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1 Introduction

Quantum entanglement appears to be a key ingredient for an understanding of hologra-

phy [1, 2]. The seminal proposal of Ryu and Takayanagi [3, 4] offers a way to reconstruct

properties of a dual geometry from the spatial entanglement of a state. It conjectures that,

for General Relativity in the bulk, the entanglement entropy S of a region in a dual theory

is the area A of a certain minimal surface in Planck units,

S =
1

4G
A. (1.1)

In this paper we derive an analogous formula for curvature squared theories of gravity, and

comment on another one that works more generally. Eventually, one would like to find a

derivation for general theories of gravity, by which we mean theories of geometry:

I =

∫ √
g dDxL(Rµνρσ,∇µ, gµν) + Boundary terms . (1.2)

We follow the approach of ref. [5], that derived eq. (1.1) in General Relativity under the

assumption that the euclidean field theory problem maps holographically to a geometric

calculation in an euclidean manifold with Zn symmetry. The n in the Zn is the number of

replicas in the replica trick, that we will review below. In the classical gravity regime, the

calculation of S corresponds to a certain limit of the gravitational action of this manifold

with Zn symmetry, In. One has to allow for a conical excess 2πδ in the loci of fixed points

of Zn. In the action, we write the magnitude of this conical excess in brackets: In[δ]. Then,

the holographic calculation that one has to do is:

S = ∂n (In[0]− In[n− 1])|n=1 . (1.3)
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Since the parameter n was originally an integer (the number of replicas), the evaluation of

this formula requires an analytic continuation of In[n− 1] to real n, that was discussed at

some length in [5].

Things simplify in the presence of euclidean time translation symmetry. Euclidean

stationarity corresponds to the enhancement of the Zn symmetry to U(1). In this case,

the derivation of (1.1) corresponds to a derivation of the entropy of Killing horizons in

euclidean quantum gravity, that sees it as the quantity conjugate to a deficit angle [6, 7].

The entropy of such euclidean horizons in general theories of gravity is known to be given

by Wald’s formula [8–10]

S = −2π

∫

W

√
γ dD−2σ ǫµνǫρσ

δL
δRµνρσ

∣

∣

∣

∣

W

, (1.4)

where W is the loci of fixed points of the U(1) symmetry and ǫµν is the binormal to W ,

which is a codimension−2 submanifold. In this formula the lagrangian has to be varied

with respect to the Riemann tensor keeping the metric and connection fixed, as if they

were independent quantities.

Eq. (1.1) is, however, valid beyond the requirement of euclidean time stationarity, and

we would like to find a similarly robust formula for general theories (1.2). Stationarity

in euclidean time is technically important for the derivation of (1.4). The advantage is

that it implies the vanishing of the extrinsic curvature of W . This can be seen directly by

choosing coordinates adapted to W , and expanding in the distance to W :

ds2 =
(

γab − 2Kab
1 r cos θ − 2Kab

2 r sin θ
)

dσadσb + dr2 + r2dθ2 + . . . , (1.5)

where σa, a, b = 1, . . . , D − 2, are coordinates in W , θ is the euclidean time, and r is the

distance to W . Clearly, euclidean time independence implies the vanishing of the extrinsic

curvature Kab
i.

We find that, for general embeddings of W (1.5) and curvature-squared gravity,1 for-

mula (1.3) gives:2

S =

∫

W

√
γ dD−2σ

(

δ(1)Rµνρσ
δL

δRµνρσ
+ δ(2)Rµνρστπξζ

∂2L
∂Rµνρσ ∂Rτπξζ

)∣

∣

∣

∣

W

, (1.6)

where γab is the metric induced on W , and with

δ(1)Rµν
ρσ =− 4π ⊥[µ

ρ ⊥ν]
σ = −2π ǫµνǫ

ρσ , (1.7)

δ(2)Rµν
ρσ

τπ
ξζ =4π

(

K[µ
[ρ|i| ⊥ν]

σ]
[π

[ζKτ ]
ξ]j ⊥ij +K[µ

[ρ|k|⊥̃ν]
σ]

[π
[ζKτ ]

ξ]lǫkl

)

. (1.8)

⊥µ
ν is the projector on the space transverse to W . We defined

⊥νσπζ=⊥νπ⊥σζ + ⊥νζ⊥πσ − ⊥νσ⊥πζ , ⊥̃νσπζ =⊥νπ ǫσζ+ ⊥σζ ǫνπ . (1.9)

Note that the first term in the parenthesis of eq. (1.6) is Wald’s entropy (1.4) and the

second term vanishes in the absence of extrinsic curvature. Equations (1.6)–(1.9) are the

main result of this paper, that is devoted to their derivation.

1The case of more general gravitational lagrangians (1.2) is discussed in the appendix following [14].
2For other recent attempts see e.g. [11–13].
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Note added in v2: as the writing of this paper was being undertaken [14] appeared in

the arXiv, with a prescription that works for more general theories of gravity. We discuss

that prescription in the appendix.

2 Entanglement entropy and its holographic dual

This section reviews some aspects of the connection between entanglement and geometry.

This includes a derivation of eq. (1.3) and relevant arguments in favor of the Ryu-Takayangi

conjecture that were developed in [5].

The entanglement entropy of a density matrix3 ρ in a spatial region A is computed

as the Von Neumann entropy of its reduced density matrix ρA. This, in turn, is obtained

from tracing over the degrees of freedom outside A: ρA = trĀρ. Then:

S = −tr (ρA log ρA) . (2.1)

It is difficult to compute S directly. A standard tool to calculate it indirectly is the

replica trick, which connects S to geometry already in the field theory picture [15]. One

needs to first consider the Rényi entropies:

Sn =
−1

n− 1
log (trρnA) , (2.2)

which are defined for n ∈ Z, and analytically continue them to n ∈ R. Then, one ex-

ploits that

S = lim
n→1

Sn (2.3)

to calculate S.

There are ambiguities when continuing functions from Z to R, as one can add terms

of the type sinπn, which vanish for all n ∈ Z but not for real n. A prescription is needed

to quotient out these ambiguities (usually, regularity as n → ±i∞).

A geometric interpretation of the Rényi entropies Sn (and therefore S) goes as follows:

if the state ρ is generated via an euclidean path integral on the space A∪ Ā times euclidean

time θ, then ρnA can be generated via that path integral on (A ⊗ n θ) ∪ (Ā ⊗ θ). By this

notation it is meant that for each extra power of ρA in Sn one evolves in A for an extra

interval of θ relative to Ā and glues consecutive evolutions together, hence the Zn symmetry.

Finally, to take the trace one needs to identify the endpoints of the time interval, thus

closing euclidean time in a loop. This results in a path integral in an euclidean manifold

with a compact euclidean time circle that has a period in A that is n times that in Ā.

Continuity along ∂A requires the euclidean time circle to close off at ∂A, thus creating a

conical excess on ∂A, of opening angle 2π(n− 1).

In conformal field theories ∂A can be pushed to infinity by a conformal transformation

for simple enough regions [5, 16]. In the following we will assume this has been done, so

there will be no conical singularities in the field theory side.

3ρ could be pure: ρ = |ψ〉〈ψ|.
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Holography maps this euclidean field theory problem to an euclidean gravity one in

one more dimension. In the usual limit of classical gravity in the bulk, one has

trρnA ≈ e−In

e−nI1
, (2.4)

where In indicates the value of the gravitational action on the solution of the equations

of motion with an euclidean time with period 2πn. I1 is the solution with period 2π and

computes trρ, which we use to normalize the gravitational calculation. We assume we work

with states with a good holographic dual, such that the geometries in In and I1 are both

everywhere regular. The entanglement entropy S (2.1) is then related to the limit of the

analytical continuation of In for n ∈ R as n → 1:

S = ∂n (In − nI1)|n=1 . (2.5)

Using locality of the action the factor of n in the second term in the r.h.s. can be

absorbed in the period of the euclidean time. This allows to rewrite this term as the action

of a manifold with euclidean time period 2πn, with a conical excess of 2π(n − 1) where

the time circle shrinks to zero size,4 without including any contribution from the conical

singularity [5]. We call this quantity In[n − 1]; the subindex refers to the period of the

euclidean time and the argument in brackets refers to the conical excess on W . Then

eq. (1.3) follows

S = ∂n (In[0]− In[n− 1])|n=1 . (2.6)

One can rewrite In[n− 1] as

In[n− 1] = (F )In[n− 1]− În[n− 1] , (2.7)

where (F )In[n − 1] is the full action of the conically singular manifold and În[n − 1] is

the contribution to the action from the conical singularity. It will be convenient to think

about these conical manifolds as the limit of families of regular geometries. Each of these

geometries is regular and its action differs from In[0] by terms of order (n − 1)2, as the

geometry in In[0] satisfies the equations of motion. Then, In[0] and
(F )In[n− 1] cancel in

the n → 1 limit and eq. (2.6) reduces to

S = Î ′1[0] , (2.8)

where the prime derives the argument in brackets, not the subscript.

Eq. (2.8) instructs us to isolate the contributions to the action that are linear in the

conical excess (n − 1) and non-extensive, that is, that do not come from the integral in

θ running from 0 ≤ θ < 2πn instead of 0 ≤ θ < 2π. These contributions will naturally

localize on W , and this will give the holographic entanglement entropy functional. This

calculation is done in the next section. However, we should emphasize that the conical

geometry appears only as a tool to compute nI1[0]. The holographic calculation of the

Rényi entropies can be phrased solely in terms of regular holographic duals (2.4) [17, 18].

4We called this submanifold W in the introduction and will continue to do so in the rest of the text.
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3 Action of conical singularities

In this section we develop a framework to evaluate eq. (2.8) for general theories of grav-

ity (1.2) and general embeddings of W (1.5). As a warm up, we start with a review of the

case without extrinsic curvature.

3.1 Zero extrinsic curvature case

Because of their localized nature, conical singularities are subtle to deal with using differ-

ential geometric tools. However, it is known that if they do not possess extrinsic curvature

they can be accounted for as delta-like contributions in the Riemann tensor, to leading

order in the conical excess [21]. For an excess of 2π(n− 1) this contribution is

δRµνρσ = −2π(n− 1)ǫµνǫρσ δ
(2)(W ) , (3.1)

where ǫµν is the binormal to W , on which the Dirac delta localizes. Wald’s entropy (1.4)

follows straightforwardly from the application of (3.1) to eq. (2.8), [19].

One can derive eq. (3.1) from the following construction. Consider the metric around

a point in W , in the absence of extrinsic curvature:

ds2 = dr2 + r2dθ2 + δabdσ
adσb +O(1/λ2) , (3.2)

where we have taken normal coordinates σa in W around the chosen point. λ is the

curvature lengthscale of W or the background, of which some components are in fact

related by Gauss-Codacci equations. The vanishing of the extrinsic curvature term, that

we allowed for in (1.5), corresponds to the absence of 1/λ terms in (3.2). This guarantees

that normal coordinates in W are also part of a normal chart of the background. Indeed,

the extrinsic curvature would measure the failure of geodesics of W being geodesics of

the background and therefore of normal coordinates grids in W being normal coordinate

grids in the background. Kab
i = 0 is what makes eq. (3.2) look like flat space in Cartesian

coordinates, something that will not be true in the next section nor in the appendix (despite

the fact that we will choose again normal coordinates in W and its transverse space).

We want to introduce a conical excess on W in (3.2) by periodically identifying the

euclidean time θ with period 2πn instead of 2π. A convenient way to do so is considering

a family of geometries regulating the conical singularity on scales r . Λ ≪ λ:

ds2 = dr2 + r2
(

1− n− 1

n
A(r2/Λ2)

)2

dθ2 + δabdσ
adσb +O(1/λ2) , (3.3)

where A(r2/Λ2) is a regulating function, decaying sufficiently fast for r ≫ Λ and such that

A(0) = 1. A(r2/Λ2) is an off-shell deformation of the geometry (3.2) on a scale of order Λ,

that restores regularity around r = 0 when θ ∼ θ + 2πn . Eq. (3.3) is, thus, a regulated

version of the conical excess in (3.2). Our strategy will be to compute on this geometry

and send the cutoff Λ to 0 at the end.

To evaluate eq. (2.8) one needs to isolate the explicit dependence on n coming from

the integrand in I (and not from the limits of integration 0 ≤ θ < 2πn). Because this
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dependence appears in (3.3) multiplied by the localizing function A(r2/Λ2), the integral

we are interested in will localize on scales r . Λ. Since at the end of the day we will take

the limit Λ → 0, all Λ dependence should be made explicit. This can be done by going to

coordinates r = Λy. The measure in (1.2) reads:

√
g dDx =

(

1− n− 1

n
A(y2)

)

Λ2 y dθ dy dD−2σ +O(Λ3) . (3.4)

In the limit Λ → 0 we will get a finite n−dependent contribution to I from the

integrand if this has a O(1/Λ2) contribution. This is best assessed in an orthonormal

frame, where powers of Λ coming from gθθ and gθθ are automatically accounted for. We

thus pick the basis

er̂ = dr , eθ̂ = r

(

1− n− 1

n
A(r2/Λ2)

)

dθ , eσ̂
a

= dσa (3.5)

and compute the Riemann tensor. The only 1/Λ2 contribution is

Rr̂θ̂r̂θ̂ =
1

Λ2

n− 1

n

1

y
(

1− n−1
n A(y2)

)

d2(yA(y2))

dy2
, (3.6)

and identically in other components related to this one by reordering of the indices using

symmetries.

At this stage it is useful to recall that to compute the entropy from (2.8), we are only

interested in contributions linear in (n − 1) to the action (1.2). To that effect, Rr̂θ̂r̂θ̂ can

contribute at most only linearly.5 Then, at small Λ

Î =
∑

ordering

∫

dθ dy dD−2σ (n− 1)
d2(yA(y2))

dy2
δL

δRr̂θ̂r̂θ̂

+O(Λ) +O
(

(n− 1)2
)

, (3.7)

where the sum is for all the ordering of the r̂θ̂r̂θ̂ indices, and corresponding sign weights.

As advertised, the integral over y localizes on the support of A(y2), on which the deriva-

tive of the lagrangian is effectively constant. This integral can be done with indepen-

dence of the choice of regulating function A(y2), provided it satisfies the conditions we

stated below eq. (3.3). Taking the Λ → 0 limit and performing the integrals in θ and y,

and covariantazing

Î =

∫

W

√
γ dD−2σ (−2π(n− 1)ǫµνǫρσ)

δL
δRµνρσ

∣

∣

∣

∣

W

+O
(

(n− 1)2
)

, (3.8)

from which eq. (3.1) follows.

Note that the considerations in this subsection are independent of I being the action

in (2.8), and apply to any local functional of the curvature.

5Crucially, this kind of argument will fail in the next subsection, but it is correct here.
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3.2 General case

We now address the general case (1.5), allowing for non-zero extrinsic curvature. We will

refer to this setup as a ‘bent cone’.6 The strategy we follow is exactly analogous to the one

in the previous section. That is, we seek for a regulator of the bent cone at some distances

r . Λ ≪ λ.

A good regulating geometry is given by7

ds2 =

(

δab −
2

λ

(

Kab
1 r cos θ +Kab

2 r sin θ
)

( r

Λ

)(n−1)B(r2/Λ2)
)

dσadσb

+ dr2 + r2
(

1− n− 1

n
A(r2/Λ2)

)2

dθ2 +O(1/λ2) ,

(3.9)

with B(y2) another regulating function with the same defining properties as A(y2). We

have again kept λ as a book-keeping parameter of the curvature lengthscale.

The r − θ part of the metric in eq. (3.9) is regulated exactly in the same way as in

eq. (3.3). The difference lays in the extrinsic curvature terms, that we now allowed. To

justify the regulation by B(y2), consider equation (3.9) in an expansion in r/Λ:

ds2 =

(

δab −
2

λ

( r

Λ

)n−1
(

Kab
1 r cos θ +Kab

2 r sin θ
)

)

dσadσb+dr2+
r2

n2
dθ2 +O(r2/Λ2) ,

(3.10)

and go to Cartesian coordinates in the directions transverse to W :

x1 = r cos

(

θ

n

)

, x2 = r sin

(

θ

n

)

, (3.11)

where we used that θ/n is the true polar coordinate in (3.9), with period 2π.8 The met-

ric looks:

ds2 =

(

δab −
2

λ

rn

Λn−1

(

Kab
1 Tn(x

1/r) +Kab
2 T̃n(x

2/r)
)

)

dσadσb (3.12)

+ (dx1)2 + (dx2)2 +O(r2/Λ2) ,

with Tn the Chebyshev polynomials, defined by

Tn(cos θ) = cos(nθ) , (3.13)

and T̃n defined similarly for the sines. The Tn have degree and parity n, so the metric (3.12)

is explicitly regular around the origin for integer n.9 It is crucial to observe that for this

6In the literature it is sometimes also referred to as ‘squashed cone’ [20].
7This is motivated by good properties of the geometries introduced in [12], which were further studied

in [22]. See also [23].
8This makes explicit the Zn symmetry in (3.9), θ → θ + 2πk.
9e.g. for n = 2, this metric (3.12) is

ds2 =

(

δab −
2

λ

1

Λ

(

Kab
1 (

(x1)2 − (x2)2
)

+Kab
2 2x1x2

)

)

dσadσb + (dx1)2 + (dx2)2 +O(r2/Λ2) .

– 7 –
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to happen the power of r in front of the extrinsic curvature terms in eq. (3.10) has to

be n, thus justifying the presence of the B(y2) terms in (3.9). Otherwise, we get overall

fractional powers of r for integer n in (3.12), explicitly spoiling regularity at r = 0. An

analogous analysis holds for the T̃n.

Notice that choosing B(0) to be any odd positive integer would also lead to regular

geometries for integer n. Therefore, there seems to be a degree ambiguity in the regulation.

In the remainder of the main text we will work in the minimal case B(0) = 1. See section 5

for comments about this.

As in the previous subsection, we now wish to find 1/Λ2 contributions to the inte-

grand (1.2). On the one hand, there will be the same contribution coming from the r − θ

part of the metric (3.10) that we discussed in the previous subsection, namely Wald’s en-

tropy. This is the origin of the first term in (1.6). On the other hand, we expect new

contributions, coming from having allowed W to have extrinsic curvature. Consider, then,

the possible scalings with 1/Λ of these terms. Because the extrinsic curvature has dimen-

sions of one over length and the Riemann is one over length squared, dimensional analysis

says that any such contribution to the Riemann tensor will be, at best, of the type

Riem ∼ (n− 1)
K

Λ
, (3.14)

where we have made explicit the leading dependence in n − 1: a term like (3.14), with

a factor of 1/Λ, will be at least proportional to (n − 1), because it comes from having a

(regulated) conical excess that vanishes as n → 1.

Because of the arguments around eq. (3.4), in the Λ → 0 limit only terms scaling as

1/Λ2 in the integrand will give a finite result, so terms like (3.14) can contribute to the

integral (1.2) if they appear squared. This is the origin of the second derivative of the

lagrangian in (1.6).

One may now be puzzled by the following fact. We are ultimately interested in eq. (1.3),

which instructs us to take one derivative of the action with respect to (n−1), and send n →
1. It thus seems impossible that a product of two terms (3.14), which will be at least O((n−
1)2), gives a finite result in the required limit. There is, however, one subtlety, coming from

extra n−dependence in the integrand. This is best illustrated with an explicit example.

Consider the following calculation

lim
n→1

∂n

∫ ∞

0
dy (n− 1)2y2n−3A(y2) , (3.15)

where A(y2) is one of the regulating functions we have discussed. If one commutes the order

of the integral and the limit, the result is naively zero. However, this integral diverges in

the lower end as n → 1. We need to perform the integral for n > 1, analytically continue

the result to n ∼ 1, and then take the derivative and the limit n → 1.

The result of this procedure is independent of the choice of the regulating function

A(y2), so let us choose one for which the calculation is straightforward. For A(y2) = e−y2 ,

the integral can be done in terms of Gamma functions, resulting in

lim
n→1

∂n

∫ ∞

0
dy (n− 1)2y2n−3e−y2 = lim

n→1
∂n

(

(n− 1)2
Γ(n− 1)

2

)

=
1

2
. (3.16)

– 8 –
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This is exactly the mechanism by which terms like squares of (3.14) will contribute in (1.3).

Let us now do the calculation we set to do. Again, we calculate in the orthonormal

frame of (3.5), with the change

eσ̂
a

= dσb

(

δab −
1

λ

(

Ka
b
1 r cos θ +Ka

b
2 r sin θ

)

( r

Λ

)(n−1)B(r2/Λ2)
)

+O(1/λ2) . (3.17)

The contributions to the Riemann of the interesting type (3.14) are

δRσ̂ar̂σ̂br̂ =
n− 1

λΛ

(

Kab
1 cos θ +Kab

2 sin θ
)

y(n−1)B(y2)−1 (3.18)

×
[

B(y2) + 2y2(2 + 3 log y)B′(y2) + 4y4 log y B′′(y2)) +O(n− 1)
]

,

δRσ̂aθ̂σ̂br̂ =
n− 1

λΛ

(

−Kab
1 sin θ +Kab

2 cos θ
)

y(n−1)B(y2)−1 (3.19)

×
[

B(y2) + 2y2(A′(y2) + log y B′(y2)) +O(n− 1)
]

,

δRσ̂aθ̂σ̂bθ̂ =− n− 1

λΛ

(

Kab
1 cos θ +Kab

2 sin θ
)

y(n−1)B(y2)−1 (3.20)

×
[

2A(y2)−B(y2) + 2y2(A′(y2)− log y B′(y2)) +O(n− 1)
]

,

and other components related to these by reordering of indices by symmetries.

A word of caution is due at this point. Here we are not expanding around the n = 1

case, as in that expansion the integrals we will do are divergent, as explained around

eq. (3.15). We are just writing conveniently the n dependence of these terms. The setup

to have in mind is performing the integrals for integer n ≥ 2, where they converge and

the geometry is well defined, and then analytically continue the result to n ∼ 1. After

doing this, only the terms coming from the ones sown explicitly above will contribute to

the limit n → 1.

In the remainder of this section we will neglect possible further y dependence coming

from the second derivative of the lagrangian. This assumption limits the validity of the

derivation to curvature squared gravity, where ∂2L/∂Riem2 is a function of the metric

only, and lets us factor out this term outside the θ and y integrals. Considering possible y

dependence coming from it enlarges the domain of applicability of the derivation (cf. [14],

see also appendix).

The integrands we are interested in are then squares of (3.18)–(3.20). We will refer to

them by their r̂− θ̂ indices, as the σ̂a − σ̂b ones factor out trivially in extrinsic curvatures.

The integral on θ is effectively done with the prescription in [5]. We first integrate from

0 ≤ θ < 2π, and then multiply the result by n. This averages some pairings of the extrinsic

curvature terms in (3.18)–(3.20) to zero, letting survive two types: those that have their

third index effectively contracted, Kab
iKcdi, and those that are effectively antisymmetrized,

Kab
iKcd

jǫij .
10 Of the ones that effectively have the third index contracted, the only ones

giving non-zero are:

r̂r̂ r̂r̂ , r̂r̂ θ̂θ̂ , r̂θ̂ r̂θ̂ , θ̂θ̂ θ̂θ̂ . (3.21)

10Our choice of transverse orientation is ǫx1x2 = +1. This corresponds to ǫr̂θ̂ = +1.

– 9 –



J
H
E
P
0
3
(
2
0
1
4
)
0
7
0

Of the antisymmetrized combinations, the surviving ones are

r̂r̂ r̂θ̂ , θ̂θ̂ r̂θ̂ . (3.22)

The integral on y is independent of the regulating functions and can be done by noticing

that the contribution that will matter when we take the limit n → 1 comes entirely from

the terms at the origin of the integrals, y = 0. To that effect one can keep only the terms

not explicitly multiplied by y in the second lines of (3.18)–(3.20). Also for that matter,

the exponents of y are effectively their value at y = 0, so the B(y2) in the exponents are

effectively 1. Then, the integrals (3.21) become analogous to the one we discussed explicitly

in (3.15), with possibly the As exchanged by Bs. After the dust settles, the result of taking

the derivative in n of the integral, and sending n → 1 is:

r̂r̂ r̂r̂ =
π

2
, r̂r̂ θ̂θ̂ = −π

2
, r̂θ̂ r̂θ̂ =

π

2
,

θ̂θ̂ θ̂θ̂ =
π

2
, r̂r̂ r̂θ̂ =

π

2
, θ̂θ̂ r̂θ̂ = −π

2
. (3.23)

where the above notation refers to, e.g.,

lim
n→1

∂n

∫ √
g dDx δRσ̂ar̂σ̂br̂δRσ̂cθ̂σ̂dθ̂ = r̂r̂ θ̂θ̂

∫

W

√
γ dD−2σKab

iKcdi , (3.24)

and

lim
n→1

∂n

∫ √
g dDx δRσ̂ar̂σ̂br̂δRσ̂cr̂σ̂dθ̂ = r̂r̂ r̂θ̂

∫

W

√
γ dD−2σKab

iKcd
jǫij , (3.25)

and likewise for the other combinations.

This final result (3.24)–(3.25) can be summarized covariantly as

lim
n→1

∂n

∫ 2πn

0
dθ

∫ ∞

0
dy y δRaνbσδRcπdζ =

π

2
Kab

iKcd
j
(

⊥νσπζ⊥ij +⊥̃νσπζǫij

)

, (3.26)

where we brought back the factors of the extrinsic curvature, and defined

⊥νσπζ=⊥νπ⊥σζ + ⊥νζ⊥πσ − ⊥νσ⊥πζ , ⊥̃νσπζ =⊥νπ ǫσζ+ ⊥σζ ǫνπ . (3.27)

⊥µν is the projector in the space transverse to W , and ǫµν its binormal.

The result in (1.6) follows immediately from a symmetrization of the indices in (3.26).

4 Curvature squared gravity

In this section we benchmark the prescription (1.6) against Einstein-Gauss-Bonnet. This

theory has as bulk lagrangian

IGB = − 1

16πG

∫ √
g dDxR− λ

∫ √
g dDx

(

R2 − 4RµνR
µν +RµνρσR

µνρσ
)

. (4.1)
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It is straightforward to compute what the entropy (1.6) is for each of these terms.

We get

SRiem2 = −8π

∫

W

√
γ dD−2x

(

⊥µρ⊥νσ Rµνρσ −Kab
iKab

i

)

, (4.2)

SRicci2 = −4π

∫

W

√
γ dD−2x

(

⊥µρ Rµρ − 1

2
KiKi

)

, (4.3)

SR2 = −8π

∫

W

√
γ dD−2xR , (4.4)

in agreement with [12]. We defined Ki = γabKab
i.

Using a Gauss-Codacci relation, (4.2), (4.3), (4.4) combine into the entropy

SGB = SJM =
A
4G

+ 8πλ

∫

W

√
γ dD−2σ (W )R , (4.5)

with A the area ofW and (W )R the Ricci scalar of γab, the metric induced onW . This is the

well known Jacobson-Myers functional [24], that has been argued to have good features

as a holographic entanglement entropy functional in these theories [25, 26], and whose

lorentzian version is a candidate to horizon entropy in Lovelock theories for non-stationary

situations [24].

5 Comments

We have derived a formula (1.6) for the generalized gravitational entropy of [5] for curvature

squared theories of gravity from first principles. This is a functional that localizes on W ,

which is the loci of fixed points of the Zn symmetry in the geometries dual to the replica

trick. In practice, W can be found by minimizing the entropy functional (1.6), as the

action around n ∼ 1 is essentially the coupling of (1.2) and (n − 1) times (1.6), and

the replica geometries must satisfy the gravitational equations of motion, which extremize

that action.11

For more general theories of gravity, (1.6) needs a modification [14] that we discuss in

the appendix.

Let us go back to the issue of what fixes the value B(0) = 1, mentioned in section 3.2.

We remind the reader that demanding regularity at the origin for integer n only fixesB(0) to

be a positive odd integer. A different value would change the result of the integrals in (3.21),

because it would change the factor multiplying n in the exponent in eq. (3.15). Therefore,

the final prescription (1.6) would be different. We have chosen to fix this with the minimal

prescription B(0) = 1. In the case of Einstein gravity, this value for B(0) could be chosen

by demanding that for n ∼ 1 the gravitational equations of motion have no singularity as

11This argument assumes implicitly that the relevant conically singular geometries can be produced

by sourcing the gravitational equations with the stress tensor of (1.6). This is true for Rk gravity and for

Lovelock densities, where this coupling in the equations of motion produces the desired on-shell cancellation

of contributions localised on W , but we do not have a general argument. For a more thorough analysis of

the equations of motion see [14].
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r → 0. More specifically, demanding no 1/r divergence at O(n−1) in the a−b components

of the Ricci tensor following from eqs. (3.18)–(3.20) sets B(0) = A(0) = 1.12 This argument,

however, does not apply more generally, and we choose instead the minimal prescription.

As in [5], we have assumed that the replica symmetry Zn is not broken. It would be

very interesting to drop this assumption.

Since we worked in the frame where the ∂A (the boundary of the entangling region

in the field theory) had been pushed to infinity, we missed the global part of the Ryu-

Takayangi prescription (and its generalization (1.6)), that demands that the holographic

entangling surface is homologous to ∂A. It would be very interesting to extend the setup

to recover this.

We would also like to use the prescription (1.6) to learn about the structure of the

universal (logarithmic) divergences in the entanglement entropy of 6D CFTs through the

AdS/CFT correspondence.13 We plan to address this in the future.

Reference [28] suggests that the coefficients of terms quadratic in the extrinsic curvature

in effective actions for extended objects can be interpreted as elastic moduli. It would be

interesting to see if this interpretation can be pursued in (1.6) to characterize physical

properties of entangling surfaces.

It would also be interesting to study the implication of our results for the proposal

of [29, 30].

Finally, it is a pressing question to have a derivation of these questions in a purely

lorentzian setup. There, prescriptions for the holographic dual of the entanglement entropy

exist [31], and there is a conjecture for a good notion of Noether entropy in time dependent

setups in any theory of gravity [9]. The lorentzian version of (1.6) is different from this

Iyer-Wald formula, as can be seen, e.g., by inspecting the case of f(R) gravity. In this

case (1.6) predicts the entropy conjectured in [32], that is different from the one following

from the Iyer-Wald construction, as noticed in [32]. In that context, it would be interesting

to study more generally in what circumstances the new entropy satisfies a second law.
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A The prescription in [14]

This section reviews the results in [14] using the notation of the main text. That paper

does not assume the y independence of ∂2L/∂Riem2 that we assumed below eq. (3.20),

and therefore finds a more generally applicable entropy formula. The domain of validity

12I thank the referee for pointing this out.
13The corresponding problem in 4D CFTs was studied in [27].
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of that derivation includes general theories without explicit derivatives of the curvature in

the Lagrangian, L(gµν , Rµνρσ).

The paper [14] finds the following entropy formula:

S =

∫

W

√
γ dD−2σ

(

δ(1)Rµνρσ
δL

δRµνρσ
+
∑

α

δ(2)Rµνρστπξζ

1 + qα

∂2L
∂Rµνρσ ∂Rτπξζ

∣

∣

∣

∣

α

)∣

∣

∣

∣

∣

W

, (A.1)

with δ(1)Rµνρσ and δ(2)Rµνρστπξζ as in (1.7) and (1.8). The α in |α in (A.1) is a dummy

variable that takes different values for terms with a different number of parallel/orthogonal

projections of the Riemann tensor to W in the ∂2L/∂Riem2 term. qα is a sum of numbers

that can be 0, 1/2 or 1 depending on the number and kind of projections picked by α.14

To be specific, one should add to qα a factor of 1/2 for each term of Kab
i and Raijk

in ∂2L/∂Riem2; a factor of 1 for each factor of K̇ab{ij}; and 0 otherwise. These quantities

can be defined by working out the expansion of the metric around W in (1.5) to second

order in 1/λ:

ds2 =

(

γab(σ/λ)−
2

λ
Kabi(σ/λ)x

i − 1

λ2
K̇abijx

ixj
)

dσadσb − 1

λ2
Fabijx

jσb dσadxi

− 4

3λ2
Raijk x

ixkdσadxj +

(

δik −
1

3λ2
Rijklx

jxl
)

dxidxk +O(1/λ3) ,

(A.2)

where we kept normal coordinates in W

γab(σ/λ) = δab −
1

3λ2
(W )Racbdσ

cσd + . . . . (A.3)

As in eq. (1.5), we have also taken normal coordinates in the space transverse to W :

xi, i = 1, 2. These are related to those in (1.5) by x1 = r cos θ and x2 = r sin θ. xi

affinely parametrize geodesics orthogonal to the worldvolume (at constant σa). As in (3.2),

λ is a book-keeping parameter of the curvature lengthscale. Eq. (A.2) represents a general

background metric in coordinates adapted to the most general embedding ofW , toO(1/λ3).

The curvatures satisfy Kab
i = K(ab)

i, Fab
ij = F[ab]

[ij] and K̇ab
ij = K̇(ab)

(ij). Fab
ij is

a field strength for the SO(2) rotations of the orthogonal frame on W , which are a gauge

symmetry on W . The Riemann tensor of the background at the origin of W is Rµνρσ, and

the following Gauss-Codacci(-like) relations are satisfied:15

Rabcd = (W )Rabcd − 2Ka[c
iKd]bi , (A.4)

Rabci = − 2∂[aKb]ci , (A.5)

Rab
ij = Fab

ij − 2Ka
c[iKcb

j] , (A.6)

Ra
i
b
j =

1

2
Fab

ij +Ka
cjKcb

i + K̇ab
ij , (A.7)

14The case studied in the main text sets qα = 0, and is therefore valid for theories in which ∂2L/∂Riem2

is independent of the curvature, namely curvature squared gravity.
15See for instance [33]. The notation is such that, e.g. Rabcd is the projection of Rµνρσ onto W and

(W )Rabcd is the intrinsic Riemann tensor in W , with metric γab.
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where it is not necessary to antisymmetrise the ab indices of the K2 term in the third

equation because of the speciality of codimension 2.

To understand the origin of the α prescription in (A.1), start by noticing that to

introduce a regular conical excess in the metric (A.2), as was done in (3.10), one needs to

add the regulating factors of eq. (3.10) in front of the extrinsic curvature terms,

Kabi x
i →

(

r

Λ

)(n−1)B(r2/Λ2)

Kabi x
i , (A.8)

as well as new factors in front of the ij−traceless part of K̇abij , K̇ab{ij} ≡ K̇abij −
1/2 δijK̇abk

k:

K̇ab{ij} x
ixj →

(

r

Λ

)2(n−1)C(r2/Λ2)

K̇ab{ij} x
ixj , (A.9)

and Raijk,

Raijkx
ixkdxj =

ǫkj

2
Raijkx

ir2dθ →
(

r

Λ

)(n−1)G(x2/Λ2) ǫkj

2
Raijkx

ir2dθ . (A.10)

C(r2/Λ2) and G(r2/Λ2) have the same properties as A(r2/Λ2).16 These changes are neces-

sary for regularity of (A.2) after the introduction of the ‘regular’ conical excess, as in (3.11).

The remaining terms in (A.2) do not need further regulation because they do not contain

dependence in θ.

Let us now review the origin of the terms that one needs to sum in the qα [14]. This has

to do with extra y dependence in the y integrals. First of all, let us recall that the strategy

is to compute on manifolds with regulated conical excesses, and then send the regulating

cutoff Λ → 0. As an example of a term that can show up in the regulated geometries,

consider a theory in which ∂2L/∂Riem2 contains a term with a t-th power of the extrinsic

curvature of W . This may generate a contribution to the entropy, e.g.:

lim
n→1

∂n lim
Λ→0

∫ √
g dDx

(

(R)Kefi

)t
δRσ̂ar̂σ̂br̂ δRσ̂cr̂σ̂dr̂ , (A.11)

where (R)Kabi is defined below and the δRiem are as in (3.18). One generally expects

contributions from all allowed combinations (3.18)–(3.20). For the same reasons as in the

main text, one needs to evaluate first the integral (A.11) in the manifold with the regulated

conical excess for integer n ≥ 2, send the cutoff Λ to zero, analytically continue the result

to n ∼ 1 and take the derivative and the limit n → 1.

For n 6= 1, Kabi in the regulated geometry has changed to a regulated value, (R)Kabi,

that can be read from (A.8)

(R)Kabi =

(

r

Λ

)(n−1)B(r2/Λ2)

(Kabi +O(n− 1)) . (A.12)

16Analogous caveats to the ambiguity in B(0) apply here. We fix them again chosing minimality: C(0) =

G(0) = 1.
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By the arguments above eq. (3.21), this modifies the integrals on y of the type (3.15) to

integrals which are effectively of the type:

lim
n→1

∂n

∫ ∞

0
dy (n− 1)2y2n−3+t(n−1)A(y2) =

1

2

1

1 + t/2
, (A.13)

where t is power of the extrinsic curvature in (A.11). The dependence in t(n−1) in the inte-

grand comes from the factor with y(n−1)B(y2/Λ2) in the regulated extrinsic curvature (A.12),

t times.

An analogous analysis holds for Raijk. For K̇ab{ij}, the same is true with the substi-

tution t → 2t, see eq. (A.9). These contributions are clearly additive in the exponent of

y in eq. (A.13), and therefore in the r.h.s. of eq. (A.13). It follows that qα receives the

contributions stated at the beginning of the appendix:17

qα =
1

2
(# of Kabi s) +

1

2
(# of Raijk s) + (# of K̇ab{ij} s) . (A.14)

Considering general theories of gravity (1.2), with derivatives of the Riemann allowed

in the action, will probably mildly change the prescription for qα (A.14) [14]. We expect

new contributions coming from the regularization of the terms represented by O(1/λ3) in

eq. (A.2), that contain derivatives of the Riemann around the origin of W .

The prescription (A.1) with (A.14) reduces to (1.6) in the case of curvature squared

gravity because there ∂2L/∂Riem2 is a function of the metric only. Then, there are no

contributions of Kabi, Raijk or K̇ab{ij}, and qα = 0.
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