

carried across the cut (to the region before the shock wave interaction in the complex conju-

gate amplitude), resulting in the retarded Green function for the gluon marked by an arrow.

Note that the time-ordering of the retarded Green function for the gluon in the graph of

figure 4 again points towards the produced gluon, similar to the case illustrated in figure 3.

– 8 –
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Figure 4. Sample diagrams with a gluon exchange between the projectile quarks.

Figure 5. An example of diagrams cancellation resulting from moving a retarded gluon propagator

(denoted by the arrow indicating the direction of time-ordering) across the final-state cut. Any

possible interaction may happen at x+ > 0 both in the amplitude and in the complex conjugate

amplitude, as indicated by a shaded region.

To analyze the diagrams in figure 4 we need the following additional observation: mov-

ing a retarded gluon Green function across the cut flips the sign of the contribution. This

is illustrated by a simple example in figure 5 (see appendix A for more details), where the

cancellation is valid independent of the interactions which may happen after the shock wave

interaction (i.e., for x+ > 0 shown by the shaded region in figure 5) on both sides of the cut.

Employing the cancellation of figure 4, we see that diagram (1) in figure 4 is canceled

by the contribution to diagram (3) coming from the x+2 > x+1 region,

(1) + (3)x+
2 >x+

1
= 0. (2.12)

Due to the difference in color factors, such cancellation does not happen between the

diagram (2) in figure 4 and the diagram (3) with x+2 < x+1 : instead, if we write the

contribution of diagram (2) factoring out the color factor as (2) = ta tbM , we get

(2) + (3)x+
2 >x+

1
= [ta, tb]M = (2) with [ta, tb]. (2.13)

This conclusion is illustrated in the lower right diagram of figure 4: the sum of diagrams

(1), (2) and (3) is simply diagram (2) with the commutator instead of the product of the

fundamental generators in the amplitude. Once again, while we have illustrated the point
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by a simple example, it is valid in all cases: contributions of diagrams with the single or

double gluon exchange between the two valence quarks can all be found by simply calculat-

ing a small subset of those graphs replacing products of ta’s in them by commutators. The

details of how this happens and which diagrams survive in the end are given in appendix A.

At order-g3 the surviving diagrams are B2, B9 and B11 from figure 7 below (indeed dia-

gram B2 is the amplitude to the left of the cut in the graph (2) of figure 4), which have

to be calculated with the commutators instead of the products of fundamental generators.

As we will see below, B2 = 0 (even with the commutator), such that only produced gluon

emissions by projectile quarks after the shock wave interaction, that is for x+ > 0, survive.

This observation completes the analogy between the Feynman diagrams in the shock wave

formalism and the diagrams representing the classical gluon fields in the MV model.

We would like to stress that to establish this diagrams versus classical fields analogy,

and simplify our calculations in the process, we had to utilize the fact that the amplitude

we are calculating would have to be squared to obtain the cross section. Hence we have

absorbed some contributions from the complex conjugate amplitude into our amplitude by

employing the retarded Green functions and, for some graphs, commutators. Therefore,

strictly-speaking, below we will not be calculating a standard Feynman-diagram amplitude,

but a somewhat modified amplitude with retarded “propagators” and commutators: the

square of this amplitude would still give the gluon production cross section.

Let us summarize the main conclusions of this section. First of all, to find the first

saturation correction in the projectile, we only need to calculate O(g3) and O(g5) gluon

production amplitudes with the retarded gluon Green functions. The time-ordering of the

retarded “propagators” should be such that the gluon would be emitted first, and then

would participate in an interaction ultimately leading to the production of the tagged

gluon. Secondly, the contributions of the diagrams with the gluon exchanges between the

projectile nucleons (quarks) can be more economically constructed by calculating a subset

of those graph with the commutators of fundamental color matrices.

3 Gluon production amplitude at order-g3

3.1 Graphs A, B, and C

The diagrams contributing to the gluon production amplitude at O(g3) that include

interactions with both nucleons are shown in figures 6 and 7. The diagrams from figure 6

are labeled Ai with i = 1, . . . , 7 and will be referred to as the A-graphs. Similarly the

graphs in figure 7 are labeled Bi with i = 1, . . . , 12 and will be called the B-graphs. In

addition to all the B-graphs one has to consider the diagrams similar to those in figure 7

but with the two projectile quarks interchanged: these will be labeled Ci with i = 1, . . . , 12

and referred to as C-graphs.

To calculate the diagrams in figures 6 and 7 we will follow the rules established in

the previous section. All gluon propagators are retarded, such that time flows towards the

measured gluon in the diagram. This means that the retarded propagator for the gluon

exchanged between the two quarks in figure 7 is such that the lower quark-gluon vertex
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Figure 6. The diagrams containing a triple-gluon vertex. Horizontal solid lines depict two Wil-

son lines representing two quarks coming from two different nucleons in the projectile. All gluon

propagators are retarded, with the time flowing in the direction of the produced gluon.

Figure 7. The connected diagrams without a triple-gluon vertex. The remaining twelve graphs

of this type are obtained by swapping the Wilson lines in the diagrams shown, Ci(b1, b2; 1, 2) =

Bi(b2, b1; 2, 1). All gluon propagators are retarded, with the time flowing in the direction of the

produced gluon.

comes earlier than the upper one. The projectile quark lines are normalizes as Wilson lines

(that is, each line is divided by 2P+ where P+ is the large “+” momentum in the line).

Our ultimate goal is to obtain an amplitude in coordinate space, in a form similar to

eq. (2.4). The reason for that is the relative ease with which the correlators of Wilson

lines are calculated in the transverse coordinate space, particularly in the MV model.

For the diagrams in figures 6 and 7 we would have to perform Fourier transforms into

transverse coordinate space, similar to the transition from eq. (2.1) to eq. (2.4) above. Our
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standard notation will be to label the projectile quarks 1 and 2, such that their transverse

positions are ~b1⊥ and ~b2⊥. Note also that a priori the two quarks in the x+-direction

moving projectile have different x− positions, labeled here as b−1 and b−2 (see diagram A1

in figure 6). Since the projectile is also a large nucleus, the difference b−1 − b−2 , while

suppressed by a power of energy, is enhanced by a power of the projectile atomic number

A1 [11, 13, 17]: in the following we will keep the difference b−1 − b−2 non-zero throughout

the calculation while remembering that it is sub-eikonally small, and will put it to zero at

the end of the calculation where allowed. The difference b−1 − b−2 will serve as a regulator

in the longitudinal Fourier transform. This is in accordance to the standard regularization

of singularities in the MV model [11, 13, 17].

To obtain an amplitude dependent on b−1 and b−2 we need to perform a longitudinal

Fourier transform integrating over the “+” component of the momentum exchanged be-

tween the projectile quarks in the diagrams of figures 6 and 7. Since we are working in the

A+ = 0 light-cone gauge with the numerator of the gluon propagator given in eq. (2.10), we

have to specify the regularization of the light-cone poles at l+ = 0 in order to perform this

longitudinal Fourier transform. Each way of regulating the light-cone pole is equivalent to

specifying a particular sub-gauge within the light-cone gauge. In our calculation we will

use the principal value (PV) prescription, where

Dµν(l) = gµν − [ηµ lν + ην lµ] PV

(

1

l+

)

(3.1)

and

ǫµ(l) =

[

0,~ǫλ⊥ ·~l⊥ PV

(

1

l+

)

,~ǫλ⊥

]

. (3.2)

The PV prescription corresponds to the field of the projectile nucleus moving in the x+

direction satisfying the ~A⊥(x
− → +∞) = − ~A⊥(x

− → −∞) sub-gauge condition (see

e.g. [53]).

Other possible sub-gauge choices include requiring that the field of the projectile nu-

cleus obeys the ~A⊥(x
− → +∞) = 0 condition [52, 53]. This corresponds to [17]

Dµν(l) = gµν −
ηµ lν
l+ − iǫ

− ην lµ
l+ + iǫ

(3.3)

if the momentum l flows from the index µ to the index ν along the gluon line. The

corresponding polarization 4-vector is

ǫµ(l) =

(

0,
~ǫλ⊥ ·~l⊥
l+ + iǫ

,~ǫλ⊥

)

. (3.4)

One may also employ the ~A⊥(x
− → −∞) = 0 sub-gauge condition, which results in

reversing the sign of iǫ in eqs. (3.3) and (3.4).

The reason we are going to use the PV sub-gauge is explained in detail in appendix B.

It turns out that while the ~A⊥(x
− → +∞) = 0 and ~A⊥(x

− → −∞) = 0 sub-gauges are very

useful for many classical gluon field calculations [11, 17, 41, 54, 55], in our shock-wave target
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Figure 8. A more detailed rendering of the diagram A2.

setup the PV prescription is more economical. Namely, as detailed in appendix B, using the
~A⊥(x

− → +∞) = 0 or ~A⊥(x
− → −∞) = 0 gauge choices leads to the need to include new

diagrams, which are not included in figures 6 and 7 (and are not part of the C-graphs). See

for instance the first two diagrams in figure 18 of appendix B. These diagrams were consid-

ered before in [41]. In the shock-wave formalism these diagrams are probably classified as

higher-order corrections to the interactions with the shock wave: namely, if one takes the

leading-order gluon production diagrams from figure 1, and considers an order-αs correc-

tion to the interactions of either the quark or the gluon with the shock wave, one would then

obtain an order-g3 contribution to the gluon production amplitude. Indeed such corrections

are not going to be enhanced by an extraA
1/3
1 (in the cross section): however, shock wave in-

teraction corrections to the lowest-order graphs from figure 1 involving a quark from another

projectile nucleon would give an order-g3 contribution enhanced by a power of A1, that is,

they would be comparable to the A, B and C graphs. In appendix B we show that while in

the ~A⊥(x
− → +∞) = 0 and ~A⊥(x

− → −∞) = 0 sub-gauges such diagrams are important,

most of their contributions are zero in the PV sub-gauge. The remaining shock wave correc-

tions contributions which are non-zero in the PV sub-gauge cancel in the amplitude squared,

and, hence, can also be neglected in the calculation. We will therefore proceed by calculat-

ing the Fourier transform for all diagrams using the PV sub-gauge of the light-cone gauge.

We performed all diagram calculations treating the projectile quark lines both as the

regular high-energy quarks and as the light-cone Wilson lines from eq. (2.3) (only with

non-zero b−). In the PV sub-gauge both results are identically equal. However, in the
~A⊥(x

− → +∞) = 0 and ~A⊥(x
− → −∞) = 0 sub-gauges we found that the Wilson-line

approximation does not give the right answer for the B and C graphs. For more details

we refer the reader to appendix B.

3.1.1 Sample diagram calculation

Since presenting a detailed calculation of each diagram is rather tedious, and would make

the paper difficult to read, we will first work out one sample diagram, and then state the

answers for the rest of the graphs. It appears that the diagram whose calculation illustrates

most of the issues relevant to computing A, B and C graphs is A2. The diagrams is shown

with all the momentum, coordinate, polarization, Lorentz-index and color labels in figure 8.
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Using figure 8 and treating the projectile quarks as light-cone Wilson lines we write

the contribution of this diagram as

A2 = (ig)2
0
∫

−∞

dx+
1 eǫ x

+

1

0
∫

−∞

dx+
2 eǫ x

+

2

∞
∫

0

dy+ e−ǫ y+

∫

d2x1 d
2x2

∞
∫

−∞

dl+

2π
e−i l+ (b−

2
−b

−

1
)

×

∞
∫

−∞

dq−1
2π

e−i q
−

1
(0−x

+

1
) dq−2

2π
e−i q

−

2
(0−x

+

2
) dl−

2π
e−i l− (y+

−0) d(k − l)−

2π
e−i (k−l)− (y+

−0) ei k
− y+

×

∫

d2q1
(2π)2

ei~q1⊥·(~x1⊥−~b1⊥) d2q2
(2π)2

ei~q2⊥·(~x2⊥−~b2⊥) d2l

(2π)2
ei

~l⊥·(~x2⊥−~x1⊥) d2k

(2π)2
ei

~k⊥·(~z⊥−~x2⊥)

×
−i

2 l+ q−1 − q 2
1⊥ + i ǫ l+

−i

2 (k+ − l+) q−2 − q 2
2⊥ + i ǫ (k+ − l+)

−i

2 l+ l− − l 2
⊥
+ i ǫ l+

×
−i

2 (k+ − l+) (k − l)− − (~k⊥ −~l⊥) 2 + i ǫ (k+ − l+)

∑

λ1

ǫ−∗

λ1
(q1) ǫ

ν
λ1
(l)
∑

λ2

ǫ−∗

λ2
(q2) ǫ

ρ
λ2
(k − l)

× g fabc [(2l − k)µ gνρ − (k + l)ρ gνµ + (2k − l)ν gµρ] ǫ
µ ∗

λ (k)

× (2l+)Ubd
~x1⊥

2(k+ − l+)Uce
~x2⊥

(

V~b1⊥td
)

1

(

V~b2⊥te
)

2
. (3.5)

The integrals over x+1 and x+2 , coming from the projectile quarks Wilson lines, along with

the integral over y+, are regulated by the exponentials like e±ǫ x+
to make them convergent

at their respective infinities. This regularization is consistent with the regularization of

Feynman propagators. Note that in eq. (3.5) we are first Fourier-transforming the diagram

into coordinate space, then integrating over x+1 , x+2 and y+ with the proper light-cone

time ordering and over ~x1⊥ and ~x2⊥. The shock wave is at x+ = 0. Due to the nature of

the Fourier transform, the “+” components of momentum are conserved in all interaction

vertices, including the interactions with the shock wave. Conversely, the “−” momentum

component is not conserved at any of the vertices, such that e.g. (k−l)− 6= k−−l−, just like

in light-cone perturbation theory (LCPT) [56], though our internal lines are not on mass

shell. The outgoing gluon brings in a Fourier factor of ei k
− y+ , where k− = k2⊥/(2k

+) since

it is on mass shell. Note that k+ > 0. The gluon interaction with the shock wave brings in

a factor of (−2k+)Uab
~x⊥

gµν for a gluon line with light-cone momentum k+ and transverse

coordinate ~x⊥, according to the standard rules of the eikonal approximation [27]. Similarly,

eikonal interaction of a quark with a shock wave yields (2P+)V~b⊥
for a quark line with

light-cone momentum P+ and transverse coordinate ~b⊥: as we have mentioned before, the

factor of (2P+) is removed by our normalization of the external quark lines. To simplify

the calculations, we have replaced the numerators of the gluon propagators by polarization

sums in eq. (3.5): this is justified since (cf. eq. (2.10))

Dµν(l) = −
∑

λ=±1

ǫλµ(l) ǫ
λ∗
ν (l)− ηµ ην

l2

(η · l)2 (3.6)

where the contribution of the “instantaneous” last term on the right vanishes in A2. Note

that we are using retarded Green function regularization of all gluon propagators, in agree-

ment with the discussion above and the arguments presented in appendix A.

Integrating eq. (3.5) over x+1 , x
+
2 and y+ and employing eq. (3.2) yields

A2 = −4 i g3 fabc

∫

d2x1 d
2x2 U

bd
~x1⊥

Uce
~x2⊥

(

V~b1⊥td
)

1

(

V~b2⊥te
)

2

∞
∫

−∞

dl+

2π
e−i l+ (b−

2
−b

−

1
)
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×

∞
∫

−∞

dq−1
2π

dq−2
2π

dl−

2π

d(k − l)−

2π

1

q−1 − iǫ

1

q−2 − iǫ

1

l− + (k − l)− − k− − iǫ

×

∫

d2k

(2π)2
d2l

(2π)2
d2q1
(2π)2

d2q2
(2π)2

ei~q1⊥·(~x1⊥−~b1⊥)+i~q2⊥·(~x2⊥−~b2⊥)+i~l⊥·(~x2⊥−~x1⊥)+i~k⊥·(~z⊥−~x2⊥)

×
1

2 l+ q−1 − q 2
1⊥ + i ǫ l+

1

2 (k+ − l+) q−2 − q 2
2⊥ + i ǫ (k+ − l+)

1

2 l+ l− − l 2
⊥
+ i ǫ l+

×
1

2 (k+ − l+) (k − l)− − (~k⊥ −~l⊥) 2 + i ǫ (k+ − l+)

∑

λ1,λ2

~ǫλ1∗

⊥
· ~q1⊥ ~ǫλ2∗

⊥
· ~q2⊥

×[2l · ǫ∗λ(k) ǫλ1
(l) · ǫλ2

(k−l)−(k+l) · ǫλ2
(k−l) ǫ∗λ(k) · ǫλ1

(l)+(2k−l) · ǫλ1
(l) ǫ∗λ(k) · ǫλ2

(k−l)] . (3.7)

Since the expression in the square brackets of eq. (3.7) is independent of the “−” components

of momenta, we can integrate over q−1 , q
−
2 , l

− and (k − l)− obtaining

A2 = −4 i g3 fabc

∫

d2x1 d
2x2 U

bd
~x1⊥

Uce
~x2⊥

(

V~b1⊥td
)

1

(

V~b2⊥te
)

2

∞
∫

−∞

dα

2π
e−i α k+ (b−

2
−b

−

1
) (3.8)

×

∫

d2k

(2π)2
d2l

(2π)2
d2q1
(2π)2

d2q2
(2π)2

ei~q1⊥·(~x1⊥−~b1⊥)+i~q2⊥·(~x2⊥−~b2⊥)+i~l⊥·(~x2⊥−~x1⊥)+i~k⊥·(~z⊥−~x2⊥)

×
1

q21⊥ q22⊥ (~l⊥ − α~k⊥)2

×

[

(~l⊥−α~k⊥) · ~ǫ
λ∗
⊥ ~q1⊥ · ~q2⊥−PV

1

1−α
~q2⊥ · (~l⊥−α~k⊥) ~ǫ

λ∗
⊥ · ~q1⊥−PV

1

α
~q1⊥ · (~l⊥−α~k⊥) ~ǫ

λ∗
⊥ · ~q2⊥

]

,

where we have also simplified the expression in the square brackets using eq. (3.2) again

and defined α = l+/k+.

Integration over α in eq. (3.8), while a little lengthy, can be straightforwardly performed

using residues. In the spirit of regulating the α-integral with b−2 −b−1 , we will use b
−
2 −b−1 to

tell us which way to close the contour for divergent terms in the α-integral, and drop it in the

exponent afterwards. For the convergent terms in the α-integral we can put b−2 −b−1 to zero

from the start. To be more specific, consider the following integral (not present in eq. (3.8)):

∞
∫

−∞

dα

2π
e−i α k+ (b−2 −b−1 ) PV

1

1− α
=

i

2
e−i k+ (b−2 −b−1 ) Sign(b−2 − b−1 ) ≈

i

2
Sign(b−2 − b−1 ). (3.9)

First of all, without the exponential containing b−2 − b−1 the integral is divergent, and it is

regulated by the exponential. In the last step in eq. (3.9) we drop b−2 − b−1 after doing the

integral. Indeed we can not drop b−2 − b−1 within the Sign function, so we leave it as is. The

above is the standard procedure when calculating observables in the MV model [11, 13, 17].

After squaring the amplitude we would have to average the resulting cross section in the

projectile nucleus wave function, which would include integrating over all b−1 and b−2 . This

is left for future work since, as explained above, we are not ready to calculate the gluon

production cross section having constructed only the O(g3) amplitude in this paper.

After carrying out the α-integral eq. (3.8) reduces to

A2 = −2 i g3 fabc

∫

d2x1 d
2x2 U

bd
~x1⊥

Uce
~x2⊥

(

V~b1⊥td
)

1

(

V~b2⊥te
)

2

×

∫

d2k

(2π)2
d2l

(2π)2
d2q1
(2π)2

d2q2
(2π)2

ei~q1⊥·(~x1⊥−~b1⊥)+i~q2⊥·(~x2⊥−~b2⊥)+i~l⊥·(~x2⊥−~x1⊥)+i~k⊥·(~z⊥−~x2⊥)

×
1

q21⊥ q22⊥ |~k⊥ ×~l⊥|
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×







~q1⊥ · ~q2⊥
~ǫλ∗
⊥ ·

[

k2
⊥
~l⊥ − (~k⊥ ·~l⊥)~k⊥

]

k2
⊥

+ ~ǫλ∗
⊥ · ~q1⊥

~q2⊥ ·
[

~k⊥ ~l⊥ · (~k⊥ −~l⊥)−~l⊥ ~k⊥ · (~k⊥ −~l⊥)
]

(~k⊥ −~l⊥)2

+~ǫλ∗
⊥ · ~q2⊥

~q1⊥ ·
[

~k⊥ l2⊥ −~l⊥ (~k⊥ ·~l⊥)
]

l2
⊥

+ i Sign(b−2 − b−1 ) |~k⊥ ×~l⊥| ~q1⊥ · ~q2⊥
~ǫλ∗
⊥ · ~k⊥
k2
⊥







, (3.10)

where we have defined
~k⊥ ×~l⊥ ≡ kx ly − ky lx. (3.11)

Finally noticing that

~ǫλ∗⊥ ·
[

k2⊥
~l⊥ − (~k⊥ ·~l⊥)~k⊥

]

= −~ǫλ∗⊥ × ~k⊥ ~k⊥ ×~l⊥ (3.12a)

~q2⊥ ·
[

~k⊥ ~l⊥ · (~k⊥ −~l⊥)−~l⊥ ~k⊥ · (~k⊥ −~l⊥)
]

= ~q2⊥ × (~k⊥ −~l⊥) ~k⊥ ×~l⊥ (3.12b)

~q1⊥ ·
[

~k⊥ l2⊥ −~l⊥ (~k⊥ ·~l⊥)
]

= ~q1⊥ ×~l⊥ ~k⊥ ×~l⊥, (3.12c)

we can further simplify eq. (3.10) to the form given below in eq. (3.13b).

3.1.2 Results

Before performing the transverse Fourier transforms, let us first list the expressions for the

contributions of all the diagrams in figures 6 and 7 in transverse momentum space. All the

diagram values below are given in the notation where the fundamental Wilson lines are

moved to the left of all the ta-matrices for the same nucleon, similar to (2.1): this way all

the V ’s will vanish when we square the amplitude.

Using the PV prescription to regulate the light-cone poles, the A-diagram contributions

to the amplitude are

A1 = 2 g3
∫

d2k

(2π)2
d2l

(2π)2
ei

~l⊥·(~b2⊥−~b1⊥)+i~k⊥·(~z⊥−~b2⊥) Uad
~z⊥

fdbc
(

V~b1⊥tb
)

1

(

V~b2⊥tc
)

2

×
~ǫλ∗
⊥ · ~k⊥~l⊥ · (~l⊥ − ~k⊥)

k2
⊥
l2
⊥
(~k⊥ −~l⊥)2

Sign(b−2 − b−1 ), (3.13a)

A2 = −2 i g3
∫

d2x1 d
2x2

∫

d2k

(2π)2
d2l

(2π)2
d2q1
(2π)2

d2q2
(2π)2

× ei~q1⊥·(~x1⊥−~b1⊥)+i~q2⊥·(~x2⊥−~b2⊥)+i~l⊥·(~x2⊥−~x1⊥)+i~k⊥·(~z⊥−~x2⊥)

×
1

q21⊥ q22⊥

[(

−~q1⊥ · ~q2⊥
~ǫλ∗
⊥ × ~k⊥
k2
⊥

+ ~ǫλ∗
⊥ · ~q1⊥

~q2⊥ × (~k⊥ −~l⊥)

(~k⊥ −~l⊥)2
+ ~ǫλ∗

⊥ · ~q2⊥
~q1⊥ ×~l⊥

l2
⊥

)

Sign(~k⊥ ×~l⊥)

+ i ~q1⊥ · ~q2⊥
~ǫλ∗
⊥ · ~k⊥
k2
⊥

Sign(b−2 − b−1 )

]

fabc Ubd
~x1⊥

Uce
~x2⊥

(

V~b1⊥td
)

1

(

V~b2⊥te
)

2
, (3.13b)

A3 = −2 i g3
∫

d2x

∫

d2k

(2π)2
d2q

(2π)2
d2l

(2π)2

× ei~q⊥·(~x⊥−~b2⊥)+i~l⊥·(~x⊥−~b1⊥)+i~k⊥·(~z⊥−~x⊥) fabc Ubd
~b1⊥

Uce
~x⊥

(

V~b1⊥td
)

1

(

V~b2⊥te
)

2

×
1

l2
⊥
q2
⊥

[(

~ǫλ∗
⊥ × ~k⊥
k2
⊥

~l⊥ · ~q⊥ − ~ǫλ∗
⊥ ·~l⊥

~q⊥ × (~k⊥ −~l⊥)

(~k⊥ −~l⊥)2

)

Sign(~k⊥ ×~l⊥)

− i

(

~ǫλ∗
⊥ · ~k⊥
k2
⊥

~l⊥ · ~q⊥ − ~ǫλ∗
⊥ ·~l⊥

(~k⊥ −~l⊥) · ~q⊥

(~k⊥ −~l⊥)2
−

1

2
~ǫλ∗
⊥ · ~q⊥

)]

, (3.13c)
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A4(b1 , b2; 1, 2) = A3(b2, b1; 2, 1), (3.13d)

A5 = −2 i g3
∫

d2k

(2π)2
d2l

(2π)2
ei

~l⊥·(~b2⊥−~b1⊥)+i~k⊥·(~z⊥−~b2⊥)

×
1

k2
⊥
l2
⊥
(~k⊥ −~l⊥)2

fabc Ubd
~b1⊥

Uce
~b2⊥

(

V~b1⊥td
)

1

(

V~b2⊥te
)

2

×

[

i

2
~ǫλ∗
⊥ · ~k⊥ k2

⊥ − i~ǫλ∗
⊥ ·~l⊥ k2

⊥ −~l⊥ · (~k⊥ −~l⊥)~ǫ
λ∗
⊥ × ~k⊥ Sign(~k⊥ ×~l⊥)

]

, (3.13e)

A6 = 0, (3.13f)

A7 = 0. (3.13g)

The B-diagram contributions are

B1 = −ig3
∫

d2k

(2π)2
d2l

(2π)2
ei

~l⊥·(~b2⊥−~b1⊥)+i~k⊥·(~z⊥−~b2⊥)

×
~ǫλ∗
⊥ · ~k⊥

k2
⊥
(~k⊥ −~l⊥)2

Uad
~z⊥

(

V~b1⊥tdtb
)

1

(

V~b2⊥tb
)

2
Sign(b−2 − b−1 ), (3.14a)

B2 = 0, (3.14b)

B3 = ig3
∫

d2k

(2π)2
d2l

(2π)2
ei

~l⊥·(~b2⊥−~b1⊥)+i~k⊥·(~z⊥−~b2⊥)

×
~ǫλ∗
⊥ · ~k⊥

k2
⊥
(~k⊥ −~l⊥)2

Uad
~b1⊥

(

V~b1⊥tdtb
)

1

(

V~b2⊥tb
)

2
Sign(b−2 − b−1 ), (3.14c)

B4 = 2ig3
∫

d2y

∫

d2k

(2π)2
d2q1
(2π)2

d2q2
(2π)2

× ei~q1⊥·(~b1⊥−~y)+i~q2⊥·(~y⊥−~b2⊥)+i~k⊥·(~z⊥−~b1⊥) ~ǫ
λ∗
⊥ · ~k⊥
k2
⊥

~q1⊥ · ~q2⊥
q21⊥ q22⊥

Uad
~z⊥

Ube
~b1⊥

×
(

V~b1⊥tetd
)

1
Ubc

~y⊥

(

V~b2⊥tc
)

2
Sign(b−2 − b−1 ), (3.14d)

B5 = −ig3
∫

d2k

(2π)2
d2l

(2π)2
ei

~l⊥·(~b2⊥−~b1⊥)+i~k⊥·(~z⊥−~b2⊥) ~ǫλ∗
⊥ · ~k⊥

k2
⊥
(~k⊥ −~l⊥)2

Uad
~z⊥

Ubc
~b1⊥

(

V~b1⊥tctd
)

1

× Ube
~b2⊥

(

V~b2⊥te
)

2
Sign(b−2 − b−1 ), (3.14e)

B6 = 0, (3.14f)

B7 = 0, (3.14g)

B8 = 0, (3.14h)

B9 = 2ig3
∫

d2k

(2π)2
d2l

(2π)2
ei

~l⊥·(~b2⊥−~b1⊥)+i~k⊥·(~z⊥−~b2⊥)

×
~ǫλ∗
⊥ · ~k⊥

k2
⊥
(~k⊥ −~l⊥)2

Uad
~b1⊥

Ubc
~b1⊥

(

V~b1⊥tdtc
)

1
Ube
~b2⊥

(

V~b2⊥te
)

2
, (3.14i)

B10 = −ig3
∫

d2k

(2π)2
d2l

(2π)2
ei

~l⊥·(~b2⊥−~b1⊥)+i~k⊥·(~z⊥−~b2⊥)

×
~ǫλ∗
⊥ · ~k⊥

k2
⊥
(~k⊥ −~l⊥)2

Uad
~b1⊥

Ubc
~b1⊥

(

V~b1⊥tctd
)

1
Ube
~b2⊥

(

V~b2⊥te
)

2

×
[

2− Sign(b−2 − b−1 )
]

, (3.14j)

B11 = −2ig3
∫

d2y

∫

d2k

(2π)2
d2q1
(2π)2

d2q2
(2π)2

ei~q1⊥·(~b1⊥−~y⊥)+i~q2⊥·(~y⊥−~b2⊥)+i~k⊥·(~z⊥−~b1⊥) ~ǫ
λ∗
⊥ · ~k⊥
k2
⊥

~q1⊥ · ~q2⊥
q21⊥ q22⊥

× Uad
~b1⊥

Ubc
~b1⊥

(

V~b1⊥tdtc
)

1
Ube

~y⊥

(

V~b2⊥te
)

2
, (3.14k)
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B12 = 2ig3
∫

d2y

∫

d2k

(2π)2
d2q1
(2π)2

d2q2
(2π)2

ei~q1⊥·(~b1⊥−~y⊥)+i~q2⊥·(~y⊥−~b2⊥)+i~k⊥·(~z⊥−~b1⊥) ~ǫ
λ∗
⊥ · ~k⊥
k2
⊥

~q1⊥ · ~q2⊥
q21⊥ q22⊥

× Uad
~b1⊥

Ubc
~b1⊥

(

V~b1⊥tctd
)

1
Ube

~y⊥

(

V~b2⊥te
)

2

[

1− Sign(b−2 − b−1 )
]

. (3.14l)

The C diagrams are obtained by swapping the two projectile Wilson lines in figure 7,

such that

Ci(b1, b2; 1, 2) = Bi(b2, b1; 2, 1). (3.15)

As explained in appendix A, if one includes the contributions arising from moving the

gluon exchanged between the two projectile quarks in the B-graphs across the cut, only

the diagrams B2, B9 and B11 need to be calculated with the commutators of fundamental

generators on the quark-1 line. Since B2 = 0 we only need to take B9 and B11 from

eqs. (3.14i) and (3.14k) above and replace tdtc → [td, tc] in them. The result is
12
∑′

i=1

Bi = −2 g3
∫

d2y

∫

d2k

(2π)2
d2q1
(2π)2

d2q2
(2π)2

ei~q1⊥·(~b1⊥−~y⊥)+i~q2⊥·(~y⊥−~b2⊥)+i~k⊥·(~z⊥−~b1⊥) ~ǫ
λ∗
⊥ · ~k⊥
k2
⊥

×
~q1⊥ · ~q2⊥
q21⊥ q22⊥

(

V~b2⊥te
)

2

× fcdh Uad
~b1⊥

Ubc
~b1⊥

[

Ube
~y⊥

− Ube
~b2⊥

] (

V~b1⊥th
)

1
, (3.16)

where the prime over the sum indicates that it is not a simple sum of the contributions

in eqs. (3.14), but a sum of all of those graphs and the contributions with the exchanged

gluon moved across the cut. An expression similar to (3.16) can be obtained using eq. (3.15)

for the sum of C graphs (which would also include contributions arising from moving the

gluons across the cut).

Adding all the A, B and C graphs by using eqs. (3.13), (3.16) and (3.15) yields
7
∑

i=1

Ai +

12
∑′

i=1

Bi +

12
∑′

i=1

Ci

= −2 i g3
∫

d2x1 d
2x2

∫

d2k

(2π)2
d2l

(2π)2
d2q1
(2π)2

d2q2
(2π)2

× ei~q1⊥·(~x1⊥−~b1⊥)+i~q2⊥·(~x2⊥−~b2⊥)+i~l⊥·(~x2⊥−~x1⊥)+i~k⊥·(~z⊥−~x2⊥)

×
1

q21⊥ q22⊥

(

−~q1⊥ · ~q2⊥
~ǫλ∗
⊥ × ~k⊥
k2
⊥

+ ~ǫλ∗
⊥ · ~q1⊥

~q2⊥ × (~k⊥ −~l⊥)

(~k⊥ −~l⊥)2
+ ~ǫλ∗

⊥ · ~q2⊥
~q1⊥ ×~l⊥

~l2
⊥

)

Sign(~k⊥ ×~l⊥)

× fabc
[

Ubd
~x1⊥

− Ubd
~b1⊥

] [

Uce
~x2⊥

− Uce
~b2⊥

] (

V~b1⊥td
)

1

(

V~b2⊥te
)

2

− 2 g3
∫

d2x

∫

d2k

(2π)2
d2l

(2π)2
d2q

(2π)2
ei~q⊥·(~x⊥−~b2⊥)+i~l⊥·(~x⊥−~b1⊥)+i~k⊥·(~z⊥−~x⊥) fabc

(

V~b1⊥td
)

1

(

V~b2⊥te
)

2

×

[

Ubd
~b1⊥

(

Uce
~x⊥

− Uce
~b2⊥

)

×

(

~ǫλ∗
⊥ · ~k⊥
k2
⊥

~l⊥ · ~q⊥
l2
⊥
q2
⊥

−
~ǫλ∗
⊥ ·~l⊥
l2
⊥

(~k⊥ −~l⊥) · ~q⊥

(~k⊥ −~l⊥)2 q2⊥
−

~ǫλ∗
⊥ · ~q⊥
2 l2

⊥
q2
⊥

+
~ǫλ∗
⊥ · ~k⊥
k2
⊥

(~k⊥ −~l⊥) · ~q⊥

(~k⊥ −~l⊥)2 q2⊥

)

−
(

Ubd
~x⊥

− Ubd
~b1⊥

)

× Uce
~b2⊥

(

~ǫλ∗
⊥ · ~k⊥
k2
⊥

~l⊥ · ~q⊥
l2
⊥
q2
⊥

−
~ǫλ∗
⊥ · ~q⊥
q2
⊥

(~k⊥ − ~q⊥) ·~l⊥

(~k⊥ − ~q⊥)2 l2⊥
−

~ǫλ∗
⊥ ·~l⊥
2 l2

⊥
q2
⊥

+
~ǫλ∗
⊥ · ~k⊥
k2
⊥

(~k⊥ − ~q⊥) ·~l⊥

(~k⊥ − ~q⊥)2 l2⊥

)]

+ 2g3
∫

d2x

∫

d2k

(2π)2
d2q1
(2π)2

d2q2
(2π)2
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× ei~q1⊥·(~x⊥−~b1⊥)+i~q2⊥·(~x⊥−~b2⊥)+i~k⊥·(~z⊥−~x⊥) ~q1⊥ · ~q2⊥
q21⊥ q22⊥

~ǫλ∗
⊥ · ~k⊥
k2
⊥

Sign(b−2 − b−1 )

×
[

Uab
x⊥

− Uab
z⊥

]

fbde
(

V~b1⊥td
)

1

(

V~b2⊥te
)

2
. (3.17)

This is our final answer for the sum of A, B and C graphs in transverse momentum space.

Fourier transforming eq. (3.17) into transverse coordinate space is straightforward.

We use
∫

d2q

(2π)2
ei~q⊥·~x⊥

q2⊥
=

1

2π
ln

1

x⊥ Λ
(3.18)

along with
∫

d2q

(2π)2
ei~q⊥·~x⊥

~q⊥
q2⊥

=
i

2π

~x⊥
x2⊥

(3.19)

and
∫

d2k

(2π)2
d2l

(2π)2
ei
~k⊥·(~z⊥−~x2⊥)+i~l⊥·(~x2⊥−~x1⊥) ~ǫλ∗⊥ × ~k⊥

k2⊥
Sign(~k⊥ ×~l⊥)

=
−i

2π2

~ǫλ∗⊥ · (~x2⊥ − ~x1⊥)

|~x2⊥ − ~x1⊥|2
δ[(~z⊥ − ~x1⊥)× (~z⊥ − ~x2⊥)]. (3.20)

Here, again, Λ ∼ ΛQCD is the IR cutoff in each individual nucleon.

Performing the Fourier transform of eq. (3.17) we obtain
7
∑

i=1

Ai +

12
∑′

i=1

Bi +

12
∑′

i=1

Ci

= −
g3

4π4

∫

d2x1 d
2x2 δ[(~z⊥ − ~x1⊥)× (~z⊥ − ~x2⊥)]

[

~ǫλ∗
⊥ · (~x2⊥ − ~x1⊥)

|~x2⊥ − ~x1⊥|2
~x1⊥ −~b1⊥

|~x1⊥ −~b1⊥|2
·

~x2⊥ −~b2⊥

|~x2⊥ −~b2⊥|2

−
~ǫλ∗
⊥ · (~x1⊥ −~b1⊥)

|~x1⊥ −~b1⊥|2
~z⊥ − ~x1⊥

|~z⊥ − ~x1⊥|2
·

~x2⊥ −~b2⊥

|~x2⊥ −~b2⊥|2
+

~ǫλ∗
⊥ · (~x2⊥ −~b2⊥)

|~x2⊥ −~b2⊥|2
~x1⊥ −~b1⊥

|~x1⊥ −~b1⊥|2
·

~z⊥ − ~x2⊥

|~z⊥ − ~x2⊥|2

]

× fabc
[

Ubd
~x1⊥

− Ubd
~b1⊥

] [

Uce
~x2⊥

− Uce
~b2⊥

] (

V~b1⊥td
)

1

(

V~b2⊥te
)

2

+
i g3

4π3
fabc

(

V~b1⊥td
)

1

(

V~b2⊥te
)

2

∫

d2x

[

Ubd
~b1⊥

(

Uce
~x⊥

− Uce
~b2⊥

)

×

(

~ǫλ∗
⊥ · (~z⊥ − ~x⊥)

|~z⊥ − ~x⊥|2
~x⊥ −~b1⊥

|~x⊥ −~b1⊥|2
·

~x⊥ −~b2⊥

|~x⊥ −~b2⊥|2

−
~ǫλ∗
⊥ · (~z⊥ −~b1⊥)

|~z⊥ −~b1⊥|2
~z⊥ − ~x⊥

|~z⊥ − ~x⊥|2
·

~x⊥ −~b2⊥

|~x⊥ −~b2⊥|2
−

~ǫλ∗
⊥ · (~z⊥ −~b1⊥)

|~z⊥ −~b1⊥|2
~x⊥ −~b1⊥

|~x⊥ −~b1⊥|2
·

~x⊥ −~b2⊥

|~x⊥ −~b2⊥|2

)

−
(

Ubd
~x⊥

− Ubd
~b1⊥

)

× Uce
~b2⊥

(

~ǫλ∗
⊥ · (~z⊥ − ~x⊥)

|~z⊥ − ~x⊥|2
~x⊥ −~b1⊥

|~x⊥ −~b1⊥|2
·

~x⊥ −~b2⊥

|~x⊥ −~b2⊥|2
−

~ǫλ∗
⊥ · (~z⊥ −~b2⊥)

|~z⊥ −~b2⊥|2
~z⊥ − ~x⊥

|~z⊥ − ~x⊥|2
·

~x⊥ −~b1⊥

|~x⊥ −~b1⊥|2

−
~ǫλ∗
⊥ · (~z⊥ −~b2⊥)

|~z⊥ −~b2⊥|2
~x⊥ −~b1⊥

|~x⊥ −~b1⊥|2
·

~x⊥ −~b2⊥

|~x⊥ −~b2⊥|2

)]

−
i g3

4π2
fabc

(

V~b1⊥td
)

1

(

V~b2⊥te
)

2

×

[

(Ubd
~z⊥

− Ubd
~b1⊥

)Uce
~b2⊥

~ǫλ∗
⊥ · (~z⊥ −~b1⊥)

|~z⊥ −~b1⊥|2
ln

1

|~z⊥ −~b2⊥|Λ

− Ubd
~b1⊥

(Uce
~z⊥

− Uce
~b2⊥

)
~ǫλ∗
⊥ · (~z⊥ −~b2⊥)

|~z⊥ −~b2⊥|2
ln

1

|~z⊥ −~b1⊥|Λ

]
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−
i g3

4π3

∫

d2x
[

Uab
x⊥

− Uab
z⊥

]

fbde
(

V~b1⊥td
)

1

(

V~b2⊥te
)

2

×
~ǫλ∗
⊥ · (~z⊥ − ~x⊥)

|~z⊥ − ~x⊥|2
~x⊥ −~b1⊥

|~x⊥ −~b1⊥|2
·

~x⊥ −~b2⊥

|~x⊥ −~b2⊥|2
Sign(b−2 − b−1 ). (3.21)

This is our final answer for the A, B and C graphs.

Previously a calculation of a similar quantity, the order-g3 classical gluon production

amplitude, was carried out in [52]. It would be desirable to compare the two results.

Unfortunately a direct comparison appears to be impossible at the moment: first of all,

the calculation in [52] appears to have employed a different regularization of α-integrals

from our use of the b−2 − b−1 difference. The result obtained in [52] does not depend on

b−2 − b−1 . In addition, the expression derived in [52] in momentum space still contains an

analogue of our |~k⊥ × ~l⊥| in the denominator (see e.g. our eq. (3.10) above), and is not

simplified to cancel out this factor. It appears that significant simplifications of the result

in [52] need to be performed before it could be compared with our eq. (3.17). Furthermore,

the calculation of [52] appears to be done in a gauge where there are no B or C graphs.

Therefore, it is likely that the result of [52] does not involve the calculational tricks of

moving the whole gluon across the cut in diagrams B and C detailed above around figure 4

and below in appendix A. This could be another difference between the two calculations.

Clearly more work is needed to compare our results with those in [52].

3.2 Graphs D and E

There is a subset of type-(i) diagrams (in the classification of figure 2) that we have not cal-

culated yet. These are the diagrams where one of the nucleons in the projectile is a spectator

in the amplitude, that is, it does not emit any s-channel gluons but may interact with the

shock wave, while another nucleon is a “spectator” in the complex-conjugate amplitude. An

example of a diagram of this type representing the amplitude squared is shown in figure 9.

Clearly diagrams of the type shown to the left and right of the cut in figure 9 con-

tribute at order-g3 to the gluon production amplitude and need to be resummed. (Since

both projectile valence quarks participate in the interaction in the amplitude squared, the

contribution in figure 9 comes in with two powers of A
1/3
1 , just like squares of A, B and C

graphs.) We will label such diagrams as D-graphs: they are illustrated in figure 10. Let us

stress that figure 10 only contains the D-diagrams which are not zero due to color averag-

ing: we have to take a color trace (divided by Nc) for each projectile quark after squaring

the amplitude. Taking into account that there are no emissions from quark 2 on the other

side of the cut implies that many of the diagrams in this class give zero contribution to the

amplitude squared: those graphs are not shown.

There are also E-diagrams, which are obtained by swapping the two projectile quarks

(Wilson lines) in figure 10,

Ei(b1, b2; 1, 2) = Di(b2, b1; 2, 1). (3.22)

Just like for the A, B and C graphs, in summing D-graphs one has to include the con-

tribution where the gluons emitted by quark 2 are either emitter, absorbed, or both emitted

and absorbed on either side of the cut. This again results in all gluon propagators being
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Figure 9. An example of a contribution to the amplitude squared, in which one of the projectile

nucleons in the diagram to the left of the cut does not emit any s-channel gluons, while the other

projectile nucleon does not emit any gluons in the complex conjugate amplitude.

Figure 10. The “disconnected” diagrams, where one nucleon does not emit any gluons. The

remaining graphs of this type are obtained by interchanging the quark lines in the diagrams shown,

Ei(b1, b2) = Di(b2, b1).

retarded. In addition, as explained in appendix A, the sum of diagrams D5 and D6, along

with the diagrams D′
5, D

′′
5 , D

′
6, D

′′
6 where either part of or the whole gluon loop are in the

complex conjugate amplitude (see figure 15) is equal to diagram D6 with the commutator of

the color matrices [ta, tb] instead of ta tb. With this in mind, the values of the D graphs are

D1 = −i g3
∫

d2x1 d
2x2

∫

d2k

(2π)2
d2l

(2π)2
d2q1
(2π)2

d2q2
(2π)2

× ei~q1⊥·(~x1⊥−~b2⊥)+i~q2⊥·(~x2⊥−~b2⊥)+i~l⊥·(~x2⊥−~x1⊥)+i~k⊥·(~z⊥−~x2⊥)

×
1

q21⊥ q22⊥

(

−~q1⊥ · ~q2⊥
~ǫλ∗
⊥ × ~k⊥
k2
⊥

+ ~ǫλ∗
⊥ · ~q1⊥

~q2⊥ × (~k⊥ −~l⊥)

(~k⊥ −~l⊥)2
+ ~ǫλ∗

⊥ · ~q2⊥
~q1⊥ ×~l⊥

l2
⊥

)

Sign(~k⊥ ×~l⊥)

× fabc Ubd
~x1⊥

Uce
~x2⊥

(

V~b1⊥

)

1

(

V~b2⊥te td
)

2
, (3.23a)

D2 = −2 i g3
∫

d2x

∫

d2k

(2π)2
d2q

(2π)2
d2l

(2π)2
ei~q⊥·(~x⊥−~b2⊥)+i~l⊥·(~x⊥−~b2⊥)+i~k⊥·(~z⊥−~x⊥)

× fabc Ube
~b2⊥

Ucd
~x⊥

(

V~b1⊥

)

1

(

V~b2⊥te td
)

2

×
1

l2
⊥
q2
⊥

[(

~ǫλ∗
⊥ × ~k⊥
k2
⊥

~l⊥ · ~q⊥ − ~ǫλ∗
⊥ ·~l⊥

~q⊥ × (~k⊥ −~l⊥)

(~k⊥ −~l⊥)2

)

Sign(~k⊥ ×~l⊥)

− i

(

~ǫλ∗
⊥ · ~k⊥
k2
⊥

~l⊥ · ~q⊥ − ~ǫλ∗
⊥ ·~l⊥

(~k⊥ −~l⊥) · ~q⊥

(~k⊥ −~l⊥)2
−

1

2
~ǫλ∗
⊥ · ~q⊥

)]

, (3.23b)

D3 = 0, (3.23c)
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D4 = 0, (3.23d)

D5+D6 +D′

5 +D′

6 +D′′

5 +D′′

6 = 2 g3
∫

d2x

∫

d2k

(2π)2
d2q1
(2π)2

d2q2
(2π)2

× ei~q1⊥·(~b2⊥−~x⊥)+i~q2⊥·(~x⊥−~b2⊥)+i~k⊥·(~z⊥−~b2⊥)

×
~ǫλ∗
⊥ · ~k⊥
k2
⊥

~q1⊥ · ~q2⊥
q21⊥ q22⊥

fabc Ubd
~x⊥

Uce
~b2⊥

(

V~b1⊥

)

1

(

V~b2⊥te td
)

2
. (3.23e)

Note also that color-averaging is implied: for instance, the part of the diagram D1 contri-

bution shown in eq. (3.23a) is the one that survives a color-trace in the space of nucleon

2 after the amplitude is squared. More specifically when writing (tetd)2 in eqs. (3.23) we

only keep the part of the expression which survives the (tetd)2 → δed/(2Nc) substitution.

The sum of all the D-graphs (including the contributions from moving the gluons

across the cut, as identified by the prime over the sum sign) is

6
∑′

i=1

Di = −i g3
∫

d2x1 d
2x2

∫

d2k

(2π)2
d2l

(2π)2
d2q1
(2π)2

d2q2
(2π)2

× ei~q1⊥·(~x1⊥−~b2⊥)+i~q2⊥·(~x2⊥−~b2⊥)+i~l⊥·(~x2⊥−~x1⊥)+i~k⊥·(~z⊥−~x2⊥)

×
1

q21⊥ q22⊥

(

−~q1⊥ · ~q2⊥
~ǫλ∗
⊥ × ~k⊥
k2
⊥

+ ~ǫλ∗
⊥ · ~q1⊥

~q2⊥ × (~k⊥ −~l⊥)

(~k⊥ −~l⊥)2
+ ~ǫλ∗

⊥ · ~q2⊥
~q1⊥ ×~l⊥

l2
⊥

)

Sign(~k⊥ ×~l⊥)

× fabc
[

Ubd
~x1⊥

− Ubd
~b2⊥

] [

Uce
~x2⊥

− Uce
~b2⊥

] (

V~b1⊥

)

1

(

V~b2⊥te td
)

2
− 2 g3

∫

d2x

∫

d2k

(2π)2
d2q

(2π)2
d2l

(2π)2

× ei~q⊥·(~x⊥−~b2⊥)+i~l⊥·(~x⊥−~b2⊥)+i~k⊥·(~z⊥−~x⊥) fabc Ubd
~b2⊥

[

Uce
~x⊥

− Uce
~b2⊥

] (

V~b1⊥

)

1

(

V~b2⊥te td
)

2

×

(

~ǫλ∗
⊥ · ~k⊥
k2
⊥

~l⊥ · ~q⊥
l2
⊥
q2
⊥

−
~ǫλ∗
⊥ ·~l⊥
l2
⊥

(~k⊥ −~l⊥) · ~q⊥

(~k⊥ −~l⊥)2 q2⊥
−

~ǫλ∗
⊥ · ~q⊥
2 l2

⊥
q2
⊥

+
~ǫλ∗
⊥ · ~k⊥
k2
⊥

(~k⊥ −~l⊥) · ~q⊥

(~k⊥ −~l⊥)2 q2⊥

)

. (3.24)

This result, along with the sum of all the E graphs, may also be directly obtained from

eq. (3.17) by “moving” the quark-gluon vertices on the line of quark 1 to the line of quark

2 in A, B and C graphs with an appropriate modification of color factors.

Fourier-transforming eq. (3.24) we obtain

6
∑′

i=1

Di = −
g3

8π4

∫

d2x1 d
2x2 δ[(~z⊥ − ~x1⊥)× (~z⊥ − ~x2⊥)]

[

~ǫλ∗
⊥ · (~x2⊥ − ~x1⊥)

|~x2⊥ − ~x1⊥|2
~x1⊥ −~b2⊥

|~x1⊥ −~b2⊥|2
·

~x2⊥ −~b2⊥

|~x2⊥ −~b2⊥|2

−
~ǫλ∗
⊥ · (~x1⊥ −~b2⊥)

|~x1⊥ −~b2⊥|2
~z⊥ − ~x1⊥

|~z⊥ − ~x1⊥|2
·

~x2⊥ −~b2⊥

|~x2⊥ −~b2⊥|2
+

~ǫλ∗
⊥ · (~x2⊥ −~b2⊥)

|~x2⊥ −~b2⊥|2
~x1⊥ −~b2⊥

|~x1⊥ −~b2⊥|2
·

~z⊥ − ~x2⊥

|~z⊥ − ~x2⊥|2

]

× fabc
[

Ubd
~x1⊥

− Ubd
~b2⊥

] [

Uce
~x2⊥

− Uce
~b2⊥

] (

V~b1⊥

)

1

(

V~b2⊥te td
)

2

+
i g3

4π3

∫

d2x fabc Ubd
~b2⊥

[

Uce
~x⊥

− Uce
~b2⊥

] (

V~b1⊥

)

1

(

V~b2⊥te td
)

2

(

~ǫλ∗
⊥ · (~z⊥ − ~x⊥)

|~z⊥ − ~x⊥|2
1

|~x⊥ −~b2⊥|2

−
~ǫλ∗
⊥ · (~z⊥ −~b2⊥)

|~z⊥ −~b2⊥|2
~z⊥ − ~x⊥

|~z⊥ − ~x⊥|2
·

~x⊥ −~b2⊥

|~x⊥ −~b2⊥|2
−

~ǫλ∗
⊥ · (~z⊥ −~b2⊥)

|~z⊥ −~b2⊥|2
1

|~x⊥ −~b2⊥|2

)

+
i g3

4π2
fabc Ubd

~b2⊥

[

Uce
~z⊥

− Uce
~b2⊥

] (

V~b1⊥

)

1

(

V~b2⊥te td
)

2

~ǫλ∗
⊥ · (~z⊥ −~b2⊥)

|~z⊥ −~b2⊥|2
ln

1

|~z⊥ −~b2⊥|Λ
. (3.25)

This is our final result for the sum of the D graphs. Using eq. (3.22) one can easily obtain

the sum of the E graphs as well from eq. (3.25). Again this result can also be obtained

directly from eq. (3.21).
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3.3 Cross-checks

To test our main results for the order-g3 gluon production amplitude in eqs. (3.21)

and (3.25) let us run a couple of cross checks.

First of all, if there is no shock wave, there should be no gluon production. A simple

calculation shows that if one puts all U = 1 and all V = 1 then

7
∑

i=1

Ai = 0,

12
∑′

i=1

Bi = 0,

12
∑′

i=1

Ci = 0,

6
∑′

i=1

Di = 0,

6
∑′

i=1

Ei = 0, (3.26)

as expected.

Another issue is gauge invariance. To test our results for gauge invariance, the order-

g3 gluon production amplitude can be calculated in different sub-gauges of the light-cone

gauge, other than the PV sub-gauge in which the results in eqs. (3.21) and (3.25) were ob-

tained. In appendix B we show that, while the calculations of the order-g3 gluon production

amplitude in the ~A⊥(x
− → +∞) = 0 or ~A⊥(x

− → −∞) = 0 sub-gauges are more involved

than the PV sub-gauge calculation, the end result is the same in all three gauges for the un-

primed sum of all A, B and C graphs, and for the unprimed sum ofD and E graphs. Gauge-

invariance also holds if we use retarded gluon “propagators”. Note that obtaining commuta-

tors of fundamental SU(Nc) generators for the B and C graphs by moving gluons across the

cut was shown to be a legitimate trick only in the PV sub-gauge of the light-cone gauge: it

is likely that to re-derive the result from eq. (3.21) in the ~A⊥(x
− → +∞) = 0 and ~A⊥(x

− →
−∞) = 0 sub-gauges of the light-cone gauge, the gluon should also be moved across the

cut in the diagrams like the first two graphs in figure 18, complicating the analysis. Hence,

strictly-speaking, we have not shown that our result in eq. (3.21) (with primed sums) is

gauge-invariant: while it may still be gauge-invariant, at the moment we can think of it as a

gauge-invariant amplitude (resulting from the unprimed sums) with the terms added (in the

PV sub-gauge) casting it in a simpler form for obtaining the gluon production cross section.

4 Outlook

This paper is the first step in our project to calculate the first saturation correction in the

projectile wave function to the p+A classical gluon production cross section. In this paper

we calculated the order-g3 gluon production amplitude. The main results are given in trans-

verse coordinate space in eqs. (3.21) and (3.25). Transverse momentum space amplitude is

given in eqs. (3.17) and (3.24). These results constitute the first saturation correction to

the leading-order gluon production amplitude in eq. (2.1) and in eq. (2.4) respectively.

To complete this project and find the order-α3
s contribution to the classical gluon

production cross section one needs to calculate the order-g5 amplitude, again involving

only two projectile nucleons (see figure 2). Similar to the D-graphs above, in calculating

the order-g5 amplitude we will be able to simplify the color algebra by employing the

fact that only one of the two nucleons involved emits a gluon in the complex conjugate

amplitude, as shown in the diagram (ii) of figure 2. Still, this appears to be a rather

challenging calculation, and it is presently left for future work.
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A Moving gluons across the cut

The purpose of this appendix is to show that (a) the inclusion of the type-(iii) diagrams

from figure 2 into the calculation can be easily accomplished by using retarded gluon

Green functions instead of Feynman propagators; and that (b) the contributions of B

and C graphs (shown in figure 7) to the O(g3) amplitude along with the contributions

of similar diagrams to the O(g5) amplitude can all be efficiently found by calculating a

subset of those graphs with color-commutators instead of the usual fundamental color

factors. While these statements appear unrelated, they seem to be hard to disentangle for

the B and C types of graphs.

Let us begin with contributions to the cross section coming from the squares of the

A-graphs (defined in figure 6). It is straightforward to see by an explicit diagram analysis

that the argument depicted in figure 3 applies in general, for the amplitude and the complex

conjugate amplitude contributions coming from any two A-graphs. We illustrate this point

in figure 11 by considering a slightly more involved example than that shown in figure 3,

namely by studying the square of diagram A1. The argument of eq. (2.9) applies here as

well, after the following two observations. First of all, the interactions of the gluon that

we moved across the cut in the second and third diagrams (to the left of the equal sign)

of figure 11 with the shock wave cancel, as the gluon has the same transverse coordinate

on both sides of the cut such that U U † = 1: hence we can treat this gluon as a free

gluon propagator in the first graph, and as a free cut propagator in the second and third

graphs. Second of all, in all three diagrams to the left of the equal sign of figure 11 the

interactions of quark 1 with the shock wave cancel (for a similar reason to the gluon’s,

V V † = 1), leading to the same color factor on this quark line, tr [ta tb] = δab/2, for all

three graphs. Since the longitudinal coordinate integral ranges of the second and third

graphs in figure 11, x+1 > x+2 and x+2 > x+1 , complement each other giving independent

x+1 and x+2 integrals from −∞ to 0 each, we see that the sum of the three diagrams in

figure 11 leads to a retarded gluon Green function denoted by an arrow in the last diagram

in figure 11, just like it was demonstrated in eq. (2.9).

Other contributions to the amplitude squared made out of A graphs (both in the

amplitude and in the complex conjugate amplitude) can be analyzed in a similar manner

on a case-by-case basis, leading to the same result: all internal gluon lines should be

represented by retarded Green functions. Note that to prove the use of retarded propagators

for the gluon lines in the diagrams like A2 one has to also employ the fact that the “+”

component of the gluon momentum is conserved in the interaction with the shock wave.

Now we have to analyze the contributions to the amplitude squared coming from B

and C graphs, along with the interference terms between the A and B or C diagrams.
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Figure 11. Diagrams contributing to the retarded Green function for the gluon propagator in the

square of the A1 graph. The retarded gluon Green function is labeled by the arrow in the last

diagram representing the net result.

The main tool here, in addition to eq. (2.9), would be the cancellation of retarded Green

functions from figure 5 (for the gluon exchanged between the quarks either before or after

the shock wave both in the amplitude and the complex conjugate amplitude). Indeed one

can proceed with the diagrammatic arguments, similar to how we outlined the analysis for

the square of the sum of A diagrams above. While we performed this diagram-by-diagram

check, it is rather lengthy and we are not going to present it here due to a very high

number of diagrams one has to consider. Instead, a somewhat more compact approach to

the problem is based on a formal argument which we present below.

Following [52] we denote gluon fields in the amplitude by Aa
µ, while the gluon fields in

the complex conjugate amplitude are labeled by Aa
µ. These fields are not the background

classical fields of the target, but rather “quantum” fields whose Wick contractions give us

the s-channel gluon propagators used in calculating diagrams A, B, C, etc. By analogy

to (2.3) we can define the Wilson line representing quark propagation over a finite x+-

interval in the amplitude by

V~b⊥,b−
[x+2 , x

+
1 ]A

= Pexp











i g

x+
2
∫

x+
1

dx+taAa−(x+, b−,~b⊥)











. (A.1)

The corresponding Wilson line in the complex conjugate amplitude would be

V †
~b⊥,b−

[x+2 , x
+
1 ]

A
, where A in the subscript denotes the fact that now one uses the field

Aa
µ in the exponent of eq. (A.1).

Further we define gluon propagators as contractions

Aa
µ(x)A

b
ν(y) ≡ Dab

F µν(x− y) = 〈0|TAa
µ(x)A

b
ν(y)|0〉 =

∫

d4k

(2π)4
e−ik·(x−y) −i δab Dµν(k)

k2 + iǫ
(A.2a)

Aa
µ(x)A

b
ν(y) ≡ Dab

F µν(x− y) = 〈0|TAa
µ(x)A

b
ν(y)|0〉 =

[

Dab
F µν(x− y)

]∗

(A.2b)

Aa
µ(x)A

b
ν(y)≡Dab

µν(x−y)=〈0|Aa
µ(x)A

b
ν(y)|0〉=−

∫

d4k

(2π)4
e−ik·(x−y) δab Dµν(k) (2π) δ(k

2) θ(−k+) (A.2c)

Aa
µ(x)A

b
ν(y) = Dab

µν(y − x) = 〈0|Aa
µ(x)A

b
ν(y)|0〉, (A.2d)
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where Dµν(k) is given by eq. (3.1) while T and T denote time- and anti-time-ordering

respectively. (As in the calculation leading to eqs. (3.17) and (3.24) we will use the PV

sub-gauge of the light-cone gauge.) Since only the upper “−” components of the gluon

fields Aa
µ and Aa

µ enter the Wilson lines such as (A.1), we will suppress the Lorentz indices

below. That is, we will use

Dab
F (x− y) ≡ Dab−−

F (x− y), Dab
F (x− y) ≡ Dab−−

F (x− y), Dab(x− y) ≡ Dab−−(x− y).

(A.3)

Note that (cf. eq. (2.9))

Dab
F (x− y)−Dab(x− y) = Dab

ret(x− y) ≡
∫

d4k

(2π)4
e−ik·(x−y) −i δabD−−(k)

k2 + iǫk+
, (A.4a)

Dab
F (x− y)−Dab(y − x) =

∫

d4k

(2π)4
eik·(x−y) i δ

abD−−(k)

k2 − iǫk+
= −Dab

ret(x− y), (A.4b)

with Dab
ret(x − y) denoting the retarded gluon Green function. Indeed we are setting up

the well-known Keldysh-Schwinger formalism [57, 58], which was used in small-x physics

in [52, 59, 60].

Eqs. (A.4) is a formal expression behind the cancellations like those shown in figure 5.

To see this we concentrate on the Wilson lines representing quark propagators before the

shock wave, both in the amplitude and in the complex conjugate amplitude. (For the

cancellation it does not matter which interactions take place after the scattering in the

shock wave.) The contribution of the diagrams in figure 5 is proportional to

〈0|TATA

{

V †
~b1⊥,b−1

[0,−∞]
A
V~b1⊥,b−1

[0,−∞]
A
⊗ V †

~b2⊥,b−2
[0,−∞]

A
V~b2⊥,b−2

[0,−∞]
A

}

|0〉,
(A.5)

where the ⊗ sign indicates that the color indices of each product V † V are not contracted

with each other, and are fixed at some arbitrary values. Time-ordering for Aa
µ-fields

and anti-time-ordering for Aa
µ-fields are denoted by TA and TA correspondingly. For

the classical gluon field diagrams we need contractions between the gluon fields Aa
µ and

Aa
µ connecting the two projectile quarks: that is, we need contractions of the fields at

(~b1⊥, b
−
1 ) and the fields at (~b2⊥, b

−
2 ). Indeed the diagrams in figure 5 are examples of

such contractions. Expanding eq. (A.5) to the first order in the fields in each V † V , and

analyzing only the b1 b2 contractions, we get

− g2 〈0|
0
∫

−∞

dx+ ta
[

Aa−(x+, b−1 ,
~b1⊥)−Aa−(x+, b−1 ,

~b1⊥)
]

⊗
0
∫

−∞

dy+ tb
[

Ab−(y+, b−2 ,
~b2⊥)−Ab−(y+, b−2 ,

~b2⊥)
]

|0〉

= −g2 ta ⊗ tb
0
∫

−∞

dx+ dy+
[

Dab
F (x− y) +Dab

F (x− y)−Dab(x− y)−Dab(y − x)
]
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= −g2 ta ⊗ tb
0
∫

−∞

dx+ dy+
[

Dab
ret(x− y)−Dab

ret(x− y)
]

= 0. (A.6)

This is the formal proof of the cancellation shown in figure 5. Note that before canceling,

all the correlators assembled into the retarded Green functions. We have also employed

an abbreviated notation by suppressing (~b1⊥, b
−
1 ) and (~b2⊥, b

−
2 ) in the arguments of the

correlators.

A somewhat more involved calculation demonstrates that expanding eq. (A.5) to the

second order in the fields in each V † V and concentrating on the b1 b2 contractions again, we

would also get zero. This means that adding an extra gluon exchanged between the projec-

tile quarks on either side of either diagram of figure 5 (as long as the gluon is both emitted

and absorbed before the scattering in the shock wave) would still generate canceling dia-

grams. Two-gluon exchange is the highest order necessary in the classical field analysis [17].

Let us apply the Keldysh-Schwinger formalism described above to the analysis of the

squares of B diagrams. We will work out the square of the diagrams B9 +B10 (as defined

in figure 7), along with all the other similar graphs obtained from the square of B9 + B10

by moving gluons across the cut: contributions of other diagrams can be found by analogy.

A sample of diagrams we need to sum up is given in the first line of figure 12. Namely, we

fix the produced gluon to be emitted at light-cone time x+1 in the amplitude and at x+2 in

the complex conjugate amplitude, and sum up all the graphs where the other two gluons

are exchanged between the two projectile quarks, as long as the gluons are emitted and/or

absorbed after the interaction with the shock wave in the amplitude and in the complex

conjugate amplitude (that is, for x+ > 0). Clearly the sample diagrams in the first line of

figure 12 represent only a small subset of all the graphs that need to be included.

Instead of summing the diagrams we notice that due to the lack of gluon emissions

and/or absorptions at x+ < 0, the interactions of the projectile quarks with the shock

wave cancel. Hence the contribution of all the B9 + B10 squared type of diagrams can be

written as proportional to

〈0|TATA

{

tr

[

V †
~b1⊥,b−1

[x+2 , 0]
A
ta V †

~b1⊥,b−1
[+∞, x+2 ]

A
V~b1⊥,b−1

[+∞, x+1 ]A
ta V~b1⊥,b−1

[x+1 , 0]A

]

× tr

[

V †
~b2⊥,b−2

[+∞, 0]
A
V~b2⊥,b−2

[+∞, 0]
A

]}

|0〉 (A.7)

with the expression (A.7) containing all the gluon exchanges between the projectile quarks.

First let us rewrite eq. (A.7) as

〈0|TATA

{

tr

[

V †
~b1⊥,b−1

[x+2 , 0]
A
ta V~b1⊥,b−1

[x+2 , 0]
A

(

V †
~b1⊥,b−1

[+∞, 0]
A
V~b1⊥,b−1

[+∞, 0]
A

)

× V †
~b1⊥,b−1

[x+1 , 0]
A
ta V~b1⊥,b−1

[x+1 , 0]A

]

× tr

[

V †
~b2⊥,b−2

[+∞, 0]
A
V~b2⊥,b−2

[+∞, 0]
A

]}

|0〉, (A.8)
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Figure 12. The sum of the diagrams complementing the square of the graph B9 and B10. The

arrows on the gluon lines denote the time-flow direction for the retarded propagators, while the

brackets denote the color matrix commutator. Both time-orderings of the quark-gluon vertices on

the Wilson line representing quark 2 are implied in the last two diagrams diagrams in the second

line. The first gluon exchanged between the projectile quarks in the first diagram of the last line

has the emission time x+

3 ∈ [0,+∞] with the color matrix tb placed to the left of the commutator

in the amplitude (with similar implication for the last diagram).

where the parenthesis around the V † V factor inside the first trace are placed there just to

emphasize this term.

Once again we are interested in contractions in eq. (A.8) connecting the b1 and b2
lines. By analogy to the analysis of eq. (A.5) one can conclude that two contractions

between the fields in the second trace and the fields in the parenthesis inside the first

trace cancel. We are left with contractions between V †
b1
[x+2 , 0]A ta Vb1 [x

+
2 , 0]A from the

first trace and the second trace, tr
[

V †
b2
[+∞, 0]

A
Vb2 [+∞, 0]A

]

, along with the contrac-

tions between V †
b1
[x+1 , 0]A ta Vb1 [x

+
1 , 0]A from the first trace and the same second trace,

tr
[

V †
b2
[+∞, 0]

A
Vb2 [+∞, 0]A

]

. We may also have one contraction between the expression

in the parenthesis of eq. (A.8) and the second trace, combined with another contraction ei-

ther between V †
b1
[x+2 , 0]A ta Vb1 [x

+
2 , 0]A from the first trace and the second trace or between

V †
b1
[x+1 , 0]A ta Vb1 [x

+
1 , 0]A from the first trace and the same second trace. This is exactly the

answer illustrated in the second and third lines of figure 12. First of all, since the b2 quark

line brings in a factor of tr
[

V †
b2
[+∞, 0]

A
Vb2 [+∞, 0]A

]

, for each contraction of A−(b1) com-

ing from anywhere in the first trace in eq. (A.8) with A−(b2) from the second trace there

exists a contraction of A−(b1) with A−(b2); moreover, the second contraction comes in with

a negative relative sign (due to hermitean conjugation in V †
A as compared to VA), complet-

ing the original contraction to a retarded Green function, in accordance with eq. (A.4a).

Similarly, for each contraction between A−(b1) with A−(b2) there exists a contraction of

A−(b1) with A−(b2), which comes in with the relative negative sign, again generating a
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retarded Green function, but now via eq. (A.4b). Let us stress again that since we are

constructing gluon production cross section corresponding to the classical field, in this case

we only need two contractions between the b1 and b2 lines, corresponding to the two gluons

exchanged in the diagrams of figure 12. Hence our conclusions should be understood as

valid for up to two gluon exchanges, but not necessarily beyond. The second point we need

to make is that contractions with, say, V †
b1
[x+1 , 0]A ta Vb1 [x

+
1 , 0]A imply that the gluon in the

amplitude can interact with the quark b1 only at light-cone times 0 < x+ < x+1 , that is, to

the left of the emitted gluon in the diagrams of figure 12. Moreover, since

V †
b1
[x+1 , 0]A ta Vb1 [x

+
1 , 0]A = Uab

b1 [x
+
1 , 0]A tb, (A.9)

the interaction is identical to that with a gluon Wilson line connecting the points (0, b−1 ,
~b1⊥)

and (x+1 , b
−
1 ,
~b1⊥) along the x

+ light-cone direction. In passing we note that this is similar to

the modification of the quark source current by a gluon exchange in the classical perturba-

tive solution of Yang-Mills equations constructed in [12] (see eqs. (8) there). To conclude we

see that contractions between V †
b1
[x+1 , 0]A ta Vb1 [x

+
1 , 0]A and tr

[

V †
b2
[+∞, 0]

A
Vb2 [+∞, 0]A

]

lead to the diagram to the left of the cut in the first panel of the second row of fig-

ure 12 (for one contraction) and to the second panel of the second row in figure 12 (for

two contractions). The gluon propagators become retarded Green functions, and the

color factors are replaced by commutators. Similar arguments for contractions between

V †
b1
[x+2 , 0]A ta Vb1 [x

+
2 , 0]A and tr

[

V †
b2
[+∞, 0]

A
Vb2 [+∞, 0]A

]

give the right-hand side of the

first diagram in the second line of figure 12 along with the last diagram in that line. (Let us

stress that in the last two graphs in figure 12 we implicitly include a “crossed” contribution,

where the quark-gluon vertices on quark line 2 are interchanged.) A contraction between

V †
b1
[x+1 , 0]A ta Vb1 [x

+
1 , 0]A and tr

[

V †
b2
[+∞, 0]

A
Vb2 [+∞, 0]A

]

along with another contraction

between V †
b1
[+∞, 0]

A
Vb1 [+∞, 0]A and tr

[

V †
b2
[+∞, 0]

A
Vb2 [+∞, 0]A

]

give the first diagram

in the last row of figure 12 (more precisely, the part of the diagram to the left of the cut),

with the last graph in this last row being a mirror image with respect to the final-state cut.

Note that these last two diagrams in figure 12 are zero, since the contribution of quark-2 line

is proportional to a color trace of a commutator. We see that to calculate the contribution to

the cross section of the square of B9+B10+. . ., where the ellipsis represent the multitude of

other graph in this class, we only need to calculate the square of B9 with the retarded gluon

Green function and with the color commutator instead of the standard fundamental color

factor, along with the interference of the O(g5) diagrams (containing a double commutator

or two commutators, as shown in figure 12) with the leading-order (O(g)) gluon production

amplitude, shown in the last four panels of figure 12. We have thus completed a demon-

stration of the original claim that to facilitate the calculation one can use retarded gluon

propagators, calculate only a sub-set of B (and C) graphs with the commutators, along

with calculating only the diagrams of the (i) and (ii) types by the classification of figure 2.

A complete proof of these results involves analyzing all the possible contributions to

the amplitude squared. While still tedious, our formalism developed above makes the proof

much more straightforward by reducing the vast number of diagrams one needs to consider
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Figure 13. The sum of the diagrams complementing the interference of the graphs B9 and B10

with C5. The arrows on the gluon lines denote the time-flow direction for the retarded propagators,

while the brackets denote the color matrix commutator. In the last diagram the gluon emission

time is x+

2 ∈ [0,+∞].

to a much smaller number of Wilson line correlators like that in eq. (A.7). Let us illustrate

our technique by a couple more examples.

First consider the interference of the B9+B10+ . . . type of graphs with C5 (the upside-

down reflection of B5 from figure 7). This set of graphs is depicted in figure 13, where we

only consider gluon exchanges between the projectile quarks at x+ > 0 on the either side

of the cut. Noticing that the shock wave interactions with the quark 1 cancel we conclude

that the contribution of all the graphs of the type shown in figure 13 is proportional to

〈0|TATA

{

tr

[

V †
~b1⊥,b−1

[+∞, 0]
A
V~b1⊥,b−1

[+∞, x+1 ]A
ta V~b1⊥,b−1

[x+1 , 0]A

]

⊗V †
~b2⊥,b−2

[+∞, 0]
A
V~b2⊥,b−2

[+∞, 0]
A

}

|0〉. (A.10)

We rewrite eq. (A.10) as

〈0|TATA

{

tr

[(

V †
~b1⊥,b−1

[+∞, 0]
A
V~b1⊥,b−1

[+∞, 0]
A

)

V †
~b1⊥,b−1

[x+1 , 0]
A
ta V~b1⊥,b−1

[x+1 , 0]A

]

⊗ V †
~b2⊥,b−2

[+∞, 0]
A
V~b2⊥,b−2

[+∞, 0]
A

}

|0〉. (A.11)

If the two contractions are between V †
b1
[+∞, 0]

A
Vb1 [+∞, 0]A and V †

b2
[+∞, 0]

A
Vb2 [+∞, 0]A,

then they cancel just like they did in the analysis of eq. (A.5). We are left

with two options: one may have two contractions between V †
b1
[x+1 , 0]A ta Vb1 [x

+
1 , 0]A

and V †
b2
[+∞, 0]

A
Vb2 [+∞, 0]A, giving the answer shown in the first diagram after

the equal sign in figure 13, or one contraction between V †
b1
[x+1 , 0]A ta Vb1 [x

+
1 , 0]A and

V †
b2
[+∞, 0]

A
Vb2 [+∞, 0]A and another contraction between V †

b1
[+∞, 0]

A
Vb1 [+∞, 0]A and

V †
b2
[+∞, 0]

A
Vb2 [+∞, 0]A. The latter case gives the last diagram in figure 13. Interestingly

the first diagram after the equal sign in figure 13 is zero, since the trace of the commutator

we get in the color space of quark 1 is zero. Note that now the final answer in figure 13

is completely absorbed into the interference between the O(g5) diagrams with the O(g)
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Figure 14. The sum of the diagrams complementing the interference of the graphs B9 and B10

with A5. The arrows on the gluon line denote the time-flow direction for the retarded propagators,

while the brackets denote the color matrix commutator.

diagram: hence the diagram C5 is absorbed into the O(g5) gluon production amplitude,

and is not included into our O(g3) result presented in this work.

Our final example demonstrating our formal technique involves the interference be-

tween the same B9+B10+. . . type of graphs with A5. It is illustrated in figure 14. Similar to

the above we can see that the contribution of the diagrams from figure 14 is proportional to

fabc 〈0|TATA

{

tr

[

V †
~b1⊥,b−1

[x+2 , 0]
A
tb V †

~b1⊥,b−1
[+∞, x+2 ]

A
V~b1⊥,b−1

[+∞, x+1 ]A
ta V~b1⊥,b−1

[x+1 , 0]A

]

× tr

[

V †
~b2⊥,b−2

[x+3 , 0]
A
tc V †

~b2⊥,b−2
[+∞, x+3 ]

A
V~b2⊥,b−2

[+∞, 0]
A

]}

|0〉. (A.12)

We rewrite this as

fabc 〈0|TATA

{

tr

[

V †
~b1⊥,b−1

[x+2 , 0]
A
tb V~b1⊥,b−1

[x+2 , 0]
A

(

V †
~b1⊥,b−1

[+∞, 0]
A
V~b1⊥,b−1

[+∞, 0]
A

)

× V †
~b1⊥,b−1

[x+1 , 0]
A
ta V~b1⊥,b−1

[x+1 , 0]A

]

×tr

[

V †
~b2⊥,b−2

[x+3 , 0]
A
tc V~b2⊥,b−2

[x+3 , 0]
A

(

V †
~b2⊥,b−2

[+∞, 0]
A
V~b2⊥,b−2

[+∞, 0]
A

)]}

|0〉. (A.13)

An important difference now is that we are looking at only one contraction, cor-

responding to the single gluon exchange between the projectile quarks in fig-

ure 14. Similar to the above contractions between V †V ’s in parenthesis cancel.

Single contractions involving V †
b2
[x+3 , 0]A tc Vb2 [x

+
3 , 0]A in the second trace are zero:

they are proportional to a trace of a commutator. We are left with contrac-

tions between V †
b1
[x+2 , 0]A tb Vb1 [x

+
2 , 0]A and V †

b2
[+∞, 0]

A
Vb2 [+∞, 0]A and between

V †
b1
[x+1 , 0]A ta Vb1 [x

+
1 , 0]A and V †

b2
[+∞, 0]

A
Vb2 [+∞, 0]A: this is exactly the answer given in

the last two diagrams of figure 14.

Note that one can repeat the above argument after moving the gluon line with color

b (or c) in the first graph of figure 14 across the cut, getting the same answer with two

commutator terms. Adding such contributions to the final result from figure 14 would turn

the propagators of the gluon lines b and c into retarded Green functions.

– 31 –



J
H
E
P
0
3
(
2
0
1
5
)
0
1
5

Figure 15. This figure illustrates the rules for calculating diagrams D5 and D6 from figure 10

along with the other graphs which need to be included. The emissions coming from quark 1 (see

e.g. figure 9) in the complex conjugate amplitude are not shown as they are not relevant for the

calculation at hand.

The rest of the proof would be a more or less straightforward repetition of the above

examples, which we verified but are not going to present here. In the end the propagators

of all the internal gluon lines become retarded Green functions. The B and C graphs

contribute as a subset of these graphs with color commutators.

This appendix presents details of the correspondence between the “tree-level” Feynman

diagrams and classical gluon fields. It is possible that an even more compact proof of our

main results can be constructed: however, at the moment it is not known to the authors.

Our techniques presented above can be applied to the D and E graphs as well. How-

ever, in those cases a simple diagrammatic summation is possible. The D diagrams which

need to be added together are shown in figure 15. (The emissions off of quark 1, such as

those in figure 9, are not shown explicitly in figure 15 since they are not needed for our

analysis.) In the end one obtains

D5+D
′
5+D

′′
5+D6+D

′
6+D

′′
6 =D6(with retarded propagators and with [ta, tb] instead of ta tb),

(A.14)

again in agreement with the main claims of this appendix. The proof for the E graphs is

obtained by a simple swap of the projectile quarks 1 and 2.

B On sub-gauge invariance

In this appendix we demonstrate that up to order g3 the gluon production amplitude does

not depend on the particular sub-gauge used. Using

1

l+ − iǫ
− 1

l+ + iǫ
= 2πiδ(l+),

we can write the gluon propagator in the ~A⊥(x
− → +∞) = 0 sub-gauge of the light-cone

gauge as

−i

l2 + iǫ

(

gµν −
ηµlν

l+ − iǫ
− ην lµ

l+ + iǫ

)

=
−i

l2 + iǫ

(

gµν − PV

(

1

l+

)

(ηµlν + ην lµ)

)

+ δ(l+)
π

l2⊥
(ηµlν − ην lµ). (B.1)
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Figure 16. Diagram B3, an example of a diagram with a pinched contribution.

Here we have split up the gluon propagator in the ~A⊥(x
− → +∞) = 0 sub-gauge into

two parts: one is equivalent to the PV gauge propagator, the other is proportional to δ(l+).

The gluon propagator in the ~A⊥(x
− → −∞) = 0 sub-gauge can be written in a similar form,

the only difference being the sign of the δ(l+) term. The δ(l+) component gives rise to extra

terms for a given diagram when compared with the PV gauge. Due to gauge invariance of

the amplitude it is expected that all these extra terms from all of the diagrams cancel out.

This does end up being the case but the cancellations are not trivial. One needs to consider

more diagrams than simply those shown in the main text as classes A, B, C, D and E.

There are three types of new contributions in the ~A⊥(x
− → +∞) = 0 sub-gauge

calculation of gluon production (as compared to the PV sub-gauge calculation): most of

the A-graphs change (by ∆Ai) in the new gauge along with some of the D and E graphs (by

∆Di and ∆Ei respectively), some of the B and C graphs acquire non-eikonal contributions

which are still leading-order in the ~A⊥(x
− → +∞) = 0 sub-gauge (we will refer to those

contributions as “pinched”) and there are new diagrams which can be identified as the

shock-wave interaction corrections. All of these contributions will be described in detail

below. These contributions are necessary when dealing with both the ~A⊥(x
− → +∞) = 0

and ~A⊥(x
− → −∞) = 0 sub-gauges of the light-cone gauge. Through the rest of this

section we will be working in the ~A⊥(x
− → +∞) = 0 sub-gauge. As will be shown, all of

these new contributions can be written in terms of some sort of a “gauge rotation” acting

on the order-g single gluon emission diagrams from figure 1. Since gauge invariance is

valid separately for gluon emissions from quark 1 and quark 2, we will only perform the

calculation explicitly for gluon emission from quark 1.

Pinched contributions originate from terms in the B and C diagrams which, while zero

in the PV sub-gauge, are not zero in the ~A⊥(x
− → +∞) = 0 sub-gauge. In order to see

these extra contributions one cannot just treat the quark lines as Wilson lines, as was done

in the rest of the paper; instead one must treat them as high energy quarks with large P+
1

and P+
2 momenta. Here we examine diagram B3 depicted in detail in figure 16, to show

how this pinched contribution arises.

For the following calculation we only consider the left side of figure 16. That is, for the

quark lines we only include terms up to the γ+ from the shock wave. Here we show that

this diagram can be written in terms of two components, the PV-sub-gauge contribution

which comes from treating the quark lines as Wilson lines, and a “gauge rotation”. The
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left (before the shock wave) side of the diagram gives

∫

d4l

(2π)4
eil·(b1−b2)

{ −i

l2 + iǫ

[

gαβ − PV

(

1

l+

)

(ηαlβ + ηβlα)

]

− π

l2⊥
δ(l+)(ηαlβ − ηβlα)

}

×
[

γ+
i(/P 1 + /l)

(P1 + l)2 + iǫ
ig(ta)1γ

αuσ(P1)

] [

γ+
i(/P 2 − /l)

(P2 − l)2 + iǫ
ig(ta)2γ

βuρ(P2)

]

. (B.2)

Here bµ1 = (0, b−1 ,
~b1⊥) and bµ2 = (0, b−2 ,

~b2⊥) denote the intersection points of the projectile

quarks trajectories with the shock wave. We also assume that the quarks are massless. We

rewrite (B.2) more compactly as

(

g2(ta)1(t
a)2
)

∫

d4l

(2π)4
eil·(b1−b2)Γα

1Γ
β
2

×
( −i

l2 + iǫ

[

gαβ − PV

(

1

l+

)

(ηαlβ + ηβlα)

]

− π

l2⊥
δ(l+)(ηαlβ − ηβlα)

)

, (B.3)

where we have defined the following symbols:

Γα
1 =

[

γ+
(/P 1 + /l)

(P1 + l)2 + iǫ
γαuσ(P1)

]

,

Γβ
2 =

[

γ+
(/P 2 − /l)

(P2 − l)2 + iǫ
γβuρ(P2)

]

.

Before continuing with the remainder of the calculation it is useful to evaluate the

following in the high-energy limit,

ηαΓ
α
1 =

[

γ+
(/P 1 + /l)

(P1 + l)2 + iǫ
γ+uσ(P1)

]

≈
[

γ+γ−P+
1 γ+uσ(P1)

] 1

2P+
1 l− + iǫ

=
[

γ+uσ(P1)
] 1

l− + iǫ
,

lαΓ
α
1 =

[

γ+
(/P 1 + /l)

(P1 + l)2 + iǫ
/luσ(P1)

]

≈
[

γ+
(/P 1 + /l)

(P1 + l)2 + iǫ
(/P 1 + /l)uσ(P1)

]

=
[

γ+uσ(P1)
]

.

Using similar tricks for ηβΓ
β
2 and lβΓ

β
2 we have

ηβΓ
β
2 ≈

[

γ+uρ(P2)
] −1

l− − iǫ
,

lβΓ
β
2 ≈

[

γ+uρ(P2)
]

(−1).

Let us first evaluate eq. (B.3) by treating the quark lines as Wilson lines. This is

equivalent to taking only the upper “−−” component of the gluon propagator (lowercase

α = +, β = +) and then taking the high energy limit, i.e., taking P+
1 , P+

2 large. The
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term proportional to δ(l+) is exactly zero for α = +, β = +. We end up solely with the

PV-sub-gauge contribution of the form

(

g2(ta)1(t
a)2
)

∫

d4l

(2π)4
eil·(b1−b2) ηαΓ

α
1 ηβΓ

β
2

i

l2 + iǫ
PV

(

1

l+

)

(2l−) (B.4)

=
[

γ+uσ(P1)
]

1

[

γ+uρ(P2)
]

2

(

ig2(ta)1(t
a)2
)

∫

d4l

(2π)4
eil·(b1−b2) −1

l2 + iǫ
PV

(

1

l+

)

PV

(

2

l−

)

.

Now lets evaluate eq. (B.3) using a complete treatment of the quark lines. This allows

us to accurately calculate the term proportional to δ(l+). To do this we first evaluate the

following expressions:

(ηαlβ + ηβlα) Γ
α
1Γ

β
2 =

[

γ+uσ(P1)
] [

γ+uρ(P2)
]

(

− 1

l− + iǫ
− 1

l− − iǫ

)

=
[

γ+uσ(P1)
] [

γ+uρ(P2)
]

PV

(−2

l−

)

,

(ηαlβ − ηβlα) Γ
α
1Γ

β
2 =

[

γ+uσ(P1)
] [

γ+uρ(P2)
]

(

− 1

l− + iǫ
+

1

l− − iǫ

)

=
[

γ+uσ(P1)
] [

γ+uρ(P2)
]

2πiδ(l−),

gαβΓ
α
1Γ

β
2 = 0.

With these results in hand we evaluate eq. (B.3) arriving at

[

γ+uσ(P1)
]

1

[

γ+uρ(P2)
]

2

(

ig2(ta)1(t
a)2
)

×
∫

d4l

(2π)4
eil·(b1−b2)

[ −1

l2 + iǫ
PV

(

1

l+

)

PV

(

2

l−

)

− 2π2

l2⊥
δ(l+)δ(l−)

]

. (B.5)

The first term in the square brackets in the integrand of (B.5) corresponds to the PV

part of the gluon propagator. Notice how this matches the result ones gets from treating

the quark lines as Wilson lines, shown in eq. (B.4). This is important because this justifies

the treatment of these diagrams in the PV gauge used in the main text and in appendix A.

The second term is the gauge-dependent term proportional to δ(l+). Notice how it also

contains a δ(l−), which embodies the “pinching” of the singularities in the l−-integral: this

is why we refer to such terms as the “pinched” contributions. This term was hidden before

when we just took the “−−” component of the gluon propagator. We can see now that

the naive eikonal approximation used in arriving at eq. (B.4) caused us to miss this term.

Now that we have separated the sub-gauge-dependent part of the diagram from the PV

part we can analyze these separately. The PV sub-gauge contribution (the first term in the

square brackets of (B.5)) leads to the expression for the diagrams B3 given in eq. (3.14c)

of the main text. The second term in the square brackets of (B.5) yields, after integration

over l,
[

γ+uσ(P1)
]

1

[

γ+uρ(P2)
]

2

(

− i

4π
g2(ta)1(t

a)2 ln
1

|~b1⊥ −~b2⊥|Λ

)

. (B.6)

We will refer to such terms as “gauge rotations”. It will be denoted graphically by a

dashed line with the end points at the transverse positions whose difference is inside the
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Figure 17. The pinched contribution associated with the diagram B3.

Figure 18. Two left panels: examples of shock-wave correction diagrams which need to be consid-

ered in the gauges explored in this appendix. Right panel: a diagram in the A1 class which is of

the same order in the coupling as the two other diagrams in this figure. The composite object at

the bottom of the diagrams is a nucleon in the target nucleus.

logarithm (for eq. (B.6) these would be ~b1⊥ and ~b2⊥). If the end point is attached to a

quark it would give a fundamental generator, if it is attached to a gluon it would give an

adjoint generator. Both generators have the same color. The graphical representation of

the sub-gauge-dependent part of B3, algebraically given in eq. (B.6), is shown in figure 17.

This graphical notation is used for the rest of this section.

The pinched diagram contribution arises only when the gluon is exchanged between

the projectile quark either before any other interaction takes place or when such an

exchange happens after all the interactions took place. Analyzing all the B-graphs in

figure 7, we conclude that only 4 of those have the pinched contributions when they are

calculated in the ~A⊥(x
− → +∞) = 0 (or ~A⊥(x

− → −∞) = 0) sub-gauge. These are B1,

B3, B5 and B10. The pinched contributions coming from these diagrams are denoted here

as ∆B1,∆B3,∆B5 and ∆B10. All of them are shown in figure 24 below. (Indeed there

are also ∆C1,∆C3,∆C5 and ∆C10: these are important when checking gauge-invariance

of the amplitude with the gluon emitted off of quark 2.)

Now let us focus on the shock-wave corrections. The diagrams which we have in mind

are shown in the two left panels of figure 18 (cf. [41]). These diagrams do not belong

to the A, B, C, D and E diagram types considered in the main text: the two-gluon

interaction with the target nucleon in those graphs does not leave the nucleon in a color-

singlet state, which is indicated by the nucleon breaking up in figure 18. One concludes

that these diagrams are higher-order corrections to the Glauber-Mueller scattering in the

target, which is limited by two gluons per nucleon [51]. However, his does not allow one

to simply neglect these graphs, since this correction is enhanced by a power of A
1/3
1 (in
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Figure 19. The diagrams correcting the interaction of two projectile quarks (top two straight

horizontal lines) with a quark coming from a single nucleon in the shock wave (the thick red line).

the cross section) due to the extra projectile nucleon involved in the interaction. In the

right panel of figure 18 we show a diagram in the A1 class, with the interaction with the

target limited to a single-gluon exchange with one of the target nucleons. Clearly all three

diagrams in figure 18 are of the same order in our power counting: they are all order-g5

and have the same projectile and target nucleons participating in the interaction. Hence

the first two graphs in figure 18, along with other similar diagrams involving more multiple

rescatterings in the target, are of the same order as the A, B, C, D and E diagrams and

have to be included in the analysis. In fact one may worry why we did not include them

in the main-text calculation in the PV sub-gauge of the light-cone gauge: below we justify

neglecting these diagrams in the PV sub-gauge calculation performed in the main text.

To resum the corrections of the type shown in the left two diagrams of figure 18, we

have to include corrections like this for either one of the many nucleons involved in the

shock-wave interaction. We first consider scattering of two projectile quarks (coming from

two different nucleons) on a shock-wave target. The corrections to the scattering on a

single target nucleon are shown in figure 19 and labeled S1, S2 and S3. (Our analysis

will be similarly valid for scattering of the gluons coming from the projectile nucleons

on the target.) Note that the diagram S3 in figure 19 also has the standard eikonal

contribution where the gluon exchanged between the projectile quark lines is long-lived in

the s-channel: those types of contributions are included in the analysis of diagrams A−E

in the main text and will be discarded here.

In the S diagrams shown in figure 19, quarks 1 and 2 are eikonal quarks traveling in

the x+ direction. Quark 3, labeled by a thick red line, originates in a nucleon from the

target and thus has a large P− momentum and is traveling in the x− direction. While the

evaluation of these diagrams is explicitly done for quarks, similar results exist for the case

where quark(s) 1 and/or 2 are/is replaced by (a) gluon(s). For this calculation we will just

focus on the quark case. The diagrams in figure 19 should be understood as being inside

the shock wave; they can take place at any point in the shock wave. Since we are summing

over all possible diagrams, in a given target charge distribution there will be diagrams

where a given target nucleon has diagrams S1, S2 and S3 associated with it. We have to

calculate and sum up all three diagrams associated with each nucleon in the target. As an

example we calculate diagram S1 explicitly.
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Figure 20. Diagram S1, a correction to the interaction with a single nucleon in the target shock-

wave. The thick red line denotes a quark in the target nucleon.

This diagram S1 is shown in detail in figure 20. As usual, we will treat the projectile

quarks as the eikonal lines along the x+ light-cone, while treating the target quark as a

regular quark with a large P−
3 component of its momentum. (Note that we normalize the

target quark by multiplying its spinor matrix element by 1/(2P−
3 ).) Fourier-transforming

into coordinate space we obtain the following contribution:

S1 = g4 (ta)1 (t
b)2 (t

atb)3

∫

d4l

(2π)4
dq−d2q

(2π)3
e−il+(b−

1
−b

−

2
)−iq−(x+

1
−x

+

3
)−il−(x+

3
−x

+

2
)+i~q⊥·(~b1⊥−~b3⊥)+i~l⊥·(~b3⊥−~b2⊥)

×
1

2P−

3

ūσ′(P3 + l − q)γα i(/P 3 + /l)

(P3 + l)2 + iǫ
γβuσ(P3) g

α′
− gβ

′
−

×

[

−i

l2 + iǫ

(

gβ′β − PV

(

1

l+

)

(ηβ′ lβ + ηβlβ′)

)

+ δ(l+)
π

l2
⊥

(ηβ′ lβ − ηβlβ′)

]

×

[

−i

q2+iǫ

(

gαα′−PV

(

1

q+

)

(ηαqα′+ηα′qα)

)

+δ(q+)
π

q2
⊥

(ηαqα′−ηα′qα)

]

. (B.7)

In arriving at eq. (B.7) we have used the on-shell condition for the outgoing target quark,

l+ − q+ =
(~l⊥ − ~q⊥)

2

2P−
3

, (B.8)

to eliminate the q+ integral. Since quarks 1 and 2 are completely eikonal we replaced

their spinor matrix elements by gα
′− gβ

′−. In the target quark spinor matrix element

from eq. (B.7) one can only have α = +,⊥ and β = +,⊥ since the gluon propagators

vanish for either α = − or β = − due to the gauge choice. The leading contribution in

P−
3 is given by the α, β =⊥ component. Naively one would expect such contribution to

be sub-eikonal, suppressed by a power of P−
3 . As one could see below, this is indeed the

case, but only until one integrates over l+ picking the pole either at l+ = 0 or at q+ = 0.

The residues at such poles generate enhancement (due to pinching of the poles in the

product of propagators in (B.7)), making the end contribution leading order. Since we are

interested only in this pinched pole contribution, below we will evaluate all the expressions

keeping the l+ ≈ 0 approximation in mind.

Keeping the α, β =⊥ component allows us to write the product of the two gluon

propagators in (B.7) as
(

i

l2 + iǫ
PV

1

l+
+

π

l2⊥
δ(l+)

)(

i

q2 + iǫ
PV

1

q+
− π

q2⊥
δ(q+)

)

~q⊥α
~l⊥β. (B.9)
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Multiplying the spinor matrix element of quark 3 from (B.7) by ~q⊥α
~l⊥β from the above

expression yields

1

2P−
3

ūσ′(P3 + l − q) /~q⊥
i(/P 3 + /l)

(P3 + l)2 + iǫ
/~l⊥uσ(P3)

=
1

2P−
3

i

(P3 + l)2 + iǫ
ūσ′(P3 + l − q) /~q⊥

(

γ−/~l⊥l
+ − l2⊥

)

uσ(P3),

=
1

2P−
3

i

(P3 + l)2 + iǫ

[

2P−
3 l+

(

~l⊥ · ~q⊥ − iσ ~l⊥ × ~q⊥

)

− l2⊥

(

~q⊥ · (~q⊥ −~l⊥)− iσ ~l⊥ × ~q⊥

)]

≈ i

2P−
3

[

~l⊥ · ~q⊥ − iσ ~l⊥ × ~q⊥ − l2⊥

(

q2⊥ − 2~l⊥ · ~q⊥
) 1

(P3 + l)2 + iǫ

]

≈ i
l+ − q+

(~l⊥ − ~q⊥)2

[

~l⊥ · ~q⊥ − iσ ~l⊥ × ~q⊥ − l2⊥

(

q2⊥ − 2~l⊥ · ~q⊥
) 1

2P−
3 l+ − l2⊥ + iǫ

]

. (B.10)

Here we have for simplicity assumed that Pµ
3 = (0, P−

3 , 0⊥) and defined /~q⊥ = −~q⊥ · ~γ⊥.
To evaluate the spinor matrix elements we assumed that the spinors are chosen in the

Lepage-Brodsky basis [56] (for the “−” moving quark) and used the table of spinor matrix

elements in [56] (see also [8]) with + ↔ − to write

ūσ′(P3 + l − q) /~q⊥γ
−/~l⊥uσ(P3) = 2P−

3

(

~l⊥ · ~q⊥ − iσ ~l⊥ × ~q⊥

)

ūσ′(P3 + l − q) /~q⊥uσ(P3) = ~q⊥ · (~q⊥ −~l⊥)− iσ ~l⊥ × ~q⊥.

We have also assumed that l+ ≪ l⊥ in (B.10) as we are only after the contribution at

the l+ = 0 (or q+ = 0) pole. In the last step of eq. (B.10) we have used the on-shell

condition (B.8) for quark 3.

Combining eqs. (B.10), (B.7) and (B.9) we have

S1=−g4 (ta)1 (t
b)2 (t

atb)3

∫

d4l

(2π)4
dq−d2q

(2π)3
e−il+(b−

1
−b

−

2
)−iq−(x+

1
−x

+

3
)−il−(x+

3
−x

+

2
)+i~q⊥·(~b1⊥−~b3⊥)+i~l⊥·(~b3⊥−~b2⊥)

×
1

(~l⊥ − ~q⊥)2

[

~l⊥ · ~q⊥ − iσ ~l⊥ × ~q⊥ − l2⊥

(

q2⊥ − 2~l⊥ · ~q⊥
) 1

2P−

3 l+ − l2
⊥
+ iǫ

]

×

[

i

l2 + iǫ

1

q2 + iǫ

(

PV
1

q+
− PV

1

l+

)

+
π

l2
⊥
q2
⊥

(δ(l+) + δ(q+))

]

Integrating over l−, q− and l+, keeping in mind that q+ is set by the on shell condition (B.8),

we arrive at the final result

S1 =

∫

d2l

(2π)2
d2q

(2π)2
ei~q⊥·(~b1⊥−~b3⊥)+i~l⊥·(~b3⊥−~b2⊥)δ(x+1 − x+3 ) δ(x

+
2 − x+3 ) (B.11)

×
[

−1

2
g4(ta)1(t

b)2(t
atb)3

1

l2⊥q
2
⊥

+
1

2
g4(ta)1(t

b)2(t
atb)3

i

l2⊥q
2
⊥(
~l−~q)2

(

2σ ~l⊥×~q⊥+i(q2⊥−l2⊥)
)

]

.

Using similar techniques to calculate the other two graphs in figure 19 we have in total

S1 =

∫

d2l

(2π)2
d2q

(2π)2
ei~q⊥·(~b1⊥−~b3⊥)+i~l⊥·(~b3⊥−~b2⊥)δ(x+

1 − x+
3 )δ(x

+
2 − x+

3 ) (B.12a)

×

[

−
1

2
g4(ta)1(t

b)2(t
atb)3

1

l2
⊥
q2
⊥

+
1

2
g4(ta)1(t

b)2(t
atb)3

i

l2
⊥
q2
⊥
(~l⊥ − ~q⊥)2

(

2σ ~l⊥ × ~q⊥ + i(q2⊥ − l2⊥)
)

]
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S2 =

∫

d2l

(2π)2
d2q

(2π)2
ei~q⊥·(~b1⊥−~b3⊥)+i~l⊥·(~b3⊥−~b2⊥)δ(x+

1 − x+
3 )δ(x

+
2 − x+

3 ) (B.12b)

×

[

−
1

2
g4(ta)1(t

b)2(t
bta)3

1

l2
⊥
q2
⊥

−
1

2
g4(ta)1(t

b)2(t
bta)3

i

l2
⊥
q2
⊥
(~l⊥ − ~q⊥)2

(

2σ ~l⊥ × ~q⊥ + i(q2⊥ − l2⊥)
)

]

S̃3 =

∫

d2l

(2π)2
d2q

(2π)2
ei~q⊥·(~b1⊥−~b3⊥)+i~l⊥·(~b3⊥−~b2⊥)δ(x+

1 − x+
3 )δ(x

+
2 − x+

3 ) (B.12c)

×

[

−g4(ta)1(t
b)2[t

a, tb]3
iσ ~l⊥ × ~q⊥

l2
⊥
q2
⊥
(~l⊥ − ~q⊥)2

]

,

where we have dropped the eikonal term in S3 labeling the remainder S̃3.

Summing all of these terms up we arrive at

S1 + S2 + S̃3 =

∫

d2l

(2π)2
d2q

(2π)2
ei~q⊥·(~b1⊥−~b3⊥)+i~l⊥·(~b3⊥−~b2⊥)δ(x+1 − x+3 )δ(x

+
2 − x+3 )

×
[

−1

2
g4(ta)1(t

b)2{ta, tb}3
1

l2⊥q
2
⊥

+
1

2
g4(ta)1(t

b)2[t
a, tb]3

(

1

q2⊥
− 1

l2⊥

)

1

(~l⊥ − ~q⊥)2

]

. (B.13)

Notice how the polarization (σ) dependence of the target quark associated with the S dia-

grams goes away when one adds the diagrams together. As we Fourier-transform eq. (B.13)

over transverse momenta it is convenient to split up the resulting equation into the following

four pieces, which allow for an intuitive diagrammatic interpretation:

S′

1 =
1

2

[

−i

2π
g2(ta)1(t

a)3 ln

(

1

|~b1⊥ −~b3⊥|Λ

)][

−i

2π
g2(tb)2(t

b)3 ln

(

1

|~b2⊥ −~b3⊥|Λ

)]

δ(x+
1 − x+

3 )δ(x
+
2 − x+

3 )

(B.14a)

S′

2 =
1

2

[

−i

2π
g2(tb)2(t

b)3 ln

(

1

|~b2⊥ −~b3⊥|Λ

)][

−i

2π
g2(ta)1(t

a)3 ln

(

1

|~b1⊥ −~b3⊥|Λ

)]

δ(x+
1 − x+

3 )δ(x
+
2 − x+

3 )

(B.14b)

S′

3 =

[

−i

2π
g2(ta)3 ln

(

1

|~b1⊥ −~b3⊥|Λ

)][

−i

4π
g2[tb, ta]1(t

b)2 ln

(

1

|~b1⊥ −~b2⊥|Λ

)]

δ(x+
1 − x+

3 )δ(x
+
2 − x+

3 )

(B.14c)

S′

4 =

[

−i

2π
g2(tb)3 ln

(

1

|~b2⊥ −~b3⊥|Λ

)][

−i

4π
g2(ta)1[t

a, tb]2 ln

(

1

|~b1⊥ −~b2⊥|Λ

)]

δ(x+
1 − x+

3 )δ(x
+
2 − x+

3 ).

(B.14d)

The diagrams representing these four expressions are shown in figure 21. Notice that these

satisfy the condition

S1 + S2 + S̃3 =
4
∑

i=1

S′
i.

Let us go over the physical significance behind the four contributions in eqs. (B.14).

The δ(x+1 − x+3 )δ(x
+
2 − x+3 ) term means all of these interactions are instantaneous, they

occur at a single x+ position. (In the end of the calculation all the x+ coordinates are

integrated out leading to the GM exponentiation of the result.) All of the diagrams in

figure 21 are various corrections to the eikonal scattering seen in the MV model or GM

approximation. Diagrams S′
1 and S′

2 consist of the eikonal scattering of the two quarks off

the same target nucleon, each of them scattering in a classical field of the target quark,
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Figure 21. Diagrammatic representation of the four contributions contained in eqs. (B.14). The

short line crossing the (thick red) target quark in the left two diagrams indicates that the quark

is on mass-shell. The dashed line represents an instantaneous gluon exchange. The arrow on the

dashed line entering a quark-gluon vertex denotes a commutator between the fundamental color

generators (with the color matrix of the dashed line in the first position in the commutator).

Figure 22. Summing up the gauge rotations for a given target nucleon distribution.

since the quark line is put on mass shell between the rescatterings (as indicated by a “cut”

through the line). Indeed, each term in the square brackets of eqs. (B.14a) and (B.14b)

represents a single t-channel gluon exchange between the projectile quarks at ~b1⊥ and ~b2⊥
and the target quark at ~b3⊥. The contributions in (B.14a) and (B.14b) come in with a

factor of 1/2 shown explicitly in the two left diagrams of figure 21. The only difference

between S′
1 and S′

2 is the color factor associated with the target quark.

Note that the contributions S′
1 and S′

2 also occur in the PV sub-gauge of the light-cone

gauge. One can see this by noticing that they would remain if one drops the delta-function

parts of the gluon propagators in eq. (B.7) (and in a similar calculation for S2). Therefore,

these contributions are sub-gauge invariant. In addition, these terms end up canceling out

when one considers the amplitude squared (since bringing either of the t-channel gluons in

these diagrams across the cut gives an overall minus sign [41]), meaning that these diagrams

do not effect the gluon production cross section. This is why they are not included in the

calculation in the main text leading to eqs. (3.21) and (3.25).

The other two contributions, S′
3 and S′

4, which arise in the ~A⊥(x
− → +∞) = 0 (and,

up to a sign, in ~A⊥(x
− → −∞) = 0) sub-gauge of the light-cone gauge but not in the

PV sub-gauge, correspond to one of the projectile quark lines scattering in a classical

field of the target while being color-rotated by the field of another projectile quark (see

e.g. [17] for the color-rotation terminology). The first square brackets in each of eqs. (B.14c)

and (B.14d) contain a single t-channel gluon exchange corresponding to the classical field

of the target quark. The second pair of square brackets in eqs. (B.14c) and (B.14d) contain

the “gauge rotation” illustrated by the dashed line in figure 21 using the notation defined

in eq. (B.6) and figure 17. The arrow at the end of the dashed line indicates a commutator

of fundamental color matrices for the dashed line “gluon” and for the “true” gluon entering
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Figure 23. Shock wave with order-g2 corrections.

the quark-gluon vertex: the first term in the commutator contains the color matrix for the

dashed line placed to the left of the color matrix of the “true” gluon.

To figure out how corrections from the diagrams S′
3 and S′

4 contribute to the amplitude

with multiple rescatterings we need to add up all possible gauge rotations for multiple

interactions with the target nucleons. The case of the two projectile quarks scattering on

two target nucleons is shown in figure 22. On the left of the equality in figure 22 we have

shown two contributions arising due to the corrections like those shown in the right two

diagrams of figure 21: one for the first nucleons and one for the second nucleon. Analyzing

the sum on the left we see that the gauge rotations inside the shock wave cancel out and

we only end up with rotations on the outside of the charge distribution. The final result

on the right of figure 23 gives an order-g2 correction to the shock waves with the dashed

line without an arrow defined as in eq. (B.6) and figure 17. Repeating this argument for

any number of target nucleons, by including both corrections from the right two diagrams

of figure 21 for each nucleon, we arrive at the same conclusion: the net result of all such

corrections is equal to a diagram with a dashed line to the right of the shock wave minus the

diagram with the dashed line to the left of the shock wave. We see that in the sub-gauge of

interest each shock wave interaction is accompanied by the order-g2 corrections as shown

in figure 23. The dashed line contributions are given by the expression in the parenthesis

of eq. (B.6), since all the x+ coordinates are integrated out in going from S′
3 and S′

4 in

eq. (B.14) to the contribution to the scattering amplitude.

Using this result it is straightforward to deduce the contributions of gauge rotations

to the gluon production amplitude. One simply has to take an order-g gluon production

amplitude for the scattering of two projectile quarks on the target and add all possible

dashed lines to it (connecting a pair of s-channel lines) immediately to the left and to the

right of the shock wave (with the appropriate signs). The resulting corrections to the single

gluon production amplitude are depicted in figure 24 below under the category (II): they

are labeled ∆Si.

The last contributions we have to consider are the gauge dependent parts of the A, D

and E diagrams. Calculating these is straightforward although time-consuming, just re-

peating the calculation done in the main text of the paper but this time including the part of

the gluon propagators proportional to δ(l+) (see eq. (B.1)). It is interesting to note that for

an “instantaneous” term such as this, it does not matter whether one uses Feynman prop-

agators or retarded gluon Green functions: hence our demonstration of the sub-gauge in-

variance also applies if one uses retarded gluon Green functions, as is done in the main text.
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Figure 24. The various gauge-dependent corrections (with the produced gluon emitted by quark

1): (I) Pinched contributions; (II) shock wave corrections; (III) corrections to diagrams of type A

and E. Each of the labels ∆Ai, ∆Bi, ∆Si, and ∆E2 denote both the diagram above it and the sign

in front of the diagram. In the PV gauge all of these contributions are zero. Notice how the sum

of all of these is zero, demonstrating sub-gauge invariance.

With this in mind all of the gauge-dependent terms of diagrams A and E (corre-

sponding to a gluon emission from quark 1) are shown in figure 24 and are labeled

∆Ai and ∆E2. These terms were obtained by an explicit calculation. Note that

∆Ai = Ai( ~A⊥(x
− → +∞) = 0 sub-gauge) − Ai(PV sub-gauge), with the same defini-

tion for ∆E2. Also shown in figure 24 are “pinched” contributions ∆Bi. Note that in

figure 24 the labels ∆Ai, ∆Bi, ∆Si, and ∆E2 include both the diagram above each of

them and the sign in front of the diagram. All of the gauge-dependent contributions to

Feynman diagrams at the order g3 shown in figure 24, that is, the “pinched” contributions,

shock wave corrections, and gauge-dependent diagram corrections cancel out, preserving

gauge invariance. More precisely we have

∆A′
1 +∆B2 +∆S1 = 0;

∆A′′
1 +∆S2 = 0;

∆A4 +∆S4 = 0;

– 43 –
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∆A5 +∆B10 +∆S7 = 0;

∆E2 +∆S5 = 0;

∆B5 +∆S3 = 0;

∆B3 +∆S6 = 0. (B.15)

Hence our result (the sum of all the A, B and C graphs and the sum of all the D and E

graphs) is independent of the choice of sub-gauge in the light-cone gauge.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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